
AdapterBias: Parameter-efficient Token-dependent Representation Shift
for Adapters in NLP Tasks

Chin-Lun Fu1? Zih-Ching Chen2? Yun-Ru Lee3 Hung-yi Lee2
1Department of Electrical Engineering, National Taiwan University

2Graduate Institute of Communication Engineering, National Taiwan University
3Department of Computer Science and Information Engineering, National Taiwan University

{b06505011,r09942176,b06902107,hungyilee}@ntu.edu.tw

Abstract

Transformer-based pre-trained models with
millions of parameters require large storage.
Recent approaches tackle this shortcoming by
training adapters, but these approaches still re-
quire a relatively large number of parameters.
In this study, AdapterBias, a surprisingly sim-
ple yet effective adapter architecture, is pro-
posed. AdapterBias adds a token-dependent
shift to the hidden output of transformer layers
to adapt to downstream tasks with only a vec-
tor and a linear layer. Extensive experiments
are conducted to demonstrate the effectiveness
of AdapterBias. The experiments show that
our proposed method can dramatically reduce
the trainable parameters compared to the pre-
vious works with a minimal decrease in task
performances compared with fine-tuned pre-
trained models. We further find that Adapter-
Bias automatically learns to assign more sig-
nificant representation shifts to the tokens re-
lated to the task in consideration.1

1 Introduction

While large pre-trained language models (PLMs)
reached state-of-the-art results on natural language
processing (NLP) tasks, PLMs require updating
all parameters and storing the fully fine-tuned
model for each downstream task. These require-
ments have led to difficulties in real-world ap-
plications. Moreover, fine-tuning PLMs on low-
resource datasets is subject to instabilities.

To tackle these shortcomings, Adapters (Houlsby
et al., 2019), a more parameter-efficient alternative
training strategy for the transformer architecture
(Vaswani et al., 2017) have been proposed. In-
stead of full fine-tuning the whole model, Adapters
introduce extra tunable weights and freeze the orig-
inal parameters of PLM. Adapters demonstrated
comparable performance with fully fine-tuning the

1The source code is available at: https://github.
com/Allen0307/AdapterBias

Figure 1: Overview of the main concept of our work
compared to BitFit (Ben Zaken et al., 2021). Left: Bit-
Fit tends to add the same representation shift to differ-
ent tokens. Right: Our work applies different repre-
sentation shifts to tokens considering their importance
to the downstream task and their characteristics. The
shifts of the input words that are more task-related is
more significant than that of other tokens. For example,
in SST-2 (Socher et al., 2013), which is a semantic task,
the representation shifts of the semantic words, such as
"kind" and "worse", are larger than that of other words.

entire model. Although Adapters solve the prob-
lem of the PLM’s massive parameters, researchers
are curious about how many more parameters are
required to reach state-of-the-art performance on
standard NLP tasks. The results in Houlsby et al.
(2019) have shown that the performance on GLUE
benchmark (Wang et al., 2018) is almost the same
when removing the Adapters in the lower layers,
which indicates that not every adapter is useful. It
raises the question of whether adapters can be even
more parameter-efficient.

To develop practical and memory-efficient meth-
ods of utilizing PLMs, Diff pruning (Guo et al.,
2020) enables parameter-efficient transfer learn-
ing that scales well with new tasks. The approach
learns a task-specific “diff” vector that extends the
original pre-trained parameters and encourages the
sparsity of the vector through L0-norm regulariza-
tion. Another approach is BitFit (Ben Zaken et al.,

https://github.com/Allen0307/AdapterBias
https://github.com/Allen0307/AdapterBias


2021), which shows that with small-to-medium
training data, fine-tuning only a subset of the bias
terms of pre-trained BERT models (Devlin et al.,
2018) is competitive with fine-tuning the entire
model. The central concept of these approaches is
to add task-specific shifts to each output represen-
tation of the PLM layers so as to adapt to differ-
ent tasks. In the previous works, Ben Zaken et al.
(2021); Guo et al. (2020) both add the same shifts to
the output representation regardless of which token
is more relevant to the task. However, considering
some specific tokens might be more critical to a
particular task, the representation can better adapt
to the downstream task under a limited amount of
parameters if these shifts are based on the input
tokens.

