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Abstract
Objective: Diseases such as age-relatedmacular degeneration and retinitis pigmentosa cause the
degradation of the photoreceptor layer. One approach to restore vision is to electrically stimulate the
surviving retinal ganglion cells with amicroelectrode array such as epiretinal implants. Epiretinal
implants are known to generate visible anisotropic shapes elongated along the axon fascicles of
neighboring retinal ganglion cells. Recent work has demonstrated that to obtain isotropic pixel-like
shapes, it is possible tomap axon fascicles and avoid stimulating themby inactivating electrodes or
lowering stimulation current levels. Avoiding axon fascicule stimulation aims to remove brushstroke-
like shapes in favor of amore reduced set of pixel-like shapes. Approach: In this study, we propose the
use of isotropic and anisotropic shapes to render intelligible images on the retina of a virtual patient in
a reinforcement learning environment named rlretina. The environment formalizes the task as using
brushstrokes in a stroke-based rendering task.Main Results:We train a deep reinforcement learning
agent that learns to assemble isotropic and anisotropic shapes to form an image.We investigate which
error-based or perception-basedmetrics are adequate to reward the agent. The agent is trained in a
model-based data generation fashion using the psychophysically validated axonmapmodel to render
images as perceived by different virtual patients.We show that the agent can generatemore intelligible
images compared to the naivemethod in different virtual patients. Significance: This work shares a
newway to address epiretinal stimulation that constitutes afirst step towards improving visual acuity
in artificially-restored vision using anisotropic phosphenes.

1. Introduction

Vision loss has a serious impact on quality of life.
Epidemiological studies reveal that vision loss also has
an important global burden of disease on society [1].
There are effective treatments for common eye
diseases such as myopia, glaucoma, and cataracts.
However, treatments aimed at prevalent diseases
affecting the retina, such as age-related macular
degeneration and retinitis pigmentosa, can slow the
disease at best. Age-related macular degeneration
accounts for 15.85% of incurable vision loss cases [1].
Therefore, it is the most prevalent untreatable disease
that causes vision loss in developed countries [1].
Retinitis pigmentosa is a rare disease with a worldwide
prevalence of 1/4000 that causes vision impairment to
complete loss during adolescence and young adult life

[2]. The early onset of retinitis pigmentosa increases
the detrimental burden of the disease and remains one
of the leading causes of blindness in the 20-year-old to
64-year-old age group [3, 4].

Age-related macular degeneration and retinitis
pigmentosa cause degeneration of the retina’s photo-
receptor layer. Therefore, patients gradually lose their
sensitivity to light, leaving subsequent layers of neu-
rons with an aberrant signal. One treatment is to elec-
trically stimulate the surviving neurons to artificially
restore a certain visual acuity. This can be performed
with the use of microelectrode arrays (MEA) that can
be implanted to target different layers of the retina [5].
These devices were developed based on the observa-
tion that focal electrical stimulation of the retina gen-
erates a dot-shaped visual perception called
phosphene [6]. Phosphenes are spatially preserved
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along the visual pathway as a result of the retinotopic
organization of the visual system. An ensemble of
phosphenes caused by retinal stimulation is referred to
as a percept. The main focus of the work presented in
this article is to train a reinforcement learning (RL)
agent that selects phosphenes to generate a percept
similar to a digital image in different virtual patients,
thus restoring visual acuity. Before presenting the pro-
posed approach, we go through the train of thought
that led to our attempt to leverage anisotropic phos-
phenes instead ofmitigating them.

1.1. Stimulation sites
There are two MEA implantation sites, shown in
figure 1, which are often found in the literature [5, 7]:
the subretinal and epiretinal implantation sites. In
addition to the aforementioned sites, suprachoroidal,
lateral geniculate nucleus, and visual cortex implants
are also potential stimulation sites that target different
parts of the visual pathway [8]. The epiretinal implant-
ation site stimulates retinal ganglion cells (RGC), while
the subretinal implantation site stimulates bipolar
cells. Subretinal implants hold great promise in terms
of visual acuity as a result of the lower-level signal
encoded by bipolar neurons compared to subsequent
layers [9]. However, the insertion point makes its
deployment more complex. In fact, to be installed, the
subretinal implant must be surgically implanted
between the pigment epithelium and the outer retina.
Therefore, its use is limited to patients with intact

inner and middle layers of the retina [10]. In addition,
data and power are generally transmitted through
wires and an induction coil to the subretinal implant.
Epiretinal implants can be placed on the retinal
surface, allowing the use of optical power and data
transmission [7, 11]. In this study, we focus mainly on
epiretinal implant stimulation due to its potential to
helpmore patients and be less invasive.

