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ABSTRACT

Effective personalization of LLMs is critical for a broad range of user-interfacing
applications such as virtual assistants and content curation. Inspired by the strong
in-context capabilities of LLMs, we propose few-shot preference optimization
(FSPO), an algorithm for LLM personalization that reframes reward modeling
as a meta-learning problem. Under FSPO, an LLM learns to quickly infer a
personalized reward function for a user via a few labeled preferences. FSPO also
utilizes user description rationalization (RAT) to encourage better reward modeling
and instruction following, recovering performance with the oracle user description.
Since real-world preference data is challenging to collect at scale, we propose
careful design choices to construct synthetic preference datasets for personalization,
generating over 1M synthetic personalized preferences using publicly available
LLMs. To successfully transfer from synthetic data to real users, we find it crucial
for the data to exhibit both high diversity and coherent, self-consistent structure.
We evaluate FSPO on personalized open-ended generation for up to 1,500 synthetic
users across three domains: movie reviews, education, and open-ended question
answering. We also run a controlled human study. Overall, FSPO achieves an
87% Alpaca Eval winrate in generating responses that are personalized to synthetic
users and a 70% winrate with real human users in open-ended question answering.

1 INTRODUCTION

As large language models (LLMs) increasingly interact with a diverse user base, it becomes important
for models to generate responses that align with individual user preferences. People exhibit a wide
range of preferences and beliefs shaped by their cultural background, personal experience, and
individual values. These diverse preferences are present in human-annotated preference datasets;
however, current preferences optimization techniques like reinforcement learning from human
feedback (RLHF) largely focus on optimizing a single model based on preferences aggregated
over the entire population. This approach may neglect minority viewpoints, embed systematic biases
into the model, and ultimately lead to worse performance compared to personalized models. Can we
create language models that can adaptively align with the personal preferences of each user instead
of the aggregated preferences of all users?

Addressing this challenge requires a shift from modeling a singular aggregate reward function to
modeling a distribution of reward functions that captures the diversity of human preferences [41, 18].
By doing so, we can enable personalization in language models, allowing them to generate a
wide range of responses tailored to individual subpopulations. This approach not only enhances user
satisfaction but also promotes inclusivity by acknowledging and respecting the varied perspectives that
exist within any user base. Despite this problem’s importance, to our knowledge LLM personalization
has yet to be achieved for open-ended question answering with real users.

In this paper, we introduce few-shot preference optimization (FSPO), a novel framework designed
to model diverse subpopulations in preference datasets to elicit personalization in language models
for open-ended question answering. At a high level, FSPO leverages in-context learning to adapt to
new subpopulations. This adaptability is crucial for practical applications, where user preferences
can be dynamic and multifaceted. Inspired by past work on black-box meta-learning for language
modeling [6, 28, 51], we fine-tune the model in a meta-learning setup using preference-learning
objectives such as IPO [12]. To further improve personalized generation, we additionally propose
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Few-Shot Preference Optimization with Synthetic User Preferences Test-Time Adaptation to Real Users

Few-Shot Preferences

How can I celebrate my birthday?

Quiet night with friends,  
with a dinner and movie 

Have a big celebration with a  
rooftop, club, or yacht party

 . 
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LLM

Personalized Response

Photography is a great way to 
explore and appreciate the world 
around you at your own pace, 
capturing interesting details that 
often go unnoticed …

Human User

Fine-tuned LLM

Query

What is a new hobby that I can pick up? x(n+1)?

x(1) ?
y(1)

w

y(1)
l

Increase likelihood

Few-Shot Preferences

What should I do this weekend?

Take your kids to the museum

Go on a bar crawl

x(1) ?
y(1)

w

y(1)
l
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User Query

LLM
Head to the Riviera 
Maya for some 
family friendly fun!

Synthetic Users

User Description  
An 30-year-old male from 

California, he is family 
oriented and loves to 

travel in his free time …

Plan a 5 day trip to Mexico? x(n+1) ?

y(n+1)
w

Head to Cancun to 
experience its 
legendary nightlife!

y(n+1)
l

Decrease likelihood

Human User is 
Introverted

Synthetic User is 
Family Oriented

Diverse and Structured Synthetic Preference Dataset Construction User Aware Preference Optimization

Figure 1: Overview of FSPO. N previously collected preferences are fed into the LLM along with the current
query, allowing the LLM to personalize its response to the query using the past preferences. Furthermore, user
description rationalization (e.g Synthetic user is family-oriented) is utilized to predict details about a user from
their preferences in natural language, aiding reward modeling and text generation.

user description rationalization (RAT), which allows the model to leverage additional inference-time
compute for better reward modeling and instruction following.

Learning a model that effectively personalizes to real people requires training on a realistic, user-
stratified preference dataset. One natural approach to consider is to curate such data from humans,
but this is difficult and time-consuming. Instead, we propose instantiating this dataset synthetically,
and present careful design decisions inspired from the meta-learning literature [16, 50] to generate a
dataset that is both diverse and structured.

To evaluate the efficacy of our approach, we construct a set of three semi-realistic domains to study
personalization: (1) Reviews, studying the generation ability of models for reviews of movies, TV
shows, and books that are consistent with a user’s writing style, (2) Explain Like I’m X (ELIX):
studying the generation ability of models for responses that are consistent with a user’s education
level, and (3) Roleplay: studying the generation ability of models for responses that are consistent
with a user’s description, with effective transferability to a real human-study. Here we find that FSPO
outperforms an unpersonalized model on average by 87%. We additionally perform a controlled
human study showcasing a winrate of 70% of FSPO over unpersonalized models.

By addressing limitations of existing reward modeling techniques, our work paves the way for more
inclusive and personalized LLMs. We believe that FSPO represents a significant step toward models
that better serve the needs of all users, respecting the rich diversity of human preferences.

2 RELATED WORK

Personalized learning of preferences. Prior research has explored personalization through various
methods. One approach is distributional alignment, which focuses on matching model outputs to
broad target distributions rather than tailoring them to individual user preferences. For example,
some prior work have concentrated on aligning model-generated distributions with desired statistical
properties [40, 26, 27], yet they do not explicitly optimize for individual preference adaptation.
Another strategy involves explicitly modeling a distribution of rewards [21, 34]. However, these
methods suffer from sample inefficiency during both training and inference [36, 12]. Additionally,
these approaches have limited evaluations: Lee et al. [21] focuses solely on reward modeling, while
Poddar et al. [34] tests with a very limited number of artificial users (e.g helpfulness user and honest
user). Other works have investigated personalization in multiple-choice questions, such as GPO
[54]. Although effective in structured survey settings, these methods have not been validated for
open-ended personalization tasks. Similarly, Shaikh et al. [39] explores personalization via explicit
human corrections, but relying on such corrections is expensive and often impractical to scale. Finally,
several datasets exist for personalization, such as Prism [19] and Persona Bench [5]. Neither of
these datasets demonstrate that policies trained on these benchmarks lead to effective personalization.
Unlike these prior works which study personalization based off of human values and controversial
questions, we instead study more general questions that a user may ask.

Algorithms for preference learning. LLMs are typically fine-tuned via supervised next-token
prediction on high-quality responses and later refined with human preference data [4, 33]. This
process can use on-policy reinforcement learning methods like REINFORCE [42] or PPO [38],
which optimize a reward model with a KL constraint. Alternatively, supervised fine-tuning may
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be applied to a curated subset of preferred responses [11] or iteratively to preferred completions
as in ReST [15]. Other methods, such as DPO [36], IPO [12], and KTO [8], learn directly from
human preferences without an explicit reward model, with recent work exploring iterative preference
modeling applications [52].

Black-box meta-learning. FSPO is an instance of black-box meta-learning, which has been studied
in a wide range of domains spanning image classification [37, 29], language modeling [6, 28, 51],
and reinforcement learning [9, 45]. Black-box meta-learning is characterized by the processing of
task contexts and queries using generic sequence operations like recurrence or self-attention, instead
of specifically designed adaptation mechanisms.

3 PRELIMINARIES AND NOTATION

Preference fine-tuning algorithms, such as reinforcement learning from human feedback (RLHF)
and direct preference optimization (DPO), typically involve two main stages [33, 32]: supervised
fine-tuning (SFT) and preference optimization (DPO/RLHF). First, a pre-trained model is fine-tuned
on high-quality data from the target task using SFT. This process produces a reference model, denoted
as πref. The purpose of this stage is to bring the responses from a particular domain in distribution
with supervised learning. To further refine πref according to human preferences, a preference dataset
Dpref = {(x(i),y

(i)
w ,y

(i)
l )} is collected. In this dataset, x(i) represents a prompt or input context,

y
(i)
w is the preferred response, and y

(i)
l is the less preferred response. These responses are typically

sampled from the output distribution of πref and are labeled based on human feedback.