Based on this concept, in this study, we add
token-dependent biases to the shifts by proposing
AdapterBias, which consists of a vector and a linear
layer (Lα). The vector represents the task-specific
shift, and Lα produces the weights for input tokens.
Thus, with the vector and the weights, AdapterBias
can add a token-dependent shift to the transformer
layer. Since the concept of BitFit (Ben Zaken et al.,
2021) is similar to AdapterBias by adding a shift to
the representation, we demonstrate the difference
between BitFit and AdapterBias in Figure 1. Bit-
Fit assigns identical shifts to all the tokens, while
AdapterBias adds more significant shifts to the rep-
resentations that are related to the task.

With fewer trainable parameters required,
AdapterBias achieves comparable performance on
the GLUE benchmark with Houlsby et al. (2019);
Pfeiffer et al. (2020a); Guo et al. (2020); Ben Zaken
et al. (2021); Hu et al. (2021). We further decrease
the parameters of AdapterBias in different ways, in-
cluding partial weight-sharing in AdapterBias and
adding L0-norm regularization. Finally, Adapter-
Bias has better interpretability due to its simplicity.
We use different tools, including word cloud and
PCA (Jolliffe, 2002), to visualize what Adapter-
Bias has learned, and we found that the proposed
approach automatically learns to assign larger rep-
resentation shifts to the task-related tokens.

2 Related Work

For NLP tasks, adapters are introduced for the
transformer architecture. A set of adapter param-
eters was added at each transformer layer, which
is mostly bottleneck architectures Houlsby et al.
(2019). By keeping the output dimension identical,

they cause no change to the structure or parameters
of the original model.

Adapters quickly gained popularity in NLP with
various applications. For multi-task learning (Caru-
ana, 1997; Zhang and Yang, 2017; Liu et al.,
2019b), a projected self-attention layer is proposed
by Stickland and Murray (2019), while Bapna et al.
(2019) proposed an additional layer norm suitable
for machine translation.

Besides the applications of adapters, researchers
are also dedicated to improving their performance.
Based on the architecture introduced by Houlsby
et al. (2019), AdapterFusion (Pfeiffer et al., 2020a)
leveraged knowledge from multiple tasks with a
new two-stage learning algorithm. Despite the re-
cent popularity of these methods, they still train a
relatively large number of training parameters.

Recently, studies start to focus on improving the
parameter-efficiency of adaptation to a new task.
Diff-pruning (Guo et al., 2020) achieves param-
eter efficiency by adding a sparse, task-specific
difference-vector to the fixed original parameters.
The vector is adaptively pruned during training
with a differentiable approximation to the L0-norm
penalty to encourage sparsity. Rücklé et al. (2020)
introduced AdapterDrop, which has been recently
integrated into AdapterHub (Pfeiffer et al., 2020b).
It removes adapters from lower transformer layers
during training and inference, which can dynam-
ically reduce the computational cost. Mahabadi
et al. (2021) proposed Compacter, which improved
the trade-off between performance and trainable
parameters per task with low-rank optimization.

On the other hand, without modifying the archi-
tecture of the PLM, BitFit (Ben Zaken et al., 2021)
shows that fine-tuning only the bias terms of a large
PLM is also competitive with fine-tuning the en-
tire model. Fine-tuning only the bias terms can
be considered as adding a task-specific shift to the
token representation. BitFit is most similar to our
work. While in BitFit, the shifts added to all the
representations are exactly the same for all input
tokens, in our work, the shifts are token-dependent.

3 Method

In this section, we present AdapterBias, an efficient
way to adapt large-scale PLMs. In order to better
adapt to different downstream tasks, the adapter
module should be token-specific. AdapterBias pro-
duces a suitable weight for the bias based on the
input token.



Figure 2: Model architectures comparison of Houlsby et al. (2019), BitFit (Ben Zaken et al., 2021), and the
proposed method AdapterBias. The orange blocks indicate the trainable parts, while the gray blocks indicate the
frozen parameters during the training stage. Left: Houlsby et al. (2019) add their Adapters after the feed-forward
layers, and their Adapter consists of two linear layers and an active function. Middle: BitFit tunes all biases from
the original transformer layers. Right: AdapterBias, consisting of a linear layer (Lα) and a vector (v), is added
after the second feed-forward layer only in each transformer layer.

Problem Formulation We consider the general
problem of fine-tuning PLMs, where the training
data D = (xi, yi)

N
n=1 is given. Assume that given

a PLM with parameters θ and AdapterBias with
parameters θ′. During the training stage, we freeze
θ and tune θ′ only.

