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Abstract

Bayesian probabilistic integration, or Bayesian
quadrature (BQ), has arisen as a popular means
of numerical integral estimation with quantified
uncertainty for problems where computational
cost limits data availability. BQ leverages flexible
Gaussian processes (GPs) to model an integrand
which can be subsequently analytically integrated
through properties of Gaussian distributions. How-
ever, BQ is inherently limited by the fact that the
method relies on the use of a strict set of kernels
for use in the GP model of the integrand, reducing
the flexibility of the method in modeling varied
integrand types. In this paper, we present spectral
Bayesian quadrature, a form of Bayesian quadra-
ture that allows for the use of any shift-invariant
kernel in the integrand GP model while still main-
taining the analytical tractability of the integral
posterior, increasing the flexibility of BQ methods
to address varied problem settings. Additionally
our method enables integration with respect to a
uniform expectation, effectively computing defi-
nite integrals of challenging integrands. We derive
the theory and error bounds for this model, as well
as demonstrate GBQ’s improved accuracy, flexi-
bility, and data efficiency, compared to traditional
BQ and other numerical integration methods, on a
variety of quadrature problems.

1 INTRODUCTION

Methods for estimation of non-analytical integrals through
numerical methods play a key role across a broad spectrum
of scientific fields, but these methods are often computa-
tionally expensive in nature. Methods such as finite-element
or volumes, which are widely used in physical simulation
to integrate partial differential equations, or Monte Carlo

estimation, which is widely used in Bayesian statistics for
estimation of posteriors, require a large number of function
evaluations to reach a desired level of accuracy. In addition,
many numerical integration methods fail to provide uncer-
tainty quantification on their estimates, which is crucial in
the applied settings in which physical simulation is often
used.

Bayesian quadrature (BQ) (Diaconis, 1988; O’Hagan, 1991)
is a probabilistic method which can remedy these concerns
by offering performance on computationally-limited small
data while admitting robust uncertainty bounds. BQ takes
the form of a traditional quadrature rule:∫

f(x)p(x)dx ≈
n∑

i=1

wif(xi), (1)

for n evaluations of the function f , where weights wi ∼
p(x) are instead learned through manipulation of a Bayesian
non-parametric Gaussian process (GP) (C. E. Rasmussen
and Williams, 2006) model on observations of the integrand
f(x).

The use of such a Bayesian non-parametric model for learn-
ing weights leverages the ability for GPs to perform well
under data-scarcity as well as quantify uncertainty in a prin-
cipled manner. In addition, the Gaussian nature of this model
allows for the integral estimate of f to be a simple analytical
integration of the GP prior on f using well-known charac-
teristics of multi-variate Gaussian distributions. Previous
work (Ghahramani and C. Rasmussen, 2003; Kandasamy,
Schneider, and Póczos, 2015) has clearly demonstrated com-
putational efficiency of BQ versus traditional methods such
as Monte Carlo integration when the data dimensionality
d < 10.

A chief advantage of using GPs in any probabilistic learning
setting is the flexibility of choice of the GP kernel function k,
which allows for a practitioner to inject domain knowledge
of the problem space into the GP model. Characteristics
such as as data smoothness or periodicity can easily be
applied through choice or composition of specific kernel
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functions tailored to these settings.

However, the traditional BQ formulation hamstrings this
flexibility by limiting the choice of kernel in the integrand
GP to only a small subset of kernels with known analytical
kernel means, such as Gaussian or polynomial kernels. For
well-known kernels that may not be analytically tractable
in the BQ setting, but nonetheless might better model an
integrand, traditional numerical quadrature methods must be
used, reducing the computational efficiency that BQ offers.
The question naturally arises of how practitioners might
enable the full suite of kernel choices for use in the GP inte-
grand prior while still maintaining the analytical tractability
in the BQ setting, to most efficiently produce an accurate
estimate to the integral of f .

In this paper, we expand on the literature of BQ and propose
a solution to the problem of kernel choice with generalized
Bayesian quadrature (GBQ), a method derived from random
Fourier features (RFFs) by which any shift-invariant kernel
can be used in the GP integrand prior while still allowing
for analytical tractability in the BQ setting. By allowing for
both kernel flexibility and analytical integration, we expand
upon the ability of traditional BQ to model a variety of
integrand types while still maintaining the computational
efficiency BQ offers. We summarize our contributions here:

Contributions

• We propose generalized Bayesian quadrature (GBQ),
a method of Bayesian quadrature that allows for the
use of any shift-invariant kernel in the GP model of the
integrand while still admitting an analytical estimate
of the integral posterior mean and variance.

• We show that GBQ can directly be used to compute
integrals over Gaussian and uniform measures within
the same framework.

• We derive the upper-bounded error to this approxima-
tion as a function of data-availability.