Most fine-tuning pipelines assume the existence of an underlying reward function r∗(x, ·) that
quantifies the quality of responses. A common approach to modeling human preferences is the
Bradley-Terry (BT) model [2], which expresses the probability of preferring response y1 over y2,
given a prompt x, as:

p∗(y1 ≻ y2 | x) = er
∗(x,y1)

er∗(x,y1) + er∗(x,y2)
(1)

Here, p∗(y1 ≻ y2 | x) denotes the probability that y1 is preferred over y2 given x.

The objective of preference fine-tuning is to optimize the policy πθ to maximize the expected
reward r∗. However, directly optimizing r∗ is often impractical due to model limitations or noise
in reward estimation. Therefore, a reward model rϕ is trained to approximate r∗. To prevent the
fine-tuned policy πθ from deviating excessively from the reference model πref, a Kullback-Leibler
(KL) divergence constraint is imposed. This leads to the following fine-tuning objective:

max
π

E[r∗(x, y)]− β DKL(π ∥ πref) (2)

In this equation, the regularization term weighted by β controls how much πθ diverges from πref,
based on the reverse KL divergence constraint. This constraint ensures that the updated policy remains
close to the reference model while improving according to the reward function.

Reward model training. To fine-tune the large language model (LLM) policy πθ(y | x), the Bradley-
Terry framework allows for either explicitly learning a reward model rϕ(x,y) or directly optimizing
preferences. Explicit reward models are trained using the following classification objective:

max
ϕ

EDpref [log σ (rϕ(x,yw)− rϕ(x,yl))] (3)

where σ is the logistic function, used to map the difference in rewards to a probability. Alternatively,
contrastive learning objectives such as Direct Preference Optimization [36] and Implicit Preference
Optimization [12] utilize the policy’s log-likelihood log πθ(y | x) as an implicit reward:

rθ(x,y) = β log
(
πθ(y | x)/πref(y | x)

)
(4)

This approach leverages the policy’s log probabilities to represent rewards, thereby simplifying the
reward learning process.

4 THE FEW-SHOT PREFERENCE OPTIMIZATION (FSPO) FRAMEWORK

Personalization as a meta-learning problem. Generally, for fine-tuning a model with RLHF a
preference dataset of the form: Dpref = {(x(i),y

(i)
w ,y

(i)
l )} is collected, where x is a prompt, yw is
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Few-Shot Preferences

Head to the Riviera 
Maya for some 
family friendly fun!

y(n+1)
w

Response

User Description  
An 30-year-old male from 

California, he is family 
oriented and loves to 

travel in his free time …

User Description Chain-of-Thought (COT)
1. Predict User Description 

2. Predict Response from User Query and Predicted Description

Figure 2: User Description Rationalization (RAT). Prediction is a two-stage process: first predicting a
(synthetic) user description from the few-shot preferences and next predicting the response. The model is
fine-tuned with a reward of how close the generated user description is to the gold user description.

a preferred response, and yl is a dispreferred response. Here, preferences from different users are
aggregated to learn the preferences over a population. However, through this aggregation, individual
user preferences are marginalized, leading to the model losing personalized values or beliefs due to
population-based preference learning and RLHF algorithms such as DPO as seen in prior work [40].

How can we incorporate user information when learning from preference datasets? In this work, we
have a weak requirement to collect scorer-ids S(i) of each user for differentiating users that have
labeled preferences in our dataset: Dpref = {(x(i),y

(i)
w ,y

(i)
l ,S(i))}. Now consider each user as a task

instance, where the objective is to learn an effective reward function for that user using the user’s
set of preferences. This can be naturally instantiated as a black-box meta-learning objective, where
meta-learning is done over users (also referred to as a task in meta-learning). Meta-learning should
enable rapid personalization, i.e. adaptability to new users with just a few preferences.

More formally, consider that each unique user S(i)’s reward function is characterized by a set of
preferences with prompt and responses (x, y1, y2), and preference label c (indicating if y1 ≻ y2 or
y1 ≺ y2). Given a distribution over users S = P (S(i)), a meta-learning objective can be derived to
minimize its expected loss with respect to θ as:

min
θ

ES(i)∼S

[
E(x,y1,y2,c)∼Di,{(x,y1,y2,c)}N

1 ∼Di

[
Lθ

pref

(
x, y1, y2, c|{(x, y1, y2, c)}N1

)]]
(5)

where Di is a distribution over preference tuples (x, y1, y2, c) for each user S(i), and Lθ
pref is a

preference learning objective such as DPO [36] or IPO [12]:

Lθ
pref = ||hyw,yl

πθ
− (2β)−1||22, hyw,yl

πθ
= log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

(6)

where yw and yl are the preferred and dispreferred responses (respectively) according to the responses
y1, y2 and class label c in the preference dataset.

Following black-box meta-learning approaches, FSPO receives as input a sequence of preferences
Dfewshot

i ∼ Di from a User S(i). This is followed by an unlabeled, held-out preference (x, y1, y2) ∼
Di\Dfewshot

i for which it outputs its prediction c. To make preferences compatible with a pre-trained
language model, a few-shot prompt is constructed, comprising of preferences from a user and the
held-out query as seen in Figure 1. This construction has an added benefit of leveraging a pretrained
language model’s capabilities for few-shot conditioning [3], which can enable some amount of
steerage/personalization. This prediction c is implicitly learned by a preference optimization algorithm
such as DPO [36], which parameterizes the reward model as β log πθ(y|x)

log πref(y|x) . This parameterization
enables us to leverage the advantages of preference optimization algorithms such as eliminating
policy learning instabilities and computational burden of on-policy sampling, learning an effective
model with a simple classification objective.

User description rationalization (RAT). If provided with a description of the user (potentially
synthetically generated), FSPO can be converted to a two-step prediction problem as seen in Figure 2.
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In the first step, conditioned on user few-shot preferences, the user description is generated, then
conditioned on the prompt, few-shot preferences, and generated user description, a response can then
be generated (Example in Appendix A.2.1). This prediction of the user description is an interpretable
summarization of the fewshot preferences and a better representation to condition on for response
generation. Similar to the rationale generated in Zhang et al. [53] for verifiers, the RAT prediction
can be viewed as using additional inference-compute for better reward modeling. Additionally, this
formulation leverages the instruction following ability of LLMs [33] for response generation.

This rationalization procedure is expert-guided, fine-tuned with preference pairs over on-policy
samples of a user description, where a preferred user description is one that is semantically closer
to the ground-truth user description, conditioned on few-shot examples from the user. This benefits
the optimization procedure twofold by (1) leveraging additional inference-compute for better reward
modeling and (2) utilizing the instruction-following ability of LLMs for response generation. The
instantiation of this rationalization optimization is unique, fundamentally different from COT ap-
proaches present in reasoning tasks, which use rule-based rewards to train Long-COT models for
math and code reasoning. For an open-ended task, such verifiers do not exist and thus requires a
different instantiation. We additionally show in Appendix A.2.1, a sample persona generated with
RAT and that it qualitatively matches the underlying held-out user description, showing the efficacy
of the procedure to recover characteristics about an unseen user.

User representation through preference labels. From an information-theoretic perspective, the
few-shot binary preferences can be seen as a N -bit representation of the user, representing up to
2N different personas or reward functions. There are several ways to represent users: surveys, chat
histories, or other forms of interaction that reveal hidden preferences. We restrict our study to such a
N -bit user representation, as such a constrained representation can improve the performance when
transferring reward models learned on synthetic personalities to real users. We defer the study of less
constrained user representations to future work.

We summarize FSPO in Algorithm 1. Next, we will discuss domains to study FSPO.

5 CONSTRUCTING A TESTBED FOR PERSONALIZATION

To study personalization with FSPO we construct a benchmark across 3 domains ranging from
generating personalized movie reviews (Reviews), generating personalized responses based off a
user’s education background (ELIX), and personalizing for general question answering (Roleplay).
We open-source preference datasets and evaluation protocols from each of these tasks for future work
looking to study personalization (sample in supplementary).

Reviews. The Reviews task is inspired by the IMDB dataset [24], containing reviews for movies.
We curate a list of popular media such as movies, TV shows, anime, and books for a language
model to review. We consider two independent axes of variation for users: sentiment (positive and
negative) and conciseness (concise and verbose). Here being able to pick up the user is crucial as
the users from the same axes (e.g positive and negative) would have opposite preferences, making
this difficult to learn with any population based RLHF method. We also study the steerability of the
model considering the axes of verbosity and sentiment in tandem (e.g positive + verbose).

