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Abstract

Recent studies have demonstrated that large lan-001
guage models (LLMs) are susceptible to being002
misled by false premise questions (FPQs), lead-003
ing to errors in factual knowledge, know as fac-004
tuality hallucination. Existing benchmarks that005
assess this vulnerability primarily rely on man-006
ual construction, resulting in limited scale and007
lack of scalability. In this work, we introduce008
an automated, scalable pipeline to create FPQs009
based on knowledge graphs (KGs). The first010
step is modifying true triplets extracted from011
KGs to create false premises. Subsequently, uti-012
lizing the state-of-the-art capabilities of GPTs,013
we generate semantically rich FPQs. Based on014
the proposed method, we present a comprehen-015
sive benchmark, the Knowledge Graph-based016
False Premise Questions (KG-FPQ), which017
contains approximately 178k FPQs across three018
knowledge domains, at six levels of confus-019
ability, and in two task formats. Using KG-020
FPQ, we conduct extensive evaluations on sev-021
eral representative LLMs and provide valu-022
able insights. The KG-FPQ dataset and code023
are available at https://anonymous.4open.024
science/r/KG-FPQ-D426.025

1 Introduction026

Large Language Models (LLMs) (Zhao et al., 2023)027

excel in natural language understanding and gen-028

eration but often produce texts that deviate from029

real-world factual knowledge, a problem known as030

factuality hallucination (Huang et al., 2023). This031

issue restricts their applicability in scenarios requir-032

ing high factual accuracy.033

Recent studies (Vu et al., 2023; Yuan et al.,034

2024) have demonstrated that False Premise Ques-035

tions (FPQs) can induce factuality hallucination in036

LLMs, as these models often respond directly to037

FPQs without verifying their validity. A FPQ is a038

question that contains incorrect facts which are not039

explicitly stated but might be mistakenly believed040

by the questioner (Yu et al., 2023). For example,041

Figure 1: Top: LLM correctly answers when faced with
a TPQ. Middle: LLM experiences factuality hallucina-
tion when faced with a FPQ. Bottom: An example of
editing triplets in the KG.

as shown at the top of Figure 1, when asked with 042

a true premise question (TPQ), the LLM can an- 043

swer correctly, indicating that the LLM possesses 044

relevant knowledge. However, as depicted in the 045

middle of Figure 1, when the TPQ is transformed 046

into a FPQ, the LLM is induced to hallucinate. 047

Existing FPQ benchmarks (Yu et al., 2023; Kim 048

et al., 2023; Hu et al., 2023; Vu et al., 2023) pri- 049

marily rely on manual construction, resulting in 050

limited scale and lack of extensibility. Yuan et al. 051

(2024) construct their dataset by corrupting triplets 052

in Wikidata (Vrandečić and Krötzsch, 2014) and 053

filling them into human-written templates, which 054
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limits the coverage of knowledge domains. Addi-055

tionally, these studies lack a thorough evaluation of056

factuality hallucination induced by FPQs.057

We explore an automated, scalable method to058

construct FPQs. The first step involves extracting059

true triplets from knowledge graphs (KGs) and edit-060

ing them into false triplets. Subsequently, GPTs061

are utilized to generate FPQs based on these false062

triplets. Specifically, We extract triplets from the063

KG1 in the form of <subject, relation, object>064

and edit the object to create false triplets <subject,065

relation, edited object>. We design editing meth-066

ods from two perspectives: 1) the edited object067

at varying distances from the subject in the KG;068

2) the edited object having varying associations069

with the original object in the KG. As the example070

shown at the bottom of Figure 1, we edit the true071

triplet <John Lennon, place of death, New York072

City> to the false triplet <John Lennon, place of073

death, Liverpool>. Liverpool is a 1-hop neighbor074

of John Lennon and belongs to the same concept075

as New York City but has a different relation to076

the subject. There are six editing methods to cre-077

ate false triplets varying in levels of confusabil-078

ity. After editing, we utilize GPT-3.5 (OpenAI,079

2023) and GPT-4 (OpenAI, 2024)2 to generate080

FPQs in Yes-No and WH formats respectively cor-081

responding to discriminative and generative eval-082

uation of hallucination (Zhang et al., 2023). By083

the proposed method, we present a comprehensive084

benchmark, the Knowledge Graph-based False085

Premise Questions, which contains FPQs across086

three knowledge domains, at six levels of confus-087

ability, and in two task formats. The comparison088

between KG-FPQ and other datasets is detailed in089

Table 1.090

We evaluate the performance of several repre-091

sentative and advanced LLMs on KG-FPQ across092

both discriminative and generative tasks. Since093

manual evaluation of the generative task is costly,094

we introduce an automated evaluator named FPQ-095

Judge to identify whether responses of LLMs to096

FPQs are misled by the false premises, achieving097

a 93% accuracy rate on a manually annotated test098

set. Through extensive experiments, we reach three099

essential conclusions: (1) In terms of confusabil-100

ity, when the edited object has a closer distance101

1KoPL, a high quality subset of Wikidata, https://kopl.
xlore.cn

2The GPT-3.5 models used in this paper are all GPT-3.5-
turbo-1106 version, and the GPT-4 models are all GPT-4-1106-
preview version.

