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ABSTRACT

The core capability of a Graphical User Interface (GUI) agent based on a Multi-
modal Large Language Model (MLLM) relies on accurate GUI grounding, which
precisely locates actionable elements in screenshots according to instructions. The
core challenges in traditional fine-tuning are low data efficiency and small ob-
ject grounding. Supervised Fine-Tuning (SFT), as a mainstream approach, re-
quires massive datasets. While rule-based Reinforcement Fine-Tuning (RFT) of-
fers improvements, it still fails to accurately filter useful data from overwhelm-
ing redundancy. Most of the samples are easy to learn, and the performance of
the model is barely improved. Inspired by the human learning mechanism of
”Problem-Type-Specific Retraining”, this paper constructs a decoupled visual
concept library to acquire high-value retraining resources. Based on this library,
we propose IconBank, a hard sample mining framework. Through this frame-
work, our key finding is that only a minimal number of carefully selected diffi-
cult samples can achieve performance comparable to, or even better than, training
with massive data. Specifically, we first extract operable elements from multi-
ple open-source GUI datasets to build a unified decoupled visual concept library
(IconBank), where ”Icon” is redefined as pure visual atomic concepts stripped of
context, background, and layout. Next, we search for similar elements through
the decoupled visual concept library and finally select targeted practice samples
to form a minimal refined training set. Experimental results show that a 3B model
trained on only 2K samples achieves a score of 51.7% on the ScreenSpot-Pro
benchmark, surpassing most 7B models.This significant effectiveness verifies the
assumption of massive redundancy in GUI data and reveals that data quality (di-
versity and challenge) is far superior to quantity.

Figure 1: GUI Agent Performance vs Training Data Scale on Grounding Benchmark.
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1 INTRODUCTION

With the development of Multi-modal large language models (MLLMs) in the field of human-
computer interaction, Graphical User Interface (GUI) agents for office automation and unattended
operation face core challenges.. The core ability of GUI agents depends on GUI grounding. It can
accurately locate interactive elements (Lu et al., 2024) (such as buttons, input fields, etc.) in GUI
by natural language instructions. The agent needs to recognize very small actionable elements from
high-resolution images and complex backgrounds, which requires the ability of the MLLM to un-
derstand language instructions in the domain, as well as fine visual localization capabilities (Qin
et al., 2025).

The current mainstream GUI grounding methods are mainly Supervised Fine-Tuning (SFT) and
Reinforcement Fine-Tuning (RFT). Most of the current Supervised Fine-Tuning methods rely on
large-scale labeled data. This pure vision-based method faces two core challenges: one is low data
efficiency and high computational cost, and the other is the difficulty in grounding small objects.
Specifically, at the data level, manually annotating millions of samples costs a lot of time and man-
power, and it is difficult to ensure the quality of the annotations generated by the model. Moreover,
large-scale data training typically requires days or even weeks,, which is difficult to meet the needs
of low-cost deployment and fast iteration (e.g., small and medium enterprise development, edge
device deployment) (Li et al., 2025a). At the perception level, compared with text grounding, Mul-
timodal Large Language Models (MLLMS) find it more challenging to accurately grounding small
targets composed of visual elements such as ICONS, as these targets often lack sufficient contextual
semantic information. These challenges make it difficult to apply GUI agents in real-world sce-
narios. In contrast, rule-based reinforcement learning or reinforcement fine-tuning can effectively
optimize the model with only thousands of samples(Yuan et al., 2025). These methods improve
performance while reducing samples through heuristic exploration, but still face the problems of
difficulty in grounding small objects.

In response to the above challenges, this paper asks the core question: Is it necessary to use massive
data(up to millions of samples)? And does every sample contribute significantly to the performance
after fine-tuning? Our inspiration comes from the human learning mechanism of ”problem-type-
specific retraining”. In the learning process, humans will summarize the types of questions and
consolidate the training of ”error-prone” questions rather than solving problems indiscriminately
without distinction. This kind of targeted training makes learning efficient. Also in the GUI ground-
ing task, we can achieve great results by locating ”error-prone”, fine-grained visual concepts (e.g.,
ICONS of a specific style, elements of a specific function) and mining similar difficult examples
around these concepts.

