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Abstract

This position paper contends that hyperbolic
embeddings must become a standard for modeling
and retrieving hierarchical health knowledge
graphs (HKGs) within large language models
(LLMs) and their supporting vector databases.
While Euclidean or spherical embeddings
remain prevalent in biomedical retrieval systems,
these geometries cannot adequately capture
the deep ontological hierarchies, small-world
connections, and rich relational patterns inherent
in medical data. By contrast, hyperbolic
embeddings exploit negatively curved spaces
such as the Poincaré ball to compress hierarchical
information with minimal distortion, paving the
way for more interpretable retrieval, advanced
question answering, and robust clinical decision
support.  This paper details how negative
curvature addresses common bottlenecks in
Euclidean-based solutions and calls on the
healthcare and ML communities to adopt
hyperbolic geometry as a core component of
next-generation health informatics pipelines.
We present both theoretical underpinnings
and practical implementation  strategies,
supplemented by four in-depth appendices that
cover mathematical proofs, comprehensive
literature  overviews, experiment design
frameworks, and real-world policy considerations.
Despite engineering and organizational hurdles,
we argue that hyperbolic embeddings offer
compelling benefits and should be the default
choice for hierarchical HKGs in LLM-driven
ecosystems.
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1. Introduction

Position Statement: Hyperbolic embeddings should become
a standard for encoding and retrieving hierarchical health
knowledge graphs (HKGs) within large language models
(LLMs) and their supporting vector databases.

Modern health informatics integrates diverse data sources
such as disease ontologies, molecular interactions, and
patient records (Callahan et al., 2013; | Mungall et al., [2017).
These large-scale HKGs often exhibit deep hierarchical
layers (e.g., multilevel ICD or SNOMED structures)
alongside small-world connections (e.g., cross-links
between related diagnoses). Traditional Euclidean or
spherical embeddings, however, struggle to capture such
tree-like depth without high-dimensional overhead, leading
to suboptimal retrieval performance in LLM-based systems
(Devlin et al.}[2019; [Lee et al.| 20205 |Gu et al., 2021} |Singhal
et al.l [2023).

We argue that hyperbolic embeddings provide a more
natural fit, thanks to their negative curvature property that
aligns with branching ontologies. Prior research shows
that hyperbolic spaces not only reduce distortion but also
embed complex hierarchies in fewer dimensions (Nickel
& Kiela, 2017; 2018}, Sala et al., 2018). This leads to
more interpretable boundaries among disease subgroups
and improved retrieval fidelity—crucial for clinical trust and
decision support. By adopting a Hyperbolic HKG Pipeline
(see Figure[I)), we can integrate curvature-tuned training,
specialized vector database indexing, and LLM-driven
queries into a cohesive system that better reflects real-world
healthcare complexity.

This paper lays out the mathematical rationale for
hyperbolic geometry in health informatics, detailing how
negative curvature combats the exponential blow-up that
plagues Euclidean embeddings in deeply layered structures.
We then highlight practical considerations—rewriting
vector databases, fine-tuning curvature, and managing
dynamic ontology updates—underscoring the need
for interdisciplinary collaboration among clinicians,
informaticians, and Al researchers.

In the appendices, we provide technical proofs (Appendix[A)),
a thorough literature survey (Appendix [B), a proposed
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Figure 1. Hyperbolic HKG Pipeline for integrating hyperbolic embeddings into health knowledge graphs. The pipeline encompasses:
(1) Ontology Ingestion & Preprocessing for node normalization and unified-schema mapping; (2) Hyperbolic Embedding Training with
curvature calibration and Riemannian optimization (via negative curvature, ¢ < 0); (3) Vector DB Integration supporting approximate
nearest-neighbor queries under hyperbolic distance and dynamic insertion/deletion; (4) LLM-driven Query enabling embeddings-based
re-ranking and top-k hyperbolic retrieval; and (5) Interpretation & Visualization modules for clinical end-users. This unified framework
highlights how hierarchical fidelity and negative curvature can be harnessed to build robust, scalable, and interpretable healthcare systems.
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experimental design (Appendix [C), and deployment
roadmaps alongside policy insights (Appendix|D). Our goal
is to show that hyperbolic embeddings are not an esoteric
choice but a practical and necessary strategy to build
interpretable, hierarchically faithful retrieval frameworks
for ever-growing healthcare data.

2. Background and Related Work
2.1. Health Knowledge Graphs

The concept of HKGs stems from the need to integrate
heterogeneous health data — from biomedical ontologies
(e.g., SNOMED CT, ICD, UMLYS) to de-identified clinical
and genomic records — into a cohesive, queryable
framework. HKGs connect entities such as diseases,
treatments, genes, and patient demographics (Callahan et al.}
2013; Mungall et al.| [2017), with edges capturing causal,
taxonomic, or associative relationships. As these graphs
expand to millions of nodes and edges, capturing both
deep hierarchical relationships (e.g., disease subtypes) and
small-world effects (e.g., multiple cross-links among related
conditions) becomes increasingly complex.

2.2. LLMs in Health Informatics

LLMs, including BioBERT (Lee et al.,, [2020) and
PubMedBERT (Gu et al., 2021)), have raised the bar on tasks
like medical entity extraction and relation classification.
More general-purpose models like GPT-4 are showing

promise in sophisticated tasks such as medical question
answering and summarizing clinical guidelines (Singhal
et al.,[2023). However, LLMs often rely on vector retrieval
layers to serve up relevant knowledge. Most off-the-shelf
vector databases assume Euclidean (or sometimes spherical)
embeddings, limiting their ability to encode the nuanced
hierarchies and domain-specific complexities of health data.

2.3. Vector Databases and Non-Euclidean Embeddings

High-performance vector databases (e.g., FAISS or
HNSW-based solutions) provide the backbone for
large-scale similarity searches (Johnson et al., 2021).
While these systems have proven extremely efficient in
Euclidean or cosine-based vector spaces, they do not readily
incorporate alternative distance metrics that might better
represent tree-like structures. Researchers have begun
exploring hyperbolic embeddings (Nickel & Kielal 2017
2018 |Sala et al., [2018; |(Chami et al., 2020) in contexts like
link prediction and hierarchical taxonomy encoding, but
widespread adoption in health informatics pipelines remains
limited.

2.4. Hyperbolic Geometry in Machine Learning

Hyperbolic embeddings exploit negatively curved spaces
to encode hierarchical relationships more naturally than
their Euclidean counterparts. Pioneering works have
demonstrated that the Poincaré ball model preserves large
hierarchical ontologies in low dimensions (Nickel & Kielal
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2017), and subsequent research has extended these ideas
with hyperbolic graph neural networks (Chami et al.| 2019),
hyperbolic word embeddings (Tifrea et al.| 2019), and
hyperbolic approaches for large-scale knowledge graphs
(Monath et al.l [2019). Their theoretical strength lies in
the exponential growth of volume with respect to radius,
aligning well with how nodes proliferate at each level of a
taxonomy.

2.5. Gaps in Adoption for Health Informatics

Despite evidence that hyperbolic embeddings can
reduce distortion and dimensional requirements, most
clinical knowledge retrieval systems remain anchored to
Euclidean-based index structures (Nickel et al.l [2015). One
major barrier is the perceived complexity of implementing
hyperbolic distance metrics and approximate nearest
neighbor (ANN) searches. Another is the inertia of existing
workflows and standards in hospital settings. Consequently,
advanced geometry for better hierarchical representation
has not yet gained the traction it deserves in real-world
healthcare systems.

Moreover, Appendix |B|provides a comprehensive review
and classification of relevant literature.

3. Why Hyperbolic Embeddings? Significance
and Evidence

Hyperbolic embeddings offer a principled and powerful
approach for representing HKGs that exhibit deep
hierarchical layers, small-world phenomena, and complex
relational structures. Building upon the motivations in
the Introduction, this section not only summarizes the
theoretical and empirical justifications for negatively curved
spaces, such as the Poincaré ball, but also introduces a
systematic implementation framework that highlights how
hyperbolic embeddings can be integrated into real-world
LLM-driven health information systems. This proposed
framework is one of our main contributions, offering
a step-by-step methodology for practitioners to adopt
hyperbolic geometry in clinical or biomedical pipelines.
We further highlight references to our appendices, which
provide additional mathematical details (Appendix [A)),
extended literature insights (Appendix [B), experimental
design outlines (Appendix [C), and practical policy
considerations (Appendix D).

3.1. Aligning Negative Curvature with Hierarchical
Health Data

Health ontologies and classification schemes typically
manifest as multi-layered, tree-like or DAG-based structures,
with entity depth often reaching six or more levels in
resources like SNOMED CT or ICD (Callahan et al., 2013}

Mungall et al., 2017). Hyperbolic geometry naturally
accommodates such branching because distances expand
exponentially as one moves away from the origin. Formally,
for a d-dimensional Poincaré ball

DY ={xecR: x| <1}
the distance between two points u, v is

lu — vif?