1.2. Psychophysical study of anisotropic
phosphenes in epiretinal stimulation
Recent experiments with patients using an epiretinal
implant revealed that phosphenes are not always dot-
shaped [12]. In fact, although the epiretinal implant
aims to stimulate the RGCs, it also stimulates the
peripheral axons of the RGCs that are sufficiently close
to the stimulating electrode. The stimulation of
peripheral RGC axons causes the patient’s visual
system to render irregular shapes as shown in figure 2
[12, 13]. Axons are organized in fascicles, also known
as axon bundles, which converge to the blind spot to
form the optic nerve. Epiretinal electrical stimulation,
therefore, generates an elongated shape parallel to the
axon fascicles [12] as shown in figure 2. The phos-
phene is elongated along the axons, causing a perfect
isotropic phosphene to become anisotropic.

1.3. Naive stimulation algorithm
The Naive Stimulation Algorithm (NSA) for the
epiretinal implant described in [15] is tested in patients

Figure 1.Epiretinal and subretinal implantation sites are illustrated in the anatomical context of the retina.

Figure 2.Comparison between anisotropic and isotropic phosphenes shapes. (Left) Subject 2 drawings from [12] show anisotropic
phosphenes perceived during single-electrode stimulationwith anArgus II implant. (Center)Axonmapmodel predicts the
anisotropic shaped caused by extracellular axon stimulation. (Right) Scoreboardmodel does not include extracellular axon
stimulation resulting in ideal isotropic phosphenes. Phosphenes and images are generated using the pulse2percept Pythonmodule
[14].
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with the Argus II epiretinal implant. Many improve-
ments to the original algorithms that use more
advanced image processing methods such as Differ-
ence of Gaussian [16], constrained optimization [17],
and deep learning [18, 19] obtained better results in
simulation [20]. The NSA algorithm for epiretinal
implant most tested in patients is transforming a
digital image into electrical stimulation using a down-
scaling operation of a camera image that matches the
intensity of a pixel to the amplitude or frequency. This
results in a pixelated image having the dimension of
the microelectrode array. Electrical stimulations are
proportional to the intensity of the pixels. These
electrical stimulations are delivered in a temporal
sequence of single-electrode stimulations in an exper-
imental setup preventing eye movement. Simulta-
neous stimulation with multiple electrodes causes
more irregular phosphene shapes [21]. Therefore, the
NSA stimulation algorithm does not consider the fact
that RGC axons are stimulated, leading to anisotropic
phosphene [15].

1.4.Mitigating axon bundle stimulation
As indicated above, axon bundle stimulation produces
anisotropic phosphenes. Previous work attempted to
minimize the impact of anisotropic shapes on the
percept quality. One such approach consists of mod-
ifying the electrode configuration to attenuate this
impact [22, 23]. Other approaches adopt different
stimulation techniques, such as RGC mapping and
current steering, creating virtual electrodes between
electrodes, resulting in more consistent isotropic
phosphenes with a healthy retina in situ [24–31]. These
approaches offer better control over RGC spiking and
collateral axon stimulation. In addition, both tend to
limit the number of usable electrodes and the range of
possible stimulation intensity, thus reducing the
diversity of shapes that can be generated by epiretinal
implants [23, 25].

1.5. Leveraging axons bundle stimulationwith
stroke-based rendering
Data acquired from patients with epiretinal implants
and anatomical studies allow the development of a
psychophysically validatedmodel of end-to-end visual
processing in the degenerated retina [12]. These
models help to visualize the perceived anisotropic
shapes created by stimulation of axon bundles in an
epiretinal stimulation setting, as shown infigure 2.

Instead of designing a retinal stimulation algo-
rithm thatmitigates anisotropic shapes, it is possible to
use the available shapes produced by all possible sti-
mulations to form the desired image to be perceived.
Choosing anisotropic shapes to generate an image is
referred to in the computer vision community as
stroke-based rendering (SBR). More precisely, SBR is a
non-photorealistic method to create imagery from
discrete elements called strokes, such as paint strokes

or ripples [32]. An analogy that illustrates the problem
is that of the painter reproducing a photograph on a
canvas. In this paper, the phosphene is considered
equivalent to one brushstroke, and the retina is the
canvas.

1.6. Reinforcement learning in stroke-based
rendering
Recent successful SBR algorithms such as SPIRAL
[33], StrokeNet [34], Doodle-SDQ [35], Sketch-RNN
[36] and other model-based approaches [37] showed
high-quality picture reproduction. All successful
attempts mentioned the use of deep reinforcement
learning (DRL) paradigm for paint stroke decomposi-
tion and/or Generative Adversarial Networks (GAN)
for quality assessment. Thinking of epiretinal stimula-
tion as an SBR problem allows us to train a deep
reinforcement learning agent to use the full diversity of
shapes produced by all electrodes. This new perspec-
tive offers the use of anisotropic shapes rather than
mitigating them as in the aforementioned approaches
in section 1.4.