To achieve this goal, we propose IconBank, a framework for the extraction of difficult samples
based on a library of decoupled visual concepts. The core idea is to first remove the contextual
interference of GUI elements (e.g., background, layout), build a unified ”visual atomic concept
library”, and then find similar elements (i.e., failed visual concepts) based on the library to form
a refined training set. Experimental results show the effectiveness of IconBank: MLLM trained
with only 1k hard samples and 1k random samples achieves comparable accuracy on ScreenSpot
Cheng et al. (2024) tasks to models trained with 1M original samples, with a 14% improvement
on ScreenSpot-Pro Li et al. (2025b). This confirms the hypothesis that there is a large amount
of redundancy in the GUI data and further confirms the effectiveness of our selection of difficult
samples through comprehensive ablation experiments.

The main contributions of this paper can be summarized in the following four points.

• We propose IconBank, a difficult sample mining framework, which obtains difficult sam-
ples of the same type by decoupled visual concepts from precise matching, and provides
a new paradigm for few-shot training by focusing on ”error-prone” questions with more
practice.

• We provide a new perspective that difficult samples do not only come from wrong ques-
tions, but also find the corresponding question type of the wrong question and repeatedly
train the whole question type. This method not only improves the generalization ability of
the model, but also enhances the semantic understanding of specific visual elements.

• Experiments show IconBank achieves 89.6% on ScreenSpot, 91.7% on ScreenSpot-V2 and
55.7% on ScreenSpot-Pro using only 2k samples, These results reveal substantial optimiza-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion potential at the data level in contemporary GUI research. Our work thereby establishes
a new direction for developing efficient and lightweight GUI agents through data-centric
optimization strategies.

Figure 2: Overview of IconBank framework pipeline. The IconBank framework operates in two
main stages. First, a Decoupled Visual Concept Library (IconBank) is constructed by cropping
actionable elements (e.g., buttons, icons) from diverse GUI dataset. In the second stage, the Hard
Sample Mining Pipeline is executed: (1) a base model predicts on a large candidate dataset, and the
failed predictions (Dfail) are collected; (2) for each failed element, IconBank retrieves the top-5 most
visually similar concepts to form a set of challenging analogues (Dsimilar); (3) these hard samples are
merged with a small number of random samples (Drandom) to form a refined training set (Dtrain).

2 RELATED WORKS

2.1 GUI GROUNDING METHOD

In recent years, GUI agents based on multi-modal large models have made significant progress
(Agashe et al., 2024; 2025). Earlier studies such as CogAgent Hong et al. (2024) and Ferret-UI You
et al. (2024) improved the model’s understanding of mobile UI by fine-tuning visual commands.
AppAgent Zhang et al. (2025a) and AppAgentX Jiang et al. (2025) further explore the practical
application of multi-modal agents in smartphone operation. Aguvis Xu et al. (2024) explores the
path of purely visual autonomous GUI interaction. In terms of visual localization, Spotlight Li &
Li (2023) proposes a focusing mechanism to enhance the model’s attention to UI elements. Aria-UI
Yang et al. (2024) and GUI-G1 Zhou et al. (2025) attempt to optimize the visual localization pol-
icy through reinforcement learning. InfiGUI-G1 Liu et al. (2025) introduces adaptive exploration
strategy optimization, which shows strong positioning ability in complex interfaces. In addition,
GUI-G² Tang et al. (2025) proposes a Gaussian reward modeling method, and GUI-Actor Wu et al.
(2025) proposes a coordinate-free visual localization method, which further improves the localiza-
tion accuracy. Phi-Ground Zhang et al. (2025b) advances the field from the direction of improving
the perception ability of the model.