with the subject or has a stronger association with 102

the original object, FPQs are more confusing to 103

LLMs. (2) In terms of task formats, LLMs per- 104

form worse at generating factual statements than 105

at distinguishing them when faced with FPQs. (3) 106

In terms of knowledge domains, knowledge profi- 107

ciency of LLMs varies across domains, and there 108

is no positive correlation between knowledge pro- 109

ficiency and the ability to resist the interference 110

of FPQs. Our contributions can be summarized as 111

follows: 112

• We propose an automated and scalable 113

pipeline combining KGs and GPTs for con- 114

structing FPQ datasets, by editing true triplets 115

into false triplets and utilizing GPTs to gener- 116

ate FPQs. 117

• Based on the proposed method, we create a 118

comprehensive benchmark, KG-FPQ, contain- 119

ing FPQs across three knowledge domains, 120

at six levels of confusability, and in two task 121

formats. 122

• We fine-tune an automated evaluator for gen- 123

erative hallucination evaluation, FPQ-Judge, 124

achieving 93% accuracy on a manually anno- 125

tated test set. Furthermore, we conduct an 126

in-depth evaluation of factuality hallucination 127

induced by FPQs on several representative 128

LLMs, yielding valuable insights. 129

2 Related Work 130

Evaluation of Factuality Hallucination Many 131

benchmarks evaluate factuality hallucination (Lin 132

et al., 2022; Li et al., 2023; Min et al., 2023; Muhl- 133

gay et al., 2024) due to the risks it poses in practical 134

LLM applications. The evaluation formats are pri- 135

marily divided into discriminative evaluation (Lin 136

et al., 2022; Li et al., 2023; Muhlgay et al., 2024) 137

and generative evaluation (Lin et al., 2022; Min 138

et al., 2023), which respectively assess the abil- 139

ity of LLMs to distinguish factual statements and 140

generate factual content (Zhang et al., 2023). Hal- 141

lucination induced by FPQs belongs to factuality 142

hallucination, and this paper evaluates this vulnera- 143

bility in both discriminative and generative formats. 144

145

False Premise Questions Existing FPQ bench- 146

marks (Yu et al., 2023; Kim et al., 2023; Hu et al., 147

2023; Vu et al., 2023) primarily rely on manual con- 148

struction, resulting in limited scale, lack of extensi- 149

bility and high labor costs. Yuan et al. (2024) con- 150
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Datasets Source Format Scale Scalable Varying
Confusability

CREPE (Yu et al., 2023) Internet Gen 8, 400 ✗ ✗
(QA)2 (Kim et al., 2023) Internet Gen 602 ✗ ✗
FalseQA (Hu et al., 2023) Human Written Gen 2, 365 ✗ ✓
FRESHQA (Vu et al., 2023) Human Written Gen 600 ✗ ✗
FAITH Yuan et al. (2024) KG&Templates Gen 5, 832 ✗ ✗

KG-FPQ(ours) KG&LLMs Dis&Gen 14, 860× 6× 2 ✓ ✓

Table 1: Comparison with existing FPQ datasets.

Figure 2: Overview of the construction process of KG-FPQ.

struct their dataset by corrupting triplets in Wiki-151

data (Vrandečić and Krötzsch, 2014) and filling152

them into human-written templates, which limits153

the coverage of knowledge domains. Additionally,154

these studies lack a thorough evaluation of factu-155

ality hallucination induced by FPQs. KG-FPQ is156

automatically constructed and offers multiple per-157

spectives for evaluation and analysis.158

3 KG-FPQ Benchmark Construction159

3.1 Triplets Extraction and Editing160

We utilize KoPL, a high-quality subset of Wikidata,161

as our KG. KoPL contains a limited set of concepts162

and relations, where each entity uniquely belongs163

to one concept. We follow the steps shown in the164

left of Figure 2 to extract and edit triplets. First,165

we select entities from three domains: Art, People166

and Place, based on their concepts, and filter the167

relations for each domain. The filtering rules are168

detailed in Appendix A, and Table 3 lists the repre-169

sentative concepts, relations, and entities for each170

domain.171

Subsequently, we extract true triplets from KoPL172

and edit them into false triplets. The editing meth- 173

ods, illustrated in Figure 3, can be categorized into 174

six types across two perspectives: 1) the edited 175

object at varying distances from the subject in the 176

KG; 2) the edited object having varying associa- 177

tions with the original object in the KG. In detail, 178

when the edited object is a neighbor of the sub- 179

ject, their maximum distance is set to five hops. 180

Through editing, we get six different false triplets 181

for each true triplet, resulting in six corresponding 182

FPQs during data generation. False triplets created 183

by different editing methods exhibit varying levels 184

of confusability. For instance, as shown in Figure 3, 185

Neighbor-Same-Concept (NSC) indicates that the 186

edited object, Liverpool, is a 1-hop neighbor of the 187

subject and belongs to the same concept as the orig- 188

inal object, which might be challenging for LLMs 189

to recognize. In contrast, Not-Neighbor-Different- 190

Concept (NNDC) indicates that the edited object, 191

Mona Lisa, is not a neighbor of the subject and 192

belongs to a different concept from the original 193

object, making it somewhat easier to identify. 194
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Figure 3: An illustration of editing methods in KG-FPQ. We use acronyms to refer each method: Neighbor-
Same-Concept (NSC), Neighbor-Different-Concept (NDC), Not-Neighbor-Same-Concept (NNSC), Not-Neighbor-
Different-Concept (NNDC), Not-Neighbor-Same-Relation (NNSR), Not-Neighbor-Different-Relation (NNDR).