ELIX. The Explain Like I’m X (ELIX) task is inspired by the subreddit "Explain Like I’m 5"
where users answer questions at a very basic level appropriate for a 5 year old. Here we study the
ability of the model to personalize a pedagogical explanation to a user’s education background. We
construct two variants of the task. The first variant is ELIX-easy where users are one of 5 education
levels (elementary school, middle school, high school, college, expert) and the goal of the task is
to explain a question such as “How are beaches formed?” to a user of that education background.
The second, more realistic variant is ELIX-hard, which consists of question answering at a high
school to university level. Here, users may have different levels of expertise in different domains. For
example, a PhD student in computer science may have a very different educational background from
an undergraduate studying studying biology, allowing for preferences from diverse users (550 users).

Roleplay. The Roleplay task tackles general question answering across a wide set of users, following
PRISM [19] and PERSONA Bench [5] to study personalization representative of the broad human
population. We start by identifying three demographic traits (age, geographic location, and gender)
that humans differ in that can lead to personalization. For each trait combination, we generate 30
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Iterative Persona Improvement

Traits: {age, gender, geographic location}
A 22-year-old woman from Asia, she enjoys participating in 
local festivals, often dressing in traditional attire and sharing 
stories of her family's heritage.

Seed Persona

Question

How can someone start a career in digital marketing?

Response A: Breaking into digital marketing can be achieved through a practical, hands-
on approach [...] Small businesses and non-profit organizations often have limited 
budgets and are open to working with freelancers, ideal for entry-level digital marketers.

Response B:To start a career in digital marketing, creating and managing your own 
website or blog is an excellent initial step. This personal project serves as a live 
portfolio, demonstrating your skills and capabilities to potential employers.

An 22-year-old woman from Asia, she enjoys participating in local festivals, often 
dressing in traditional attire and sharing stories of her family's heritage. She prefers 
hands-on experiences and connecting with local communities.

Modified persona

Which response does persona prefer?

View Conditioning

What should I do this weekend in San Francisco?

View N: Enjoy a 10 course dinner

View 1: Explore museums & galleries

View 2: Go on a hike

 . 
. .

What should I do this weekend in San Francisco? 
Viewpoint: Explore museums & galleries

San Francisco is a haven for art and culture lovers, 
offering a diverse array of museums and galleries to 
explore this weekend. Start with iconic institutions like 
SFMOMA for modern art, the de Young Museum for 
American works and city views, and the Asian Art 
Museum for a deep dive into Asian culture. […]

Final responses

Iteratively 
repeat with 
modified 
persona

Viewpoint Conditioned Response Generation

Viewpoint Generation

Figure 3: Two key components in our synthetic data pipeline to aid with diversity and structure. The left
panel illustrates our method for increasing data diversity: we prompt a model to generate multiple viewpoints for
a question and then condition our final response generation on these viewpoints. This yields greater diversity
than temperature-based sampling. The right panel describes iterative persona improvement. If a seed persona is
too underspecified for a clear preference, we iteratively refine its definition until it can make a robust prediction.

personas, leading to 1,500 total personas. To more accurately model the distribution of questions,
we split our questions into two categories: global and specific. Global questions are general where
anyone may ask it, but specific questions revolve around a trait, for example an elderly person asking
about retirement or a female asking about breast cancer screening.

One crucial detail for each task is the construction of a preference dataset that spans multiple users.
But how should one construct such a dataset that is realistic and effective?

6 SIM2REAL: SYNTHETIC PREFERENCE DATA TRANSFERS TO REAL USERS

Collecting personalized data at scale presents significant challenges, primarily due to the high cost
and inherent unreliability of human annotation. Curating a diverse set of users to capture the full
spectrum of real-world variability further complicates the process, often limiting the scope and
representativeness of the data. Synthetically generating data using a language model [22, 1] is a
promising alternative, since it can both reduce costly human data generation and annotation and
streamline the data curation process. We note that the use of synthetic data for personalization is
nuanced and amenable in many applications, as explored in Appendix A.11. Can we generate diverse
user preference data using language models in a way that transfers to real people?

We draw inspiration from simulation-to-real transfer in non-language domains like robotics [25] and
self-driving cars [49], where the idea of domain randomization [44] has been particularly useful
in enabling transfer to real environments. Domain randomization enables efficient adaptation to
novel test scenarios by training models in numerous simulated environments with varied, randomized
properties, enabling transfer to a held-out, real environment through interpolation.

But why is this relevant to personalization? As mentioned previously, each user can be viewed as
a different “environment” to simulate as each user has a unique reward function that is represented
by their preferences. To ensure models trained on synthetic data generalize to real human users, we
employ domain randomization to simulate a diverse set of synthetic preferences. However, diversity
alone isn’t sufficient to learn a personalized LM. As studied in prior work [16, 50], it is crucial that
the task distribution in meta-learning exhibits sufficient structure to rule out learning shortcuts that do
not generalize. But how can we elicit both diversity and structure in our preference datasets?

Encouraging diversity. Diversity of data is crucial to learning a reward function that generalizes
across prompts. Each domain has a slightly different generation setup as described in Section 5, but
there are some general design decisions that are shared across all tasks to ensure diversity.

One source of diversity is in the questions used in the preferences. We use a variety of strategies to
procure questions for the three tasks. For question selection for ELIX, we first sourced questions
from human writers and then synthetically augmented the set of questions by prompting GPT-4o [31]
with subsets of these human-generated questions. This allows us to scalably augment the human
question dataset, while preserving the stylistic choices and beliefs of human writers. For the reviews
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Figure 4: Flowchart of Roleplay dataset generation: Starting from a set of traits, a seed persona is constructed
and a set of specific questions about that trait. Then responses are constructed with View-Conditioning. The
seed personas are then iteratively refined to not be underspecified. Finally, the refined persona is used to score
consistent preferences.

dataset, we compiled a list of popular media from sites such as Goodreads, IMDb, and MyAnimeList.
For the Roleplay dataset, we prompted GPT-4o to generate questions all users would ask (global) or
questions only people with a specific trait would ask (specific). This allows us to have questions that
are more consistent with the distribution of questions people may ask.

Figure 5: Disagreement matrix across 5
users in Roleplay. Here we plot the disagree-
ment of preferences for 5 users. There is a
mix of users with high and low disagreement.

Additionally, having a diversity of responses is crucial for
not only training the model on many viewpoints but also
reward labeling, allowing for greater support over the set
of possible responses for a question. To achieve diverse
responses, we employ two strategies: Persona Steering [7]
and view conditioning (Figure 3; left). For ELIX and Re-
views, we use persona steering by prompting the model
with a question and asking it to generate an answer for a
randomly selected persona. For Roleplay, the user descrip-
tion was often underspecified so responses generated with
persona steering were similar. Therefore, we considered
a multi-turn approach to generating a response. First, we
asked the model to generate different viewpoints that may
be possible for a question. Then, conditioned on each
viewpoint independently, we prompted the model with the
question and the viewpoint and asked it to answer the question adhering to the viewpoint presented.
For example, if you consider the question, "How can I learn to cook a delicious meal?", one viewpoint
here could be "watching a youtube video", better suited for a younger, more tech savvy individual,
whereas viewpoints such as "using a recipe book" or "taking a cooking class" may be better for an
older population or those who would have the time or money to spend on a cooking class. This
allowed for more diversity in the responses and resulting preferences.

Finally, we sampled responses from an ensemble of models with a high temperature, including those
larger than the base model we fine-tuned such as Llama 3.3 70b [14] and Gemma 2 27b [43], allowing
for better instruction following abilities of the fine-tuned model, than the Llama 3.2 3B we fine-tune.

Encouraging task structure. Meta-learning leverages a shared latent structure across tasks to adapt
to a new task quickly. The structure can be considered as similar feature representations, function
families, or transition dynamics that the meta-learning algorithm can discover and leverage. For a
preference dataset, this structure can be represented as the distribution of preferences across different
users and is controlled by the scoring function and the distribution of responses.