2.2 DATA-EFFICIENT TRAINING AND REINFORCEMENT LEARNING

Traditional supervised fine-tuning methods rely on large-scale labeled data, which has the problems
of high labeling cost and low training efficiency Pan et al. (2024). In order to improve the efficiency
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of data utilization, researchers have widely explored the fine-tuning methods based on reinforcement
learning. UI-R1 Lu et al. (2025b) optimize agent behavior through multiple rounds of interactive
training. ARPO Lu et al. (2025a) introduces an experience replay mechanism to further improve
sample efficiency. DigiRL Bai et al. (2024) and E-Ant Wang et al. (2024a) focus on training devices
to control agents in real environments. Efficient Agent Training (He et al., 2025) and Enhancing Vi-
sual Grounding (Yuan et al., 2025) also optimize the training efficiency from different perspectives.
GuirlVG Kang et al. (2025) and Gui-R1 Luo et al. (2025) explore the motivation method of GUI
visual positioning based on R1 style.

2.3 DATA SELECTION

Recently, some work has begun to focus on data filtering and difficult sample mining. Less is More
Chen et al. (2025a) proposes context-aware interface simplification to reduce redundant information.
InfiGUI-G1 Liu et al. (2025) selects data by eliminating easily identifiable samples. ZonUI-3B
Hsieh et al. (2025), as a lightweight SFT model representative, tries to select effective data through
platform diversity and resolution diversity. These methods all reflect the idea of “data quality is
better than quantity”, which is consistent with the starting point of this paper, but do not explicitly
build a visual atomic concept library to achieve accurate hard sample matching.

2.4 GUI GROUNDING DATASET

Rich datasets have driven the development of the GUI field. RICO Deka et al. (2017) is an early
dataset of mobile applications. OmniAct Kapoor et al. (2024) provides data for a multimodal general
agent that supports both desktop and web pages. WebArena Zhou et al. (2024) and WebCanvas Pan
et al. (2024) offer a real web environment for building and evaluating agents. Datasets such as OS-
Atlas Wu et al. (2024), ShowUI Lin et al. (2025) and UGround Gou et al. (2024) have contributed
abundant GUI screenshot and annotation resources, laying the foundation for model training in the
GUI Grounding task.

In conclusion, existing research has made significant progress in aspects such as supervised fine-
tuning training paradigms based on large-scale data, efficient reinforcement learning training
paradigms, and the construction of large-scale datasets. Some work has also begun to focus on
enhancing learning efficiency through data screening. However, these methods have yet to make
breakthroughs in the core challenge of data efficiency. Most methods fail to deeply explore the re-
dundancy within the data and systematically extract samples that are truly difficult for the model to
learn.

3 METHODOLOGY

As illustrated in Figure 2, this paper constructs a new framework, IconBank, for mining difficult
samples by decoupling the visual concept library to achieve efficient training of GUI Grounding
tasks. We will introduce this framework in two stages. First, we elaborate on how to build IconBank
in (Section 3.1). Then in (Section 3.2), we will use IconBank to design a pipeline for mining difficult
samples.

3.1 BUILD THE DECOUPLED VISUAL CONCEPT LIBRARY

GUI screenshots contain rich actionable visual elements such as ICONS, components, and text,
which usually distract the model’s attention during the visual positioning process. The current
mainstream MLLMS have a stronger ability to understand text than other visual elements. There-
fore, to enhance the semantic understanding ability of non-text elements, IconBank is composed
of the smallest operable elements such as ICONS and components, with their surrounding layout,
background and text content removed. Each ”icon” in IconBank is an interactive element (such as
buttons, checkboxes, sliders, etc.). We collect GUI element images from multiple public datasets
(Ugorund, showUI, OS-Atlas-data, OmniAct, AMEX), which come from various platforms such
as desktop systems, web pages, and mobile applications, ensuring the diversity of the data. Each
element is cropped from the original screenshot using bounding box annotations.

We use the Pre-trained ResNet-50 He et al. (2016) backbone to extract feature vectors for each
element, with a feature dimension of 2048. Index each feature using the IndexFlatL2 method of
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the Faiss Douze et al. (2024) vector database. The index id is mapped to the original screenshot,
and the original data can be located through the index id. In addition, we have attempted to extract
features from the original images of public datasets and establish an index library. The similar
images retrieved through this index are usually those with similar layouts or interfaces, making it
difficult to precisely identify the erroneous elements. Searching through IconBank is a more precise
search, avoiding the situation where the found data is irrelevant to incorrect samples.