) @

and dp(u, v) grows rapidly as ||u|| — 1. This property
is crucial in embedding hierarchical structures: top-level
concepts map near the center, while more specialized or
granular nodes populate regions closer to the boundary
(Nickel & Kielal 20175 2018)). As detailed in Appendix@
negative curvature fosters compact tree embeddings,
preventing the dimensional explosion that Euclidean spaces
often require for comparable fidelity.

dp(u,v) = arcosh(l +2

3.2. Low-Dimensional Fidelity and Distortion
Boundaries

A defining advantage of hyperbolic geometry is its
ability to maintain low distortion across multiple levels
of a hierarchy without resorting to high-dimensional
embeddings. While Euclidean approaches must frequently
increase dimension to capture deep ontological nuance,
hyperbolic spaces distribute nodes efficiently along radial
geodesics. Theorem below, which builds upon the
foundational work (Nickel & Kiela, 2017;|Sala et al., [2018)
and is extended in Appendix[A] formalizes this fundamental
principle:

Theorem 3.1 (Simplified Distortion Bound). Let T be a
tree with branching factor b and height h. Embedding T
into a d-dimensional Poincaré ball D? yields a maximum
pairwise distortion § that grows only logarithmically in
(b, h), whereas an equivalent Euclidean embedding of T,
for comparable distortion, typically grows in dimension at
least linear in h.

By keeping distortion in check as tree depth increases,
hyperbolic embeddings reduce computational overhead
in downstream tasks such as link prediction, subgraph
detection, or semantic retrieval. In large-scale health
systems, where disease categories often nest six or more
layers deep, the capacity to embed thousands of node
types in a compact space can yield substantial efficiency
gains (Appendix [(] discusses an experimental design to
demonstrate this phenomenon).

3.3. Capturing Small-World Phenomena in Biomedical
Networks

Many health knowledge graphs not only exhibit hierarchical
traits but also feature small-world shortcuts, such as
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Table 1. Comparison of common embedding geometries for HKGs.

Geometry Hierarchical Fidelity Dim. Requirement ANN Complexity LLM Compatibility
Euclidean = Moderate High for deep trees ~ Mature libraries (FAISS, Well-established, direct
HNSW)
Spherical Limited for deep Typically moderate = Some specialized indexing ~ Moderate;
hierarchies used in word embedding spaces
Hyperbolic  High (logs tree depth) Low to moderate Requires specialized Growing support;

or adapted ANN aligns with hierarchical queries

gene-phenotype or drug adverse-effect associations crossing
different disease branches (Chami et al., [2019; 2020). By
naturally shortening geodesics across seemingly distant
subgraphs, hyperbolic embeddings can reveal unexpected
latent links — for instance, a rare autoimmune disease sharing
significant clinical pathways with another disorder in a
different subtree. These “shortcut” relationships are difficult
to preserve under Euclidean norms without significantly
raising embedding dimensionality. Hyperbolic metrics
mitigate this trade-off by leveraging the curvature-driven
radial expansion (see Appendix|B|for a more comprehensive
literature comparison).

3.4. Enhanced LLM-driven Retrieval and Semantic
Cohesion

A critical use-case for hyperbolic embeddings is in LLM
pipelines, where queries often involve nested or specialized
concepts, such as “rare pediatric metabolic disorders” or
“targeted gene therapies for subtype B lymphoma” (Monath
et al., 2019). Vector retrieval layers in LLM-based systems
rely on embedding distances or similarities to rank relevant
knowledge graph nodes. While Euclidean or spherical
embeddings might scatter conceptually adjacent subtypes
across many directions, hyperbolic embeddings preserve a
coherent semantic neighborhood around each node’s radial
depth. Empirical trials have demonstrated that tasks like
question answering and knowledge-based inference can see
10 ~ 20% gains in Hits@k when switching from Euclidean
to hyperbolic distance metrics (Nickel & Kiela, [2017;Sala
et al} 2018 |Gu et al., 2021). This aligns with the idea
that hierarchical structure is intrinsically “baked in” to the
negative curvature geometry, streamlining the retrieval of
near-neighbor subcategories.

3.5. Curvature Adaptation and Riemannian
Optimization

Several recent studies propose learning or tuning a curvature
parameter ¢ < 0 during training, so the embedding space
can adjust to different branching patterns (Chami et al.|
2019). For extremely deep or wide hierarchies, a higher
magnitude of curvature may yield clearer separation among
levels; for shallower, more interconnected subgraphs, a
smaller absolute curvature might suffice. Appendix [A]

outlines how this parameter can be dynamically updated
in a Riemannian gradient descent framework, complete
with theoretical convergence discussions (Bonnabel, 2013;
Nickel & Kielal [2018). The ability to modulate curvature
gives health informaticians an additional “knob to turn,”
which is particularly relevant when different parts of a
knowledge graph vary in granularity — such as high-level
disease groupings versus detailed genetic pathways.

3.6. Comparative Summary of Geometries

Table [T] provides a high-level comparison of how Euclidean,
spherical, and hyperbolic geometries perform under four
critical criteria in health informatics: (1) hierarchical fidelity,
(2) dimensional efficiency, (3) complexity of approximate
nearest-neighbor (ANN) retrieval, and (4) compatibility
with LLM interfaces. We draw from representative works
such as (Nickel et al., 2015}, Nickel & Kielal [2017; [Tifrea
et al.L [2019; |Chami et al.| 2019} |Sala et al.| [2018)).

As shown in Table hyperbolic embeddings exhibit
particular strengths in hierarchical fidelity and reduced
dimension requirements. However, practical adoption often
necessitates ANN tools customized for negative curvature.
Section [] and Appendix [D] elaborate on engineering and
policy considerations.

3.7. A Systematic Hyperbolic Implementation
Framework for HKGs

Core Idea. Our Hyperbolic HKG Pipeline systematically
applies hyperbolic geometry at every stage of the health
knowledge graph lifecycle, from ontology aggregation and
embedding training to real-time retrieval and user-centric
visualization. This integrated approach is specifically
designed to accommodate the hierarchical and small-world
properties of medical data, ensuring that both ontological
depth and cross-domain interactions are captured with
minimal distortion.

The pipeline (see Figure[T) begins with Ontology Ingestion
and Preprocessing, where we gather and normalize
multi-level disease taxonomies (e.g., ICD, SNOMED CT)
alongside drug ontologies, patient record metadata, and
related biomedical terminologies. This step establishes
a unified schema that consolidates heterogeneous data
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sources, preparing them for consistent embedding. In
Hyperbolic Embedding Training, we introduce a negative
curvature parameter (¢ < 0) to better reflect the tree-like
branching of disease codes and complex cross-links among
conditions. Our use of Riemannian optimization (Bonnabel,
2013) in this stage preserves hierarchical distances while
keeping embedding dimensions at manageable scales, a
major advantage over Euclidean approaches.

Once the embeddings are learned, Vector Database
Integration adapts or extends ANN solutions (e.g., HNSW,
IVF-PQ) to support hyperbolic distance queries. These
specialized indices store node embeddings for real-time
retrieval, ensuring that medical concepts and patient data
can be rapidly accessed during clinical decision-making
or research queries. The pipeline next supports an
LLM-driven Query, offering an API for LLMs (e.g.,
GPT-style or BioBERT) to fetch top-k relevant concepts
based on hyperbolic distance. By exploiting the geometry’s
hierarchical fidelity, LLMs can more accurately retrieve
fine-grained subcategories of diseases or treatments, thereby
reducing potential noise and improving downstream
interpretability.

Finally, the pipeline provides Interpretation & Visualization
modules, enabling radial or boundary-based displays
of disease subtrees and small-world shortcuts. These
graphical interfaces help clinicians and domain experts
quickly discern nuanced relationships — such as uncommon
syndromes falling under broader disease classes —
while maintaining an overview of how closely related
concepts cluster in hyperbolic space. Through layered,
zoomable layouts, even large-scale ontologies become more
transparent to end-users, bridging the gap between robust
Al back-ends and real-world clinical utility.

Overall, our pipeline yields three major benefits: (i)
consistent negative-curvature embeddings for multilevel
disease and treatment ontologies, (ii) modular integration
with LLM systems for advanced question answering or
decision support, and (iii) a flexible, visualization-friendly
framework that enhances trust and interpretability among
healthcare stakeholders. In Appendix [C] we outline a
reasonable scale proof-of-concept implementation strategy,
detailing potential data sources, performance metrics, and
evaluation protocols. We also discuss policy, regulatory, and
standardization perspectives in Appendix[D] which can guide
broader adoption across clinical and industrial settings.

3.8. Concluding Remarks for This Section

Overall, hyperbolic embeddings provide a mathematically
grounded solution for the inherent complexities of health
knowledge graphs, bridging the gap between deep
ontological hierarchies and the retrieval-driven demands of
modern LLM applications. Beyond theoretical justification,

we present a systematic framework for practitioners to adopt
negative curvature embeddings in end-to-end healthcare
systems.  As elaborated throughout the subsequent
sections and in our four appendices, this geometry-centric
perspective holds significant promise for advancing
health informatics through more compact representations,
improved hierarchical fidelity, and enhanced retrieval
performance.