• We outline the assumptions under which GBQ shares
the computational complexity of traditional BQ.

• We demonstrate the accuracy and flexibility of this
quadrature method versus traditional BQ, as well as
data-efficiency versus typical Monte Carlo integration,
on a selection of relevant domain problems.

2 RELATED WORKS

Quadrature methods of the type in equation 1 are well-
studied due to their importance to a variety of fields, and
there is a deep literature dating back centuries on methods
for numerically approximating integrals. We will briefly
review here relevant methods in relation to Bayesian quadra-
ture.

Rather than deterministic quadrature weighting, various
probabilistic quadrature approaches have been proposed
(C. J. Oates and Sullivan, 2019) for integration when model
observations are expensive, with one of the most popular
methods being Bayesian quadrature. Many extensions to
vanilla BQ have been developed over the years to improve
performance and provide theoretical guarantees (Acerbi,
2018; Belhadji, Bardenet, and Chainais, 2019; Briol, Chris
J. Oates, Girolami, and M. A. Osborne, 2015; Kennedy,
1998). Other applications include use in multi-fidelity mod-
eling (Gessner, Gonzalez, and Mahsereci, 2020), Bayesian
posterior estimation (Gunter et al., 2014; M. Osborne, Gar-
nett, Roberts, et al., 2012), Bayesian optimization (Nguyen
et al., 2020), and model selection (Chai et al., 2019; M.
Osborne, Garnett, Ghahramani, et al., 2012).

The derivation of analytical forms, or empirical approxima-
tion, of kernel means, which is a significant component of
the BQ formulation, is a problem that appears in numer-
ous other fields. Namely, kernel mean embedding (Muan-
det et al., 2017), deep Gaussian processes (Damianou and
Lawrence, 2013), and neural operators (Kovachki et al.,
2021; Li et al., 2021) all attempt to do so through various
means. There also exist empirical methods for the estima-
tion of kernel means using random Fourier features (Muan-
det et al., 2017), as well as strong theoretical connections
between the very concept of kernel-based quadrature and
random Fourier features (Bach, 2017). In a related manner,
methods have been proposed that seek to implement Fourier
feature kernels through quadrature based methods (Mutny
and Krause, 2018). However, to our knowledge, no methods
directly solve kernel integrals analytically in the BQ setting
using RFFs, as we propose to do in this paper.

Similar to RFFs, spectral mixture kernels (SMKs) (Oliva
et al., 2016; Wilson and Adams, 2013), also model shift-
invariant kernels as the spectral transform of a probabil-
ity measure. In the SMK case, this measure is a Gaussian
mixture model, which can be shown to asymptotically ap-
proximate any stationary kernel as the number of mixture
components increases. While BQ has found applications
in constructing hyper-kernels by marginalizing SMKs over
mixture priors (Hamid et al., 2022), their use within BQ has
been limited.

The method which shares the most overlap with this work is
the Fourier neural operator (FNO) (Li et al., 2021), which, as
a part of a larger deep neural network architecture, estimates
the convolution of shift-invariant kernels with a probability
measure using parameters in Fourier space. While we take a
similar approach to deriving kernel means using Fourier fre-
quencies, the overall frameworks differ, with GBQ existing
in the Gaussian process framework, thus offering uncer-
tainty estimates for integral posteriors, while FNOs exist
within a deterministic neural network architecture.



3 PRELIMINARIES

3.1 BAYESIAN QUADRATURE

We will now review various preliminary methods upon
which GBQ is built, starting with Bayesian quadrature.

BQ assumes we have a function f that we are trying to
integrate and a dataset D = {xi, yi}ni=1 with n noisy obser-
vations of f , where x ∈ Rd, yi = f(xi) + ϵ, and ϵ is i.i.d
normal distributed noise. Typically, f is computationally ex-
pensive to evaluate, implying a small n and highlighting the
need for uncertainty estimation in the final integral approx-
imation. BQ does this by first placing a Gaussian process
(C. E. Rasmussen and Williams, 2006) prior on f , which
we will briefly review here.

Gaussian Processes Gaussian processes are a Bayesian
non-parametric method which model the target data gen-
eration function f we are attempting to learn as a joint
multivariate Gaussian of the form:

f ∼ GP(µ(x), kθ(x,x
′)), (2)

y = f(x) + ϵ, (3)

where kθ is a positive semi-definite kernel function with
hyper-parameters θ, and µ is a mean function. In the above,
we assume an additive and independent Gaussian noise
observation model with, ϵ ∼ N (0, σ2I), where y are noisy
observations with standard deviation σ. k is typically chosen
a-priori to encode known characteristics of the data D such
as periodicity and smoothness.