1.7. Reinforcement learning and retinal stimulation
Previous work using reinforcement learning (RL) to
adjust epiretinal stimulation parameters used the
center-surround RGC receptive field model as a
premise to simulate the retina [38, 39]. The center-
surround RGC receptive field is the accepted model
for RGC neural coding. It consists of a circular area of
the retina called the center and the surrounding region
that respond oppositely to light exposure. However, it
does not consider the stimulation of axon bundles in
the context of epiretinal stimulation. Some more
recent work [40] using DRL is promising but does not
include anisotropic phosphene in the percept genera-
tion. Nonetheless, as the author notes in [38], RL is a
very appealing framework to use patient’s feedback as
a learning signal to automate adaptation to different
patients in vivo [41].

For each patient, the best ensemble of phosphenes
that render a particular target image on the retina is
not known. The current virtual patient models men-
tioned in figure 2 can only generate a percept from
electrode stimulation. One way to find the best elec-
trode stimulation combination from a target image is
to evaluate the perception of the predicted percept
compared to the target image. A brute-force approach
could be to try every combination of electrodes, gen-
erate the percept, and then calculate the similarity
between the percept and the target image. This
approach becomes more tedious as the state-space, or
in this case, the number of electrodes increases in
complexity [42]. Therefore, it is difficult to generate a
complete dataset to leverage supervised learning
methods. RL allows for searching the state-space of
electrode combinations more efficiently [42]. A DRL
agent that interacts with an environment receives
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direct feedback through a reward as it approaches a
solution. The agent learns to associate a particular state
of the environment with an action it can take. RL is
therefore a suitable paradigm for epiretinal stimula-
tion because there exists a model of epiretinal stimula-
tion with which an agent can interact, but there is no
optimal solution to transform a target image into an
electrode combination.

1.8. Proposed approach
This work bridges the gap between the previous
attempt [38] to find optimal stimulation parameters
with an epiretinal implant using RL and the latest
anatomical knowledge and lessons learned from trials
of human epiretinal implants [12]. It is the only
attempt to improve visual acuity for the implanted
patient by leveraging anisotropic phosphene in a SBR
problem.

More specifically, we want to investigate whether a
DRL agent can learn to generate a sequence of single-
electrode stimulation from a target image, thus
increasing visual acuity for different virtual patients
with an epiretinal implant. This paper proposes the
following contributions:

• We formalize the transformation of the original
image into a stimulation pattern as an SBR problem
implemented in a new reinforcement learning
environment named rlretina available at https://
github.com/NECOTIS/rlretina.git.

• We compare a pixel-based distance and distance
between probability distributions as a proxy of a
perceptual metric in the reward design of the new
environment.

• Webuild amodel-based DRL agent that can explore
the available anisotropic phosphene space to
increase visual acuity in virtual patients with differ-
ent epiretinal implant settings.

• Finally, we investigate perceptualmetrics to circum-
vent pixel-based metric limitations to better

compare the percepts resulting from different
algorithms.

In addition, we demonstrate pixel-based error
limitations as a reward in this perceptual task. We
compare the proposed DRL agent with the NSA sti-
mulation algorithm using themean structural similar-
ity index measure (MSSIM) as an evaluation metric
presented in section 2.2.2. We show that the proposed
agent better reproduces the original images in the vir-
tual patient’s percepts than the NSA stimulation
methods. It also performs better with different virtual
patient implant settings than the NSA stimulation
algorithm.

1.8.1. Using amodel-based approach
Amodel-free RL approach to epiretinal stimulation in
an in vivo system is presented in figure 3. The state st
contains only the digital image I. It is the reward rt that
indirectly provides information about the similarity
between I and the percept P. The virtual patient’s
visual system illustrated in figure 3 is conceptualized as
part of the environment (see section 2.1.1). This
approach was used in previous work presented in
section 1.7.

In the present work, we adopt a model-based
approach to data generation explained in section 2.1.2
by including P in st as shown later in figure 4. Using an
external world model to generate the data for the
agent, in this case, the percept P, is derived from the
recurrent World Models proposed in [43]. It alleviates
the agent’s burden of modeling the environment that
can be composed of any real-world image. Instead, it
uses the axonmapmodel to generate the image.