4. Discussion Potential

4.1. Balancing Ontological Integrity with
Implementation Feasibility

A fundamental tension arises between the theoretical
fidelity that hyperbolic embeddings promise for hierarchical
ontologies and the real-world effort required to adopt
a new geometric paradigm. As shown in Sections
and Theorem hyperbolic spaces can encode tree or
DAG-based structures with lower distortion, effectively
capturing the “is-a” relationships of resources like
SNOMED CT or UMLS (see in Appendix. [B)(Callahan
et al., 2013} Mungall et al.l |2017). However, hospitals
and research labs that have historically relied on
Euclidean-based approximate nearest neighbor (ANN)
indices must contend with not only a retooling of their
search pipelines but also the need to train staff to
handle curvature parameters. Although our appended
Appendix [C] outlines a scaled-down experimental design
to facilitate pilot studies, implementing these designs in
large, production-level databases remains non-trivial.

Moreover, medical standards such as HL7 FHIR and ICD
coding do not yet provide official guidelines for hyperbolic
embeddings. Institutions must determine whether the
theoretical gain in interpretability and hierarchical accuracy
justifies investing in specialized hardware or software.
Some researchers suggest that widely shared frameworks
(e.g., open-source hyperbolic ANN libraries) can ease this
transition, but sustained community effort is needed to
standardize negative curvature metrics, retraction-based
optimizers, and curvature learning heuristics in mainstream
health data pipelines.

4.2. Integrating LLLM-based Hierarchical Reasoning

Recent successes of LLMs in medical QA, clinical
summarization, and even exam-level diagnostics (Gu
et al) 2021) raise a key question: do we still need an
explicit geometry like hyperbolic space if large models
can implicitly encode ontological depth? Proponents of
purely data-driven approaches argue that LLMs, especially
when fine-tuned on domain-specific corpora, develop
robust hierarchical reasoning capacities internally. From
this vantage, the additional complexity of hyperbolic
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embeddings — learning curvature,
databases — appears unnecessary.

retrofitting vector

Yet, as discussed in Section E], and further explored in
Appendix[B] reliance on hidden hierarchical representations
within LLMs may risk mismatch when new diseases or
updated guidelines emerge. Hyperbolic embeddings can
serve as an external, explicit structure that anchors retrieval
in a stable geometry. This “external scaffold” approach
mitigates the danger of hallucinations or misalignment
between the model’s internal abstractions and the real-world
knowledge graph’s structure (Singhal et al, [2023).
Determining whether or how this scaffolding should become
a standard practice is an ongoing debate — one that also
implicates researchers examining the trade-off between
model size and the precision of hierarchical tasks.

4.3. Federated, Distributed Learning, and Privacy
Implications

Many healthcare networks span multiple institutions, each
holding sensitive patient data. Federated learning, which
trains global models without centralizing individual datasets,
has gained traction in safeguarding privacy while pooling
insights (Monath et al.| 2019). Although hyperbolic
embeddings can theoretically be learned via Riemannian
gradient descent in a federated manner, an open issue
is how to ensure global curvature consistency across
distributed nodes. If each institution tunes curvature
or updates embeddings in isolation, reconciling partial
embeddings may lead to domain mismatches or local
minima misalignments.

Furthermore, standard privacy mechanisms — like
differential privacy or homomorphic encryption — are
typically designed around Euclidean metrics. Extensions to
hyperbolic geometry remain an evolving research frontier:
naive solutions might introduce significant distortion or
degrade the hierarchical fidelity gained from negative
curvature. In Appendix|D] we discuss prospective strategies
to integrate secure multiparty computation with hyperbolic
optimization pipelines, although these are largely untested
at the scale of multi-hospital consortia.

4.4. Clinical Decision Support: Utility vs. Liability

Hyperbolic embeddings offer more coherent hierarchical
interpretations of knowledge graphs — potentially vital for
diagnosing rare conditions, unmasking subtle gene-disease
links, or recommending precision medicine interventions
(Chamu et al.} 2020). Yet medicine is a conservative domain,
and any perceived “black box” or misalignment in an
Al-driven system can raise both ethical and legal concerns.
Regulatory bodies like the FDA in the U.S. or EMEA
in Europe may require additional auditing frameworks
to ensure that embedding-based decision support tools

remain transparent and safe. While Euclidean and spherical
embeddings already pose interpretability challenges, the
introduction of negative curvature parameters could
compound clinical apprehensions about “why” certain
diseases cluster near each other in the hyperbolic boundary
region (Lu et al., 2019).

A related debate concerns interoperability with global
coding systems like ICD. Although hyperbolic spaces
hold promise for mapping multiple disease subtrees
in a single consistent layout, local customizations and
expansions in hospital-specific ontologies can complicate
universal alignment. As discussed in Section [3| hyperbolic
geometry can mitigate dimensional blow-up, but bridging an
ever-evolving set of disease codes with stable embeddings
demands new protocols — ones that might eventually be
reflected in official standards, as elaborated in Appendix[D}

4.5. Explainability, Visual Interfaces, and Clinical
Training

Though radial or hierarchical heat-maps in hyperbolic
space can clarify multi-level concept groupings (Chami
et al., |2019), the curvature itself can introduce non-intuitive
distortions in raw distance reading. Clinicians typically
have minimal training in advanced geometry, and even
data scientists may need specialized tooling to interpret
geodesic-based neighborhoods. Consequently, a more
explicit push toward user-centered design is necessary:
specialized visual analytics modules could highlight
subtrees, track confidence intervals around boundary
embeddings, or simplify boundary “compression” so that
end-users gain an interpretable sense of how hierarchical
distance is computed.

In Appendix [ we propose a pilot user study
design, wherein a small group of clinicians compares
hyperbolic-based visualizations with Euclidean counterparts
for routine queries like “show me all child conditions of
Type-1I diabetes.” Such experiments can reveal whether
negative curvature fosters intuitive mental models or
confusion, shedding light on how best to present hyperbolic
geometry in a clinical environment. The design also
evaluates time-to-completion for certain exploration tasks,
hinting at whether hyperbolic embeddings could tangibly
improve workflow.

4.6. Challenges in ANN Indexing and Large-Scale
Retrieval

As outlined in Section hyperbolic embeddings can
significantly benefit retrieval-based tasks, but typical
ANN structures (e.g., HNSW, IVF-PQ, Annoy) assume
Euclidean or dot-product metrics (Johnson et al.| 2021).
Adapting them to the Poincaré metric requires either
manifold-aware indexing — such as hyperbolic Voronoi cells
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or geodesic-based partitioning — or manifold-to-Euclidean
transformations, each carrying a trade-off. Direct hyperbolic
indexing preserves exact distances at the cost of more
complex data structures; approximate transformations risk
distorting the very hierarchical relationships that hyperbolic
embeddings excel at preserving.

While initial attempts have shown promise, large-scale
medical knowledge graphs with millions of entities still
pose open research challenges. Achieving sub-second
query response in a negatively curved index, especially
under dynamic updates (e.g., new disease codes), remains
an under-explored domain.  The final decision on
which approach to adopt might hinge on implementation
complexity, performance benchmarks, and domain-specific
acceptance of approximation errors.

4.7. Fairness and Ethical Ramifications

Finally, hyperbolic embeddings underscore persistent
questions of equity in Al-driven healthcare. If certain
population groups or rarer diseases inadvertently end
up at the “outer boundary,” retrieval heuristics could
underrepresent them. Although small-world properties
can improve detection of cross-branch similarities, this
improvement is not guaranteed to distribute benefits evenly.
A misalignment could perpetuate or worsen existing biases
in diagnostic rates or resource allocation. Researchers
should systematically audit embedding distributions and
consider fairness metrics tailored to hierarchical data.

Moreover, the potential for improved compression might
facilitate data-sharing in under-resourced settings, but if
hyperbolic methods remain proprietary or technologically
inaccessible to smaller clinics, a new digital divide could
emerge. As we elaborate in Appendix[D] bridging these gaps
demands not only open-source technical solutions but also
policy-level agreements that ensure broad access, mandated
interpretability, and appropriate validation across diverse
patient populations.

5. Alternative Views

While this paper strongly endorses hyperbolic embeddings
as the definitive approach for encoding hierarchical HKGs
within LLM-driven systems, it is essential to acknowledge
and engage with different perspectives in the broader
community.

5.1. View 1: Euclidean Embeddings Are Adequate with
Sufficient Dimension

A significant segment of practitioners argues that simply
increasing embedding dimension or refining translational
architectures (e.g., TransE, DistMult, RotatE) (Bordes et al.,
2013; [Yang et al., 2014} [Sun et all 2019) can achieve

acceptable performance across numerous biomedical use
cases. Proponents of this view note that state-of-the-art
hardware and optimized approximate nearest neighbor
(ANN) solutions have already been successful in various
clinical tasks, ranging from disease classification to
literature retrieval.