3.2 Data Generation and Verification195

As shown in the right of Figure 2, firstly, we sam-196

ple 1k triplets to validate the feasibility of gener-197

ating FPQs with GPTs. Through manual check,198

we identify that triplets containing certain relations199

easily make the generated data semantically inco-200

herent, so we exclude those data for further data201

generation. Secondly, we generate the full dataset,202

utilizing GPT-3.5 to create Yes-No questions and203

GPT-4 to create WH-questions. We prompt GPTs204

to generate TPQs based on true triplets and then205

replace the original object with the edited object206

from false triplets through string matching. There-207

fore, we create one TPQ and six FPQs in each208

format based on each true triplet, with these FPQs209

in each format differing only in the edited object.210

The prompts used for data generation are shown211

in Appendix A. Finally, to ensure data quality, we212

perform a manual review of the dataset, with par-213

ticular attention to WH-questions, correcting some214

grammatical and semantic errors.215

By our method, the number of triplets extracted216

from KoPL can be relatively large, and we sam-217

ple approximately 5k triplets from each domain218

to construct KG-FPQ. Finally, KG-FPQ contains:219

4, 969×6×2 FPQs in the Art domain, 4, 897×6×2220

FPQs in the People domain and 4, 994 × 6 × 2 221

FPQs in the Place domain. Due to the random- 222

ness in triplet extraction and LLMs generation, our 223

pipeline can generate FPQs dynamically, which 224

can be used for the dynamic testing of LLMs. This 225

is highly beneficial for improving the factuality of 226

LLMs. 227

4 Experiment Settings 228

4.1 Tasks 229

Discriminative Task The first task involves the 230

discriminative task, where LLMs are required to 231

answer Yes-No questions in KG-FPQ with “Yes” 232

or “No” only, without providing explanations. An 233

example for FPQ in Yes-No format is that Did John 234

Lennon die in Liverpool?. 235

Generative Task The second task involves the gen- 236

erative task, where LLMs are required to answer 237

the WH-questions in KG-FPQ. An example for 238

FPQ in WH format is that Where in Liverpool did 239

John Lennon die?. If LLMs recognize the false 240

premises in FPQs, they will deny the false premises 241

and provide explanations. If LLMs fail to identify 242

the false premises, they may be misled by FPQs and 243

generate information with fctuality hallucination. 244
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Figure 4: Overview of the evaluation procedure.

4.2 Models245

We select several representative and advanced open-246

source chat models of various sizes. Models247

in the 6B~8B range include ChatGLM3-6B (Du248

et al., 2022), Baichuan2-7B-Chat (Baichuan, 2023),249

Llama2-7B-Chat (Touvron et al., 2023), Qwen1.5-250

7B-Chat (Bai et al., 2023), and Llama3-8B-251

instruction 3. Models in the 13B~14B range252

include Baichuan2-13B-Chat (Baichuan, 2023),253

Llama2-13B-Chat (Touvron et al., 2023), and254

Qwen1.5-14B-Chat (Bai et al., 2023). We also eval-255

uate advanced two closed-source LLMs, GPT-3.5256

and GPT-4 on the discriminative task. We set the257

temperature parameter to 0.6 and the top_p param-258

eter to 0.9 for all models in both the discriminative259

task and the generative task.260

4.3 Evaluation261

Evaluation Procedure Our evaluation procedure262

is shown in Figure 4. First, we input the Yes-No263

format TPQs into the LLMs. If the LLMs answer264

“Yes”, it indicates that the LLMs have stored rele-265

vant background knowledge for the question. We266

then continue with the corresponding FPQs in both267

the discriminative task and the generative task. If268

the LLMs answer “No”, we do not proceed with the269

FPQs for that TPQ. This approach aims to reduce270

the hallucination caused by a lack of background271

knowledge. To increase the robustness of the as-272

sessment, we input each question three times to273

obtain three responses, and then perform a hard274

vote to get a final answer label. The prompt tem-275

plates for evaluation are presented in Table 6.276

Evaluation for Generative Task Since manual277

evaluation of the generative task is costly, we intro-278

duce an automated evaluator named FPQ-Judge,279

3https://llama.meta.com/llama3/

which is a LoRA-tuned Llama3-8B-instruction 280

model designed to classify whether the answers 281

of LLMs to FPQs are misled by the false premises. 282

The training set for FPQ-Judge consists of triplets 283

in the form of (question, answer, label), where the 284

label indicates whether the answer is true or false. 285

This training set includes 13k examples where the 286

answer is a true/false reference answer generated by 287

GPT-3.5. Additionally, it comprises approximately 288

15k examples where the answer is generated by 289

one of the evaluated models in Section 4.2, with 290

the label derived from human annotation. To assess 291

the performance of FPQ-Judge, we conduct tests 292

on both a GPT-3.5 generated dataset with a size of 293

3k and a human annotated dataset with a size of 294

6.3k. FPQ-Judge achieves an accuracy of 99.32% 295

on the GPT-3.5 generated test set and 93% on the 296

manually annotated test set. The prompt templates 297

used for GPT-3.5 to generate traing data, the exam- 298

ple of the training data, and the training parameters 299

are provided in the Appendix B. 300

Metrics We use accuracy as the evaluation metric. 301

In the discriminative task, we calculate accuracy 302

by string matching the responses of LLMs: for 303

TPQs, answering “Yes” is considered correct; for 304

FPQs, answering “No” is considered correct. In 305

the generative task, an answer is considered correct 306

if FPQ-Judge marks it as correct 4. 307

5 Results 308

Table 10 presents the complete evaluation results of 309

all models for FPQs on both the discriminative task 310

and the generative task across three domains. Ta- 311

ble 2 presents the results of the Art domain, which 312

we use as an example for preliminary analysis. It 313

can be observed that the accuracy of LLMs varies 314

across FPQs with different levels of confusability, 315

and their performance also differs based on the 316

task format. In Section 5.1, we will further ana- 317

lyze the relationship between the confusability of 318

FPQs and the factuality hallucination. In Section 319

5.2, we will examine the impact of task format on 320

factuality hallucination. Additionally, Section 5.3 321

and Section 5.4 will provide detailed analyses from 322

the perspectives of knowledge domains and model 323

scales, respectively. 324

4FPQ-Judge can’t ensure the answer is completely non-
hallucinated.
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Model Art Dis Art Gen