1.8.2. Epiretinal stimulation asMarkovDecision Process
A Markov Decision Process (MDP) allows one to
formalize the interaction between the agent and the
environment in a RL task. The proposed approach is
inspired by the way the SBR task is formalized as a
MDP where the goal is to maximize the similarity
between a target image and a stroke-based rendered
image equivalent respectively to I and P in figure 3.

Figure 3.Amodel-free environment simulates a virtual patient’s retina and its visual system. The agent is defined as the implant
controller and is in charge of transforming a camera image into a single-electrode stimulation pattern. The single-electrode
stimulation excites the retina. The signal propagates to the lateral geniculate nucleus (LGN) and through the visual cortex (V1) and
subsequent visual areas (Not illustrated). The environment returns a state st. The agentmust interact with the environment through an
action at corresponding here to the electrode’s stimulation. The environment then gives a reward rt according to the similarity between
the target image I and the visual perception P resulting from the electrical stimulation.
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Selecting single-electrode stimulation in a sequence is
a decision-making task that can bemodeled as aMDP.
A finite MDP is a decision-making process that
satisfies the Markov property stipulating that the
action influences not only the immediate reward rt,
but also the probability that the process moves into its
new state ¢s at t+ 1 [44]. A finite MDP is defined by
sets with a finite number of elements for states  ,
actions , and rewards . Given st the state at time t,
and at the action at time t, the dynamic or state
transition function of the environment p is defined in
(1) [44].

( ∣ ) { ∣ } ( )¢ = ¢ =+ +p s r s a Pr s s r r s a, , , , 1t t t t1 1

[for all ¢s where Îs  , Îr  and ( )Îa t . In other
words, the next state st+1 and the associated reward
rt+1 are functions of the probability Pr of taking action
at in the previous state st. The state st given to the agent
is defined as the target image I, and the percept P that
exposes the internal dynamics of the retinamodel. The
agent must then decide on an action at, namely, a
single-electrode stimulation. As mentioned pre-
viously, single-electrode stimulation generates aniso-
tropic shapes perceived here by the virtual patient. The
percepts of the virtual patient are simulated with a
psychophysically validated model developed from a
human patient implanted with an Argus epiretinal
implant [12]. This model of human epiretinal vision is
used by the environment that simulates a virtual
patient.

2.Materials andmethods

The following sections present the implant stimula-
tion algorithm and the experiences that result in the
generation of intelligible percepts. The algorithm takes
the form of a DRL agent detailed in section 2.1.2
estimating the best sequence of action at to maximize
the similarity between I and P to increase the visual
acuity of the patient.

2.1.Materials
2.1.1. Environment
We developed a new environment to train reinforce-
ment learning agents. The environment follows the
OpenAI gym specifications [45]. Section 2.1.1 presents
the underlying assumptions in the environment.

From single-electrode stimulation to percept The
environment uses the axonmapmodel that accurately
reproduces the drawings of the phosphene perceived
by real patients during an epiretinal single-electrode
stimulation [12]. It is important to note that the axon
map model was developed in a control clinical set-up
that prevented eye movements and used only single-
electrode stimulation without superimposition of
multiple stimulations. Therefore, it serves as an aniso-
tropic phosphene rendering tool to simulate the vir-
tual patient. The axon map model, detailed in the
section below, renders anisotropic phosphenes as
observed in implanted patients rather than ideal iso-
tropic phosphenes. Rendered phosphenes are assem-
bled to form the percept P. In the case at hand, an
episode of agent-environment interaction is defined as
a sequence of single-electrode stimulations. At the
beginning of the episode, a new target image I is selec-
ted from the image dataset. At each step or single-elec-
trode stimulation of an episode, the agent produces a
vector with probabilities of selecting each electrode.
The number of activated electrodes and their normal-
ized stimulation values are set in the environment
configuration. The environment uses single-electrode
stimulation equivalent to the action a of the agent to
update the virtual patient’s percept P.

Axon map model An electrical stimulation is
assumed to generate focal dots of light that decay
exponentially with the distance between the location
of the stimulating electrode and the location of the sti-
mulated retina ( )x y,stim stim and the spatial decay con-
stant ρ. These assumptions are included in the
calculation of the scoreboard model to estimate the
intensity profile ( )rI x y, ;score [12]. Equation (2) cor-
responds to the scoreboard model presented in
figure 2 [12].

