
000 SELF-IMPROVING LOOPS 001 002 FOR VISUAL ROBOTIC PLANNING 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Video generative models trained on expert demonstrations have been utilized as
012 performant text-conditioned visual planners for solving robotic tasks. However,
013 generalization to unseen tasks remains a challenge. Whereas improved generaliza-
014 tion may be facilitated by leveraging learned prior knowledge from additional pre-
015 collected offline data sources, such as web-scale video datasets, in the era of expe-
016 rience we aim to design agents that can continuously improve in an online manner
017 from self-collected behaviors. In this work we thus propose the Self-Improving
018 Loops for Visual Robotic Planning (SILVR), where an in-domain video model
019 iteratively updates itself on self-produced trajectories, and steadily improves its
020 performance for a specified task of interest. We apply SILVR to a diverse suite of
021 MetaWorld tasks, as well as two manipulation tasks on a real robot arm, and find
022 that performance improvements continuously emerge over multiple iterations for
023 novel tasks unseen during initial in-domain video model training. We demonstrate
024 that SILVR is robust in the absence of human-provided ground-truth reward func-
025 tions or expert-quality demonstrations, and is preferable to alternate approaches
026 that utilize online experience in terms of performance and sample efficiency.

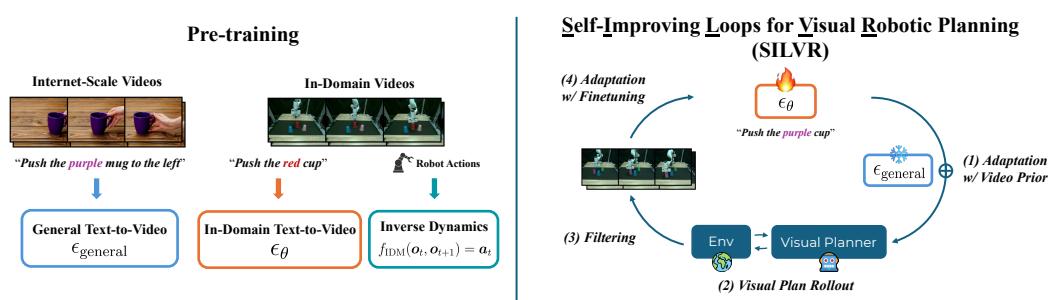
027 1 INTRODUCTION

028 Advancements in video generative modeling capabilities have directly led to their increased utili-
029 zation as visual planners for robotic applications (Du et al., 2024b; Yang et al., 2023b; Ko et al., 2024;
030 Liang et al., 2024). The synthesized visual plan, in the form of video frames generated with text
031 conditioning, can be translated into executable actions via inverse dynamics models (IDMs). Intu-
032 itively, the data on which the video generative models and the IDM are trained can greatly impact
033 robotic performance and generalization. When explicitly optimized on in-domain examples of ex-
034 pert behavior, such visual planners are able to synthesize successful plans for solving demonstrated
035 tasks in a robust manner. However, for arbitrary robotic behaviors, expert-quality demonstrations
036 may not be readily available, and collection may be prohibitively expensive. It is thus worthwhile to
037 investigate how visual planning can automatically *adapt* and *generalize* to novel tasks of interest.

038 Recent work has investigated how base generalization performance for visual planning can be im-
039 proved by integrating knowledge from large-scale datasets of text and video collected from the inter-
040 net. Adapt2Act (Luo et al., 2025) creates a powerful, generalizable, text-conditioned visual planner
041 by combining a large-scale model pretrained on web-scale video data with a video model trained on
042 a small set of in-domain demonstrations via score composition. At a high level, the adapted video
043 model draws upon large-scale motion priors and powerful zero-shot text conditioning capabilities
044 from the web-pretrained video model to facilitate generalization. Simultaneously, it can leverage the
045 in-domain video model to better generate visual plans that respect the environment-specific visual
046 characteristics and dynamics of the robotic setting. The result is an adapted video model that can
047 generate in-domain-appearing plans for novel, unseen tasks conditioned on natural language.