3.1 AdapterBias
The architecture of AdapterBias is shown in the
right part of Figure 2. AdapterBias consists of two
modules: a vector (v) and a linear layer (Lα). v
is a task-specific shift added to the output of each
transformer layer. The tokens which are more re-
lated to the task should be assigned larger repre-
sentation shifts than other tokens. The linear layer
(Lα) produces a token-dependent weight vector
α = [α1, α2 . . . αm]

T , where αi is the weight of
the ith token’s representation shift. By applying the
token-specific weight to the task-specific represen-
tation shift (v), AdapterBias can focus on the tokens
that are more important to the task and is able to
adapt to different downstream tasks efficiently.

We define the output of AdapterBias as the bias
(B), which is the outer product of v and the learned
weights vector α. When the dimension of the to-
ken’s representation is r with m input tokens, the
function can be defined as follows:

B = v ⊗ αT =
(
α1v α2v . . . αmv

)
(1)

where v ∈ Rr, α ∈ Rm, and B ∈ Rr×m.
To further elaborate on the details of Adapter-

Bias, we give an example of how AdapterBias pro-
duces B and how B adds to the transformer layer. In
Figure 3, we assume that there are three represen-
tation outputs (r1, r2, r3) after the first layer nor-
malization. The dimension of r1, r2 and r3 is the
dimension of the 2nd feedforward layer, while the
input dimension of the linear layer (Lα) is the out-
put dimension of the first feed-forward layer with
the token representation (r1, r2, r3) as its inputs.
The linear layer (Lα) produces α, where α ∈ R3.
The blocks in different colors represent the differ-
ence of the weights (α1, α2, α3). Take BERT-base
for example, after performing outer product with
the weights vector α and the vector (v), the dimen-
sion of B becomes 768 × 3. For example, b1, the
first column of B, is the shift for the first token
representation.

3.2 Further improvement on
parameter-efficiency of AdapterBias

In this section, we experiment on two different
methods to make AdapterBias more parameter effi-
cient. One is partial weight-sharing of AdapterBias
among transformer layers, another is enforcing the
weights of the linear layer (Lα) to be sparse by
utilizing L0-norm penalty.



3.2.1 Cross-layer parameters sharing in
AdapterBias

Redundancies have been observed in the informa-
tion captured by adapters, with adapters in lower
layers being less important (Houlsby et al., 2019).
In addition, sharing parameters of the Adapter
across layers leads to a comparatively small drop
in performance in some tasks. In light of the above
information, we further reduce the number of pa-
rameters required for each task by partially sharing
the weights of the adapters across all transformer
layers. The experimental results are discussed at
Section 4.6.1.

3.2.2 L0 regularization in AdapterBias
Sparsity has been utilized in various parameter-
efficient methods. For applications in NLP tasks,
Diff-pruning (Guo et al., 2020) learns a sparse vec-
tor added to the whole PLM with L0-norm penalty.
Inspired by their work, we further apply L0-norm
regularization to Lα in the AdapterBias module,
aiming to encourage the sparsity of Lα. We choose
to drop Lα because it contributes most of the pa-
rameters in AdapterBias. Encouraging its sparsity
can further increase the parameter efficiency. Note
that we specifically apply L0 regularization in Sec-
tion 4.6.2.

In AdapterBias, we add L0-norm penalty to the
linear layer (Lα). The optimization problem can
be expressed as,

min
θ′

L(D; θ, θ′) + λ‖θ′Lα
‖0, (2)

where L(D; ·) represents the original loss with
training data D. λ is the hyperparameter for L0-
norm penalty. Note that θ′ represents trainable
parameters and θ′Lα

represents the parameters of
Lα in AdapterBias. Following the work of Diff-
pruning, we utilize a relaxed mask vector (Louizos
et al., 2017) with a stretched Hard-Concrete distri-
bution (Jang et al., 2016; Maddison et al., 2016) to
encourage L0 sparsity.

4 Experiments

In this section, we evaluate the effectiveness of our
proposed adapter module in NLP training tasks,
and provide the analysis of what AdapterBias has
learned in different tasks.