For inference, the posterior-predictive distribution of f∗
for a new data point {x∗}, given the training data D =
{xi, yi}ni=1, and Gram matrix Kxx = kθ(x,x

′), ∀x,x′,
is given by N (µ(f∗),Cov(f∗)) where,

µ(f∗) = K∗x(Kxx + σ2I)−1y, (4)

Cov(f∗) = K∗∗ −K∗x(Kxx + σ2I)−1Kx∗. (5)

In BQ, by setting a GP prior on the integrand f we can
leverage the ability of GPs flexibly and accurately model
functions with uncertainty on small data, but it is also ad-
vantageous in that we can directly and analytically integrate
the integrand GP prior. This is performed using well-known
characteristics of Gaussian distributions in order to form a
posterior estimate ⟨f̄⟩ of the integral of f .

Formally, the mean of the BQ estimate of ⟨f̄⟩ is the expected
value over measure p(x) of the posterior mean of the GP
prior (4) on f :

⟨f̄⟩ =
∫
x∈R

k(x,X)TK−1y p(x) dx

= yTK−1

∫
x∈R

k(x,X) p(x) dx

= µx(X)TK−1y,

(6)

where µx(X) = [µx(x1) . . . µx(xn)] can be seen as the
kernel mean over measure p(x). The variance of this esti-
mate is:

V(⟨f̄⟩) =
∫
X∈Rd

µx(X)p(X) dX (7)

which is notably independent of prior observations X .

The mean formulation mirrors that of standard quadrature
methods shown in equation (1), differing in that weights
µx(X)TK−1 are the result of probabilistic learning on
observed data D and associated kernel choice, rather than
decided a priori or by a heuristic.

Under a very limited selection of kernel and sampling mea-
sure choices, the mean (6) and variance (7) can be calculated
analytically (Briol, Chris J. Oates, Girolami, M. A. Osborne,
and Sejdinovic, 2019). Most commonly, a Gaussian kernel
and Gaussian distribution for the measure p(x), as proposed
by (O’Hagan, 1991), is one such case. It is also prudent
to note that the measure distribution can be fluid while re-
taining analytical tractability through use of importance
sampling (Briol, Chris J. Oates, Cockayne, et al., 2017;
Ghahramani and C. Rasmussen, 2003), while the choice of
kernel is more restricted.

In BQ, the limitation of the kernel to certain forms depen-
dent on known closed-form analytical integration over the
measure p(x) gives up one of the greatest advantages of the
GP prior: flexible selection of kernels for specific domains.
To alleviate this issue, GBQ introduces random Fourier fea-
tures into the BQ formulation for parametrization of the GP
kernel.

3.2 RANDOM FOURIER FEATURES

As we shall see in Section 4 Random Fourier features enable
the use of any shift-invariant kernel in the BQ-GP prior
without sacrificing the analytical tractability of the integral
posterior. This greatly increases the flexibility of the BQ to
perform under a variety of problem conditions for which
different kernels may be necessary.

Random Fourier features are obtained from the spectral
representation of shift-invariant kernels given by Bochner’s
theorem:

Theorem 1 (Bochner’s theorem (Rudin, 2011)). A shift-
invariant kernel k(x,x′) = k(x − x′) is positive-definite
if and only if it is the Fourier transform of a non-negative
measure.

Theorem 1 is the building block upon which (Rahimi and
Recht, 2008) introduce random Fourier features (RFFs),
which define a practical means by which Bochner’s theorem
can be applied in practice to estimate kernel functions in
finite dimensions. Using the derivation from (Rahimi and



Recht, 2008), if the probability density p(ω) is the Fourier
transform of k:

k(x− x′) =

∫
Rd

p(ω)ejω(x−x′) dω,

=

∫
Rd

p(ω) cos(ω(x− x′)) dω.

(8)

For brevity, equation (8) provides the formulation for the
case that the kernel and data x are real-valued, but an alter-
native formulation exists for the case they are not.

It can be easily seen that the kernel function k is entirely
defined by the choice of density p(ω), and several common
kernels have known associated densities. For example, if
p(ω) is multivariate isotropic Gaussian, then (8) represents
the radial basis function (RBF) kernel. By drawing from the
associated p(ω) for our choice of kernel, RFFs approximate
(8) with Monte Carlo by:

k(x,x′) = k(x− x′) ≈ 1

R

R∑
r=1

cos(ωT
r (x− x′)) (9)

where R is the number of Monte Carlo samples or Fourier
features.

Alternatively, we can directly parametrize these features ω
as GP hyperparameters, which allows for optimal kernels
to learned during training to best adapt to specific problem
settings (Chang et al., 2017; Oliva et al., 2016; Tompkins
et al., 2019; Zhen et al., 2020).