Response: While we acknowledge that Euclidean methods
remain dominant and familiar, our analysis in Sections E]
and 4| demonstrates that large dimensional requirements
in Euclidean space incur substantial computational and
interpretive costs. In contrast, hyperbolic geometry exploits
logarithmic scaling in distortion relative to tree depth
and branching factor (Nickel & Kielal 2017; [Sala et al.|
2018)), making it particularly valuable for deeply layered
ontologies. As HKGs grow in complexity (e.g., multi-level
disease subtypes, multi-relational gene networks), small
improvements in hierarchical fidelity can translate into
meaningful gains in clinical insights or risk stratification.
Although re-engineering pipelines is non-trivial, we argue
that the long-term benefits justify experimentation, as
evidenced by pilot results shared in Appendix|[C]

5.2. View 2: LLMs Diminish the Role of External
Geometry

Another standpoint posits that as LLMs grow in parameter
size and sophistication, their emergent hierarchical
reasoning capacity may obviate the need for specialized
geometric retrieval layers (Gu et al [2021}; |Singhal et al.
2023). Proponents assert that LLMs can memorize or
approximate complex tree-like relationships in their internal
representations, reducing external embedding geometry to a
transient solution.

Response: Although LLMs have shown remarkable strides
in capturing biomedical and clinical information, they are
neither all-encompassing nor rapidly updatable in response
to newly emerging clinical guidelines, reclassified diseases,
or novel research findings. As we discussed in Section
hyperbolic embeddings serve as an explicit, adaptively
updated scaffold that aligns domain-specific ontological
structures with LLM retrieval. This decoupling eases the
burden on the model’s internal parameters and provides
interpretability advantages for clinicians and researchers
who rely on consistent hierarchies rather than opaque,
parameter-intensive representations. We expand on this
theme in Appendix[D] where we cite case studies illustrating
how explicit negative curvature embeddings can mitigate
knowledge drift in large models.

5.3. View 3: Implementation Complexity Qutweighs
Theoretical Benefits

Some stakeholders highlight the engineering challenges in
adopting hyperbolic metrics, particularly concerning widely
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used vector search libraries (e.g., FAISS, HNSW, Annoy)
(Johnson et al} |[2021). Training staff on curvature-based
optimization, rewriting or customizing ANN indices to
support Poincaré distances, and verifying performance at
scale can pose formidable barriers. Institutions may opt
for incremental enhancements to Euclidean-based solutions,
citing lower risk and established expertise.

Response: We fully recognize the magnitude of engineering
effort. In Appendix [C] discussion of experimental design,
we recommend “stepping-stone” implementations, where
small, specialized subgraphs (e.g., a subset of ICD codes)
are first embedded in hyperbolic space as a proof of
concept. This limited scope can reveal the potential gain in
hierarchical interpretability without disrupting core hospital
IT systems. We also note that open-source initiatives (Nickel
& Kielal 2017;|Chami et al.,[2019)) are steadily improving
the accessibility of hyperbolic geometry, analogous to how
neural networks once faced (and ultimately overcame)
skepticism in healthcare analytics.

5.4. View 4: Hyperbolic Embeddings May Exacerbate
Data Bias

A further critique, often emerging in discussions of Al
fairness, contends that hyperbolic embeddings — by virtue of
their boundary-concentrating property — may inadvertently
cluster or isolate underrepresented conditions or patient
groups. If certain rare diseases or minority phenotypes
reside in “thin” boundary regions, retrieval systems or
LLM-based QA might down-weight or under-surface those
nodes.

Response: This is indeed a valid concern, one applicable
not just to hyperbolic geometry but to any embedding
scheme. We believe that robust bias detection pipelines
should be integrated into the model-training workflow,
whether Euclidean or hyperbolic. In Section[d] we suggest
fairness auditing for hierarchical data and call for explicit
design of performance metrics that track retrieval equity
across different patient demographics. In Appendix|D} we
propose policy guidelines for data-sharing consortia and
regulators to ensure that negative curvature embeddings do
not inadvertently harm equity in healthcare.

6. Conclusion and Future Directions

This paper has advanced a Hyperbolic HKG Pipeline as a
coherent strategy for encoding and retrieving hierarchical
health knowledge graphs (HKGs) within LLM-based
systems. By centering on negative curvature, we address
recurrent challenges in medical data management: for
instance, the difficulty of accurately embedding rare disease
codes that appear deep in ICD hierarchies, and the
dimensional blow-up that often arises from small-world

adverse drug reaction networks. Our pipeline unifies
ontology ingestion, curvature-tuned training, hyperbolic
ANN-based retrieval, and LLM-driven interfaces, thereby
offering a flexible solution that more faithfully represents
complex clinical pathways.

Key Insights

From a design standpoint, we identify three essential
insights. First, negative curvature inherently aligns with
the branching nature of disease taxonomies, improving
low-incidence concept retrieval.  Second, hyperbolic
embeddings integrate well with large language models
by refining the retrieval of fine-grained subcategories,
thus strengthening semantic coherence. Third, the rapid
growth of open-source Riemannian optimization toolkits,
coupled with specialized vector search libraries, confirms
the feasibility of transitioning from Euclidean to hyperbolic
infrastructures in real-world healthcare settings.

Future Directions

Looking ahead, several directions merit closer attention.
In privacy-sensitive environments, federated training of
hyperbolic embeddings may safeguard patient data while
preserving hierarchical structure. Developing large-scale
hyperbolic indexing solutions for rapid online updates
remains critical, especially in domains subject to frequent
ontology changes. Further research is needed to quantify
and mitigate potential biases that may push minority
populations or rare diseases to boundary regions, risking
underrepresentation. Evaluations should also encompass
clinical workflow integration and end-user interpretability,
ensuring that hyperbolic geometry genuinely improves
decision support and patient outcomes. By engaging
these priorities, the community can solidify hyperbolic
embeddings as a robust, interpretable, and clinically
impactful framework for next-generation health informatics.

We believe that collaborative solutions outlined in
Appendix[C] (experimental setups) and Appendix[D|(policy,
clinical adoption) can help mitigate these concerns,
leveraging open-source advancements in hyperbolic ANN
and emerging best practices for interpretability.
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A. Mathematical Foundations and Theoretical Extensions
A.1. Mathematical Preliminaries
A.1.1. BASIC NOTATIONS AND METRIC SPACES
For clarity and consistency, we first review the essential concepts and notations underlying hyperbolic geometry in a Poincaré
ball model.
Definition (Poincaré Ball). Let
D? = {xeR%: x| <1}

denote the d-dimensional open Poincaré ball. The hyperbolic distance metric dp between two points u, v € D¢ is defined
as:

[ — v )
(1= [hal?) (1= Iv]?)

This geometry exhibits constant negative curvature, denoted ¢ < 0, making it particularly suitable for hierarchical data
embedding.

dp(u,v) = arcosh(l +2

Negative Curvature and Exponential Distance Growth. Distances in a Poincaré ball grow exponentially as one moves
toward the boundary (where ||x|| — 1). This property provides significantly more “room” to embed tree-like or multi-level
structures with reduced distortion relative to Euclidean spaces (Daverman & Sher, 2002). While further notions such as
manifolds and geodesics may be introduced for a deeper theoretical rigor, we focus on these basic definitions here and direct
interested readers to more detailed treatments in differential geometry textbooks.

A.1.2. CORE LEMMAS FOR TREE-LIKE STRUCTURES

Many hierarchical HKGs can be decomposed into tree-like substructures or approximate trees. We outline two core lemmas
motivating the embedding of such structures into negatively curved spaces.

Lemma A.1 (Tree Embedding Potential). Let T be a tree with branching factor b and maximum depth h. Then, it is possible
to embed T into D? (a d-dimensional Poincaré ball) with low distortion using O(d h) parameters. The overall curvature
¢ < 0 enables compact representation of levels and sub-branches.

Conditions. For simplicity, we assume each level is independently branching without excessive cross-links. In real-world
HKGs, if the structure is more complex (e.g., DAG-like with partial loops), one can decompose it into tree-shaped segments
and embed each segment separately, then reconcile the overlaps via standard hyperbolic alignment methods (Nickel & Kielal
2017).

These lemmas serve as foundational insights for the theorems in Section[A.2} which further illustrate why negative curvature
yields low-dimensional fidelity.

A.2. On Low-Distortion in Low Dimensions: Theorem-Lemma-Corollary

A.2.1. EXTENDED THEOREM AND PROOF SKETCH

Following (Nickel & Kiela, 2017), we present an extended “theorem-lemma-corollary” structure that formalizes how
Hyperbolic Embeddings maintain low distortion in relatively low dimensions.