4.1 Experimental settings
We base our experiments on HuggingFace PyTorch
implementation (Wolf et al., 2019) of BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019c)

Figure 3: The detailed architecture of how AdapterBias
produces the bias (B) and how B is added to the output
of transformer layers.

models. The learning rate is set in the range [10−4,
10−3], with AdamW (Loshchilov and Hutter, 2017)
as the optimizer. GLUE benchmark (Wang et al.,
2018) and SQuAD v1.0 (Rajpurkar et al., 2016) are
the training data in our settings.

The training details are shown in Appendix A.3.
Note that the second layer normalization in each
transformer layer is also tuned during the training
stage, corresponding to the orange component in
the right part of Figure 2. We experiment with
3 random seeds and choose the seed with the best
performance on the validation set to evaluate on the
GLUE server. We report the test metrics provided
on the submission website2.

4.2 Results on GLUE

In this section, we compare AdapterBias to other
parameter-efficient methods, including Adapters
(Houlsby et al., 2019), Diff-pruning (Guo et al.,
2020), BitFit (Ben Zaken et al., 2021), and LoRA
(Hu et al., 2021). In Table 1, we report the test
scores on the GLUE benchmark and the required
new parameters per task. Here we use BERT-
large as the PLM. AdapterBias reaches 81.2 av-
erage score in GLUE benchmark, with the small-
est amount of parameters (0.17M) added per task.
AdapterBias shows competitive performance as its

2https://gluebenchmark.com/



Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BERTLARGE 340M 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2

Adapters (Houlsby et al., 2019) 7.14M 56.9 94.2 89.6 91.4 68.8 87.3 85.3 84.6 71.8 81.1
Diff-Pruning (Guo et al., 2020) 1.7M 61.1 94.1 89.7 93.3 70.6 86.0 86.4 86.0 71.1 82.0
BitFit (Ben Zaken et al., 2021) 0.27M 59.7 94.1 88.9 92.0 72.0 85.5 84.5 84.8 70.5 81.3

LoRA (Hu et al., 2021) 0.39M 60.6 94.0 87.9 92.2 70.3 85.6 84.2 84.0 70.0 81.0
AdapterBias 0.17M 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2

Table 1: Performance of all methods on the GLUE testing sets scored by the GLUE evaluation server. For each
method, we report the new adding parameters per task. For QQP, we report the F1 score. For STS-B (Cer et al.,
2017), we report Spearman correlation coefficients. For CoLA (Warstadt et al., 2019), we report Matthews correla-
tion. For all other tasks, we report accuracy. Bold fonts indicate the least trainable parameter per task. The first row
(BERTLARGE) represents fine-tuning the whole BERT-large model without adding new parameters. The results of
baselines including (Houlsby et al., 2019; Guo et al., 2020; Ben Zaken et al., 2021) are their reported performance
and Pfeiffer et al. (2020a); Hu et al. (2021) performance is reproduced on our setting. Due to instability during
training, we restart experiments with 3 random seeds and report the best.

Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 110M 52.1 93.5 88.9 90.5 66.4 85.8 84.6 83.4 71.2 79.6
BB BitFit 0.10M 47.2 92.4 87.4 89.7 65.5 87.6 80.8 80.9 67.8 77.7
BB AdapterBias 0.06M 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0
BL Full-FT 340M 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2
BL BitFit 0.27M 62.0 93.1 86.8 89.8 66.6 87.2 84.1 84.3 67.2 80.1
BL AdapterBias 0.17M 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2

RoB Full-FT 125M 61.3 94.7 90.4 92.0 74.4 87.5 87.4 86.8 71.9 82.9
RoB BitFit 0.10M 62.7 94.8 89.7 91.3 73.6 88.5 85.3 84.9 68.1 82.1
RoB AdapterBias 0.06M 61.9 94.5 90.2 91.1 74.1 88.7 85.3 85.1 70.5 82.4
RoL Full-FT 355M 63.3 96.7 92.3 95.4 84.5 92.2 90.8 90.2 74.3 86.6
RoL BitFit 0.26M 64.7 95.8 91.5 94.2 80.9 90.6 89 88.9 72.0 85.3
RoL AdapterBias 0.17M 63.9 96.4 90.4 94.7 83.6 91.3 89.8 89.4 72.3 85.8

Table 2: Performance of AdapterBias adding in different PLMs. Here we experiment with four models : BERT-
base (BB), BERT-large (BL), RoBERTa-base (RoB), and RoBERTa-large (RoL). The settings are the same as in
Table 1. The Full-FT corresponds to fine-tuning the whole PLM without adding adapters.

parameters are 40× less than the works of Houlsby
et al. (2019). Although Diff-pruning (Guo et al.,
2020) achieves the best average score among all
parameter-efficient methods, their work trains an
additional vector whose parameter count is equiv-
alent to the parameters of the whole PLM. Thus,
Diff-pruning requires 340M trainable parameters
of BERT-large during the training stage, while
AdapterBias only trains 0.17M parameters. Fur-
thermore, AdapterBias achieves comparable per-
formance with BitFit and LoRA with fewer param-
eters needed per task. This shows that AdapterBias
is a worthwhile targeted fine-tuning method.