4 GENERALIZED BAYESIAN
QUADRATURE

We build upon these concepts to devise our method, general-
ized Bayesian quadrature, which enables flexible Bayesian
quadrature for use with any arbitrary shift-invariant kernel
while maintaining analytical tractability of the kernel mean
µx(X). We begin by showing that a Gaussian density can
be approximated with RFFs, which will lead to analytical
tractability for general shift-invariant kernels.

4.1 PROBABILITY DENSITY FUNCTIONS AS RFF
KERNELS

Analytical tractability of the BQ mean in (6) for any kernel
represented by RFFs can be achieved by reformulating the
kernel mean measure p(x) as an RFF as well. In general, we
can turn any positive-definite probability density function
p : X → [0,∞) on X ⊆ Rd into a stationary kernel via the
following construction:

kp : X × X −→ R,

kp(x,x
′) 7−→

{
p(x− x′) , x− x′ ∈ X ,

0 , x− x′ /∈ X .

(10)

It is easy to verify that a kernel defined as in equation 10
is translation-invariant and positive-definite whenever p is.
As examples of distributions with positive-definite densi-
ties we have the Gaussian and the Student-T (Rossberg,
1995). Given that many probability distributions can be ap-
proximated by these densities, or mixtures of them, kernel
modeling of distributions as in (10) has a wide range of
potential applicability.

RFF Representation of the Gaussian Given that an RBF
kernel represents an un-normalized Gaussian, by sampling
ρ from N (0, I) and using a multivariate Gaussian normaliz-
ing constant τ−1 = [(2π)d|Σ|]−1/2, where Σ is the length-
scale matrix for features ρ, we can formulate an RFF ker-
nel approximation of a Gaussian density function q(x) as
limR→∞ as:

p(x) ≈ q(x) = τ−1 exp{−|x− µ|2}

≈ [(2π)d|Σ|]−1/2 1

R

R∑
r=1

cos(ρT
r (x− µ)).

(11)

This form allows for the use of simple trigonometric identi-
ties to form an analytically integrable kernel mean formu-
lation (6) over a Gaussian measure, which we will shortly
demonstrate.

4.2 GENERALIZED BAYESIAN QUADRATURE
POSTERIOR

We now reformulate the BQ mean and variance by substitut-
ing the RFF formulations of both the kernel and measure in
equations (9) and (11) into the BQ mean in equation (6).

⟨f̄⟩ = yTK−1

∫
x∈R

1

R

R∑
r=1

cos(ωT
r (x−X))

× [(2π)d|Σ|]−1/2 1

Z

Z∑
z=1

cos(ρT
z (x− µ))dx (12)

The trigonometric form of both the kernel and measure dis-
tribution in this setting allow for the application of basic
identities to rewrite the integrand as a linear function. Using
the identity cos(α) cos(β) = cos(α+β)/2+cos(α−β)/2,
and simple properties regarding the anti-derivatives of
trigonometric functions, we arrive at the following definition
of GBQ over an approximated Gaussian measure q(x).

Definition 1 (Generalized Bayesian Quadrature Over Gaus-
sian Measures). Given n noisy observations {xi, yi}ni=1 =
{X,y} of a function f where xi ∈ Rd, a kernel func-
tion k parametrized through random Fourier frequencies
ω ∈ RR×d sampled from density p(ω), a Gaussian mea-
sure approximation q(x) parametrized by Fourier frequen-
cies ρ ∈ RZ×d sampled from N (0, I), and kernel matrix



K = [k(xi,x
′
j)]

n
i,j=1 ∈ Rn×n, the GBQ estimate ⟨f̄⟩ of

the mean of the integral of f over domain a ≤ x ≤ b is:

⟨f̄⟩ = µx(X)TK−1y, (13)

µx(X) =

L

R∑
r=1

Z∑
z=1

hd(xT (ωr + ρz)− (ωT
r X + ρT

z µ))∏d
j=1(ω

j
r + ρjz)

∣∣∣∣∣
b

a

+

L

R∑
r=1

Z∑
z=1

hd(xT (ωr − ρz)− (ωT
r X − ρT

z µ))∏d
j=1(ω

j
r − ρjz)

∣∣∣∣∣
b

a

,

(14)

where d is the dimensionality of x, and hd is the func-
tion at the d-th index of the repeating series h =
[sin,− cos,− sin, cos, sin, . . . ]. The normalization constant
L is defined as:

L = (2RZ ×Qb
a)

−1[(2π)d|Σ|]−1/2 , (15)

where Qb
a =

∫ b

a
q(x)dx is an estimate to the CDF of the

RFF-parametrized Gaussian q(x), which is analytically
calculable from (11) 1.

See the supplement for full proof, variance derivation, and
details of an algorithm for efficient implementation. In ad-
dition, the supplement provides a GBQ formulation over
uniform measures, which equates to direct integration of
the GP integrand f̄ . Through definition 1 we obtain an ana-
lytical posterior for ⟨f̄⟩ and V(⟨f̄⟩) that allows for flexible
kernel choice through the use of RFFs.