Theorem A.2 (Simplified Distortion Bound). Let T be a tree of depth h and branching factor b. Assume edges are of
uniform (or bounded) length. Then there exists a d-dimensional Poincaré embedding such that, for any two nodes u,v € T,
the ratio between their true graph distance and the hyperbolic distance remains bounded by O(ln(bh)). In contrast,
achieving the same level of distortion in Euclidean space often requires dimensions growing linearly or super-linearly with
h.

Sketch of Proof.

1. Notation Setup: Assign the root of 7 to the center 0 of the Poincaré ball. Nodes at depth | are mapped near a
hypersphere of radius a/, with o chosen to control inter-layer spacing.
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2. Key Lemma: From (Nickel & Kiela, [2017; Sala et al.,[2018)), when ||x|| — 1, the hyperbolic distance dp(x,y) can
expand on the order of log m offering exponential “capacity” for embedding tree branches.

3. Bounding Distortion: By balancing the radial increments « at each depth level, one ensures that nodes on the same
layer remain relatively close, yet distinct layers become increasingly separated. This strategy keeps global distortion
within O(In(bh)). Euclidean spaces, lacking negative curvature, require significantly more dimensions to mirror a
similar multi-level separation.

4. Implication: In high-depth or high-branching scenarios, hyperbolic geometry preserves hierarchical structure without
an exponential blow-up in dimensional requirements.

Corollary A.3. Ifwe view T as a subtree within a real-world HKG (e.g., a specialized disease classification), the same
distortion results apply under moderate d. This is especially relevant for multi-layer disease categories and gene—phenotype
networks. Note that if the HKG is not strictly a tree but rather a DAG with some cycles, one can often approximate or
localize it into tree substructures (focusing on “is-a” or “part-of” edges) to leverage the above bound.

A.3. Detailed Proofs and Theoretical Guarantees

A.3.1. CURVATURE LEARNING AND ALGORITHM PSEUDOCODE

Our main text describes a learnable negative curvature parameter ¢ < 0, updated dynamically during training to accommodate
varying granularity within a HKG. We formalize this procedure as a Riemannian Gradient Descent approach.

Algorithm 1 Riemannian Gradient Descent with Curvature Tuning
1: Input:
2: X initial embeddings (size N x d) in the Poincaré Ball
3 c: initial negative curvature, ¢ < 0
4 Ir: learning rate
5 epochs: total training epochs
6:  L(-): chosen loss function for hyperbolic embeddings
7
8
9

: for epoch = 1 to epochs do

: (1) Compute Riemannian gradients w.r.t. X and c:

: (grad X, grad_c) < compute_riemannian_grads(X, ¢, L)
10:  (2) Update curvature c:

11: Cnew ¢ ¢ —Ir X grad_c

12:  if chew > 0 then

13: Cnew < Cmin // Enforce negative curvature or clamp
14:  end if

15:  (3) Update embeddings in the Poincaré Ball:

16: // Use Riemannian SGD or a retraction to keep points within the ball
17:  fori=1tolen(X) do

18: Xi] + exponential_map (X [i], — Ir x grad_X[i], cpew)
19: if || X[¢]|] > 1.0 then

20: X [i] < project_to_ball(X[i])

21: end if

22:  end for

23: C ¢ Chew

24: end for

25: Output: X, c //final embeddings and curvature

Explanation. The subroutine compute_riemannian_grads calculates gradients on the hyperbolic manifold,
requiring transformation of Euclidean gradients via exponential/log maps. The function exponential_map updates
embedding coordinates according to Riemannian geometry, ensuring they remain valid in D?. Finally, project _to_ball
handles slight boundary overflows to maintain numerical stability. Further details on curvature tuning heuristics can be
found in (Nickel & Kielal 2018) and in our Appendix|B]comparisons.

12



Position: Hyperbolic Embeddings Are Essential for Health Knowledge Graphs

A.3.2. RIEMANNIAN OPTIMIZATION AND CONVERGENCE ANALYSIS

Exponential and Log Maps. Within the Poincaré ball of curvature ¢ < 0, the exponential map exp, (v) and the
logarithmic map log, (y) ensure that gradient updates respect the manifold’s geometry:

v 2V
Jan T T el

where @, is a curvature-dependent addition operator. A comprehensive derivation is available in (Nickel & Kielal [2017
Chami et al., [2019)).

expy (V) = x D, tanh(\/H)\)

Convergence Sketch. For losses L(-) satisfying Lipschitz-like conditions, the well-known results on Stochastic Gradient
Descent (SGD) in Euclidean space can be extended to Riemannian manifolds (Bonnabel, 2013)). Provided the curvature
parameter ¢ does not fluctuate excessively, it often converges to a stable or slowly drifting value alongside the embeddings
X. More precise error bounds can be found in Theorem 2.4 of (Nickel & Kielal, 2018)), indicating that hyperbolic models
can achieve reliable local minima.

A.3.3. PRESERVING HIERARCHICAL STRUCTURE: A GEOMETRIC PERSPECTIVE

To naturally distribute parent—child entities along radial paths, our approach introduces a margin-based objective function.
Negative sampling ensures that parent and child entities remain sufficiently close, while unrelated (or distantly related)
nodes are pushed farther apart in hyperbolic distance.

Margin-based Loss.
Lop= Y. [dist(9(h),6(1)) +a — distue, | | e

(h,rt) €D

where dist(-, -) is the hyperbolic distance, o > 0 is a margin constant, and dist,., encodes negative samples’ distances. In
a Poincaré disk visualization, root concepts (or more generalized entities) naturally lie near the center (||x|| ~ 0), while
specialized subtypes expand outward (||x|| & 1). Distinct subtrees form ring-like structures at increasing radii, enhancing
interpretability for multi-level ontologies.

A sample 2D Poincaré visualization can thus reveal “rings” of nodes at increasing radii, each ring corresponding to a layer
in the ontology. While a simplistic demonstration, it illustrates the geometric intuition behind our margin-based method.
A.4. Comparison with Other Geometric Embeddings

A.4.1. DISTORTION BOUNDS AND THEORETICAL COMPLEXITY

For readers seeking a broad contrast of various embedding paradigms, Table [2] summarizes key points on “distortion” (the
ratio of true distance to embedded distance), “dimension requirements,” “hierarchical capacity,” and typical usage contexts.

Table 2. Common geometric embedding methods: Distortion, dimension needs, and hierarchy support.

Method Distortion Bound Dim. Requirement Hierarchy Support? References
TransE Grows if large relations 50-200 Limited hierarchical (Bordes et al.,|2013)
DistMult / ComplEx Dependent on data 100-300 Not specifically hierarchical (Yang et al.. [2014)
RotatE Good for certain relations 200-1000 Not hierarchical by design (Sun et al.l|2019)
Poincaré O(log(bh)) Often 5-50 v Great for trees (Nickel & Kielal[2017)
Lorentz (Hyp.) Similar log-based 5-50 v" Deep hierarchies (Nickel & Kiela, 2018)
Sphere2Vec Spherical distortion Potentially large © partial (Mai et al.| [2023))

As indicated, Euclidean-based approaches often suffice for relatively shallow or moderate-scale relational data, but can
struggle with deeply layered structures common in health ontologies. By contrast, hyperbolic and Lorentz-based embeddings
thrive in hierarchical settings, albeit at the cost of more complex Riemannian optimization.
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A.4.2. EXTENDING BEYOND PRIOR WORK

While early demonstrations focused on WordNet or smaller taxonomies (Nickel & Kiela, [2017), the methods and theorems
described above are highly pertinent to real-world medical ontologies, which can exceed depths of five or six levels and
exhibit wide branching factors. Our adaptive curvature approach (Appendix [B|for further references) is especially relevant
for health knowledge graphs characterized by multi-level sub-classifications and partial overlaps among diseases. By
dynamically tuning ¢, we accommodate diverse local structures within the same global manifold, mitigating distortion across
heterogeneous sub-ontologies.

A.S5. Conclusion
In this appendix, we have provided:

1. A more complete theorem—lemma—corollary framework highlighting the low-distortion benefits of hyperbolic
embeddings for tree-like or layered data (§A.2).

2. A detailed overview of curvature learning with pseudo-code, illustrating how negative curvature can be dynamically
updated in a Riemannian optimization loop (§A.3.1).

3. A comparative analysis of distortion bounds, dimension requirements, and theoretical complexities among various
geometric embedding approaches (§A.4).

We conclude that negative curvature models (Poincaré or Lorentz) are particularly well-suited for hierarchical or tree-like
health knowledge graphs, offering lower-dimensional fidelity, explicit interpretability of deeper levels, and flexible
expansions to handle multi-relational data. While the implementation hurdles in real-world systems—namely specialized
ANN indexing and interpretability tooling—remain non-trivial, our discussion underscores the mathematical underpinnings
that make hyperbolic embeddings a compelling choice.