NSC NDC NNSC NNDC NNSR NNDR NSC NDC NNSC NNDC NNSR NNDR

ChatGLM3-6B 0.561 0.797 0.644 0.836 0.572 0.805 0.215 0.224 0.189 0.231 0.168 0.237
Baichuan2-7B-Chat 0.412 0.571 0.507 0.634 0.423 0.61 0.454 0.461 0.493 0.534 0.42 0.539
Qwen1.5-7B-Chat 0.742 0.903 0.835 0.952 0.803 0.948 0.503 0.586 0.606 0.673 0.526 0.682
Llama2-7B-Chat 0.722 0.81 0.792 0.857 0.783 0.845 0.446 0.429 0.488 0.513 0.463 0.494
Llama3-8B-instruct 0.77 0.9 0.891 0.959 0.868 0.951 0.644 0.556 0.725 0.664 0.707 0.68

Baichuan2-13B-Chat 0.414 0.588 0.484 0.669 0.409 0.652 0.309 0.269 0.336 0.324 0.303 0.341
Qwen1.5-14B-Chat 0.806 0.941 0.893 0.989 0.857 0.986 0.389 0.445 0.469 0.528 0.409 0.539
Llama2-13B-Chat 0.876 0.95 0.956 0.988 0.962 0.982 0.879 0.867 0.926 0.924 0.921 0.923

GPT-3.5 0.808 0.862 0.829 0.92 0.741 0.898 - - - - - -
GPT-4 0.874 0.963 0.977 0.988 0.96 0.994 - - - - - -

average acc 0.698 0.829 0.781 0.879 0.738 0.867 0.48 0.482 0.529 0.549 0.49 0.55

Table 2: The evaluation results for FPQs on the discriminative task (referred to as Dis) and the generative task
(referred to as Gen) in Art domain.

5.1 Impact of confusability of FPQs325

As shown in Figure 3, we design editing methods326

from two perspectives, distance and association,327

and create FPQs at six levels of confusability. In328

this section we will discuss the impact of confus-329

ability of FPQs from these two perspectives.330

5.1.1 Impact of Distance331

To investigate the impact of the distance between332

the edited object and the subject within the KG, the333

average accuracy of all LLMs on NSC and NNSC334

is calculated in both discriminative and generative335

tasks across three domains, as illustrated in Fig-336

ure 5. The results demonstrate that, the average337

accuracy for NSC is consistently lower than for338

NNSC across all domains, and this phenomenon is339

more pronounced in the discriminative task. This340

indicates that FPQs formed when the edited ob-341

ject in the false triplets is a neighbor of the subject342

are more confusing to LLMs, resulting in a higher343

probability of factuality hallucination.344

Furthermore, we conduct a more detailed exami-345

nation of NSC and NDC to investigate the impact346

of the number of hops between the edited object347

and the subject. The complete results are shown348

in Appendix C.1, and we analyze the NSC in Art349

domain as an example in this section, with results350

presented in Figure 6. It can be observed that for351

most models, the accuracy improves as the number352

of hops between the edited object and the subject353

increases, indicating a reduction in factuality hallu-354

cination, and this trend is more evident in discrimi-355

native tasks.356

In conclusion, when the edited object and the357

subject in the false triplets has a closer distance,358

Figure 5: The average accuracy of all models compari-
son between NSC and NNSC.

the FPQs are more confusing for LLMs, and 359

more likely to cause factuality hallucination. 360

Conversely, as the distance between them increases, 361

the likelihood of factuality hallucination decreases. 362

This trend is more pronounced in the discriminative 363

task than in the generative task. 364

5.1.2 Impact of Associations 365

To explore the impact of the associations between 366

the edited object and the original object on FPQs- 367

induced factuality hallucination, we calculate the 368

average accuracy of all LLMs on NSC vs. NDC, 369

NNSC vs. NNDC, NNSR vs. NNDR, and NNSC 370

vs. NNSR in both tasks across three domains, as 371

illustrated in Figure 7. 372

From the comparison of NSC vs. NDC, and 373

NNSC vs. NNDC in upper Figure 7, it is evident 374

that in all domains, whether in the discriminative 375

or generative task, the average accuracy for NSC is 376

consistently lower than for NDC, and as the same, 377
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Figure 6: Accuracy of all models for NSC in Art domain by hops. Left: Results of the discriminative task. Right:
Results of the generative task.

NNSC is consistently lower than NNDC. As shown378

in Figure 3, NSC and NNSC involve the edited ob-379

ject and original object belonging to the same con-380

cept in the KG, whereas NDC and NNDC involve381

different concepts. Thus, we conclude that when382

the edited object and the original object belong to383

the same concept in the KG, the FPQs generated384

are more confusing for LLMs, leading to a higher385

likelihood of factuality hallucination. Similarly,386

the comparison between NNSR and NNDR in the387

lower left of Figure 7 reveals that FPQs generated388

from false triplets where the edited object and orig-389

inal object share the same relation are more likely390

to induce factuality hallucination in LLMs.391

We also compare NNSC and NNSR to determine392

whether the same concept or the same relation393

editing method has a greater impact on LLMs. The394

lower right of Figure 7 shows that in the Art do-395

main, the NNSC creates stronger interference than396

the NNSR, while in the People and Place domains,397

the NNSR causes greater interference.398

In conclusion, when the edited object has399

stronger associations with the original object,400

the FPQs are more confusing for LLMs, and401

likely to induce factuality hallucination.402

5.2 Impact of Task Format403

We analyze the overall performance of each LLM404

in both discriminative and generative tasks, with405

the complete results shown in Appendix C.2. This406

section provides an analysis of the Art domain,407

with results presented in Figure 8. It is evident that408

for almost all LLMs, the overall accuracy in the409

generative task is lower than in the discriminative410

task, suggesting that LLMs perform worse at gen-411

erating factual statements than at distinguishing412

them when faced with FPQs. This highlights that413

Figure 7: The average accuracy comparison. Upper
Left: NSC vs. NDC. Upper Right: NNSC vs. NNDC.
Lower Left: NNSR vs. NNDR. Lower Right: NNSC vs.
NNSR.