4.3 Different base models

To analyze the generalization ability of this ap-
proach to different PLMs on different models
of AdapterBias, as shown in Table 2, we ap-
ply AdapterBias in different transformer-based
PLMs, including BERT-base (BB), BERT-large
(BL), RoBERTa-base (RoB), and RoBERTa-large

(RoL), on the GLUE benchmark. All results are
scored by the GLUE evaluation server. Compared
with BitFit, In Table 2, not only can AdapterBias
perform well on BERT but also achieve competitive
performance on larger PLMs such as RoBERTa.

4.4 Size of training data

In the previous experimental results, we observe
that AdapterBias tends to have higher performance
on tasks with a smaller amount of data (i.e. CoLA,
SST-2, and RTE). To further validate this obser-
vation, we follow the work of BitFit (Ben Zaken
et al., 2021) by training AdapterBias on subsets
of SQuAD v1.0 (Rajpurkar et al., 2016) of in-
creasing size. The experiments are conducted with
BERT-base. The results on the validation set of
the SQuAD dataset are listed in Figure 4, which
shows the tendency of AdapterBias outperform-
ing full fine-tuning when the size of the training
dataset is smaller. However, with more training
data available, the trend is reversed. The results



Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
w/o Lα 27.6K 45.6 91.5 87.4 88.3 65.6 81.0 77.9 78.4 65.7 75.7

AdapterBias 64.5K 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0

Table 3: Evaluating the importance of the linear layer (Lα) in AdapterBias. The settings are the same as in Table
1. The backbone model is BERT-base. w/o Lα means that there is only a vector (v) in AdapterBias.

Figure 4: Comparison of Finetune, BitFit (Ben Za-
ken et al., 2021), and AdapterBias with BERT-base on
SQuAD validation set. The x-axis represents the to-
tal number of training examples while the y-axis repre-
sents the exact match score.

show that AdapterBias has the ability to outperform
fine-tuning the whole PLM with small-to-medium
data size, similarly to BitFit.

4.5 Investigation on the effectiveness of token
dependent representation shift

Different from BitFit (Ben Zaken et al., 2021),
where the bias terms in all transformer layers are
tuned, we claim that the bias added to the repre-
sentation should be token-dependent, and proposed
AdapterBias based on this concept. We conduct
ablation studies to verify this claim. In this exper-
iment, the linear layer (Lα) in AdapterBias that
produces the token-dependent weights vector (α)
is removed; that is, only the v is trained. All shifts
added to the representation outputs are identical
within the same transformer layer. The experiments
are conducted with BERT-base model. We report
the test scores on the GLUE benchmark in Table 3.
The performance of AdapterBias without the lin-
ear layer (Lα) dramatically decreases. Without Lα,
it is hard for the vector (v) to adapt to different
downstream tasks. This result demonstrates the im-
portance of Lα. In other words, assigning different
shifts to different token representations improves

the performance of the method.

4.6 Improving the parameter efficiency of
AdapterBias

We further apply two additional methods to
AdapterBias to enhance its parameter efficiency.
Experiments are conducted to examine whether
AdapterBias can be more parameter-efficient by
sharing its components across all layers. Moreover,
we experiment on adding L0-norm regularization
during the training stage to encourage the sparsity
of AdapterBias.

4.6.1 Sharing components in AdapterBias

In this experiment, we conduct an ablation study
of partial weight-sharing in the AdapterBias mod-
ule. In Table 4, we share components of Adapter-
Bias among different transformer layers. Share
v represents sharing v across all transformer lay-
ers, while Share Lα means sharing the linear layer
(Lα). Share v+Lα denotes sharing one Adapter-
Bias across all transformer layers. As can be seen
in Table 4, the performance of Share Lα stands out
among other partial weight-sharing methods, while
Share v leads to a poor performance.