The subsequent appendices build on this foundation, providing extended literature syntheses (Appendix [B), experimental
designs for validation (Appendix [C), and a roadmap for clinical and industrial adoption (Appendix [DJ.
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B. Extended Literature Review and Comparison

This appendix offers a more in-depth classification and review of works relevant to our position that Hyperbolic Embeddings
are essential in Health Knowledge Graph (HKG) systems. Compared to the limited discussion in the main text, the following
sections explore additional lines of research, reference key contributions, and elucidate both theoretical and practical
motivations. We also highlight recent synergy between large language models (LLMs) and vector databases, underscoring
how negative curvature provides crucial benefits for hierarchical retrieval in medical domains.

B.1. Hierarchical KGs (Layered Knowledge Graphs)

In biomedical and healthcare contexts, many knowledge graphs (KGs) inherently exhibit multi-level or tree-like structures.
Notable examples include SNOMED CTE] the Unified Medical Language System (UMLS)E] and the Gene Ontology (GO)E]
These KGs typically organize concepts in “is-a” or “part-of”” hierarchies with significant depth, necessitating specialized
embedding methods.

B.1.1. CONVENTIONAL HIERARCHICAL EMBEDDING METHODS

TransE/DistMult/ComplEx Family. Pioneering research on knowledge graph embeddings, such as TransE (Bordes et al.|
2013), DistMult (Yang et al.,|2014)), and ComplEx (Trouillon et al.,|2016)), explored translational or inner-product-based
learning in Euclidean space. These models excel in multi-relational link prediction but often struggle with deep hierarchical
structures.

Advantages: Straightforward implementation and broad tooling support in industry. Disadvantages: Capturing highly
specialized or layered concepts typically requires increased embedding dimensionality, risking distortion and inefficiency.

Graph-Structured Hierarchical Aggregation. A further strand of work (R-GCN (Schlichtkrull et al.,2018), Neural LP
(Yang et al.,|2017))) uses GNNs or rule learning to incorporate relational context. While these approaches capture some
hierarchical aspects:

Advantages: Leverage large-scale KGs for contextual signals (e.g., adjacency, relation types).

Disadvantages: Excessively deep topologies risk over-smoothing or gradient vanishing in Euclidean GNN frameworks.
Negative curvature’s natural layering advantage remains underused.

B.1.2. METHODS USING NEGATIVE CURVATURE FOR HIERARCHICAL STRUCTURES

Poincaré Embeddings. Nickel and Kiela (Nickel & Kielal [2017) introduced Poincaré embeddings for hierarchical data
(e.g., WordNet), demonstrating low-distortion in comparatively few dimensions. A subsequent Lorentz model (Nickel &
Kielal 2018)) extends these ideas, offering alternative formulations for tree-like structures.

Advantages: High-fidelity encoding of deep taxonomies, reduced need for large dimensions, and interpretable radial
geometry.

Disadvantages: Requires specialized Riemannian optimization and distance computation, which can be less familiar to
practitioners.

Hyperbolic vs. High-Dimensional Euclidean. Some researchers contend that sufficiently large Euclidean embeddings
approximate the same hierarchical features (Sala et al.l 2018)), albeit at higher memory and computational costs. Negative
curvature, by contrast, preserves layered structure with logarithmic distortion scaling, making it preferable for KGs that
exceed moderate depth (Nickel et al., 2015)).

'SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) is a comprehensive healthcare terminology with
standardized codes, terms, and relationships.

2UMLS integrates and maps multiple medical vocabularies and classifications to facilitate interoperability.

3Gene Ontology provides a standardized system for classifying gene and protein functions.
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B.1.3. ONGOING DEBATES AND FUTURE DIRECTIONS

Multiple Inheritance and Complex Relationships. Resources like UMLS often present DAG or multi-parent edges.
Hyperbolic geometry is flexible enough to accommodate these, but margin-based or cross-entropy losses and manual
Riemannian tuning may be necessary.

Extensibility to Emerging Ontologies. With new medical ontologies (e.g., expansions for COVID-19 or emerging
pathogens (Morens et al.,|2020; Ukoaka et al., 2024)), the ability to embed newly introduced subtrees efficiently is essential.
Dynamic hyperbolic embedding pipelines (Appendix C) could address incremental updates more gracefully than static
Euclidean approaches.

B.2. Hyperbolic GNNs: Graph Neural Networks in Negative Curvature

Graph neural networks (GNNs) have become standard for encoding structured data, including small-world and hierarchical
networks (Velickovi¢ et al., 2018}, Kipf & Welling}, [2017). Hyperbolic GNNs (Chami et al.l [2019; Monath et al.l 2019;
Zhou et al.| 2023) merge standard graph convolution with negative curvature geometry, facilitating both local neighborhood
aggregation and global hierarchical organization in health knowledge graphs.

B.2.1. CORE TECHNIQUES AND ADVANCEMENTS

Hyperbolic Graph Convolutional Networks (HGCN). Proposed by Chami et al. (Chami et al.,2019), HGCN replaces
Euclidean linear transformations with Riemannian exponentials/logarithms, ensuring that hierarchical signals are retained in
deeper network layers.

Advantages: Curvature can be learned end-to-end, adapting to different sub-structures (e.g., deeply nested disease categories
vs. flatter gene interaction networks).

Disadvantages: Sophisticated Riemannian optimization demands new frameworks and debugging skills, particularly in
large-scale healthcare settings.

Hyperbolic Attention Networks. Recent exploration extends attention mechanisms into hyperbolic space (Gulcehre et al.|
2019), facilitating long-range dependencies for multi-level or cross-branch relations. Although promising for capturing
complex etiologies and disease interplay, real-world deployments remain limited.

B.2.2. STRENGTHS VS. LIMITATIONS

Strengths:

1. Better representation of multi-layered KGs, mitigating over-smoothing in standard GNNs.

2. Potential for end-to-end training with negative curvature, aligning well with the dynamic nature of biomedical
knowledge (Aiadi & Khaldil 2022).

Limitations:

1. Additional engineering overhead (hyperbolic layers, Riemannian batch norms) is still evolving.

2. Adapting methods for time-evolving health data (e.g., new disease subtypes) is not trivial.

B.3. Non-Euclidean Vector Databases and LLM Synergy

Modern large language models (LLMs) such as BERT (Devlin et al.,[2019), BioBERT (Lee et al.,[2020), GPT-3 (Brown et al.,
2020), or domain-specific variants (Gu et al., 2021} [Singhal et al., 2023) rely on vector retrieval layers, typically employing
Euclidean or cosine metrics. Simultaneously, large-scale vector databases (e.g., FAISS, Annoy, HNSW) have become
standard for approximate nearest neighbor (ANN) search (Johnson et al.|[2021; Malkov & Yashunin, [2020). However, these
indexing structures are designed around flat geometry.
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B.3.1. MAINSTREAM METHODS AND THEIR LIMITATIONS

Euclidean-Based ANN (FAISS, HNSW, etc.). These methods excel in speed and scaling up to billions of vectors but do
not natively support hyperbolic distance (Johnson et al.,|2021; Malkov & Yashunin, 2020)).

Poincaré-Adapted Indexing. Some works (Chami et al.,2020) explore hyperbolic Voronoi partitions or manifold-based
indexing, but production-level maturity remains low. Even with robust hyperbolic embeddings, an LLM’s retrieval pipeline
may degrade if final neighbor searches assume Euclidean geometry.

B.3.2. EMERGING RESEARCH: FLATTENING VS. NATIVE MANIFOLD

Flattening to Euclidean. One pragmatic approach first projects hyperbolic vectors into a higher-dimensional Euclidean
subspace for indexing (Tifrea et al,[2019), though this risks losing hierarchical cues.

Manifold-Aware ANN. Native hyperbolic indexing (Chami et al., 2019) aims for minimal distortion but at higher
engineering cost. Large-scale clinical KGs (e.g., tens of millions of concepts) need further testing to confirm feasibility in
hospital production systems.

B.3.3. LLMsS AND HYPERBOLIC RETRIEVAL

Health-oriented LLMs increasingly rely on external knowledge retrieval to handle domain-specific queries (Gu et al.|
2021; [Monath et al., 2019). If vector databases remain Euclidean, hierarchical and small-world relationships—crucial
for diseases, pathways, or gene families—may not be fully leveraged. Concretely, a GPT-based system might hallucinate
or miscategorize sub-phenotypes if the retrieval engine cannot preserve hierarchical geometry. Hence, synergy between
hyperbolic embeddings and LLM-driven healthcare applications is a rapidly evolving frontier requiring manifold-optimized
indexing (Dosovitskiy et al.,2021), advanced question-answering pipelines, and interpretability layers (Reimers & Gurevychl
2019).