Figure 4. In contrast to figure 3, the SAC agent receives the perceptP aswell as the original image I. Thismodel-based data generation
schememakes use of the predictivemodel of the retina to give access to the internal state Lt of the environmentmodel. Electrical
stimulations are transformed into a visual percept using the axonmapmodel from pulse2percept library. The SAC agent is composed
of an actor and a critic that takes I andP as input st. The actor is in charge of estimating the action at equivalent to a single-electrode
stimulation. The critic gives evaluative feedback to the actor taking action at at state st.
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( )( ) ( )( ) ( )r = -
r

- + -
I x y, ; exp 2score

x x y y

2

stim stim
2 2

2

The axonmapmodel estimates the contribution of
axon stimulation to the virtual patient’s perception
based on anatomic observation of axonal growth [46].
The axonal trajectories are represented with a mod-
ified polar coordinate system with its center at the
optical disc. The contribution of axon stimulation to a
phosphene decays exponentially along the axon bun-
dles with the distance between the location of the sti-
mulating electrode and the soma (xsoma, ysoma). The
impact of axon stimulation on the intensity profile
Iaxon(x, y; λ) is estimated using (3).

( )( ) ( )( ) ( )l = -
l

- + -
I x y, ; exp 3axon

x x y y

2

soma soma
2 2

2

where λ is a constant that modulates spatial decay
along the axon. Therefore, we can combine (2) and (3)
to predict the intensity profile Imap(x, y; ρ, λ) of
anisotropic phosphenes perceived by virtual patients
implantedwith an epiretinal implant:

( ) ( ) ( ) ( )r l r l=I x y I x y I x y, ; , , ; , ; 4map score axon

The values of parameters ρ and λ can be set to
simulate implant placement relative to the retina of
different virtual patients, as demonstrated with real
patients in [12].

Implant simulationAmodel of the commercialized
ArgusII implant [15] is used in the simulations pre-
sented in the current work to facilitate the reproduci-
bility of the experiments and further comparisons
with other stimulation algorithms. The implant is
placed on the surface of the retina according to the
coordinates centered on the fovea. The angle of inser-
tion is set through the environment configuration.
The implant placement parameters of subjects in [12]
are also available in the environment. All single-elec-
trode pulse waveforms consist of a biphasic, cathodic-
first, charge-balanced, square-wave pulse.

Reward definitionThe reward is defined as follows:

( ) ( )=
-+r s a

L L

L
, 5t t

t t

t

1

0

where Lt is a given distance between the target image I
and the percept P at time t and t0 indicates the
beginning of the experiment. The difference in two
subsequent time steps, Lt+1− Lt, is used to signal the
agent if it is getting closer or farther from the target.

Dataset The MNIST [47] dataset used in the
experiments serves as a proxy for visual acuity tasks
often used in optometry, such as the Snellen chart [48].
It contains 70 000 28× 28 handwritten number ima-
ges split into a 60 000 image training set and a 10 000
image test set.

2.1.2. Agent
Building of a model-based agent The agent architecture
is the Soft Actor-Critic (SAC) algorithm [49]. An
actor-critic agent is made up of two parts; (1) the actor
who learns a policy π(at|st) that maps a state Îst  to

actions a and (2) the critic who approximates a value
function that gives an evaluative feedback based on the
agent’s action at in state st. The SAC algorithm uses a
Q-function in the critic in a similar way to recent agent
algorithms such as the Deep Deterministic Policy
Gradient (DDPG)[50, 51]. This allows the agent to be
trained in an off-policy manner and, therefore, reuse
data efficiently compared to the standard policy
iteration used in the classic actor-critic formulation
[44]. The SAC algorithm uses a stochastic actor and
maximizes the entropy of the actor with an entropy
maximization objective. This results in a more stable
and scalable algorithm that exceeds the efficiency and
final performance of DDPG [49]. The associated SAC
cost function is as follows :

( ) ( ) [ ( ) ( ( ∣ ))]

( )

åp a p= +r
=

~ p
J s a r s a H a s, ,

6
t

T

t t t t t t
0



where the parameterα controls the stochasticity of the
optimal policy during training and  denotes the
mathematical expectation [49]. Like in standard RL,
the SAC algorithm maximizes the expected sum of
rewards ( ) [ ( )]å r= ~ p

s a r s a, ,t
T

t t t t0  . As mentioned
above, the SAC algorithm also includes the expected
entropy ( ) [ ( (∣ ))]på r= ~ p

s a H s,t
T

t t t0  of the policy
over ρπ(st) in the loss function J(π) as shown in (6). In
the proposed approach, both the actor and the critic
are approximated using a convolutional neural net-
work (CNN) with a CoordConv [52] layer (See
table 1).

As illustrated in figure 4, the actor and the critic
take the state st composed of the target image I and the
percept P at time t. The agent does not need to model
the environment implicitly, as opposed to a model-
free approach. The transition dynamic of the environ-
ment corresponds to the axon map model that gen-
erates the percept P. The percept is then given directly
to the agent in st. Therefore, the agent uses model-
based data generation.