From the experiments above, we conclude that
the linear layer (Lα) captures general task informa-
tion by learning the weights of the bias for different
tokens. Thus, sharing Lα across all layers results in
better performance compared to other components.
The vector module (v) in AdapterBias aims to learn
local information in each transformer layer. If v
among different transformer layers are shared, the
performance drops dramatically. This might be due
to a failure of v to learn general information which
can be adapted to each individual transformer layer.

4.6.2 L0-norm regularization in AdapterBias

We observed that many of the trained parameters
in Lα have values that are extremely close to zero
after tuning on downstream tasks, which might
cause redundancy of the parameters. To further
encourage the sparsity of AdapterBias, we add L0-
norm regularization to Lα during the training stage.



Method Params CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
Share v 56.1K 50.1 90.8 87.1 87.6 65.0 84.9 77.5 77.9 65.1 76.2

Share Lα 30.7K 50.4 91.9 88.1 89.1 65.4 85.2 79.8 79.9 66.6 77.4
Share v+Lα 22.3K 46.8 90.9 87.3 87.8 64.8 85.7 77.7 78.0 64.9 76.0

AdapterBias 64.5K 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0

Table 4: Analysis of more parameter-efficiency methods in AdapterBias. The settings are the same as in Table 1.
The backbone model is BERT-base. Share v, Share Lα, and Share v+Lα means that we share vector, linear layer,
and both of them, respectively.

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP Avg
BB Full-FT 52.1 93.5 88.9 90.5 66.4 85.8 84.6 83.4 71.2 79.6
BB AdapterBias 51.6 93.1 87.5 89.4 66.1 84.6 80.9 80.5 67.9 78.0
BB AdapterBias (L0) 53.7 92.5 87.5 90.3 68.3 85.7 81.7 81.5 69.8 79.0
BL Full-FT 60.5 94.9 89.3 92.7 70.1 87.6 86.7 85.9 72.1 82.2
BL AdapterBias 60.0 94.4 88.2 91.2 70.5 87.5 84.3 83.9 70.5 81.2
BL AdapterBias (L0) 58.0 93.7 88.2 91.5 69.2 87.2 84.2 84.1 71.2 80.8

Table 5: Performance of our AdapterBias with L0-norm regularization. Here we experiment with two models:
BERT-base (BB), and BERT-large (BL). The settings are the same as in Table 1. The Full-FT represents fine-
tuning the whole PLM without adding adapters.

In Table 5, we use BERT-base (BB) and BERT-
large (BL) as the PLMs. We compare the perfor-
mance of fine-tuning, the original AdapterBias, and
the one trained with L0-norm regularization. The
experiment shows that adding L0-norm regulariza-
tion during the training step improves the perfor-
mance on 7 out of 9 tasks in BERT-base models.
However, the performance did not improve when
applied to BERT-large models. As for the param-
eter efficiency of applying L0-norm penalty, the
linear layer (Lα) with L0-norm penalty saves about
17% parameter on average compared to the original
AdapterBias. The details of the reduced parameters
of each task are shown in Appendix A.3.

4.7 What AdapterBias learns

AdapterBias has good interpretability due to its
simplicity. Compared to the similar work Bit-
Fit (Ben Zaken et al., 2021), where the shifts are
identical for all tokens, AdapterBias adds token-
dependent shifts to the output representation. By
observing these token-dependent shifts, we analyze
what AdapterBias learns when adapting to down-
stream tasks.

4.7.1 Average representation shifting in
transformer layers

In light of the works of Liu et al. (2019a); Ten-
ney et al. (2019); Kovaleva et al. (2019), which
show that different information is being encoded
by different transformer layers of PLMs. We as-
sume that AdapterBias provides different repre-

Figure 5: We analyze the average absolute value of
weights vector α, the output of the linear layer (Lα),
in each layer for different tasks. The y-axis represents
the index of transformer layers, ordered from earlier to
later (i.e. the embedding layer is shown at the top). The
x-axis represents the average absolute value of α.

Figure 6: Word cloud of CoLA, a corpus of linguistic
acceptability. We utilize BERT-base model as the PLM
and words come from validation data. The weights of
the words are the summation of their weights produced
by the linear layer (Lα) in twelve transformer layers.



sentation shifts to the transformer layers through
task-specific fine-tuning.