3.2 HARD SAMPLE MINING PIPELINE

This stage aims to mine samples that are challenging and underlearned by the current basic model,
thereby forming a targeted training set. For this purpose, we will implement it in three phases.

Step 1: Obtain the failed samples. We consider the collected open-source dataset as the candidate
set Dcandidate, which contains over one million samples. For each sample (I, T,Bgt), it includes
screenshot I , text instruction T , and real bounding box Bgt. We randomly select N samples (N =
40, 000) from the candidate set as the test set Dpredict and use Mbase (Qwen2.5-VL-3B) Bai et al.
(2025) as the basic model to predict the coordinates Ppred.:

Dpredict ⊂ Dcandidate, |Dpredict| = N

Ppred = Mbase(I, T )

A sample is assigned to the failure set Dfail if the predicted point Ppred falls outside the ground-truth
bounding box Bgt:

Dfail = {(I, T,Bgt) ∈ Dpredict | Ppred /∈ Bgt}
where Ppred /∈ Bgt indicates that the predicted point is not in the ground truth bounding box.

Step 2: Mine samples of the same type. For each failed sample (I, T,Bgt) ∈ Dfail, we obtain the
element Egt by crop I with Bgt. Then, use Egt to query IconBank and calculate the similarity using
L2 distance. Retain the top five most similar visual concepts Ctop5 as the similarity set Dsimilar. The
L2 distance between two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is calculated as:

L2(x,y) =

√√√√ n∑
i=1

(xi − yi)2 (1)

Where n is the dimensionality of the vectors.

Step 3: Refine the construction of the training set. We predicted incorrect samples from the
original dataset and obtained Dfail. We queried similar visual concepts from IconBank and obtained
Dsimilar. Then, we combined the above two sets to form the difficult sample set Dhard.

Dhard = Dfail ∪ Dsimilar (2)

However, training solely on difficult samples may compromise data diversity. To prevent the model
from suffering catastrophic forgetting due to single data, we add a small number of random samples,
Drandom (for example, 1k samples from Dcandidate), to balance the data diversity. Finally, we randomly
select N samples from Dhard (for example, N = 1000) and combine them with Drandom to form the
final training set. As a refined training set:

Dtrain = SampledN (Dhard) ∪ Drandom (3)

where SampledN (·) denotes the operation of randomly selecting N samples from a set.

4 EXPERIMENTS

To comprehensively evaluate the GUI grounding capability of IconBank, we conduct extensive ex-
periments. This section is structured as follows: Section 4.1 introduces the implementation de-
tails and evaluation metrics. Section 4.2 presents the main results and comparative analysis against
state-of-the-art methods. Finally, Section 4.3 provides in-depth ablation studies and discussions to
validate the contribution of each component with our framework.
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4.1 EXPERIMENT SETUP

Implementation Details. We adopted Reinforcement Fine-Tuning(RFT) learning for training, and
the training framework is from GUI-G2 Tang et al. (2025). All models are trained on 8 NVIDIA
A6000 GPU. The training parameters are consistent with GUI-G2, and the key training parameters
include the learning rate 1e-6, global batch size 32, sampling 8 responses per instruction, and total
work training for 1 epoch.2 We using Qwen2.5-VL-3B-Instruct and Qwen2.5-VL-7B-Instruct as the
base model for RFT training.

Evaluation Benchmarks. We designed a systematic experimental protocol. The experiments
contain three publicly available GUI Grounding benchmarks, ScreenSpot, ScreenSpot-v2, and
ScreenSpot-Pro. ScreenSpot contains 1272 natural language guided GUI Grouding tasks, involv-
ing three platforms: mobile application, desktop system, and web page. Screenspot-v2 fixes mis-
labeled content and clarifies obfuscation instructions on the ScreenSpot benchmark. ScreenSpot-
Pro is a benchmark for high-resolution interface design. It contains screenshots from professional
tools such as VSCode, AutoCAD, Photoshop, with smaller UI elements and more complex visual
scenes. These characteristics make it provide a more realistic and rigorous evaluation criterion for
GUI Grounding tasks. When the prediction center falls within the ground truth bounding box, it is
determined to be correct.