4.3 APPROXIMATION ERROR

4.3.1 Gaussian Process and Random Fourier Features
Error Bounds

The approximation error of GBQ extends from well-known
error bounds derived from the literature of RFFs and BQ
respectively. We present here an abbreviated form of this
proof, the full version of which can be found in the supple-
ment.

We begin with the following lemma outlining the error of
the GP estimate f̄ to the integrand f under the assumption
f is a member of the Hilbert space Hk defined by kernel k:

Lemma 1 (Durand, Maillard, and Pineau (2017, Theorem
1)). Assume f ∈ Hk and that the observation noise ϵ is
σϵ-sub-Gaussian. Then the following holds with probability
at least 1− δ:

∀n ∈ N, |f(x)− µn(x)| ≤ βk(δ)σn(x),∀x ∈ X , (16)

1See supplementary for derivation.

where µn and σ2
n denote the GP posterior mean and vari-

ance given n observations, according to (4) and 5, respec-
tively, and

βk(δ) := ∥f∥k

+ σϵ

√
2

λ
log

(
det(I+ λ−1Kn)1/2

δ

)
,

(17)

with
Kn := [k(xi,x

′
j)]

n
i,j=1 ∈ Rn×n , (18)

We follow with a lemma related to the error bounds on the
RFF approximation to a shift-invariant kernel k.

Lemma 2 (Sutherland and Schneider (2015, Proposition 1)).
Let k : X ×X → R be a continuous shift-invariant positive-
definite kernel with k(x,x) = 1 and such that ∇2k(x,x)
exists, for all x ∈ X ⊂ Rd. Suppose X is compact with
diameter ℓX < ∞. Denote k’s Fourier transform as Pk,
which is a probability measure, and let σ2

k := E[∥ω∥22] for
ω ∼ Pk. Let k̃ : X×X → R denote k’s RFF approximation
with R frequencies according to (9). Then the following
holds for any 0 < ξ < σkℓX :

P
[

sup
x,x′∈X

|k̃(x,x′)− k(x,x′)| ≥ ξ

]
≤ 66

(
σkℓX
ξ

)2

exp

(
− Rξ2

4(d+ 2)

)
. (19)

Therefore, for any δ ∈ (0, 1), we can achieve pointwise
approximation error less than ξ with probability at least
1− δ if:

R ≥ R(ξ, δ, σk) :=
4(d+ 2)

ξ2

(
2

1 + 2
d

log
σkℓX
ξ

+ log
66

δ

)
(20)

4.3.2 Generalized Bayesian Quadrature Error

Next, we formulate an error bound on the RFF parametriza-
tion of the Gaussian (or any arbitrary) density shown in
equation (11), as we build towards a final bound on GBQ.

Theorem 2 (Error of the RFF Density Approximation). Let
p : X → R be a positive-definite probability density func-
tion defined on X ⊂ Rd which is such that ∇2p(0) exists.
Assume X is compact, and let bp > 0 be any constant such
that bp ≥ maxx∈X p(x). Let k̃p denote an RFF approxima-
tion with Z ∈ N frequencies to kp as defined in (10), and
let p̃ : x 7→ k̃p(x,0), x ∈ X . Then, for any ξ > 0, the
following holds:

P
[
sup
x∈X

|p̃(x)− p(x)| ≥ bpξ

]
≤ 66

(
σkpℓX

ξ

)2

exp

(
− Zpξ

2

4(d+ 2)

)
(21)
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Figure 1: Function Plots and Bounded Error Graphs for 1D Continuous and Disjoint Polynomial Quadrature Experiments.

where for the second statement we assume ξ ≤ σkp
ℓX , and

σkp
, ℓX , αξ and βξ are the same as defined in Lemma 2 for

k := 1
bp
kp.

Finally, we combine these results to arrive at the upper
bounded error for GBQ as a composition of the errors of
GP approximation, RFF approximation, and RFF measure
density estimation.

Theorem 3 (Upper-Bounded Generalized Bayesian Quadra-
ture Error). Let f ∈ Hk, where k : X × X → R is a
positive-definite, translation-invariant kernel on X ⊂ Rd.
Assume that:

1. X is compact with diameter ℓX < ∞ and volume
vX :=

∫
X dx < ∞;

2. k(0,0) = 1 and ∇2k(0,0) exists;

3. and p : X → [0,∞) is a positive-definite probability
density function.