In AdapterBias, the linear layer (Lα) produces a
weights vector α for representation shifts, therefore,
the average absolute value of vector α can give us a
look at the shifting amount in the transformer layers
when adapting to downstream tasks. In Figure 5,
the layers are ordered from lower to upper. From
the experimental result, we find that the weight
in each layer is considerably different in different
tasks in general.

CoLA (Warstadt et al., 2019) is a syntactic task
that consists of English acceptability judgments
in the GLUE benchmark. As shown in Figure 5,
its average shift at the ninth layer is the highest
among all layers, which is quite different from the
others. We speculate that the ninth layer has the
ability to extract the syntactic information, leading
AdapterBias to add the largest shift in this layer.
Our experiment has a similar observation with the
work of Jawahar et al. (2019). They observe on a
syntactic task with BShift (Conneau et al., 2018)
that the ninth layer of BERT embeds a rich hierar-
chy of syntactic information. (Jawahar et al., 2019)

Moreover, we observe similar distributions be-
tween specific tasks. For instance, RTE (Giampic-
colo et al., 2007; Bentivogli et al., 2009) and
MNLI (Williams et al., 2017), where both recog-
nize textual entailment, have higher values in the
upper layers than the lower ones.

Based on these findings, we find that Adapter-
Bias assigns suitable representation shifts in dif-
ferent tasks. For tasks with similar objectives,
AdapterBias tends to add similar representation
shifts.

4.7.2 Which kind of word does Lα focus on
Since αi represents the weight of the representation
shift for ith token in a transformer layer, we can
observe the significance of ith token from the sum-
mation of αi in all the transformer layers. Special
tokens, including [CLS], [SEP], and [PAD], are not
included for analysis. We use the validation sets
of CoLA and SST-2, and word cloud is used for
visualizations.

In Figure 6, we visualize all words in the valida-
tion data of CoLA. The result shows that Adapter-
Bias focuses more on reflexive pronouns, such as
yourself, himself, and myself. This is because there
are many incorrect sentences with misused reflex-
ive pronouns, such as "He washed yourself."

In Figure 7, we visualize all words in the valida-

Figure 7: Word cloud of SST-2, a corpus of movie re-
views categorized in two sentimental classes (i.e. posi-
tive, negative). The visualization approach is the same
as in Figure 6.

tion data of SST-2. The result shows that Adapter-
Bias focuses more on adjectives, such as "bad",
"awful", and "worst". SST-2 is a binary sentiment
analysis dataset, which classifies movie reviews
into positive and negative classes. AdapterBias
learns that adjectives often constitute a crucial fac-
tor in sentiment analysis during tuning, and adds
larger shifts to these adjective tokens.

5 Conclusion

In this study, we present AdapterBias. By adding
token-dependent representation shifts to the PLM,
AdapterBias shows competitive results even though
it uses far fewer parameters than the existing meth-
ods. Through extensive experiments, not only
does AdapterBias reach competitive results on the
GLUE benchmark, but also obtain good perfor-
mance on small-to-medium datasets. In addition,
we demonstrate the robustness of AdapterBias
to different PLMs. Finally, we provide analysis
on what AdapterBias learns by comparing α, the
weights of representation shift for different tokens,
finding AdapterBias has the ability to identify task-
specific information. Our study is different from
the previous architectures of adapters by proposing
a simple adapter that can produce suitable repre-
sentation shifts for different tokens.

References
Ankur Bapna, Naveen Arivazhagan, and Orhan Firat.

2019. Simple, scalable adaptation for neural ma-
chine translation. arXiv preprint arXiv:1909.08478.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv e-prints, pages arXiv–2106.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo



Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loïc Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. arXiv preprint
arXiv:1805.01070.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B Dolan. 2007. The third pascal recog-
nizing textual entailment challenge. In Proceedings
of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9.

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning,
pages 2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categor-
ical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah.
2019. What does bert learn about the structure of
language? In ACL 2019-57th Annual Meeting of the
Association for Computational Linguistics.

Ian T Jolliffe. 2002. Springer series in statistics. Prin-
cipal component analysis, 29.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. arXiv preprint arXiv:1908.08593.