Compare with State-of-the-Art Methods. We compare IconBank against a comprehensive set of
state-of-the-art methods to ensure a rigorous evaluation. These include: (1) data-intensive models
trained on large-scale datasets (e.g., UI-TARS-7B, UIPro-7B); (2) efficient supervised fine-tuning
(SFT) models that leverage smaller, curated datasets (e.g., ZonUI-3B, ShowUI-2B); and (3) rein-
forcement learning (RL) based models designed for high sample efficiency (e.g., UI-R1, InfiGUI-
G1, GUI-G²). We also include general-purpose vision-language models (e.g., Qwen2.5-VL) and
proprietary models (e.g., GPT-4o) as baseline references.

4.2 MAIN RESULTS

Table 1 shows the performance of IconBank on the ScreenSpot and ScreenSpot-v2 benchmarks.
IconBank-7B reaches 89.6% on ScreenSpot, which is 1.82% higher than GuirlVG with the same
amount of training data. It reaches 91.7% on ScreenSpot-v2, which is nearly 1% higher than Guir-
lVG Kang et al. (2025). Although this result shows a slight advantage, the ability of IconBank lies
in learning from difficult samples with small target elements, and the ScreenSpot benchmark is not
enough to reflect the advantage of IconBank.

IconBank performs particularly well on the more challenging ScreenSpot-Pro benchmark. As shown
in Table 2, IconBank-3B achieves 51.7% accuracy, which is 14.3% higher than the previous state-
of-the-art 3B model InfiGUI-G1 Liu et al. (2025), and significantly better than all models with
parameters below 4B. It even achieves performance comparable to that of the state-of-the-art 7B
model. IconBank-7B has an accuracy of 55.7%, which is 7.1% higher than the previous SOTA 7B
model InfiGUI-G1. ScreenSpot-Pro contains a large number of small target elements, which imposes
extremely high requirements on the GUI Grounding ability of the model. IconBank performs well on
this benchmark, owing to its accurate mining of challenging and underlearned small target elements.

Further analyzing the performance of ScreenSpot-Pro benchmark on different software scenarios,
we find that IconBank is more accurate in locating ICONS in all software scenarios, which proves
that our difficult samples can indeed enable the model to learn to locate small target elements.
This result has significant implications, as high-resolution interfaces usually contain more complex
layouts and smaller interaction elements, which is a difficult point in the GUI Grounding task.

To verify the effect of each component of IconBank, we performed ablation experiments on
ScreenSpot-Pro. The high resolution and small target characteristics of this benchmark fit well
with our requirements for investigating the IconBank Grounding capability. First, we evaluate the
effectiveness of the difficult sample mining strategy. As shown in Table 3, when using 2k randomly
sampled training samples, the accuracy of the model on ScreenSpot-Pro is only 49.6%, and when
1k difficult samples are combined with 1k random samples, the performance is improved by 24%.
This comparison fully demonstrates that the difficult sample mining strategy can effectively mine
valuable training samples for the GUI Grounding task.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance Comparison on ScreenSpot v1 and v2 Benchmarks under Comparable Data
Scales. Bold highlights the best results. ”-” indicates results not mentioned in the original paper,
unpublished model checkpoints.

ScreenSpot v1 Accuracy (%) SSv1 Avg. SSv2 Avg.
Model Data Mobile Desktop Web

Text Icon Text Icon Text Icon

Data-Intensive Models
Qwen2-VL-7B 1M 61.3 39.3 52.0 45.0 33.0 21.8 42.9 -
SeeClick-9.6B 1M 78.0 52.0 72.2 30.0 55.7 32.5 53.4 55.1
UGround-7B 773K 82.8 60.3 82.5 63.6 80.4 70.4 73.3 76.3
OS-Atlas-7B 2.3M 93.0 72.9 91.8 62.9 90.9 74.3 82.5 -
Aguvis-7B 1M 95.6 77.7 93.8 67.1 88.3 75.2 84.4 80.5
Qwen2.5-VL-3B - - - - - - - 55.5 80.9
UIPro-7B 20M - - - - - - 82.5 86.9
Qwen2.5-VL-7B - - - - - - - 84.7 88.8
UI-TARS-7B 18M 94.5 85.2 95.9 85.7 90.0 83.5 89.5 91.6