Then the following holds with probability at least 1− δ:∣∣∣∣∫
X
f(x)p(x) dx−

∫
X
µ̃n(x)p̃(x) dx

∣∣∣∣
≤

(
n

λ
βϵ

(
δ

4

)
ξk + βk

(
δ

4

)
max
x∈X

σn(x)

)
× (1 + bpξpvX ) + ∥f∥∞bpξpvX , (22)

where βϵ(δ) := ∥f∥∞ + σϵ

√
2 log

(
n
δ

)
, for an RFF ap-

proximation to k with R ≥ R
(
ξk,

δ
4 , σk

)
frequencies and

an RFF approximation to p with Z ≥ R
(
ξp,

δ
4 , σkp

)
fre-

quencies, given ξk > 0 and ξp > 0.

We refer the reader to the supplementary for the full proof
of theorems 2 and 3.

4.4 COMPLEXITY

We consider here the complexity of calculating the BQ
and GBQ mean integral approximation ⟨f̄⟩ as in 6 and 14.

Traditional BQ over a Gaussian measure p(x) (6), under
the assumption N > d, has a mean-calculation complexity
that is dominated by the operation K−1, which scales in
O(N3).

Comparatively, GBQ can be either dominated by the same
term or via the complexity introduced through the novel
method of estimation of the RFF kernel mean as in definition
1.

GBQ mean calculation with a Gaussian measure, over
definite bounds of dimensionality d for all N , scales in
O(dNRZ) with the number of Fourier features R used for
kernel k approximation, and the number of Fourier features
Z used for RFF approximation q(x) of Gaussian measure
p(x). Over a uniform measure and definite bounds, which
equates to direct integration of the integrand GP f̄ , calcula-
tion of the GBQ mean scales in O(dNR) time.

In the case of GBQ over a Gaussian measure, if dRZ < N2,
GBQ mean-calculation is also O(N3) as in traditional BQ.
For GBQ over a uniform measure, if dR < N2, we can
assume the same.

5 EXPERIMENTS

We demonstrate here the empirical results of GBQ com-
pared to traditional Monte Carlo quadrature methods and
BQ. Specifically, we measure percent error versus the an-
alytical integral solution, with baselines of Monte Carlo
(MC) integration, quasi Monte Carlo (QMC) using Halton
sequence sampling (Halton, 1960) over a uniform hyper-
cube, and BQ with the RBF kernel and a Gaussian measure.

For GBQ, we present results in the form of GBQ-Measure-
Kernel, where the kernel is chosen from the RFF estimates
to the RBF, Matérn 1/2 (M1/2), Matérn 3/2 (M3/2), and
Matérn 5/2 (M5/2), and the measure is either uniform (U)
or Gaussian (G). We hold static the number of integrand
observations f(x) available across all baselines and GBQ
models. Additionally, we use the same GP kernel hyperpa-



rameters θ in both BQ and GBQ, which are trained once
per each experiment at each n and shared across all models
and kernels. For Fourier features ω and ρ in equations (9)
and (11), we sample using Halton sequences as well to pro-
duce a smoother coverage of the sample space. Finally, we
implement these methods in Julia (Bezanson et al., 2015),
and code has been made available 2.

We note that while our experiments consider the employ-
ment of the Matérn family of kernels, any shift-invariant
kernel can be used in the GBQ integrand prior to adapt to a
wide array of problem settings. While there are various ana-
lytical solutions to the Matérn family in traditional BQ, they
require a kernel-specific integral to be calculated and imple-
mented, and don’t exist over all measures p(x). We provide
evidence to the flexibility of our method by showing that
Matérn kernels can be implemented without change of prob-
lem formulation by simply sampling features ω according
to the appropriate frequency distribution.

For all experiments, at each training size n we report re-
sults as the average model-wise results over multiple runs
under different random seeds, and include information on
the error variance over runs. While experiments were run
for all kernel-measure combinations for GBQ, for brevity
we include here only those models that performed best on a
given experiment.

5.1 1D EXPERIMENTS

Our first experiment is a simple 1D polynomial to empir-
ically verify our theoretical results of section 4 regarding
the efficacy of the GBQ method in both recreating results of
traditional BQ using the RBF kernel as well as demonstrate
the flexibility of kernel choice that GBQ offers.

We model the integral of a polynomial of the form:

f(x) = 0.2x3(x− 4)2 − 3x− 3 , (23)

in the first case, and disjointed version of the polynomial

f(x) =

{
0.2x3(x− 4)2 − 3x− 3, x < 2.5 ,

0.2x3(x− 4)2 − 3x− 13, x ≥ 2.5 ,
(24)

in the second. The choice of the disjoint polynomial is in
order to assess the value of the flexibility of GBQ in enabling
varied kernel choice in BQ, and in this case we leverage
Matérn kernels, which typically perform better than the RBF
on non-smooth data. We use 100 Fourier features in all GBQ
models, and run each experiment 10 times under different
seeds at each n and report the aggregated mean and 95%
confidence bounds in figure 1.