Training of the agent This section presents the
details of the agent’s training implemented with the
Ray RLlib deep reinforcement learning library [53]. All
hyperparameters to replicate the agent are collected in
table 1. The agent interacts with the environment until

Table 1. SAChyperparameters.

Parameters Values

Learning rate 3 · 10−4

Discount factor (γ) 0.99

Replay buffer 106

Number of hidden layers 3

Number of hidden units by layers 512

Number of samples byminibatch 32

Nonlinearity ReLU

Reward scale 200

Target smooth coefficient (τ) 0.0005

Target update interval 1
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it reaches the N steps corresponding to N single-elec-
trode stimulation. N steps form an episode. The agent
is trained tabula rasa with batches of 32 episodes over
1000 iterations. The agent’s replaymemory buffer that
allows for more stable learning and off-policy training
is set to hold the latest 106 steps [54]. The Adam [55]
optimizer is used to train the neural networks of the
actor and the critic. The agent is trained on two AMD
Milan 7413with 24 cores running at 2.65GHz and one
NVidia A100GPU.

2.2.Methods
To validate the reward design of the environment and
compare the agent with the NSA approach, two
experiments were carried out (1) a pivotal experiment
using pixel-based and perception-based metrics as
reward to obtain a readable percept produced by the
agent and (2) an experiment that demonstrates the
agent’s ability to adapt to different patients.

2.2.1. Effect of reward shaping on agent’s learning
Having a suitable metric to measure the pixel and
perceptual similarities between the percept and the
target image is critical to the agent’s training. The
reward defined in (5) gives the agent a clear signal of
whether it is getting closer to the target image faster or
slower. We compared both l2 and Wasserstein dis-
tances to estimate Lt in (5) in the hope of accelerating
learning with better reward shaping [56]. l2 distance is
used as a reference metric similar to the pixel-based
metrics commonly used in computer vision. Wasser-
stein distance is a probability distribution-based
metric. It is an estimate of the distance between two
probability distributions. The Wasserstein distance is
estimated using the Sinkhorn iteration algorithm from
a maximum entropy perspective between the two
probability distributions [57].

Optimizing for pixel-error such as l2 distance
encourages finding pixel-wise averages for a plausible
solution. It typically results in the loss of high-fre-
quency details, giving overly smooth images with poor
perceptual quality [58, 59]. Wasserstein distance
allows one to better preserve the probability distribu-
tion of the light in the image [56]. Performances of the
two metrics in training a DRL agent in the environ-
ment are presented in section 3.1.

2.2.2. Percept quality in different virtual patients
Pixel-based versus perceptual-based comparison Agent-
generated percepts are compared to the NSA algo-
rithm described in section 1.3. The images are resized
according to the Argus II layout of 10 by 6 electrodes.
The intensity of the pixels is uniformly assigned to the
amplitude of the electrical pulse described in
section 2.1.1.

We use the l2 norm and the mean squared error
(MSE), which are two de facto standard in image
restoration [60] to compare percepts generated by the

agent and the NSA algorithm. We define the metrics
forM byN images as follows:

( ) ( )å= -
= =

l I P 7
i j

M N

i j i j2
0, 0

,

, ,
2

( )
( )å=

-

= =

MSE
I P

MN
8

i j

M N
i j i j

0, 0

,
, ,

2

However, they do not correlate well with image quality
as perceived by the human visual system [60]. There-
fore, we use the mean structural similarity index
measure (MSSIM), which is a perceptually motivated
metric [61]. We calculate the MSSIM with non-
negative image patches x and y of size 7 by 7 as follows:
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c1= 0.01 and c2= 0.03 are small constants that add
numerical stability when the means μ or the standard
deviation σ are close to zero [61]. MSSIM takes into
account the local characteristics of the image in a way
similar to that of the human visual system. On the
contrary, pixel-based metrics, such as the l2 norm and
MSE, evaluate the difference between the corresp-
onding pixels of two images independently of the
nearby pixels.

Adaptation to different virtual patients Two SAC
agents are trained on two virtual patients with differ-
ent ρ constant andN single-electrode stimulation. The
spatial decay constant ρ is varied to simulate two rea-
listic virtual patients with different distances between
the electrodes and the retina. To ensure that a phos-
phene is anisotropic, its shape must be dominated by
axon fascicle stimulation (λ> ρ). The number of steps
in an episode equivalent to the number of single-elec-
trode stimulation N also increases. The high ρ and
high N make the task more difficult for both approa-
ches because the algorithmsmust deal withmany large
phosphenes.