Supervised Fine-Tuning Models
ShowUI-2B 22K 92.3 75.5 76.3 61.1 81.7 63.6 75.1 77.3
ZonUI-3B 24K - - - - - - 84.9 86.4

Reinforcement Learning Models
UI-R1-3B 136 95.6 84.7 90.2 59.3 85.2 73.3 83.3 85.4
UI-R1-E-3B 3K 97.1 83.0 95.4 77.9 91.7 85.0 89.2 89.5
GUI-R1-3B 3K - - 93.8 64.8 89.6 72.1 - -
GUI-R1-7B 3K - - 91.8 73.6 91.3 75.7 - -
SE-GUI-7B 3K - - - - - - 88.2 90.3
GuirlVG-7B 2K - - - - - - 88.7 90.9

Ours
IconBank-7B 2K 96.3 86.4 95.9 92.2 82.1 86.9 89.6 91.7

4.3 ABLATION STUDIES

Ablation on Combined Strategy. We further analyze the role of 1k random samples in the training
samples. The experiments compare two strategies, using only difficult samples and using combined
samples. As shown in Table 3, the accuracy rate of using only difficult samples is 53.1%, and that of
using only random samples is 52.1%, which is lower than 55.7% using the combined samples. This
shows that combining samples can provide the model with more comprehensive learning signals
while ensuring targeted training, avoiding catastrophic forgetting, and improving its generalizability.

Ablation on Training Paradigm. We also analyze the effect of Supervised Fine-Tuning(SFT) train-
ing with only 2k samples. ZonUI-3B was used as a training framework with consistent parameters.
As shown in Table 4, using only 1k hard samples extracted by IconBank and 1k random samples
for training, ScreenSpot-Pro still maintains strong performance. The accuracy of ScreenSpot-Pro is
34.2%, much higher than that of ZonUI-3B (28.7%), and its performance is comparable to that of
the 3B model trained by reinforcement learning. Such as UI-R1-E-3B (33.5%), InfiGUI-R1-3B Liu
et al. (2025) (35.7%), and SE-GUI-3B (35.9%), GUI-G1-3B: 37.1%). This demonstrates that our
method remains effective even within the SFT paradigm. It is worth emphasizing that the conven-
tional SFT depends on large-scale training data is not completely true. Thousands of samples with
critical information value are sufficient to train a model with superior performance.

Ablation on Data Scale Saturation. We similarly analyze the redundancy of the training data.
We compare the effect of different sizes of training sets (1k, 2k, 3k, 5k samples), all of which are
combined samples. Due to constraints on training resources, which limited our ability to conduct
extensive RFT training, the following experiments were performed using supervised fine-tuning
(SFT) with the ZonUI-3B framework. As shown in Figure 3, when 500 samples are used, the model
accuracy is 31.3%, which is significantly lower than the accuracy of 35.0% trained with 2k samples.
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Table 2: Performance Comparison on ScreenSpot-Pro Benchmarks. Bold highlights the best results.
”-” indicates results not mentioned in the original paper, unpublished model checkpoints.

CAD Dev Creative Scientific Office OS Avg. Overall
Model Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.
Proprietary Models
GPT-4o 2.0 0.0 1.3 0.0 1.0 0.0 2.1 0.0 1.1 0.0 0.0 0.0 1.3 0.0 0.8

General Vision-Language Models
Qwen2.5-VL-3B 9.1 7.3 22.1 1.4 26.8 2.1 38.2 7.3 33.9 15.1 10.3 1.1 23.6 3.8 16.1
Qwen2.5-VL-7B 16.8 1.6 46.8 4.1 35.9 7.7 49.3 7.3 52.5 20.8 37.4 6.7 38.9 7.1 26.8