One thing we controlled to enable better structure is the scoring function used to generate synthetic
preferences. Firstly, we wanted to ensure consistent preference labeling. We use AI Feedback [1]
to construct this, using relative pairwise feedback for preference labels, akin to AlpacaEval [11],
as an alternative to absolute rubric based scoring, which we found to be noisy and inaccurate. The
preference label along with being conditioned on the prompt, response, and general guidance on
scoring, is now also conditioned on the scoring user description and additional scoring guidelines
for user-aware preference labeling. Additionally, due to context length constraints, many responses
for our preference dataset are shorter than the instruct model that we fine-tune from. Therefore, we
prompt the model to ignore this bias. Furthermore, we provide each preference example to the model
twice, flipping the order of the responses, and keeping filtering out responses that are not robust to
order bias for both training and evaluation (win rates).
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Additionally, as mentioned above, in some cases, such as with the Roleplay dataset, the user descrip-
tion is underspecified, leading to challenges in labeling consistent preferences. For example, if a user
description does not have information about dietary preferences, inconsistency may arise for labeling
preferences about that topic. For instance, in one preference pair, vegan cake recipes may be preferred
but in another, steakhouses are preferred for date night. To fix this, we take an iterative process
to constructing user descriptions. Firstly, we start with a seed set of user descriptions generated
from the trait attributes. After generating questions and responses based on these seed descriptions,
we take a set of question and response pairs. For each pair, we iteratively refine (Figure 3; right)
the user description by prompting a model like GPT-4o to either label the preference pair or if the
user description is insufficient, to randomly choose a preference and append information to the
description so a future scorer would make the same decision. Finally, we utilize the updated user
description to relabel preferences for the set of questions and responses allocated to that user with the
labeling scheme above. This fix for underspecification also helps the COT prediction as predicting an
underspecified user persona, can lead to ambiguous generated descriptions.

Finally, we desire structured relationships between users. To ensure this, we analyzed the disagree-
ment (average difference of preference labels) of user’s preferences across prompts to understand
where users agreed and disagreed, and regenerated data if this disagreement was too high across users.
By having users with some overlap, meta-learning algorithms can learn how to transfer knowledge
effectively from one user to another. A sample disagreement plot for a subset of users in the Roleplay
task can be found in Figure 5. We outline our full dataset generation process in Figure 4 in the
Roleplay Task, starting from just a simple set of demographic traits.

Strategy Mean Similarity (↓) Median Similarity (↓)

Llama 3.2 3B Instruct, temp. = 0.3 0.96 0.97
Llama 3.2 3B Instruct, temp. = 1.0 0.94 0.95
Llama 3.2 3B Instruct + persona steering (ours) 0.81 0.82
Llama 3.2 3B Instruct + view steering (ours) 0.78 0.78
Ensemble of Models + view steering (ours) 0.71 0.73

Table 1: Comparison of diversity-inducing strategies as evaluated under ALOE [46].

Evaluating diversity and structure. We evaluate our design decisions with the following vignettes.
For diversity, we measure semantic similarity using the dense score from the BGE-M3 model,
following ALOE [46], on 100 randomly sampled prompts and 10 responses per prompt in the
Roleplay task. As seen in Table 1, our proposed steering and ensembling mechanisms result in the
base Llama 3.2 3B Instruct model exhibiting significantly reduced mean similarity. For structure, we
estimate binary Shannon entropy of the preference label before and after iterative refinement. We
condition on the persona and an unlabeled preference tuple (prompt and responses) and sample a
preference label with a fixed temperature of 1.0 on 100 randomly sampled prompts from the Roleplay
task with 100 pairs of personas and 10 samples per prompt. We use GPT-4o as the scoring model.
Iterative persona refinement causes the entropy to drop from 0.64 nats to 0.13 nats, validating
the efficacy of this approach in inducing better persona-prompt-response consistency. For further
validation, we show the efficacy of scaling the size of the dataset with respect to the amount of
preference data and the number of few-shot examples in Table 7a and Table 7b, showing a monotonic
increase in end-to-end performance. Furthermore qualitative examples in Appendix A.3, showcase
the diversity of viewpoints and personas as well as their alignment when scoring for structure.

7 EXPERIMENTAL EVALUATION

Baselines. We compare FSPO against five baselines: (1) a base model generating user-agnostic
responses, (2) few-shot prompting with a base model, following Meister et al. [26], (3) few-shot
supervised fine-tuning (Pref-FT) based off the maximum likelihood objective from GPO [54], (4)
prompting with an oracle user description following Persona Steering [7], and (5) Rewards-in-
Context [48]. Specifically, for (1) we use a standard instruct model that is prompted solely with the
query, resulting in unconditioned responses. For (2) and (3), the base instruct model is provided
with the same few-shot personalization examples as in FSPO, but (2) zero-shot predicts the preferred
response and (3) is optimized with SFT to increase the likelihood on the preferred response. In (4),
the base model is prompted with the oracle, ground truth user description, representing an upper
bound on FSPO’s performance.
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Method Trained Interpolated
Llama 3.2 3B Instruct 50.0 50.0

4-shot Prompted 66.6 61.9
4-shot Pref-FT 66.5 66.1
4-shot FSPO (Ours) 78.4 71.3
8-shot Prompted 69.1 59.1
8-shot Pref-FT 65.6 70.7
8-shot FSPO (Ours) 80.4 73.6
8-shot FSPO + RAT (Ours) 92.3 84.6

Table 2: Review Winrates

Method Winrate (%)
Llama 3.2 3B Instruct 50.0

IPO 72.4
Few-shot Prompting 63.2
Few-shot Pref-FT (GPO [54]) 62.8
RIC [48] 53.3
VPL [34] 67.3

FSPO (Ours, DPO) 81.3
FSPO (Ours, IPO) 82.6
FSPO + RAT (Ours, IPO) 90.3
Oracle (prompt w/ g.t. persona) 90.9

Table 3: Winrates on Roleplay (1500 users)

Method ELIX-easy ELIX-hard
Llama 3.2 3B Instruct 50.0 50.0
Few-shot Prompted 92.4 81.4
Few-shot Pref-FT 91.2 82.9
FSPO (Ours) 97.8 91.8

Table 4: Winrates ELIX (550 users)

Baseline Method Winrate (%)
FSPO vs Base 68.2 ± 1.93
FSPO vs SFT 72.3 ± 1.34

Table 5: Roleplay: Human Eval Winrates

Synthetic winrates. We first generate automated win rates using the modified AlpacaEval procedure
from Section 6. In the ELIX task in Table 4, we study two levels of difficulty (easy, hard), where
we find a consistent improvement of FSPO over baselines. Next, in Table 2 for the Review task,
on both Trained and Interpolated Users, FSPO allows for better performance on held-out questions.
Finally, in Table 3, we study Roleplay, scaling to 1500 real users, seeing a win rate of 82.6% on both
held-out users and questions. Also, RAT closes the gap to the oracle response, effectively recovering
the ground-truth user description. In Section A.2, sample generations from FSPO show effective
personalization to the oracle user description. Given this result, can we personalize to real people?

Preliminary human study. We evaluate our model trained on the Roleplay task by personalizing
responses for real human participants. We build a data collection app (Figure 7), interacting with a
user in two stages. First, we ask participants to label preference pairs, used as the few-shot examples
in FSPO. Then, for held out questions, we show a user a set of two responses: (1) a response from
FSPO personalized based on their preferences and (2) a baseline response. Prolific is used to recruit
a diverse set of study participants, evenly split across genders and continents, corresponding to the
traits used to construct user descriptions. Question and response order is randomized to remove
confounding factors. We evaluate with 50 users and 11 questions. As seen in Figure 5, we find that
FSPO has a 68% win rate over the Base model and a 72% win rate over an SFT model trained on
diverse viewpoints from the preference dataset. To assess statistical significance, we performed a
one-sided binomial test. Here, the null hypothesis is that the probability of success is less than or
equal to 50%, (ie, that our model is no better than the baseline) and the alternative hypothesis is
that the probability is greater than 50%. The resulting p-value is 5.65e-09, so we reject the null
hypothesis at any conventional significance level. We also validate FSPO on PRISM (Appendix A.10),
a preference dataset on value based alignment from the community, showcasing benefits beyond our
constructed datasets on real human users.