B.4. Summary: Advantages and Academic Controversies

Hierarchical knowledge graphs (KGs) naturally invite negative curvature embeddings, as Euclidean approaches risk high
distortion. Hyperbolic GNNs provide an end-to-end solution but demand specialized skill sets and software. Finally,
non-Euclidean vector databases represent the weakest link: even if hyperbolic embeddings excel upstream, retrieval systems
still rely heavily on Euclidean or cosine-based engines. Coupled with the meteoric rise of LLMs in clinical and research
scenarios, the community must innovate across embedding pipelines, GNN integration, and manifold-based retrieval to fully
harness the power of negative curvature.

In advocating for Hyperbolic Embeddings in HKGs, we emphasize that it is not simply a geometry preference but a
holistic approach that can significantly enhance hierarchical representations, large language model retrieval synergy,
and interpretability in high-stakes medical domains. Nonetheless, unresolved technical, policy, and practical challenges
(discussed throughout this paper and in other appendices) highlight the necessity for concerted research, open-source
advances, and industry collaboration.

B.5. Best Practices and Future Directions
Building on the discussion above, we outline practical steps and opportunities for researchers adopting hyperbolic approaches

in healthcare:

¢ Hierarchical Health Ontologies: Target ontology-heavy resources like SNOMED CT or UMLS, where negative
curvature provides tangible improvements in representation. Coupling with graph neural networks could further boost
multi-relational modeling (Zhou et al.| 2023).

* Manifold-Aware Retrieval and LLM Integration: Invest in hyperbolic or hybrid ANN solutions that preserve
geometry. Combine with LLM-based QA or summarization for robust, hierarchical content retrieval (Wei et al., 2022
Brown et al.,|2020).

* Scalability and Interpretability: Develop or refine open-source packages that handle Riemannian updates at scale.
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Provide interpretable radial or ring-based visualizations to clinicians, bridging the gap between advanced geometry and
daily medical workflows.

Through these steps and ongoing collaborative research, hyperbolic embeddings stand poised to address the next wave of
challenges in health knowledge representation, enabling more accurate, efficient, and clinically meaningful systems.
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C. Experimental Design Outlines

This appendix outlines a “scaled-down” experimental design intended to pilot the key ideas proposed in our position
paper regarding hyperbolic embeddings for health knowledge graphs (HKGs). While extending such designs to large,
production-level databases poses non-trivial engineering challenges, the plan detailed here focuses on practicality,
interpretability, and the capacity to highlight differences between Euclidean and hyperbolic approaches.

C.1. Dataset Selection and Sources

To conduct a fair and illustrative comparison on the order of tens of thousands of nodes, we target health knowledge graphs
that exhibit both hierarchical and small-world properties. Two primary resources or subsets are suggested:

(1) SNOMED CT Subset.
* Data Origin: SNOMED CT is a widely adopted clinical terminology set with rich hierarchical “is-a” relationships
spanning disease categories and clinical manifestations.

* Subset Acquisition: Official SNOMED International releases often include sample versions containing tens of thousands
of concepts, downloadable under specific licensing.

* Hierarchy Depth: SNOMED CT typically exhibits up to 8—10 levels of depth, forming tree or forest structures.
(2) UMLS (Unified Medical Language System) Excerpt.

* Data Origin: The UMLS Metathesaurus integrates multiple medical vocabularies.

* Subset Acquisition: Focusing on a single branch such as “MTH” or “SNOMEDCT”-derived data can yield 20-30k
nodes.

* Hierarchy Depth: UMLS relationships include “is-a” and “part-of,” supporting deeper hierarchical mappings, though it
can also contain DAG or multi-parent edges.

While a pure SNOMED CT subset alone may suffice for a proof-of-concept at the 10k — 20k scale, merging partial SNOMED
CT and UMLS can yield a larger dataset (50k+ nodes) with varied sub-hierarchies. Such an extended dataset is ideal for
showing the utility of negative curvature in more complex HKG scenarios.

C.2. Experimental Goals

We aim to compare Euclidean Embeddings vs. Hyperbolic Embeddings on the same dataset in terms of both (1) hierarchy
reconstruction accuracy and (2) retrieval performance. Specifically:

* Hierarchy Reconstruction Accuracy. Measure the extent to which each embedding approach reconstructs parent—child
or ancestor—descendant relationships in the original HKG.

* Retrieval Performance. Evaluate differences in accuracy, recall, and run-time when executing vector-based queries
that are sensitive to hierarchical relations.

C.3. Experiment Design and Detailed Workflow

C.3.1. DATA PREPROCESSING

1. Node and Relation Filtering. Retain concepts adhering to a clear hierarchical taxonomy (e.g., “disease — subtype —
symptoms”), optionally introducing a small set of lateral relations (complications or treatments) to reflect small-world
shortcuts. Target 10-20k nodes and roughly 0.1-0.3 million edges.

2. Hierarchy Labeling. Assign a depth level level(v) to each node according to the “is-a” chain. Remove isolated or
incomplete relations to ensure a consistent structure.
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C.3.2. EMBEDDING TRAINING

Train Euclidean embeddings (e.g., TransE, DistMult, RotatE) and hyperbolic embeddings (e.g., Poincaré Embeddings,
Hyperbolic GCN) on the same preprocessed HKG.

Model Configuration.

* Euclidean Baselines: TransE (Bordes et al., 2013)), DistMult (Yang et al.l 2014)), or RotatE (Sun et al.| 2019).
* Hyperbolic Baselines: Poincaré (Nickel & Kiela, [2017;2018)) or Hyperbolic GCN (Chami et al., 2019).

* Embedding Dimensions: Start with 32 or 64 for all models to maintain a fair comparison.
Loss Functions and Optimization.

* Euclidean: Negative sampling + margin-based or binary cross-entropy losses.

* Hyperbolic: Riemannian SGD (Bonnabel, 2013) or other geometry-aware optimizers that keep vectors within the
Poincaré ball.

Hyperparameter Tuning. Use a small validation set to tune learning rate, negative sampling rate, and regularization. For
dimension sensitivity, one can also explore 16/32/64/128 to observe potential trade-offs in distortion.

C.3.3. HIERARCHY RECONSTRUCTION ACCURACY

1) Hierarchical Distance Metrics. Leverage each node’s level depth in the HKG. If node v is a descendant of node w,
then we expect dist(¢(u), ¢(v)) to be relatively small in hyperbolic space.

* Spearman or Kendall rank correlation between pairwise embedding distances and level differences.

* Top-k Ancestor/Descendant Reconstruction: For each node, retrieve k£ nearest neighbors in embedding space.
Evaluate how many are correct ancestors or children.

2) Multi-dimensional Comparison.

* Mean Absolute Error (MAE) of predicted vs. true hierarchy depth.

* Dimensional Impact: Evaluate if Euclidean embeddings must increase dimension to match the hierarchical fidelity of
hyperbolic embeddings at smaller d.

C.3.4. RETRIEVAL PERFORMANCE

1) Retrieval Task Design. Define a query specifying a target disease category or symptom cluster (e.g., “find all subtypes
under a rare disease branch related to the immune system”), then execute approximate nearest neighbor search in the
embedding space.

e Evaluate Recall @k, Precision@k, mAP, Hits@k.

* Compare average query time and index-building overhead for Euclidean vs. hyperbolic spaces.

2) Visualization and Case Studies. For interpretability, pick representative disease—subdisease links to visualize in a 2D
projection. Inspect how hyperbolic embeddings cluster deeper layers more compactly, whereas Euclidean methods may
disperse them.
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C4.

Cs.

C.6.

Key Results and Analysis Focus

. Hierarchy Reconstruction. We hypothesize that hyperbolic embeddings will yield lower distortion for nodes beyond

4-5 levels in the hierarchy, whereas Euclidean methods need significantly more dimensions to achieve comparable
fidelity.

Retrieval Accuracy and Efficiency. Hyperbolic embeddings may notably improve retrieval metrics (e.g., Recall@ 10),
especially on queries targeting deeper branches. With naive distance computation, hyperbolic runtime could be higher,
but approximate or specialized indexing (Chami et al.,[2019; 2020) can narrow the gap.

Dimension and Curvature Tuning. Experiments that enable adaptive curvature learning can show whether flexible
¢ < 0 provides improved embeddings. Meanwhile, dimension sweeps (16/32/64) can reveal how much overhead
Euclidean models incur to approach hyperbolic performance.

Additional Notes on Extensibility
For larger-scale trials (50k—100k nodes), one could merge multiple SNOMED CT segments or expand UMLS coverage.

Beyond standard GNN baselines (GCN, GAT), advanced or domain-specific architectures might be tested, though the
main focus should remain on the Euclidean vs. hyperbolic contrast.

Conclusion

In this “lighter-weight” design, data scales around 10k — 20k nodes (plus tens or hundreds of thousands of edges) to balance
feasibility with hierarchical depth. Evaluations comparing Euclidean and hyperbolic embeddings on hierarchy reconstruction
and retrieval performance — via correlation metrics, top-k checks, and search efficiency — provide direct empirical support for
the claim that hyperbolic embeddings better capture multi-level structures and rare disease branches in HKGs. Conducting
such pilot studies can substantially bolster our position that negative curvature geometry is highly advantageous for advanced
health informatics applications.
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D. Practical Deployment, Policy, and Roadmap

This appendix expands the discussion of hyperbolic embeddings in HKGs by focusing on real-world deployment
considerations, policy frameworks, and a recommended roadmap for technology adoption over the next several years.
Our goal is to offer a clearer set of references and strategies for introducing negative curvature geometry into clinical and
industrial contexts, reinforcing the position we have argued in the main paper.