generative FPQs remain a significant challenge for 414

LLMs and warrant further attention. 415

5.3 Impact of Knowledge Domain 416

Following the procedure shown in Figure 4, we first 417

evaluate LLMs on Yes-No format TPQs, with the 418

results presented in Table 12. We propose a hypoth- 419

esis: From the domain perspective, higher accuracy 420

on TPQs indicates that LLMs are more familiar 421

with the knowledge in that domain, and therefore, 422

the accuracy on FPQs in that domain should also 423

be higher, implying that LLMs are less likely to 424

be misled by FPQs. To verify it, we compare the 425

results of TPQs and FPQs, shown in Figure 9. The 426

average accuracy of TPQs is higher in the People 427

domain compared to Art and Place, whereas the 428

average accuracy of FPQs is highest in the Place 429

domain compared to Art and People. This indicates 430

that the knowledge proficiency of LLMs varies 431
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Figure 8: The overall performance comparison between
the discriminative task and the generative task by mod-
els in Art domain.

Figure 9: The average accuracy of TPQs and FPQs
across domains.

across domains, and that there is no positive cor-432

relation between knowledge proficiency and the433

ability to resist the interference of FPQs.434

5.4 Impact of Model size435

The evaluated models are classified into 3 cate-436

gories according to their size: 6B~8B, 13B~14B,437

and the GPT series. We then calculate the average438

accuracy for FPQs of each categories across 3 do-439

mains, as shown in Figure 10. It can be observed440

that, regardless of the task format, the average ac-441

curacy tends to increase with larger model sizes.442

This indicates that larger models are more fac-443

tual in answering FPQs. A similar analysis is con-444

ducted for TPQs as presented in Appendix C.4. The445

GPT series demonstrate the highest performance446

on TPQs, while the 6B~8B LLMs outperform the447

13B~14B LLMs, which is counterintuitive.448

Observing Table 12, we find that the accuracy449

of the Baichuan2 series is significantly higher than450

that of other models, and the accuracy of Llama2-451

13B-Chat is even far below the random guessing452

probability of 0.5. We undertake a closer exam-453

ination of these three models, and the results are454

Figure 10: The average accuracy of FPQs comparison
across different model size. Left: Results for the dis-
criminative task. Right: Results for the generative task.