In the first experiment, which represents a smoother polyno-
mial, BQ and GBQ both outperform QMC in accuracy as a

2https://github.com/houstonwarren/GBQ.jl

Figure 2: Plots of 2D experiment equations (25) (top) and
(26) (bottom).

function of data scarcity. We can see that GBQ-G-RBF is an
excellent approximation to BQ, which similarly leverages
an RBF kernel over a Gaussian measure, which helps to
validate our theoretical results on both the accuracy of the
RFF-based integration of the RFF-RBF kernel over a Gaus-
sian measure, as well as the ability for RFFs to parametrize
Gaussian distributions.

In the disjoint case, we see that at low n, GBQ has a slight
advantage over BQ when using the Matérn kernel, but that
results converge for all methods as training size increases.
While QMC achieves better error at some points, it generally
displays more variance over n in this experiment than the
BQ and GBQ-based models.

5.2 2D EXPERIMENTS

We now move to a selection of 2D experiments, first of
which is estimating the integral of a polynomial of the form

f(x, y) = −0.005x4 ∗ 0.1x3 + y5(0.02x− 0.08)

− 0.001y2 + 0.2y + 0.5 (25)

over the interval x ∈ [−4, 4], y ∈ [−2.5, 2.5], as well as a
disjoint 2D function:

f(x, y) =

{
e5x+5y, x < 0.5, y < 0.5 ,

0, x ≥ 2.5, y ≥ 2.5 ,
(26)

over the unit cube.

We perform both experiments over a range of training data
sizes from 10 to 1000 n, with 5 runs per n at different
random seeds. All GBQ models use 300 Fourier features.
Plots of these functions can be seen in figure 2, and the



Table 1: 2D Polynomial of Equation (25). Integration Results (% Error).

N QMC BQ GBQ-U RBF GBQ-G RBF GBQ-G M5/2
10 98.78± 7.23 8.57± 6.77 17.03± 9.06 10.27± 5.32 4.88± 3.73
25 76.57± 16.34 9.69± 7.45 8.32± 7.16 8.53± 7.39 11.08± 10.63
50 44.92± 5.7 7.81± 2.64 14.77± 2.6 7.33± 3.07 5.72± 5.22
100 31.02± 3.46 4.02± 3.5 1.97± 0.88 4.04± 2.93 2.41± 1.71
250 7.97± 1.6 1.22± 1.13 1.03± 0.93 2.14± 0.77 1.86± 1.1
500 6.07± 0.85 0.68± 0.63 0.49± 0.53 1.34± 1.6 1.56± 1.65
750 5.51± 0.65 0.73± 0.26 0.48± 0.38 1.22± 1.24 1.35± 1.21
1000 3.94± 0.46 0.41± 0.26 0.36± 0.26 1.41± 1.36 1.52± 1.34

Table 2: 2D Disjoint Polynomial of Equation (26). Integration Results (% Error).

N QMC BQ GBQ-U RBF GBQ-U M1/2 GBQ-G RBF
10 164.04± 0.34 38.42± 0.72 8.26± 3.82 95.64± 12.34 30.79± 3.68
25 20.28± 0.75 10.59± 0.75 2.64± 1.0 5.06± 4.49 10.17± 0.95
50 23.38± 0.28 26.08± 0.3 17.42± 0.7 12.96± 10.34 27.14± 0.69
100 26.8± 0.24 38.93± 0.23 25.06± 0.3 5.92± 7.4 38.26± 0.28
250 4.41± 0.16 11.99± 0.16 2.74± 0.33 2.99± 2.03 12.01± 0.28
500 3.48± 0.09 12.63± 0.09 3.46± 0.12 2.08± 0.85 12.68± 0.1
750 3.24± 0.07 12.38± 0.07 3.01± 0.06 2.02± 0.58 12.24± 0.1
1000 0.86± 0.05 9.62± 0.05 0.61± 0.05 0.73± 0.18 9.48± 0.08

means and standard deviations of the results are reported in
tables 1 and 2.

In both experiments, we see that GBQ methods have uni-
versally lower mean error than QMC and BQ. The best
performing kernel varies across n, but in several cases we
see that the Matérn has the lowest error, supporting the case
that flexibility of kernel choice is a valuable addition to the
BQ method when considering both different integrand types
as well as available training data.

In the disjoint polynomial experiment, we intentionally in-
clude GBQ-G with the RBF (the BQ equivalent) in table 2,
even though it was not high performing among the GBQ
methods, to demonstrate the potential performance enhance-
ment GBQ offers through kernel choice. We see GBQ-G-
RBF track closely with BQ, while GBQ-U with the Matérn
1/2 and GBQ-U-RBF in combination perform better at all n,
and frequently with implied worst-case error bounds well
below the BQ mean error.