8 DISCUSSION AND CONCLUSION

We introduce FSPO, a novel framework for eliciting personalization in language models for open-
ended question answering that models a distribution of reward functions to capture diverse human
preferences. Our approach leverages meta-learning for rapid adaptation to each user, addressing
limitations of conventional reward modeling techniques that learn from aggregated preferences.
Through rigorous evaluation in 3 domains, we demonstrate that FSPO’s generations are consistent
with user context and preferred by real human users. Our findings also underscore the importance
of diversity and structure in synthetic personalized preference datasets to bridge the Sim2Real gap.
Overall, FSPO is a step towards developing more inclusive, user-centric language models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 ETHICS STATEMENT

While FSPO improves inclusivity by modeling diverse preferences, the risk of reinforcing user biases
(echo chambers) or inadvertently amplifying harmful viewpoints requires careful scrutiny. Future
work should explore mechanisms to balance personalization with ethical safeguards, ensuring that
models remain aligned with fairness principles while respecting user individuality. Note, we choose
to omit value-based personalization in the experiments as explored in works such as PRISM and
Persona, instead focusing on the recommendation style of preferences such as travel preferences,
where potential amplification of biases would be benign, having a limited effect on marginalizing
particular subpopulations. Thus, this potential issue is a concern about using the algorithm in political
or value-based contexts, not something that has arisen in the fine-tuned model. That being said, we do
not explicitly mitigate this, which we leave to future work. Here, approaches such as Persona Vectors,
recently released by Anthropic, can potentially be paired with an approach like FSPO to mitigate
such biases in the training. We wish to emphasize clearly that our human study involves no collection
of identifiable information and is strictly non-longitudinal, involving harmless, recommender-style
questions. Under the criteria for Non-Medical IRBs, our study explicitly falls within the exemption
specified by 45 CFR 46.104(d). Previous guidance received from our institutional IRB also confirms
exemption status for such survey-based studies. Additionally, no such IRB was required in prior
work including Direct Preference Optimization (DPO), AlpacaFarm, Chatbot Arena, and Persona,
for nearly identical user study formulations. Thus, we strongly assert that formal IRB approval is
unnecessary for our work. We additionally utilized LLMs such as GPT5/Gemini for minor rewritings
of different sections throughout the paper for better readability.

10 REPRODUCABILITY STATEMENT

To ensure the reproducibility of our results, we provide a comprehensive account of our methodology,
code, and data. The source code for our models and experiments is available in the supplementary
materials and at the following anonymous repository: https://anonymous.4open.science/r/
anon_fspo-E8FD/ (with dataset links anonymized and altered for final release). Our implementation
is built upon the Pytorch FSDP framework, as utilized in the Direct Preference Optimization Codebase
(https://github.com/eric-mitchell/direct-preference-optimization). All experimental
details, including hyperparameter settings, are documented in Appendix A. The computational
experiments were conducted on a machine with NVIDIA A100 GPUs and the required software
dependencies are listed in the requirements.txt file within our code repository. The datasets used in
our experiments will be made publicly available. We include samples of the dataset in the Appendix
along with specific splits and any preprocessing steps applied to the data.
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A APPENDIX

A.1 ALGORITHMIC OVERVIEW OF FSPO AND HYPERPARAMETERS

Algorithm 1 Overview of Few-Shot preference optimization (FSPO).

1: Input: For each unique user S(i), a dataset of preferences D := (x, y1, y2, c)i, and optionally
user description y+

S(i) , y-
S(i) for RAT (+ is preferred user description and − is dispreffered user

description given gold user description y*
S(i)), ∀i

2: Output: Learned policy πθ

3: while not done do
4: Sample training user S(i) (or minibatch)
5: Sample a subset of preferences from the user Dfewshot

i ∼ Di

6: Sample held-out preference examples Dheldout
i ∼ Di\Dfewshot

i
7: if RAT then
8: Use Eq. (5) and Eq. (6) to predict the loss on the user descriptions y+S(i) and y−S(i) .
9: end if

10: Conditioning on Dfewshot
i (optionally yS(i) ), use Eq. (5) and Eq. (6) to predict the loss on the

held-out preference example Dheldout
i

11: Update learner parameters θ, using gradient of loss on Dheldout
i

12: end while
13: Return πθ

Name Value

Learning Rate (SFT/Pref-FT) 1e−5, 1e−6,1e−7

Learning Rate (IPO) 1e−5,1e−6, 1e−7

Beta (IPO) 0.1, 0.05, 0.01,0.005, 0.001

Number of Shots 4,8

Model Name Llama 3.2 3B Instruct [14]

Table 6: Sweep over hyperparameters for FSPO, recommended hyperparameters in bold.

A.1.1 ADDITIONAL ABLATIONS

We perform two ablations to study the impact of the size of the preference dataset and number of
few-shot examples on performance. We see a monotonic increase in performance over the size and
the number of fewshot examples in the Roleplay dataset.

Preference Data (%) Winrate (%)
10 70.1
25 69.5
50 78.3

100 82.6 (reported)

(a) Varying percentage of preference data.

Few-Shot Examples Winrate (%)
1 65.7
2 69.3
4 72.1
8 82.6 (reported)

(b) Varying number of few-shot examples.

Table 7: Ablation studies on roleplay task winrates with held-out synthetic users: (a) effect of
preference data percentage per user, and (b) effect of number of few-shot examples.

A.2 SAMPLE PERSONALIZED RESPONSES

We provide sample responses from FSPO in Figure 6 across the 3 tasks that were studied (ELIX,
Reviews, and Roleplay). We additionally include the oracle scoring description for each response,
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demonstrating FSPO’s ability to personalize. Additionally, for the Review task, we show responses
for interpolated users which were not found in the preference dataset, showing the ability of FSPO to
generalize and be controllable.

A.2.1 ROLEPLAY USER DESCRIPTION RATIONALIZATION (RAT)

QUESTION :
What a r e some good v o l u n t e e r o p p o r t u n i t i e s f o r me?

TRUE PERSONA:
A 53− year − o l d woman l i v i n g i n Nor th America , an a v i d t r a v e l e r and

w r i t e r who s h a r e s h e r a d v e n t u r e s t h r o u g h a p o p u l a r t r a v e l b log
. She l o v e s s p o n t a n e o u s a d v e n t u r e s and v a l u e s long − te rm
f i n a n c i a l s e c u r i t y . She i s a t a p o i n t i n h e r c a r e e r where
o p p o r t u n i t i e s f o r advancement might be t ime − s e n s i t i v e . She
e n j o y s movies t h a t c h a l l e n g e p e r s p e c t i v e s and s p a r k
d i s c u s s i o n s . She p r i o r i t i z e s wel l − b e i n g ove r b e i n g f u l l y
i n f o r m e d . She i s i n t e r e s t e d i n t h e van l i f e movement . She
a p p r e c i a t e s c r e a t i v i t y and v a r i e t y i n meal o p t i o n s . She e n j o y s

e n g a g i n g i n c r e a t i v e and t a c t i l e a c t i v i t i e s and p r e f e r s
t r a d i t i o n a l l e a r n i n g methods . She v a l u e s c o m p a s s i o n a t e and
r e s p o n s i b l e c h o i c e s . She e n j o y s e x p l o r i n g new and dynamic
e x p e r i e n c e s . She i s c o n c e r n e d a b o u t f a s t food . She v a l u e s
me n t a l wel l − b e i n g and m i n d f u l n e s s . She e n j o y s a t t e n d i n g e v e n t s

and c o n f e r e n c e s t o meet new p e o p l e . She a p p r e c i a t e s
p r a c t i c a l i t y and h e a l t h . She e n j o y s shows wi th da rk humor and
s u s p e n s e f u l s t o r y t e l l i n g .

RAT GENERATED PERSONA:
Based on t h e examples p rov ided , t h e u s e r a p p e a r s t o v a l u e a more

h o l i s t i c and e x p e r i e n t i a l a p p r o a c h t o l e a r n i n g and p e r s o n a l
growth . They seem t o p r i o r i t i z e human c o n n e c t i o n , n a t u r e , and
p e r s o n a l deve lopmen t ove r t e c h n o l o g y and m a t e r i a l w e a l t h .

Th i s u s e r i s l i k e l y someone who i s i n t e r e s t e d i n p e r s o n a l s t o r i e s ,
emot ions , and e x p e r i e n c e s , a s e v i d e n t from t h e i r a p p r e c i a t i o n
f o r S y l v i a P l a t h ’ s p o e t r y and t h e s u g g e s t i o n t o weave

s t o r y t e l l i n g i n t o p u b l i c s p e a k i n g . They may a l s o be someone
who v a l u e s a u t h e n t i c i t y , s i m p l i c i t y , and community , a s seen i n

t h e i r s u g g e s t i o n o f house swapping and v o l u n t e e r i n g as
a l t e r n a t i v e v a c a t i o n o p t i o n s .

In t e r m s of l i f e s t y l e , t h i s u s e r l i k e l y p r e f e r s a b a l a n c e d and
f l e x i b l e a p p r o a c h t o l i f e , a l l o w i n g f o r a mix of work ,
p e r s o n a l growth , and l e i s u r e a c t i v i t i e s . They may a l s o be
someone who v a l u e s e n v i r o n m e n t a l s u s t a i n a b i l i t y and s o c i a l
r e s p o n s i b i l i t y , a s h i n t e d a t by t h e i r c o n s i d e r a t i o n o f eco −
f r i e n d l y home improvements and s u s t a i n a b l e f i n a n c i a l p l a n n i n g .