shown in Figure 15. In most cases, the performance 455

of FPQs for the Baichuan2 series decreases com- 456

pared to TPQs. By contrast, the accuracy of FPQs 457

for Llama2-13B-Chat significantly increases com- 458

pared to TPQs. We hypothesize that these models 459

may have an inherent bias that causes them to con- 460

sistently favor one type of answer when answering 461

Yes-No questions. Despite using repeated question- 462

ing and hard voting strategies during evaluation, 463

this tendency remains noticeable, which should be 464

addressed by developers. 465

6 Conclusion and Discussion 466

To evaluate factual hallucination induced by false 467

premise questions in LLMs, we develop an auto- 468

mated and scalable pipeline to construct FPQs by 469

editing the triplets in a KG and utilizing GPTs 470

to generate data. Based on the proposed method 471

we create a comprehensive benchmark, KG-FPQ, 472

offering multiple perspectives for evaluation. Us- 473

ing KG-FPQ, we assess several advanced LLMs. 474

Through extensive experiments, we reach three es- 475

sential conclusions: (1) FPQs with different levels 476

of confusability have varying degrees of impact on 477

LLMs. (2) LLMs perform worse at generating fac- 478

tual statements than at distinguishing them when 479

faced with FPQs. (3) Knowledge proficiency of 480

LLMs varies across domains, and there is no pos- 481

itive correlation between knowledge proficiency 482

and the ability to resist the interference of FPQs. 483

Based on our analysis in Section 5.1, we specu- 484

late that the internal knowledge storage structures 485

of LLMs may resemble knowledge graphs, which 486

we will explore further in future research. Addi- 487

tionally, FPQs can be exploited as prompt injection 488

attacks, leading LLMs to generate non-factual texts 489

and spread misinformation online. In order to iden- 490

tify and mitigate more potential vulnerabilities, we 491

will expand the variety of FPQs for red teaming 492

LLMs. 493
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Limitations494

We propose a comprehensive FPQ benchmark,495

based on which we evaluate the FPQ-induced fac-496

tual hallucinations in several advanced LLMs in497

both discriminative and generative formats. How-498

ever, our work still faces limitations and challenges.499

Firstly, the structured knowledge stored in knowl-500

edge graphs is difficult to update in line with devel-501

opments in the real world, which may lead to mis-502

judgments in some cases. Secondly, as mentioned503

in Section 5.4, certain models exhibit an inherent504

bias in the discriminative evaluation, consistently505

favoring one type of answer when responding to506

discriminative questions. Although we have taken507

measures to enhance the robustness of our evalu-508

ation, this bias remains unavoidable. Lastly, we509

fine-tune an evaluator for generative hallucination510

evaluation, achieving high accuracy in our task.511

However, this evaluator cannot detect all halluci-512

nation in the responses of LLMs, and its general-513

ization performance to other tasks remains to be514

explored. More precise and comprehensive hal-515

lucination detection is still a challenge in the era516

of LLMs, which we aim to further explore in the517

future.518
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A Benchmark642

Filter Rules There are 363 relations in KoPL, and643

we apply the following rules to select relations for644

each domain: (1) The relation is associated with645

corresponding domain. For example, the relation646

continent is associated with the Place domain but647

not the Art domain. (2) The relation is informative648

and does not cause ambiguity. For example, the649

relation sex or gender is informative and exact,650

but the relation family are ambiguous. The data651

selecters are the co-authors. Table 3 shows the652

representative concepts, relations and subjects in653

KG-FPQ.654

Prompt Templates for Data Generation Table 4655

presents the prompt template used for GPT-3.5656

to generate Yes-No questions, and Table 5 is the657

prompt template used for GPT-4 to generate WH-658

questions. We prompt GPTs to generate true659

premise questions based on true triplets and then re-660

place the original object with the edited object from661

false triplets through string matching. For each do-662

main, we select 3 representative true triplets and663

manually craft them into demonstrations. During664

generation in each domain, these three demonstra-665

tions remain fixed. The instruction is indicated by666

the yellow text, the demonstrations are represented667

by the pink text, and the query data is descripited668

by the purple text.669

B Experiment Settings670

Prompt Templates for Evaluation Table 6671

presents the prompts used for evaluation.672

Prompt Templates for Training Data Genera-673

tion Table 7 presents the prompt template used for674

GPT-3.5 to generate factual answers, and Table 8675

is the prompt template used to generate non-facutal676

answers. For each domain, we select 3 represen-677

tative true triplets and manually craft them into678

demonstrations. During generation in each domain,679

these three demonstrations remain fixed. The in-680

struction is indicated by the yellow text, the demon-681

strations are represented by the pink text, and the682

query data is descripited by the purple text.683

An Example for Training Data Table 9 shows the684

examples of training data. This training set includes685

13k examples where the answer is a true/false ref-686

erence answer generated by GPT-3.5. Additionally,687

it comprises approximately 15k examples where688

the answer is generated by one of the evaluated689

models from Section 4.2, with the label derived690

from human annotation. The goal of FPQ-judge691

is to evaluate truth for the questions in KG-FPQ 692

only, without the need to generalize to new ques- 693

tions. Therefore, we include as many questions as 694

possible in the training set. 695

Parameters for Fine-tuning During LoRA fine- 696

tuning, the following parameters are used: 697

• r = 8 (LoRA rank) 698

• lora_alpha = 32 (LoRA scaling factor) 699

• lora_dropout = 0.05 (dropout rate) 700

• learning_rate = 1e− 4 701

C Additional Results 702

Table 10 presents the evaluation results of all mod- 703

els for FPQs on Yes-No Question Task and WH- 704

Question Task. 705

C.1 Impact fo Distance 706

In NSC and NDC, we categorize FPQs into five 707

types based on the number of hops as shown in 708

Table 11 , and calculate the accuracy for each cate- 709

gory. The formula is as follows: 710

accuracy =
correct number in each category
total number in each category

711

Figure 11 presents the accuracy of all models in 712

NSC by hops, and Figure 12 presents the accuracy 713

of all models in NDC by hops. 714

C.2 Imapct of Task Foramt 715

We calculate the overall performance of each model 716

in the discriminative and the generative task across 717

domains with the following formula: 718

accuracy =
correct NSC + ... + correct NNDR

6× total number of FPQs
719

Figure 13 presents the results in People and Place 720

domains. It is evident that for almost all LLMs, the 721

overall accuracy in generative task is lower than in 722

discriminative task. 723

C.3 Impact of Knowledge Domain 724

Table 12 presents the evaluation results of all mod- 725

els for Yes-No format TPQs. 726
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C.4 Impact of Model Size727

Figure 14 compares the average accuracy of TPQs728

across different model size. The evaluated models729

are classified into 3 categories according to their730

size: 6B~8B, 13B~14B, and the GPT series. We731

calculate the average accuracy of each category by732

the following formula:733

accuracy =

∑
acc of each model in the category

total number of models in the category
734

We found that the 6B 8B LLMs outperform the735

13B 14B LLMs, which is counterintuitive. Ob-736

serving Table 12, we find that the performances of737

the Baichuan2 series and Llama2-13B-Chat are at738

two extremes. Therefore, we undertake a closer739

examination of these three models as presented in740

Figure 15.741
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Domain Concept e.g. Concept Qty Subject e.g. Subject Qty Relation e.g. Relation Qty

Art
film

television series
drama

44
Titanic

Modern Family
Hamlet

1754
cast member

composer
narrative location

33

People
director
scientist

superhero
69

Steven Spielberg
Albert Einstein

Superman
912

country of citizenship
occupation

place of birth
57

Place
sea

sovereign state
city

64
English Channel

Soviet Union
Tokyo

713
shares border with
official language

capital of
28

Table 3: Representative concepts, relations and subjects in KG-FPQ.

I want you to act as a fluent #Yes-No question# data generator. I will give you a #Ttriplet#, consisting
of (subject, relation, object). Your task is to generate a fluent #Yes-no question# relying solely on the
#Ttriplet# and directly output the generated #Yes-no question#.
Here are some examples:

#triplet#: ["Steven Spielberg", "spouse", "Amy Irving"]
#Yes-No question#: Is Steven Spielberg married to Amy Irving?

#triplet#: ...
#Yes-No question#: ...

#triplet#: ...
#Yes-No question#: ...

#triplet#: item["Ttriplet"]
#Yes-No question#:

Table 4: The prompt used for GPT-3.5 to generate Yes-No questions. The instruction is indicated by the yellow text,
the demonstrations are represented by the pink text, and the query data is descripited by the purple text.

I want you to act as a fluent #WH-question# data generator. I will give you a #Ttriplet#, consisting of
(subject, relation, object). Your task is to generate a fluent #WH-question# relying solely on the #Ttriplet#.
Generation rules are as following:
- Make sure the #subject# and #object# of the #Ttriplet# are both exactly contained in the #WH-question#
you generate.
- Make sure the #WH-question# you generate is syntactically and semantically sound.
- Output the #WH-question# directly.
Here are some examples:

#triplet#: ["Steven Spielberg", "spouse", "Amy Irving"]
#WH-question#: When did Steven Spielberg and Amy Irving get married?