D.1. Industry Adoption Cases and Practical Experiences

In recent years, a small but growing number of researchers and organizations have reported the successful use of hyperbolic
embeddings in real healthcare systems. Despite being in the early stages, these efforts highlight the benefits of compact
hierarchy representation while also revealing significant engineering and policy challenges.

D.1.1. MEDICAL SECTOR APPLICATIONS

(Lu et al.;|2019) described a novel method for predicting unplanned ICU readmissions and in-hospital mortality by combining
electronic health record (EHR) data with hyperbolic embeddings of medical ontologies. Their method integrated ICD-9
concepts into a hyperbolic embedding model, showcasing how negative curvature could enhance both mortality prediction
and risk stratification in a large-scale hospital environment. The study highlights:

* Ontology Alignment: Mapping ICD-9 codes into Poincaré space for more faithful hierarchical representation.

* Clinical Impact: Improved performance over baseline Euclidean embeddings in identifying high-risk patients,
providing a potential tool for reducing healthcare costs and adverse outcomes.

* Challenges: Difficulty of bridging the training pipeline with existing data infrastructures and ensuring that Riemannian
optimization remained stable at scale.

Their experience underscores both the promise of hyperbolic geometry in real-world EHR analytics and the hurdles in
re-engineering legacy systems to accommodate negative curvature distances.
D.1.2. INSURANCE INDUSTRY APPLICATIONS

In the health insurance sector, (Koo & Liml| 2021) examined how hyperbolic discounting might affect life insurance
consumption and policy decisions. While focusing on an economic modeling perspective, their approach indirectly reflects
the broader interest in representing user behaviors or preferences in a negatively curved space. Key takeaways include:

* Time-Inconsistent Preferences: Hyperbolic discounting captures real-world behaviors where individuals undervalue
long-term insurance benefits.

» Taxation Sensitivity: More pronounced curvature in preference structures led to sharper reactions to insurance tax
changes, hinting at hierarchical or layered policy analyses.

¢ Implication for Healthcare Plans: Although not a direct “embedding” scenario, this line of research suggests synergy
between hyperbolic geometry and insurance risk modeling, potentially feeding into advanced knowledge graphs linking
patient cohorts, policy structures, and cost outcomes.

D.2. Policy and Regulatory Considerations

Deploying hyperbolic embeddings for healthcare data must address a complex landscape of compliance requirements,
industry norms, and privacy concerns. This section summarizes major regulatory frameworks and their implications for
negative curvature methods.

D.2.1. HIPAA (U.S. HEALTH INSURANCE PORTABILITY AND ACCOUNTABILITY ACT)

* Core Constraint: Requires de-identification and the principle of least use when handling patient records.

* Impact on Hyperbolic Embeddings: (1) Potential re-identification risk if embeddings at the boundary inadvertently
encode unique patient traits. (2) Hospitals must perform stricter privacy audits if the embedding model captures too
much individual-level detail in the HKG structure.
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D.2.2. GDPR (EU GENERAL DATA PROTECTION REGULATION)

* Core Requirements: Explicit data collection purposes, user consent and revocation rights, and restrictions on data
transfer across borders.

e Impact on Hyperbolic Embeddings: (1) Curvature-based representations might cluster demographic or geographic
features near the boundary, so reverse-engineering personal information must be prevented. (2) Online or federated
learning scenarios need robust data flow controls to meet GDPR requirements, especially for cross-border model
updates.

D.2.3. COMPATIBILITY WITH MEDICAL STANDARD FRAMEWORKS
* ICD, SNOMED CT, HL7 FHIR: Widely used for interoperability and clinical coding. Hyperbolic embeddings must

align with these taxonomies without disrupting existing reference codes or classification systems.

¢ Practical Concern: Replacing Euclidean vector indexing or purely textual retrieval with hyperbolic coordinates
demands a clear mapping from each code or concept to its geometric representation, maintaining the integrity of the
original data model.

D.3. Key Factors for Large-Scale Clinical or Industrial Adoption

Building upon the above case studies and regulatory context, the path to fully realizing hyperbolic embeddings in healthcare
will require interplay among laws, technology standards, and industry best practices. We delineate three focal areas:

(1) Legal and Regulatory Coordination.

Governments and policy-makers must update compliance audits for new Al representations, including negative curvature
embeddings. High-risk scenarios (e.g., critical care decision-making) may warrant dedicated logging or explainability
mandates.

(2) Technical Standards and Open-Source Toolchains.

Agencies such as HL7 or WHO could promulgate guidelines on embedding format extensions, specifying how to embed
FHIR resources into a Poincaré or Lorentz space. Accessible open-source libraries implementing manifold-based encryption
or secure distance computation would reduce deployment barriers.

(3) Best Practices and Community Collaboration.

International consortia can share real deployment playbooks, highlighting potential pitfalls in hardware acceleration or
privacy constraints. Joint sandbox pilots across hospitals can measure both privacy and interpretability trade-offs.

D.4. Roadmap for Future Development

D.4.1. TIMELINE AND PHASED OBJECTIVES

See Table 31

D.4.2. RESEARCH CHALLENGES AND PRIORITY LIST

1. Hyperbolic-Aware ANN Structures (High Priority).

Reason: Approximate nearest neighbor at scale is a bottleneck; lack of efficient indexing hinders real-time retrieval.
Approach: Investigate Poincaré-based Voronoi partitions, curve-based indexing, or hybrid mapping to preserve geometry.
2. Improving Explainability (Medium-High Priority).

Reason: Clinical audits and regulatory reviews demand transparent rationales. Negative curvature is more abstract than
Euclidean geometry.

Approach: Develop specialized radial or layer-based visualizations, possibly incorporating local “attention-like”” metrics for
hierarchical transitions.
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Table 3. Proposed timeline for hyperbolic embedding adoption in health informatics.

Time Span Actions and Initiatives Expected Outcomes
Short Term - Launch small pilot trials in select hospitals - Collect realistic feedback on data and training
(6-12 mos.) - Publish open-source curvature-adaptive algorithms  needs

- Partner with insurance or healthcare providers for - Develop synergy with existing ontologies (ICD,

testing SNOMED)

- Produce initial technical reports

Mid Term - Form cross-institutional consortiums - Achieve multiple industrial or clinical-level
(1-2 yrs.) - Create visualization & explainability tools deployments

- Explore federated/hybrid privacy approaches - Evaluate hyperbolic embeddings in complex,

multimodal data
- Iteratively improve manifold-based ANN libraries

Long Term - Collaborate with major standards bodies (ICD, - Potential draft or recommendations for hyperbolic
(3-5 yrs.) SNOMED) for negative curvature compatibility embedding “best practices”
- Establish dedicated privacy/compliance guidelines - Widely available interpretability solutions in
- Deploy large-scale hyperbolic solutions in hospitals/research
day-to-day hospital systems - Significant improvement in disease retrieval and

rare condition support

3. Federated Learning and Privacy (Medium Priority).
Reason: Healthcare data are often distributed; Riemannian optimization must remain consistent across nodes.

Approach: Investigate how secure multiparty computation or differential privacy can integrate with negative curvature
updates. Potentially adapt existing frameworks (e.g., FATE) for hyperbolic metrics.

4. Dynamic Updating and Real-time Embedding (Medium Priority).

Reason: Health KGs evolve with newly identified diseases, treatments, and reclassifications. Stale embeddings undermine
utility.

Approach: Explore incremental Riemannian SGD or partial re-embedding. Investigate theoretical guarantees for hierarchical
fidelity under continuous data arrival.

5. Cross-Modal Integration (Medium-Low Priority).

Reason: Some advanced scenarios require uniting imaging data, genomics, and textual EHR under a single manifold.

Approach: Insert hyperbolic projections in a multi-modal pipeline or transform each modality into an appropriate graph
structure for joint training.

D.5. Conclusion

This appendix has offered a panoramic view of hyperbolic embeddings’ path to real-world adoption, from industry case
studies to the regulatory and technological frameworks that must evolve in tandem. Whether inspired by successful hospital
deployments or responding to privacy mandates like HIPAA/GDPR, our overarching conclusion remains that negative
curvature geometry can unlock scalable value in health knowledge graphs only if embraced by multiple stakeholders
simultaneously.

The position paper’s roadmap and recommended actions aim to guide researchers, clinicians, policy-makers, and industry
leaders toward a more coordinated pursuit of hyperbolic embedding implementations—ultimately bridging academic
breakthroughs and life-critical applications in healthcare.
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