Supervised Fine-Tuning Models
ShowUI-2B 2.5 0.0 16.9 1.4 9.1 0.0 13.2 7.3 15.3 7.5 10.3 2.2 10.8 2.6 7.7
UGround-7B 14.2 1.6 26.6 2.1 27.3 2.8 31.9 2.7 31.6 11.3 17.8 0.0 25.0 2.8 16.5
OS-Atlas-7B 12.2 4.7 33.1 1.4 28.8 2.8 37.5 7.3 33.9 5.7 27.1 4.5 28.1 4.0 18.9
UI-TARS-2B 17.8 4.7 47.4 4.1 42.9 6.3 56.9 17.3 50.3 17.0 21.5 5.6 39.6 8.4 27.7
ZonUI-3B 31.9 15.6 24.6 6.2 40.9 7.6 54.8 18.1 57.0 26.4 19.6 7.8 39.2 11.7 28.7
UGround-V1-7B 15.8 1.2 51.9 2.8 47.5 9.7 57.6 14.5 60.5 13.2 38.3 7.9 45.2 8.1 31.1
UI-TARS-7B 20.8 9.4 58.4 12.4 50.0 9.1 63.9 31.8 63.3 20.8 30.8 16.9 47.8 16.2 35.7
JEDI-3B 27.4 9.4 61.0 13.8 53.5 8.4 54.2 18.2 64.4 32.1 38.3 9.0 49.8 13.7 36.1
UI-TARS-72B 18.8 12.5 62.9 17.2 57.1 15.4 64.6 20.9 63.3 26.4 42.1 15.7 50.9 17.6 38.1
JEDI-7B 38.0 14.1 42.9 11.0 50.0 11.9 72.9 25.5 75.1 47.2 33.6 16.9 52.6 18.2 39.5
GUI-Actor-7B - - - - - - - - - - - - - - 44.6

Reinforcement Learning Models
UI-R1-3B 11.2 6.3 22.7 4.1 27.3 3.5 42.4 11.8 32.2 11.3 13.1 4.5 24.9 6.4 17.8
UI-R1-E-3B 37.1 12.5 46.1 6.9 41.9 4.2 56.9 21.8 65.0 26.4 32.7 10.1 - - 33.5
GUI-R1-3B 26.4 7.8 33.8 4.8 40.9 5.6 61.8 17.3 53.6 17.0 28.1 5.6 - - -
GUI-R1-7B 23.9 6.3 49.4 4.8 38.9 8.4 55.6 11.8 58.7 26.4 42.1 16.9 - - -
InfiGUI-R1-3B 33.0 14.1 51.3 12.4 44.9 7.0 58.3 20.0 65.5 28.3 43.9 12.4 49.1 14.1 35.7
SE-GUI-3B 38.1 12.5 55.8 7.6 47.0 4.9 61.8 16.4 59.9 24.5 40.2 12.4 50.4 11.8 35.9
GUI-G1-3B 39.6 9.4 50.7 10.3 36.6 11.9 61.8 30.0 67.2 32.1 23.5 10.6 49.5 16.8 37.1
ReGUIDE-3B - - - - - - - - - - - - - - 44.3
ReGUIDE-7B - - - - - - - - - - - - - - 44.4
InfiGUI-G1-3B 50.8 25.0 64.9 20.0 51.5 16.8 68.8 32.7 70.6 32.1 49.5 15.7 - - 45.2
SE-GUI-7B 51.3 42.2 68.2 19.3 57.6 9.1 75.0 28.2 78.5 43.4 49.5 25.8 63.5 21.0 47.3
GUI-G2-7B 55.8 12.5 68.8 17.2 57.1 15.4 77.1 24.5 74.0 32.7 57.9 21.3 64.7 19.6 47.5
V2P-7B 58.3 12.5 67.5 24.8 62.6 16.0 73.6 33.6 75.7 43.4 56.1 32.6 65.8 25.8 50.5
InfiGUI-G1-7B 57.4 23.4 74.7 24.1 64.6 15.4 80.6 31.8 75.7 39.6 57.0 29.2 - - 51.9

Ours
IconBank-3B 55.8 32.8 63.6 31.0 65.2 31.5 75.0 35.5 72.9 37.7 46.7 25.8 63.9 32.0 51.7
IconBank-7B 66.5 29.7 66.2 27.6 65.7 33.6 76.4 38.2 82.5 56.6 48.6 33.7 68.7 34.6 55.7

However, when 3k and 5k samples are used, the accuracy rates are 34.4% and 35.7%, respectively,
which does not show significant advantages. This result shows that if the source of training data
is unchanged, it is difficult to blindly increase the amount of data to improve performance. This
finding has important implications for reducing the training cost of GUI models.