#triplet#: ...
#WH-question#: ...

#triplet#: ...
#WH-question#: ...

#triplet#: item["Ttriplet"]
#WH-question#:

Table 5: The prompt used for GPT-4 to generate WH-questions. The instruction is indicated by the yellow text, the
demonstrations are represented by the pink text, and the query data is descripited by the purple text.
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Prompt Template

Question: item["TPQ"] Respond solely with "Yes" or "No".
Question: item["FPQ"] Respond solely with "Yes" or "No".
Question: item["FPQ"] Answer the question with an answer of no more than three sentences.

Table 6: The prompts used for evaluation. Top: Prompt for TPQs in Yes-No format. Middle: Prompt for FPQs in
Yes-No format. Bottom: Prompt for FPQs in WH format.

I want you to act as a #factual answer# data generator. I will give you a #query# and some #knowledge#
about the #query#.Your task is generate a #factual answer# to the #query# relying on the provided
#knowledge#.
Generation rules are as following:
- Generate the #factual answer# relying on the provided #knowledge#.
- Make sure the #factual answer# you generate is limited to 3 sentences.
- Output the #factual answer# directly.
Here are some examples:

#query#: What was the reason behind Walt Disney’s citizenship in the Nepal?
#knowledge#: ["Walt Disney", "country of citizenship", "United States of America"]
#factual answer#: Walt Disney was not a citizen of Nepal. His country of citizenship was the United
States of America. There is no record or reason behind Walt Disney having citizenship in Nepal.

#query#: ...
#knowledge#: ...
#factual answer#: ...

#query#: ...
#knowledge#: ...
#factual answer#: ...

#query#: WH-question
#knowledge#: item["Ttriplet"]
#factual answer#:

Table 7: The prompt used for GPT-3.5 to generate factual answers for WH-questions. The instruction is indicated by
the yellow text, the demonstrations are represented by the pink text, and the query data is descripited by the purple
text.
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I want you to act as a #non-factual answer# data generator. I will give you a #query# and some
#knowledge# about the #query#. Your task is generate a #non-factual answer# to the #query# that
contradict the given #knowledge#.
Generation rules are as following:
- Generate the #non-factual answer# that contradict the given #knowledge#.
- Your answer is not allowed to start with ’I’m sorry...’ or ’I can’t ...’.
- Make sure the #non-factual answer# you generate is limited to 3 sentences.
- Output the #non-factual answer# directly.
Here are some examples:

#query#: What was the reason behind Walt Disney’s citizenship in the Nepal?
#knowledge#: ["Walt Disney", "country of citizenship", "United States of America"]
#non-factual answer#: Walt Disney’s citizenship in Nepal was due to his deep fascination with the
country’s rich cultural heritage and mystical landscapes, which he believed inspired many of his animated
films. He often mentioned that the serene environment and the spiritual vibes of Nepal helped him connect
with his creative side, leading him to seek citizenship there.

#query#: ...
#knowledge#: ...
#non-factual answer#: ...

#query#: ...
#knowledge#: ...
#non-factual answer#: ...

#query#: WH-question
#knowledge#: item["Ttriplet"]
#non-factual answer#:

Table 8: The prompt used for GPT-3.5 to generate non-factual answers for WH-questions. The instruction is
indicated by the yellow text, the demonstrations are represented by the pink text, and the query data is descripited
by the purple text.

Examples of Training Data for FPQ-Judge

Instruction: You are given a question and an answer, determine if the answer is factual. If the answer is
factual please output only "Yes", otherwise please output only "No".
Input: Q:What was the reason behind Walt Disney’s citizenship in the Nepal?
A: Walt Disney was not a citizen of Nepal. His country of citizenship was the United States of America.
There is no record or reason behind Walt Disney having citizenship in Nepal. Output:
Output: Yes

Instruction: You are given a question and an answer, determine if the answer is factual. If the answer is
factual please output only "Yes", otherwise please output only "No".
Input: Q:What was the reason behind Walt Disney’s citizenship in the Nepal?
A: Walt Disney’s citizenship in Nepal was due to his deep fascination with the country’s rich cultural
heritage and mystical landscapes, which he believed inspired many of his animated films. He often
mentioned that the serene environment and the spiritual vibes of Nepal helped him connect with his
creative side, leading him to seek citizenship there. Output:
Output: No

Table 9: Examples of Training Data for FPQ-Judge
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Model Art Dis Art Gen

NSC NDC NNSC NNDC NNSR NNDR NSC NDC NNSC NNDC NNSR NNDR

ChatGLM3-6B 0.561 0.797 0.644 0.836 0.572 0.805 0.215 0.224 0.189 0.231 0.168 0.237
Baichuan2-7B-Chat 0.412 0.571 0.507 0.634 0.423 0.61 0.454 0.461 0.493 0.534 0.42 0.539
Qwen1.5-7B-Chat 0.742 0.903 0.835 0.952 0.803 0.948 0.503 0.586 0.606 0.673 0.526 0.682
Llama2-7B-Chat 0.722 0.81 0.792 0.857 0.783 0.845 0.446 0.429 0.488 0.513 0.463 0.494
Llama3-8B-instruct 0.77 0.9 0.891 0.959 0.868 0.951 0.644 0.556 0.725 0.664 0.707 0.68

Baichuan2-13B-Chat 0.414 0.588 0.484 0.669 0.409 0.652 0.309 0.269 0.336 0.324 0.303 0.341
Qwen1.5-14B-Chat 0.806 0.941 0.893 0.989 0.857 0.986 0.389 0.445 0.469 0.528 0.409 0.539
Llama2-13B-Chat 0.876 0.95 0.956 0.988 0.962 0.982 0.879 0.867 0.926 0.924 0.921 0.923