5.3 5D EXPERIMENTS

We use a 5D problem from a seminal BQ paper (Ghahramani
and C. Rasmussen, 2003) to provide an initial evaluation of
GBQ in higher dimensions. We model the equation:

f(x) = 10 sin(πx1x2)+20(x3−0.5)+10x4+5x5, (27)

as well as a disjoint variant:

f∗(x) =

{
f(x) xi ≤ 0.5 ∀ i ,
4× f(x) xi > 0.5 ∀ i ,

(28)

where observations y = f(x) + ϵ and y∗ = f∗(x) + ϵ
have added noise ϵ ∼ N (0, 1

2 ). We perform integration
methods over the 5D unit hypercube using 100 Fourier fea-
tures. Shortened results are provided in tables 3 and 4 as the
average and standard deviation of integral approximation
percent error versus the analytical solution across 10 random
seeds. Results across all n are available in the supplement.

In the non-disjoint setting, GBQ methods are the highest
performing across all experiments with n > 50. Notably,
we choose to report MC as a baseline other than QMC,
as across both experiments in 5D we see a degradation of
QMC methods in favor of simple MC. In the disjoint setting,
MC is the highest performing at low N, with BQ and GBQ
methods performing best at mid to high n.

An interesting experimental result was the importance of
consistent methodology used for solving the kernel mean
µx(X) and producing the kernel matrix K, when applied
in the BQ posterior mean formulation (6). Anecdotally,
we found that using the combination of a kernel mean de-
rived from traditional BQ and a kernel that was estimated
through RFFs, and vice-versa, produced significantly unsta-
ble posterior integral mean estimates. These results suggest
the benefit of using the full-stack GBQ method with RFF
parametrization of both the kernel and measure distribution
in order to achieve the best experimental results.



Table 3: 5D Equation 27 Integration Results (% Error).

N MC BQ GBQ-U RBF GBQ-G RBF
10 9.67± 8.43 20.39± 3.85 23.77± 4.33 20.35± 3.99
25 9.32± 7.7 3.21± 1.87 6.02± 2.46 3.0± 1.97
50 5.57± 4.14 0.61± 0.34 2.48± 0.51 0.88± 0.42
100 3.81± 2.1 2.05± 0.35 0.89± 0.44 2.25± 0.4
400 2.74± 1.7 2.28± 0.2 0.33± 0.14 2.44± 0.2
700 2.39± 2.43 2.29± 0.12 0.16± 0.1 2.43± 0.16
1000 1.79± 1.09 2.22± 0.08 0.14± 0.09 2.37± 0.13

Table 4: 5D Equation 28 Integration Results (% Error).

N MC BQ GBQ-G RBF GBQ-G M3/2
10 23.94± 13.0 33.32± 3.0 33.26± 3.12 38.11± 3.78
25 16.84± 20.99 18.26± 0.86 17.96± 1.08 22.17± 1.22
50 7.58± 5.92 15.15± 0.59 14.87± 0.6 16.69± 0.7
100 5.89± 3.64 1.71± 0.83 2.06± 1.28 5.53± 4.55
400 3.98± 2.28 1.11± 0.42 1.7± 0.55 0.79± 0.64
700 3.93± 2.51 1.03± 0.34 1.31± 0.61 0.85± 0.44
1000 3.24± 2.15 0.38± 0.24 0.89± 0.46 0.53± 0.5

6 DISCUSSION

In this paper, we have introduced generalized Bayesian
quadrature, a method for performing Bayesian quadrature
using any shift-invariant kernel while maintaining posterior
tractability. We derive the upper bound on the error of this
approximation, while also demonstrating the practical bene-
fits on a selection of quadrature problems when compared
to traditional numerical integration methods and baseline
BQ.

More broadly, we note the wider applicability of the meth-
ods proposed in this paper. Our chief theoretical contribution
comes within the framework of Bayesian quadrature, but
in essence it is providing the analytical solution to a kernel
mean when the kernel and measure distribution are approxi-
mated by RFFs. However, kernel means have a wide array
of use cases as discussed in 2, and represent fertile ground
for future applications of our theoretical results.

Additionally, as part of the process of applying GBQ over
closed-bounds in multiple dimensions, raising necessity for
a truncation term composed of multivariate cumulative dis-
tribution functions, we devised a method to parametrize
distributions using RFFs and analytically integrate this es-
timate in order to produce a CDF. For many distributions
which offer no closed-form multivariate CDF, this method
might be of use.

Future research may look into these applications as well
as extending the flexibility and computational aspects of
the method. Potential extensions include learning the RFF
kernel through its spectral density, leveraging low-rank GP
posteriors for computational efficiency improvements in

kernel matrix inversion in the BQ mean, and composing
multiple levels of GBQ together into deeper architectures for
applications to highly nonlinear problems. The introduction
proposed in this paper has demonstrated both theoretical
and empirical promise that will provide a solid launching
point for these pursuits.
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