5 CONCLUSION

In this paper, we propose IconBank, a novel framework for mining hard samples via a decoupled
visual concept library to achieve data-efficient GUI grounding. Through extensive experiments on
multiple benchmarks, we validate that data quality surpasses quantity in GUI grounding tasks. On
the challenging ScreenSpot-Pro benchmark, IconBank-3B achieves 51.7% accuracy, outperforming
most 7B models. We show that combining diffcult samples with a small number of random sam-
ples helps maintain model generalization and avoid catastrophic forgetting, leading to more robust

8
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Table 3: Performance Comparison of Different 2K Training Data Strategies on the ScreenSpot-Pro
Benchmark.

CAD Dev Creative Scientific Office OS Avg. Overall
Model Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.

7B Models
IconBank-7B 66.5 29.7 66.2 27.6 65.7 33.6 76.4 38.2 82.5 56.6 48.6 33.7 68.7 34.6 55.7
w/o difficult samples 54.8 26.6 64.3 25.5 63.2 30.1 75.7 35.5 82.5 49.1 53.3 37.1 66.0 32.3 53.1
w/o random samples 56.8 21.8 64.9 26.9 69.6 28.7 84.7 35.4 84.7 47.1 56.0 34.8 69.7 31.2 55.1

Table 4: Performance Comparison of SFT with IconBank-Selected 2K Samples on ScreenSpot-Pro
Benchmark.

CAD Dev Creative Scientific Office OS Avg. Overall
Model Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Text Icon Avg.

3B Models
ZonUI-3B 31.9 15.6 24.6 6.2 40.9 7.6 54.8 18.1 57.0 26.4 19.6 7.8 39.2 11.7 28.7
w/ IconBank-data 23.4 17.2 43.5 24.1 41.3 24.5 60.4 24.5 48.6 22.6 39.3 27.0 42.7 23.3 35.0

performance. In the future, we plan to expand IconBank to support the decoupled visual concept
library of associated semantic information. By searching through natural language instructions, the
desired samples can be obtained more accurately. We believe that a data-centric approach to building
efficient and lightweight GUI agents is a direction worthy of research.

ETHICAL STATEMENTS AND REPRODUCIBILITY

This work uses only publicly available datasets for academic purposes. We acknowledge that this
technology could be misused for unauthorized automation, which is an important ethical consider-
ation. To ensure reproducibility, the code and model checkpoints will be released after the double-
blind review process. All experimental hyperparameters are detailed in Appendix A.
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Figure 3: Accuracy on ScreenSpot-Pro with varying training data sizes using SFT.
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Table 5: Hyperparameter settings for IconBank training with different frameworks.
Hyperparameter GUI-G² RFT ZonUI SFT
Base Model Qwen2.5-VL-3B/7B-Instruct Qwen2.5-VL-3B-Instruct
Training Framework GUI-G² RFT ZonUI SFT
Deepspeed Config zero3 zero2
Max Prompt Length 12048 -
Number of Generations per Instruction 8 -
Per Device Train Batch Size 1 1
Gradient Accumulation Steps 4 2
Global Batch Size 32 8
Learning Rate 1× 10−6 1× 10−4

Number of Training Epochs 1 12
Optimizer AdamW -
Precision bfloat16 bf16
Gradient Checkpointing true true
Attention Implementation flash attention 2 sdpa
Beta (RL parameter) 0.04 -
Max Pixels 12845056 -
Data Seed 42 -
Steps per Epoch - 100
Warmup Steps - 122
Model Max Length - 4096
LoRA Rank - 8
LoRA Alpha - 16
Min Visual Tokens - 256
Max Visual Tokens - 1280
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