3. Results

3.1. Effect of reward shaping on agentʼs learning
Figure figure 5 shows that the reward estimated by the
l2 distance quickly saturates to a reward value after
only 1000 episodes, while the reward estimated by the
Wasserstein distance slowly progresses. The results
with a conventional l2 distance as an estimator of Lt are
very limited. Looking at the samples as shown in
figure 5 reveals that the l2 distance only taught
the agent to represent low spatial frequencies of the
dataset, while the Wasserstein distance preserves the
particularity of each character. The agent’s reward
then saturates as shown in figure 5 since it fails to learn
to use the finer structures of the image to increase its
reward. The behavior persists in experiments (not
presented here) that include data augmentation in an
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effort to remove bias from the MNIST dataset toward
high-luminance in the center.

A Wasserstein-based reward stabilizes learning
and allowsmore explorationwithout catastrophic fail-
ures as opposed to the l2-based reward. Wasserstein-
based reward gives useful positional information
regarding the distance of the phosphene from the
high-luminance region of the image. l2 distance fails to
give this information through the reward since it is cal-
culated pixel-wise. Therefore, the use of a Wasser-
stein-based reward results inmore persistent electrode
stimulation outside the high-luminance region. Ran-
dom single-electrode stimulation is added to table 2 to
better understand the results, as no other reference can
be used as a benchmark. Random stimulation helps to
better grasp the range of values specific to each metric
in the environment. It also helps to contextualize
pixel-based metrics with a tighter range, such as the l2
norm and MSE, with perceptual metrics such as
MSSIM.

3.2. Percept quality in different virtual patients
The experiment presented in the previous section
establishes that the best metric to evaluate the similar-
ity between I and P is the Wasserstein distance as an
estimator Lt. Therefore, the percepts generated by the
SACagent infigure 6 are obtained by training the agent
with the Wasserstein distance. In section 3.2.2, the

agent is trained in different virtual patients to demon-
strate the flexibility of the proposed approach over the
NSA stimulation algorithm.

3.2.1. Pixel-based versus perceptual-based comparison
Table 2 shows the image reconstruction metrics for
the ρ= 200 and λ= 500 experiment in which the
implant is close enough to the retina to obtain
intelligible percepts with the NSA algorithm. Samples
of the percept generated for this virtual patient are
shown in figure 6(a). NSA single-electrode stimula-
tions are, by default, limited to the high-luminance
region of the image. However, the SAC agent has the
freedom to choose any single-electrode stimulation.
This is particularly visible when comparing the NSA
and SAC agent samples in the second rows of
figures 6(a) and (b). This results in single-electrode
stimulation in the out-of-high luminance region, thus
increasing the l2 distance and MSE for the SAC agent
(See table 2). However, the SAC agent significantly
outperforms the NSA algorithm in preserving the
structural integrity of the image measured with
MSSIM (t= 15.71, p< 0.001) as observed in figure 6.
NSA has significantly lower error-based metrics than
the SAC agent (l2; t= 10.66, p< 0.001 and MSE:
t= 10.77, p< 0.001). The t-test are computed with a
sample of 1000 MNIST images. It shows that an SAC
agent, despite higher values in error-based metrics,
increases the readability of the digits, in contrast to the
NSA algorithm.

3.2.2. Adaptation to different virtual patients
These experiments were carried out to demonstrate
the limits of NSA algorithms in the condition often
observed in implanted patients where the implant is
relatively far from the retina [12]. A high distance
between the stimulating electrode and the retina (or a
high ρ) produces larger phosphenes that result in low

Figure 5.Comparison of the episode average reward of two SAC agents during training using respectively l2 (red) andWasserstein
(green) based reward obtained by the SAC agent. Representative samples of percept produced by the agents early during training are
shown. The reward average are normalized over a training iteration for the comparison.

Table 2.Metric evaluating the percept and target image. Only
the experiment inwhichNSAobtains readable percept
(ρ = 200 andλ = 500) is shown. Lower l2 andMSE is better.
A higherMSSIM is better. Themean and standard deviation
are calculated on 1000MNIST images.

Metric Random NSA [15] SACAgent

l2 norm 13.54(1.67) 11.69(1.63) 12.58(2.07)
MSE 0.11(0.02) 0.08(0.02) 0.09(0.03)
MSSIM 0.07(0.05) 0.28(0.08) 0.35(0.11)
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resolution [62], as shown in figure 6(b). The NSA
generated percepts are only readable with the implant
close to the retina (low ρ) and with fewer single-
electrode stimulations (low N), as observed by com-
paring figure 6(a) and figure 6(b). SAC agent better
preserves the readability of characters in figure 6(b)
when the implant is further from the retina (high ρ)
and a large number of single-electrode stimulations
(highN). Therefore, the SAC agent can better adapt to
more restrictive implant placements in patients in
terms of resolution.