O v e r a l l , t h i s u s e r seems t o be a t h o u g h t f u l , e m p a t h e t i c , and
n a t u r e − l o v i n g i n d i v i d u a l who p r i o r i t i z e s human c o n n e c t i o n s ,
e x p e r i e n c e s , and p e r s o n a l growth ove r m a t e r i a l p o s s e s s i o n s and

t e c h n o l o g i c a l advancement s .

FINAL RESPONSE :
Based on your a f f i n i t y f o r human c o n n e c t i o n s , p e r s o n a l growth , and

e n v i r o n m e n t a l s u s t a i n a b i l i t y , I ’ d l i k e t o s u g g e s t t h e
f o l l o w i n g v o l u n t e e r o p p o r t u n i t i e s t h a t might r e s o n a t e wi th you
:
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** Community Garden or Urban Farm * * : Many o r g a n i z a t i o n s i n your
a r e a o f f e r community g a r d e n s o r u rban fa rms where you can h e l p

c u l t i v a t e and m a i n t a i n a s h a r e d space , p romot ing
s u s t a i n a b i l i t y and food s e c u r i t y . Th i s a l l o w s you t o c o n n e c t
w i th n a t u r e and c o n t r i b u t e t o your community ’ s wel l − b e i n g .

** N a t u r e R e s e r v e s o r C o n s e r v a t i o n E f f o r t s * * : C o n s i d e r v o l u n t e e r i n g
wi th l o c a l w i l d l i f e c o n s e r v a t i o n o r g a n i z a t i o n s , such as b i r d

w a t c h i n g t o u r s , t r e e p l a n t i n g i n i t i a t i v e s , o r h a b i t a t
r e s t o r a t i o n p r o j e c t s . Th i s w i l l e n a b l e you t o work o u t d o o r s ,
c o n n e c t w i th o t h e r s who s h a r e your p a s s i o n f o r n a t u r e , and
c o n t r i b u t e t o p r e s e r v i n g t h e e n v i r o n m e n t .

** Community C e n t e r s o r E n v i r o n m e n t a l E d u c a t i o n Programs * * : Many
community c e n t e r s o f f e r v a r i o u s programs , such as g a r d e n i n g
workshops , e n v i r o n m e n t a l e d u c a t i o n c l a s s e s , o r s u s t a i n a b l e
l i v i n g workshops . By v o l u n t e e r i n g a t t h e s e c e n t e r s , you can
s h a r e your knowledge , l e a r n from o t h e r s , and make a p o s i t i v e
im pa c t on your community .

** Animal S h e l t e r s o r W i l d l i f e R e h a b i l i t a t i o n C e n t e r s * * : I f you ’ r e
an a n im a l l o v e r , c o n s i d e r v o l u n t e e r i n g a t a l o c a l an i ma l
s h e l t e r o r w i l d l i f e r e h a b i l i t a t i o n c e n t e r . You ’ l l have t h e
o p p o r t u n i t y t o c a r e f o r an ima l s , i n t e r a c t w i th l i k e −minded
i n d i v i d u a l s , and c o n t r i b u t e t o an im a l w e l f a r e and c o n s e r v a t i o n

e f f o r t s .

** Neighborhood Ev en t s o r Community F e s t i v a l s * * : Look f o r
o p p o r t u n i t i e s t o v o l u n t e e r a t l o c a l e v e n t s , such as f e s t i v a l s ,

f a r m e r s ’ marke t s , o r s t r e e t f a i r s . Th i s a l l o w s you t o engage
wi th your community , promote s u s t a i n a b i l i t y , and b u i l d
c o n n e c t i o n s wi th n e i g h b o r s t h r o u g h s h a r e d p a s s i o n f o r
e n v i r o n m e n t a l c a u s e s .

These o p p o r t u n i t i e s w i l l n o t on ly n u r t u r e your s p i r i t o f
v o l u n t e e r i n g b u t a l s o h e l p you f o s t e r m e a n i n g f u l c o n n e c t i o n s
wi th n a t u r e , o t h e r s , and your community w h i l e n u r t u r i n g a
s e n s e o f p e r s o n a l growth and f u l f i l l m e n t .

A.3 ADDITIONAL DETAILS ON DATASET CONSTRUCTION AND EVALUATION

Dataset Details We include a representative subset of the roleplay task and a jupyter notebook
demonstrating shot construction for training and evaluation in the supplementary material (due to
size restrictions). We will release the full datasets for each task in the final release of the paper.
Below in Figure 8, we provide a qualitative example of a preference from the larger persona dataset,
with details about the scoring persona and the viewpoints that underlie the responses. Additionally
in Figure 10 and Figure 9, we showcase the qualitative diversity and alignment of viewpoints and
personas present in the Roleplay task, enabling for preferences to have both diversity and structure.

Evaluation Prompt for Synthetic Preferences We used GPT-4o as a Judge using a modified
variant of the Alpaca Eval [11, 10] Prompt to be aware of a user description when scoring preference
examples.

Here is the system prompt:

You a r e a h i g h l y e f f i c i e n t a s s i s t a n t , who e v a l u a t e s and s e l e c t s
t h e b e s t l a r g e l a n g u a g e model (LLMs) based on t h e q u a l i t y o f
t h e i r r e s p o n s e s t o a g i v e n i n s t r u c t i o n . Th i s p r o c e s s w i l l be
used t o c r e a t e a l e a d e r b o a r d r e f l e c t i n g t h e most a c c u r a t e and
human− p r e f e r r e d answer s .
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Personalized Responses (ELIX-easy)
Q: How does a thermostat control temperature?

Oh boy, are you ready to learn about thermostats?
So, you know how sometimes your room gets too hot or too cold? 
That’s because of something called temperature. Temperature is like a 
measure of how warm or cool things are. And thermostats are like 
superheroes that help control the temperature in your home.
Imagine you’re playing with a thermostat in your room. It’s like a 
special button that makes the temperature go up or down. But how 
does it actually work?
Thermostats are made up of three main parts:
1. Sensors: These are like special eyes that look at the room’s 

temperature. They tell the thermostat how warm or cool it is.
2. Control Unit: This is like the brain of the thermostat. It looks at the 

sensor’s readings and decides what to do next.
3. Heating/Cooling System: This is like the arm that actually moves. It 

heats or cools the room based on what the control unit tells it to 
do.

Here’s how it works:
• The sensors send a message to the control unit, like “Hey, it’s 75 

degrees in here!”
• If the control unit thinks the room is too cold, it sends a signal to 

the heating system, saying “Turn on the heater!”
[...]

Elementary School Student

Q: What makes diamonds so hard?

Diamonds are renowned for their exceptional hardness, 
which is attributed to their unique crystal structure and 
chemical composition. Below is a breakdown of the factors 
contributing to diamond hardness:

Key Factors Behind Diamond Hardness

• Crystal Structure: Diamonds possess a face-centered 
cubic (FCC) crystal structure. Each carbon atom is 
bonded to four neighboring carbon atoms in a 
tetrahedral arrangement. This structure provides 
unparalleled strength and rigidity, enabling diamonds to 
resist deformation and fracture.

• Chemical Composition: Composed solely of carbon 
atoms arranged in a repeating pattern, diamonds owe 
their remarkable hardness to this carbon-rich 
composition.

• Tetravalent Bonds:Every carbon atom in a diamond is 
bonded to four neighbors through strong covalent bonds. 
These tetravalent bonds create a robust framework that 
supports the diamond’s rigid crystal structure.

[...]

Expert

Personalized Responses (Reviews)
Write a review for the Action movie, The Dark Knight.

The Dark Knight is a thrilling ride, but its flaws hold it back from being a 
truly great movie. The film's pacing is well-balanced, and the action 
scenes are intense and well-executed. The cast, led by Christian Bale 
and Heath Ledger, deliver solid performances. However, the plot is 
somewhat predictable, and the characters' motivations are not always 
clear. Overall, The Dark Knight is a fun, but forgettable, superhero film.

Interpolated User: Concise + Negative Interpolated User: Verbose + Negative

Write a review for the Action movie, The Dark Knight.

**A Flop of Catastrophic Proportions: "The Dark Knight Rises" Falls 
Woefully Short of its Pompous Promises**

"The Dark Knight Rises," Christopher Nolan's vaunted swan song to the 
Batman franchise, is a calamitous, soulless, and creatively bankrupt 
exercise in superheroic excess, a monstrosity of monumental 
proportions that has left me questioning the very fabric of cinematic 
reality.