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. arXiv preprint arXiv:1903.08855.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jian-
feng Gao. 2019b. Multi-task deep neural networks
for natural language understanding. arXiv preprint
arXiv:1901.11504.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019c.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Christos Louizos, Max Welling, and Diederik P
Kingma. 2017. Learning sparse neural net-
works through l_0 regularization. arXiv preprint
arXiv:1712.01312.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh.
2016. The concrete distribution: A continuous relax-
ation of discrete random variables. arXiv preprint
arXiv:1611.00712.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-
rank hypercomplex adapter layers. arXiv preprint
arXiv:2106.04647.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2020a.
Adapterfusion: Non-destructive task composi-
tion for transfer learning. arXiv preprint
arXiv:2005.00247.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aish-
warya Kamath, Ivan Vulić, Sebastian Ruder,
Kyunghyun Cho, and Iryna Gurevych. 2020b.
Adapterhub: A framework for adapting transform-
ers. arXiv preprint arXiv:2007.07779.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Andreas Rücklé, Gregor Geigle, Max Glockner,
Tilman Beck, Jonas Pfeiffer, Nils Reimers, and
Iryna Gurevych. 2020. Adapterdrop: On the effi-
ciency of adapters in transformers. arXiv preprint
arXiv:2010.11918.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Asa Cooper Stickland and Iain Murray. 2019. Bert
and pals: Projected attention layers for efficient
adaptation in multi-task learning. In International
Conference on Machine Learning, pages 5986–5995.
PMLR.



Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Yu Zhang and Qiang Yang. 2017. A survey on multi-
task learning. arXiv preprint arXiv:1707.08114.



A Appendix

A.1 Training Details
We train our model on Pytorch. The training details
are shown in Table A. In addition, the bottleneck
of Adapters (Houlsby et al., 2019) and is 32.

A.2 L0-norm regularization in AdapterBias
In Table B, we report the remaining parameters
of utilizing L0-norm regularization compared with
the original AdapterBias. BERT-base (BB) and
BERT-large (BL) are used as PLMs.

A.3 The direction of representation shifts in
different tasks

Different from BitFit (Ben Zaken et al., 2021),
where all the representation shifts are identical
within one task, AdapterBias produces different
weights for the shift based on each token. In this
section, we compare the transformed tokens in
AdapterBias and BitFit. We utilize PCA (Jolliffe,
2002) to reduce the dimension of the vectors. In
Figure A, we input five sentences from the evalua-
tion set of SST-2. We experiment on the last trans-
former layer since it has the most obvious shifts
compared to the previous layers. ’0’ with lighter
color indicates the representation before shifting,
which is the output of the first layer normalization.
’1’ with darker color is the shifted representation,
which is the output of the second layer normaliza-
tion. The color red represents positive sentences,
and blue are the negative ones.

The result shows that BitFit shifts all tokens to-
wards the same direction regardless of the ground-
truth label. On the other hand, AdapterBias dis-
cerns the label of the sentences and thus shifts the
tokens of different sentences toward different direc-
tions.

Figure A: We utilize PCA (Jolliffe, 2002) to visualize
the shifting difference between Bitfit (Ben Zaken et al.,
2021) and AdapterBias on SST-2 validation set. ’0’
with light color means the embedding before shifting.
’1’ with dark color means the embedding after shifting.
The color red represents positive sentences, and blue
represents negative sentences.



CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP
Max_len 128 128 128 512 350 512 128 128 350
Batchsize 32 32 32 16 32 16 32 32 32

Learning rate 10−3 10−3 10−3 10−4 4× 10−4 10−3 4× 10−4 4× 10−4 4× 10−4

Epoch 20 10 10 10 20 20 10 10 10

Table A: Our training details of GLUE benchmark(Wang et al., 2018).

Method CoLA SST-2 MRPC QNLI RTE STS-B MNLI-m MNLI-mm QQP
BB AdapterBias (L0) 26.2% 82.0% 83.1% 82.3% 81.0% 83.0% 83.2% 83.3% 83.4%
BL AdapterBias (L0) 83.2% 83.0% 83.3% 83.7% 83.2% 83.2% 83.4% 83.7% 83.6%

Table B: Percentage of remaining parameters compared with the original parameters of the linear layer (Lα). Here
we experiment with two models: BERT-base (BB) and BERT-large (BL). The setting follows by Table 1.



Figure B: Word cloud of SST-2 in layer 0 to layer 6. Figure C: Word cloud of SST-2 in layer 7 to layer 12.



Figure D: Word cloud of CoLA in layer 0 to layer 6. Figure E: Word cloud of CoLA in layer 7 to layer 12.