4.Discussion

In this paper, we propose to address the anisotropic
phosphene problem in epiretinal stimulation as an
SBR task. We present a DRL agent that can improve
visual perception of numbers in the context of
epiretinal stimulation.

We emphasize the fact that the reward design of
the new environment and the evaluation of the agent’s

performances must take into account the perceptual
nature of the task. We address this limitation found in
the reward design by comparing the l2 andWasserstein
distances to assess the differences between the percept
and the target image. The agent rewarded with the l2
distance as an estimator uses only the electrodes near
the center of the image, resulting in indistinguishable
characters. A Wasserstein-based reward thus outper-
forms the l2-based reward, as it conveys information
about the distance between the distribution of light of I
and P rather than the pixel-sharp l2-based reward.
This phenomenon is similar to the mode collapse
phenomenon observed in GAN [63]. Using a percep-
tual-based metric as a reward, such as Wasserstein,
allows learning to stabilize and avoid mode collapse
observed with a pixel-based metric. More research is
needed to assess whether the Wasserstein-based dis-
tance eliminates this phenomenon, as does the Was-
sersteinGANalgorithm [64].

The limitation of pixel-based metrics to evaluate
the agent’s performance is solved by proposing the

Figure 6.Two virtual patient’s percepts with different axonmapmodel and single-electrode stimulation parameters. Columns from
left to right are respectively the initialMNIST target image, theNSA generated percept and the SAC agent generated percept. (a)
Samples generated with ρ = 315,λ = 500 andN = 32. (b) Samples generatedwith ρ = 200,λ = 500 andN = 16. Axonmapmodel
parameters are influenced by experiments realisedwith implanted subjects. Single-electrode stimulation is a biphasic pulsewith a
fixed amplitude of 10 μA.
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more perceptually relevant MSSIM index. These
results align with other recent SBR approaches that
account for the human perception instead of pixel-
wise errormetrics in the loss function [56, 58, 59]. This
is a first attempt to introduce human perception
metrics in the design of a DRL stimulation algorithm
for epiretinal implants. Future work aimed at improv-
ing and restoring vision in patients should use metrics
that account for human perception instead of meth-
ods that use pixel-based accuracy.

The SAC agent outperforms the NSA algorithm in
preserving the similarity between target images and
the generated percepts in different virtual patients. It
shows that the SAC agent adapts to different difficulty
levels of the task as opposed to the NSA algorithm.
This is important in the context of the real patient. It
has been shown to be difficult to simultaneously mod-
ulate the size and brightness of phosphene [65]. The
SAC agent allows one to circumvent certain limita-
tions of the NSA algorithm, such as decreasing the
intensity or inactivating electrodes in the case of aniso-
tropic phosphenes or too large phosphenes. More-
over, it automatically learns an optimal single-
electrode stimulation sequence without human per-
cept inspection and tuning. It only requires standard
hyperparameter tuning of the DRL agent. However,
previous conclusions are limited by the fact that sin-
gle-electrode stimulations are assumed to be indepen-
dent of each other based on the protocol used to
develop the axonmapmodel [12].

Limitations regarding the speed of the imple-
mentation of the axonmapmodel during these experi-
ments considerably slowed data generation. Recent
work [66] by the authors of the axonmapmodel offers
hope to replace the current implementation with a
neural network. This approach uses an approximation
of the axon map model with a neural network which
allows experiments to use only a GPU, eliminating the
need for data transfer between the CPU and GPU
memory. This could significantly increase the percept
generation process and the calculation of the reward in
the proposed environment. Therefore, accelerating
the agent training process.

The training procedure could be further improved
with imitation learning. The agent currently learns
from its interaction with the environment. Using a
dataset generated with the NSA algorithm could serve
as a baseline training before training directly in the
environment. This could potentially improve the out-
of-high luminance stimulation observed in the sam-
ples presented infigure 6.

5. Conclusion

In summary, this paper demonstrates that the for-
malization of epiretinal stimulation as an SBRproblem
allows for the full diversity of anisotropic phosphenes
to be exploited, as opposed to the current NSA

approach. Previously unwanted phosphene shapes can
now expand the complexity of possible percepts for
patients with an epiretinal implant. Further studies
introducing metrics based on human perception into
algorithm design could enhance the quality of recov-
ered vision. This allows us to better personalize the
algorithm for each patient and create a better user
experience. This opens new ways to significantly
improve the visual acuity of patients implanted with
an epiretinal implant.
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