From its opening frames, it is evident that Nolan has traded his artistic 
integrity and attention to detail for a saccharine, crowd-pleasing formula 
that prioritizes style over substance, spectacle over sensibility. The 
narrative, a jumbled mess of convoluted plot twists, cheap thrills, and 
cringe-worthy romantic subplots, careens wildly from one paradox to the 
next, sabotaging any semblance of coherence or logical consistency.

Tom Hardy's Bane, the film's ostensibly formidable villain, is a paragon of 
cartoonish one-dimensionality, his motivations and demeanor reduced to 
a simplistic, mustache-twirling caricature of menace. The usually reliable 
Christian Bale, as Bruce Wayne/Batman, fares little better, his character 
reduced to a puzzle piece of angst-ridden introspection, his entire 
persona rendered inexplicably thin and unengaging.

[…] Continues

Figure 6: Sample Personalized Response for ELIX (top) and Reviews (bottom).

Figure 7: An overview of the Human Study Interface. First, users label a set of preferences. Then, a set of
personalized answers are provided, conditioned on label preferences.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 8: Sample Preference (Roleplay). In this preference example, we provide a sample prompt, scoring
persona, (dis)preferred view, and (dis)preferred response.

Figure 9: Sample Viewpoints (Roleplay). For a given question, a diversity of viewpoints for a response can be
inferred to create a preference dataset that encompasses a wide-range of opinions.

Figure 10: Sample Personas (Roleplay). A comprehensive description of the user is iteratively refined from
preference pairs for that user, seeded with attributes of age, gender, and geographic location.
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Here is the user prompt:

You a r e t a s k e d wi th e v a l u a t i n g t h e o u t p u t s o f m u l t i p l e l a r g e
l a n g u a g e models t o d e t e r m i n e which model p r o d u c e s t h e b e s t
r e s p o n s e from a human p e r s p e c t i v e .

## I n s t r u c t i o n s

You w i l l r e c e i v e :
1 . A ** User I n s t r u c t i o n * * : Th i s i s t h e que ry o r t a s k p r o v i d e d t o

t h e models .
2 . ** Model O u t p u t s * * : Unordered r e s p o n s e s from d i f f e r e n t models ,

each i d e n t i f i e d by a un iq ue model i d e n t i f i e r .
3 . A ** User D e s c r i p t i o n * * : Th i s d e s c r i b e s t h e use r ’ s p r e f e r e n c e s

o r a d d i t i o n a l c o n t e x t t o g u i d e your e v a l u a t i o n .

Your t a s k i s t o :
1 . E v a l u a t e t h e o u t p u t s based on q u a l i t y and r e l e v a n c e t o t h e use r

’ s i n s t r u c t i o n and d e s c r i p t i o n .
2 . S e l e c t t h e b e s t o u t p u t t h a t meets t h e use r ’ s needs .

## I n p u t Format

### User I n s t r u c t i o n
{QUESTION}

### Model O u t p u t s
− Model "m" : {RESPONSE_A}
− Model "M" : {RESPONSE_B}

### User D e s c r i p t i o n
{USER_DESCRIPTION}

## Task

From t h e p r o v i d e d o u t p u t s , d e t e r m i n e which model p r o d u c e s t h e b e s t
r e s p o n s e . Outpu t on ly t h e model i d e n t i f i e r o f t h e b e s t

r e s p o n s e ( e i t h e r ‘m‘ o r ‘M‘ ) wi th no a d d i t i o n a l t e x t , quo t e s ,
spaces , o r new l i n e s .

## Bes t Model I d e n t i f i e r

Additional Human Study Details As shown in Alpaca Eval 2.0 [10], several biases can affect the
evaluation of language models such as length, format, and more. For this reason, we took action
to normalize both FSPO and baselines in 3 different categories. First, length is an evaluation bias.
For this reason, we computed the average length of responses from FSPO and prompted the base
model during evaluation to keep its responses around the average length in words (≈ 250 words).
For the SFT baseline, we found that this was consistent with FSPO since it was fine-tuned on the
same preference dataset. Additionally, due to context length restrictions and the instruction following
abilities of smaller open-source LLMs, we decided to have formatting be consistent as paragraphs
rather than markdown for the Roleplay task. Thus, we similarly prompted the Base model with this
behavior. Finally, a differing number of views can also skew the evaluation, as a large proportion of
users seem to prefer direct answers. Additionally, if more views are presented, a user may prefer just
one of the many views provided, skewing evaluation. Thus, we ensure that when two responses are
compared, they have the same number of views. In future, work, it would be interesting to consider
how to relax some of the design decisions needed for the human study. We additionally provide
screenshots of the human study interface in Figure 7.
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Below is the full text of instructions given to the participants:
"This is a study about personalization. You will be asked to read a set of 20 questions (9 on the first
page, 11 on the second page). For each question, there are two responses. Please select the response
that you prefer. Make this selection based on your individual preferences and which response you
find the most helpful. Read the entire response and think carefully before making your selection."

We utilize the demographic information that Prolific provides for each user such as their age group,
continent and gender to chose questions but do not store that information about the user. We collect
no identifying information about the user and will not make any of the individual preferences from a
user public. We pay each user a fair wage subject to the current region that we reside in. We received
consent from the people whose data we are using and curating as the very first question in our survey.
The demographic and geographic characteristics of the annotator population is exactly the same as
Prolific. We do no filtering of this at all.

A.4 TRAINING DETAILS AND HYPERPARAMETERS FOR FSPO AND BASELINES

Similar to DPO [36] and IPO [12], we trained FSPO in a two stage manner. The first stage is Fewshot
Pref-FT, increasing the likelihood of the preferred response. The second stage is Fewshot IPO,
initialized from the checkpoint of Fewshot Pref-FT. One epoch of the dataset was performed for each
stage. For the IPO baseline, we followed a similar procedure. Additional hyperparameters can be
found in Table 6.

A.5 ADDITIONAL DETAILS OF SETUP FOR REPRODUCABILITY

We used both code, models, and data as scientific artifacts. In particular, for code, we built off of
the codebase from Rafailov et al. [36], with an Apache 2.0 license. We additionally adapted our
evaluation script from Alpaca EVAL, including the prompt, and other criterion for evaluation and
normalization. We have reported the implementation details for synthetic evaluation in Section 6 and
human study evaluation in Section A.3.

For models, we used a combination of open-source and closed-source models. The models that we
used for sampling data are the Llama family of models [14] (Llama 3.2 3b, Llama 3.1 8b, Llama 3.3
70b) with the llama license (3.1, 3.2, 3.3), the Qwen family of models [35] (Qwen 2.5 3b, Qwen
2.5 32b, Qwen 2.5 72b) with the qwen license, the Gemma 2 family of models [43] (Gemma 2 2b,
Gemma 2 9b, and Gemma 2 27b) with the gemma license, and the OpenAI [31] family of models
(GPT4o, GPT4o-mini) with the OpenAI API License (based off of the MIT License). We used
SGLang [55] and VLLM [20] for model inference. For training, we used 1 node of A100 GPUs (8
GPUs) for 8 hours for each experiment with FSDP. Cumulatively, we used approximately 4000 hours
of GPU hours for ablations over dataset, architecture design and other details.

With respect to the dataset, for questions for the review dataset, we sourced media names from
IMDb [17], Goodreads [13], and MyAnimeList [30]. We define the domains in more detail in
section 5. Seed questions for ELIX were human generated, sourced from Prolific. The dataset is
entirely in English, with some artifacts of Chinese from the Qwen model family, which will be
filtered out for the final release of the dataset. None of this data has identifying information about
individual people or offensive content as the dataset was sourced from instruction and safety-tuned
models, with each step of the dataset having a manual check of the inputs and outputs. In terms of
statistics of the dataset, the review dataset has 130K train/dev examples and 32.4K test examples,
the ELIX-easy dataset has 235K train/dev examples and 26.1K test examples, the ELIX-hard dataset
has 267K train/dev examples and 267K test examples, and the roleplay dataset has 362K train/dev
examples and 58.2K test examples, with a total of 1.378 million examples. For our statistics, we
reported the average winrate % for each method on both synthetic and human evals, following prior
work in alignment like AlpacaFarm [11].

Each of the artifacts above was consistent with its intended use and the code, models, and datasets
should be usable outside of research contexts.