048 Despite extending the amount of data utilized for visual planning to internet-level, the model still
049 only has access to purely offline data. In the era of experience, we aim to design agents that can con-
050 tinuously improve from self-collected behaviors and feedback. In such a way, the agent can break
051 free beyond the limits of offline data and learn by itself to refine performance on a specified task
052 of interest. We therefore propose the Self-Improving Loop for Visual Robotic Planning (SILVR),
053 where the video iteratively self-improves with online experience, particularly with respect to behav-

054
055
056
057
058
059
060
061
062
063



064
065 **Figure 1: SILVR Framework.** SILVR has access to two pretrained video generative models (left):
066 one pretrained generally on internet-scale data and another pretrained on a general set of in-domain
067 demonstrations. By default, SILVR uses the in-domain video model as a visual planner, which when
068 utilized to interact with the environment, is able to achieve successful trajectories even for initially
069 unseen tasks. These trajectories are then iteratively fed back to finetune the in-domain model (right),
070 thus improving the overall quality of future visual planning as a whole through self-collected online
071 experience. SILVR can optionally incorporate internet-scale pretrained video models as prior, which
072 particularly improves performance in the case of real-world robotic experiments.

073 iors previously unseen in the initial dataset of environment demonstrations. As shown in Figure 1,
074 each loop adapts the video generative model (and optionally, the IDM) with environment-grounded
075 data collected by the robotic agents following their own-generated visual plans.

076 SILVR utilizes a sparse “reward” signal to filter online experience for further finetuning of the vi-
077 sual planner; however, it is quite natural to consider alternative methods beyond visual planning or
078 direct finetuning of the generative model. In our experiments we demonstrate that visual planning
079 is superior to direct behavior cloning in both initial generalization performance as well as self-
080 improvement capability, given the same amount of offline data and online experience. Furthermore,
081 the final resulting visual planner can be distilled into a behavior cloning model for both fast and
082 performant decision-making. We further showcase how SILVR is more sample efficient than rein-
083 forcement learning finetuning approaches, making it more applicable to real-world robotic settings.
084 SILVR is also robust to the quality of the sparse reward signal; rather than requiring a human-defined
085 ground-truth success function, we demonstrate that iterative improvements still arise when utilizing
086 a pretrained vision-language model (VLM) to score experience based on the task descriptions.

087 To summarize, SILVR enables superior sample-efficient self-improvement over initially unsee-
088 n tasks through visual planning, naturally integrating internet-scale pretrained video priors over text-
089 alignment and motion when necessary, in comparison to regular action-prediction policies. During
090 deployment, a policy can be “distilled” from SILVR’s components for fast inference, showcasing
091 how SILVR facilitates effective generalization and self-improvement for robotic tasks without sac-
092 rificing final execution speed.

093 We perform extensive evaluations of SILVR on the MetaWorld task suite, focusing on novel tasks
094 unseen during initial training of the in-domain video model. We discover that the success rate of
095 following visual plans synthesized through SILVR indeed continuously improves, by as much as
096 **285%** over 10 iterations. We also apply SILVR to a real-world robot arm for two distinct manipula-
097 tion tasks: selecting and pushing a colored object, and selecting and opening a colored drawer. We
098 show how SILVR also naturally enables the incorporation of priors from internet-scale pretrained
099 video generative models to facilitate task and visual generalization in real-world visual settings
100 and dynamics. We demonstrate that performance for color combinations unseen during the initial
101 offline training improves over multiple iterations through SILVR. Visualizations are provided at
102 silvr-anonymous.github.io/.

103 2 RELATED WORK

104 **Video Generation for Decision Making.** Recent advances in video models have achieved unprece-
105 dented visual quality and physical fidelity for video synthesis (Guo et al., 2023; Yang et al., 2024b;
106 Brooks et al., 2024; Veo-Team et al., 2024; Wang et al., 2025). This has demonstrated promise
107 in summarizing world dynamics through videos (Yang et al., 2024a; Bruce et al., 2024) and has