GPT-3.5 0.808 0.862 0.829 0.92 0.741 0.898 - - - - - -
GPT-4 0.874 0.963 0.977 0.988 0.96 0.994 - - - - - -
average acc 0.698 0.829 0.781 0.879 0.738 0.867 0.48 0.482 0.529 0.549 0.49 0.55

Model People Dis People Gen

NSC NDC NNSC NNDC NNSR NNDR NSC NDC NNSC NNDC NNSR NNDR

ChatGLM3-6B 0.442 0.625 0.552 0.763 0.623 0.752 0.227 0.308 0.26 0.39 0.28 0.392
Baichuan2-7B-Chat 0.438 0.484 0.537 0.587 0.564 0.603 0.414 0.499 0.516 0.597 0.555 0.6
Qwen1.5-7B-Chat 0.634 0.802 0.805 0.903 0.876 0.902 0.504 0.571 0.632 0.661 0.701 0.656
Llama2-7B-Chat 0.681 0.706 0.806 0.834 0.864 0.819 0.431 0.494 0.53 0.594 0.578 0.598
Llama3-8B-instruct 0.675 0.863 0.831 0.966 0.888 0.968 0.572 0.712 0.695 0.849 0.739 0.858

Baichuan2-13B-Chat 0.473 0.577 0.551 0.664 0.569 0.667 0.316 0.382 0.385 0.436 0.418 0.443
Qwen1.5-14B-Chat 0.703 0.894 0.863 0.973 0.92 0.978 0.437 0.585 0.542 0.712 0.583 0.719
Llama2-13B-Chat 0.824 0.928 0.929 0.988 0.97 0.989 0.909 0.963 0.961 0.989 0.973 0.982

GPT-3.5 0.651 0.707 0.815 0.851 0.862 0.849 - - - - - -
GPT-4 0.783 0.924 0.941 0.988 0.965 0.985 - - - - - -
average acc 0.63 0.751 0.763 0.852 0.81 0.851 0.476 0.564 0.565 0.653 0.603 0.656

Model Place Dis Place Gen

NSC NDC NNSC NNDC NNSR NNDR NSC NDC NNSC NNDC NNSR NNDR

ChatGLM3-6B 0.582 0.793 0.751 0.938 0.891 0.938 0.292 0.346 0.339 0.34 0.366 0.319
Baichuan2-7B-Chat 0.569 0.755 0.694 0.852 0.822 0.853 0.572 0.642 0.643 0.673 0.66 0.68
Qwen1.5-7B-Chat 0.808 0.906 0.913 0.979 0.973 0.976 0.649 0.714 0.708 0.75 0.804 0.76
Llama2-7B-Chat 0.745 0.862 0.839 0.932 0.928 0.926 0.423 0.521 0.508 0.603 0.56 0.595
Llama3-8B-instruct 0.848 0.93 0.923 0.979 0.935 0.979 0.57 0.666 0.651 0.793 0.709 0.808

Baichuan2-13B-Chat 0.446 0.637 0.523 0.823 0.556 0.819 0.347 0.431 0.376 0.498 0.412 0.504
Qwen1.5-14B-Chat 0.891 0.947 0.965 0.991 0.978 0.988 0.646 0.737 0.72 0.831 0.802 0.821
Llama2-13B-Chat 0.931 0.966 0.986 0.995 0.987 0.992 0.859 0.886 0.887 0.939 0.929 0.943

GPT-3.5 0.799 0.885 0.872 0.968 0.909 0.964 - - - - - -
GPT-4 0.891 0.945 0.957 0.993 0.965 0.988 - - - - - -
average acc 0.751 0.862 0.842 0.945 0.895 0.942 0.545 0.618 0.604 0.678 0.655 0.679

Table 10: The evaluation results for FPQs on the discriminative task (referred to as Dis) and the generative task
(referred to as Gen).
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Domain 1-hop 2-hop 3-hop 4-hop 5-hop Total

Art
1988
764

342
168

500
389

748
1038

1391
2610

4969

People
858
923

370
234

937
575

807
943

1925
2222

4897

Place
237
403

244
150

610
509

1133
1043

2770
2889

4994

Table 11: For NSC and NDC, we set the distance between the edited object and the subject to one to five hops. The
upper part of columns 2 to 6 presents the distribution of NSC, and the lower part shows the distribution of NDC.

Figure 11: Accuracy of all models in NSC by hops. Top: Art domain. Middle: People domain. Bottom: Place
domain. Left: The discriminative task. Right: The generative task.
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Figure 12: Accuracy of all models in NDC by hops. Top: Art domain. Middle: People domain. Bottom: Place
domain. Left: The discriminative task. Right: The generative task.

Figure 13: The overall performance comparison between the discriminative task and the generative task by models.
Left: Results in People domain. Right: Results in Place domain.

18



Model Art People Place

ChatGLM3-6B 0.646 0.752 0.566
Baichuan2-7B-Chat 0.892 0.879 0.596
Qwen1.5-7B-Chat 0.583 0.699 0.517
Llama2-7B-Chat 0.404 0.618 0.593
Llama3-8B-instruct 0.565 0.736 0.582

Baichuan2-13B-Chat 0.902 0.87 0.908
Qwen1.5-14B-Chat 0.563 0.649 0.444
Llama2-13B-Chat 0.191 0.395 0.343

GPT-3.5 0.741 0.769 0.674
GPT-4 0.649 0.718 0.632

Average 0.614 0.708 0.586

Table 12: The evaluation results on Yes-No format
TPQs.

Figure 14: The average accuracy of TPQs comparison
across different model size.

Figure 15: The average accuracy of TPQs and FPQs
across domains for Baichuan2 series and Llama2-13B-
Chat.
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