A.6 SYNTHETIC DATA IS NOT LIMITED BY WHAT IS INTERNALIZED BY THE LLM

Though the seed persona is instantiated and refined with an LLM, one part of the refinement strategy
that potentially mitigates the stereotype concern that you have raised is that we randomly select
a response to be preferred from a choice of two viewpoint-conditioned responses to augment the
seed persona. Therefore, through the refinement process, we recover a persona description that
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could map to any permutation of the 2N preferences, allowing for more expressivity than what is
internalized by the LLM. Additionally, in the viewpoint generation process, we ask the model to list
multiple viewpoints for a particular question, which allows the model to elicit a diverse set of possible
responses to score and iteratively refine the persona with. This additionally reduces the occurrence of
“stereotypical personas”, allowing for more nuanced answers for a particular question. In Figure 9,
we list 3 sample personas to qualitatively show their diverse nature.

A.7 SAMPLING OF PREFERENCES PER USER

As seen in Algorithm 1, line 5, for each user, we sample a subset of the user’s preferences to construct
the few-shot preferences for that user during training. During training, we revisit the user and
resample a new subset of preferences. In Table 7, we show an ablation over the number of few-shot
preferences that are sampled, and do see gains with the number of preferences conditioned on. For our
synthetic evaluation, we match this form of sampling, drawing multiple sets of few-shot preferences
per held-out user and averaging over the set to construct the win-rate per user, which we further
aggregate over all users. For the human study, due to cost constraints, we ask participants to label a
fixed set of preference pairs in the first stage of our study, used as the few-shot examples. Then, for
several held-out questions, we evaluate for this fixed set a response from FSPO and a baseline model.

This training and evaluation procedure mitigates the concern that the choice of the N few shot
examples impacts performance.

A.8 ADDRESSING THE ADDITIONAL OVERHEAD OF FEW-SHOT PERSONALIZATION

Few-shot preferences do expand the context requirements of an LLM. One approach to mitigate this
is the RAT prediction, which can be inferred from the user’s preferences and may be shorter than the
preferences themselves to condition on. Furthermore, this can be cached for a user to mitigate latency
issues and used across different prompts. Finally, models today are continuing to scale the length
of their context (such as Gemini 2.5 pro having over a 1 million tokens in context) so this may be a
small price to pay with respect to the overall context.

A.9 LIMITATIONS

Our human study was preliminary with control over the questions that a user may ask, format
normalization where formatting details such as markdown are removed, and view normalization
comparing the same number of viewpoints for both FSPO and the baselines. To the best of our
knowledge, we are the first to perform such a human study for personalization to open-ended question
answering. Future work should do further ablations with human evaluation for personalization.
Additionally, due to compute constraints, we work with models in the parameter range of 3B
(specifically Llama 3.2 Instruct 3B) with a limited context window of 128K, and without context
optimization such as sequence parallelism [23, 47], further limiting the effective context window. It is
an open question on how fine-tuning base models with better long-context and reasoning capabilities
would help with FSPO for personalization, such as the 2M context window of Gemini Flash Thinking
models, especially in the case of RAT.

A.10 FSPO ON HUMAN PREFERENCE DATASET (PRISM ALIGNMENT)
We have run FSPO on the PRISM Alignment Dataset. For evaluation, we evaluate FSPO as a reward
model (leveraging the duality of DPO and IPO) by comparing the log likelihood of the preferred
response and dispreferred response on held-out preferences. On this dataset, we achieve a reward
prediction accuracy of 82.8%, whereas population based approaches such as IPO achieve a reward
prediction accuracy of 61.7%, showcasing the efficacy of the method in generalizing to a held-out
user. There is no protocol for evaluating generated responses on PRISM, as the survey provided per
user is highly underspecified, providing little to no details about the user for response evaluation.

A.11 ADDITIONAL DISCUSSION OF THE USE OF SYNTHETIC DATA

It would be ideal to use a large-scale real user preference dataset suitable for developing and testing
robust personalization systems. Unfortunately, in the open-source community, no such high-quality
dataset exists, necessitating the generation of a synthetic preference dataset. In the related work, we
do consider a prior human collected dataset, the Prism Alignment Dataset [3], where we find that
a proportion of the prompts are of lower quality (such as including conspiracies such as “i think
the moon landing was faked”) and quite distinct from questions that a user would ask an assistant,
focusing on value-based personalization (such as “Who is right in the Hamas-Israeli war? Hamas or

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

the Israelis?”), which have troubling ethical considerations. In contrast, the Roleplay synthetic dataset
studies more natural, recommendation style questions that involve personalization such as “What
should I do this weekend in San Francisco?” or “Can you recommend a good podcast?”, synthetically
augmented from seed human generated questions.

Thus, the synthetic data pipeline from FSPO can be a practical solution for scenarios where high-
quality, task-specific preference data is unavailable, sparse, or lacks diversity. In these situations, our
approach can supplement and augment existing real data, rather than merely replacing it. Below, we
will describe some real-world problem instances where FSPO can be beneficial.

1. Cold Start Problem One advantage of the synthetic construction proposed is addressing the
cold-start problem. When launching a new personalized feature, there is often no historical data to
draw upon. FSPO provides a robust initial data curation pipeline that can deliver immediate value,
as evidenced in the tasks studied in this work. This extends to situations where an organization
has a wealth of user data, but not in a format amenable to LLMs (e.g, a housing and neighborhood
commerce network such as BILT, which has a set of user transaction patterns and platform engagement
not standard to LLMs). In such instances, a synthetic preference dataset can be designed using FSPO,
based on the existing data signals. Additionally, as real preference data is collected, it can be integrated
with or used to fine-tune the synthetically trained model, demonstrating how FSPO can serve as a
critical foundation and accelerator. Furthermore, works such as AlpacaFarm have been introduced
for prototyping/development of preference-based systems. As stated in their abstract, synthetic data
such as LLM Prompts can simulate human feedback that is 50x cheaper than crowdworkers and
display high agreement with humans (corroborated with our human study). Thus, in many real-world
applications, this synthetic data generation pipeline can be used for benchmarking purposes that
emulate a more realistic downstream application in personalization.

2. Privacy-Sensitive Settings Additionally, there exist applications where collecting and storing
extensive user data is either impractical or undesirable due to privacy concerns. Consider an on-device
AI assistant, a confidential workplace tool, financial/banking assistants, or a medical assistant. Here,
approaches from the synthetic data pipeline, such as iterative persona construction (Figure 3, right)
can be an appropriate approach to synthetically generate a user profile from the user preferences
to elicit personalization, without needing a persistent user-written profile. This can additionally be
constrained/controlled to not include any personally identifiable information from the preferences
that are collected, which is advantageous, for example, in medical domains to avoid infringing
on HIPAA. Collecting a comprehensive, detailed user profile is often intractable and inadvisable
in such applications, but is beneficial for fine-tuning a personalized model, which our approach
provides a controllable solution for. Similarly responses from a user may be difficult to collect in
this instantiation as well. Here, our diverse response generation strategy may be a good fit, such as
viewpoint conditioned responses, where viewpoints can be supervised by experts in a domain like
medical professionals.

3. Guided Data Curation & Metrics Finally, our synthetic data pipeline is instantiated on the
guiding principles of structure and diversity, theoretically motivated by task-generation in meta-
learning, which are readily transferable to real tasks. To ground this in a real problem, let’s consider
the education domain that you have suggested, where student data might be available. Our approach
can provide guidance on data curation or data selection for a personalized system in this domain. To
concretely measure these principles, we study and empirically evaluate metrics that characterize the
principle. For example, for diversity, we study the embedding similarity of responses as seen in Table
1, and we introduce a disagreement metric as seen in Figure 5 to capture the diversity of responses
and users. This can be readily used to gauge the diversity of real preference data, such as capturing
the diversity of education backgrounds of students or the diversity in tutoring conversations in an
education setting. We characterize structure in preferences by the binary Shannon entropy of the
preference labels, a metric we study in section 6. This can be used to identify underspecification of
a user’s education background with the prompts and responses that they label preferences for, and
potentially be used to filter users in the dataset that may be too noisy. Having inconsistencies in
preferences or the user description makes the learning problem much more difficult, as described
in prior work such as C-DPO and IPO. Overall, these metrics can guide the data selection/curation
process of existing human data in domains such as education and has been validated on users in our
human study, which indicates the effectiveness of the data curation approach.
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To sum up, FSPO can be readily incorporated into several real world applications, where it can help
provide a warm-start in data limited regimes or a dataset to prototype with, with settings where user-
privacy is paramount, and additionally guide the curation and selection of human data, in applications
such as education through the guiding principles of structure and diversity with the metrics proposed.

A.12 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models are used to assist with proofreading and minor wording improvements.
All research ideas, experiments, and conclusions were conceived and validated by the authors.
Additionally, tools such as Cursor were utilized as coding assistants during the development of the
coding infrastructure for the project.
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