108 inspired the application of video models to solving decision-making problems (Escontrela et al.,
109 2023; Du et al., 2024a; Yang et al., 2023b; McCarthy et al., 2024; Liang et al., 2024). Prior works
110 have utilized video generative models as reward functions (Luo et al., 2024; Escontrela et al., 2023;
111 Huang et al., 2023), dynamics models (Yang et al., 2023b; Bruce et al., 2024; Valevski et al., 2024),
112 and pixel-based planners (Ko et al., 2024; Ajay et al., 2023; Du et al., 2024b; Zhou et al., 2024). As
113 in UniPi (Du et al., 2024b), we employ video models to predict text-conditioned visual plans that
114 depict future outcomes, which are subsequently translated into actions via inverse dynamics. While
115 the performance of such visual planners may often be limited by their offline pretraining data, our
116 approach allows iterative improvement by learning from online environment interactions.
117

118 **Self-Improving Generative Models.** Continuously improving by learning from self-produced cu-
119 mulative experience is an essential capability of intelligent agents. Prior work has demonstrated the
120 effectiveness of improving LLMs with their self-generated outputs (Yu et al., 2024; Tian et al., 2024;
121 Huang et al., 2022), where the LLM can serve as its own reward function (Yuan et al., 2024) for
122 preference optimization or data synthesizer (Patel et al., 2024) for supervised finetuning. However,
123 a similar self-improvement recipe for video generation models remains underexplored. Most relevant
124 to our work, VideoAgent (Soni et al., 2024) refines video generation through self-conditioning
125 consistency and feedback from a VLM, and collects the successful plan rollouts for finetuning. We
126 instead base our improvement loop on self-adaptation, where we leverage internet-scale video priors
127 to synthesize improved visual plans for tasks unseen during initial in-domain training. Furthermore,
128 our approach can still achieve self-improvement even with an initial model trained on suboptimal
129 data and a notable relaxation on filtering requirements for finetuning data.
130

131 **Reinforcement Learning Finetuning of Behavior Cloning Policies.** Behavior cloning approaches
132 such as Diffusion Policy (Chi et al., 2023), which implements a policy as a diffusion model trained
133 on offline-collected experience, are a performant approach for decision-making. There have been
134 numerous approaches for finetuning pretrained diffusion policies with respect to online experience
135 and rewards. ResIP (Ankile et al., 2025) utilizes a frozen diffusion policy model to propose action
136 predictions, and learns a policy on top using reinforcement learning that transforms it into a more ac-
137 curate action to perform in the environment. DPPO (Ren et al., 2024) treats the sampling procedure
138 of a diffusion policy as an internal Markov Decision Process, and explicitly finetunes the weights of
139 the pretrained diffusion policy with respect to achieved rewards. DSRL (Wagenmaker et al., 2025)
140 utilizes a frozen diffusion policy in a deterministic fashion to map noise samples to action samples,
141 and learns a noise selector through reinforcement learning. In this work, we show that SILVR is
142 more sample efficient than reinforcement learning finetuning of behavior cloning policies, and can
143 achieve faster iterative improvements with respect to online experience.
144

3 METHOD

145 We introduce the Self-Improving Loop for Visual Robotic Planning (SILVR), in which a video gen-
146 erative model initially trained on a general set of in-domain demonstrations iteratively improves its
147 visual planning performance for a particular task of interest in a self-adaptive manner. In Section 3.2,
148 we describe how a small in-domain video model can be integrated with a generally pretrained text-
149 to-video model to produce a strong, generalizable in-domain visual planner for real-world visual
150 settings. Finally, in Section 3.3, we demonstrate how SILVR bootstraps an in-domain video model
151 into a high-performing visual planner for solving a novel robotic control task through iteratively
152 fine-tuning on self-collected experience.
153

3.1 VIDEO MODELS AS VISUAL PLANNERS

154 Synthesizing a visual plan in imagination and then executing it by converting it into actions is an
155 intuitive and effective way to utilize video generative models for decision making. Prior work has
156 applied text-guided video generation successfully for task planning (Du et al., 2024a;b; Ajay et al.,
157 2023), across a variety of robot configurations and environment settings.
158

159 Specifically, we base our implementation on the UniPi framework (Du et al., 2024a), in which a
160 text-to-video model is used to synthesize a text-conditioned sequence of future frames as a task
161 plan. To physically realize the plan, we use a separately trained inverse dynamics model (IDM) to
162 translate consecutive pairs of visual frames into executable robotic actions, which are then directly
163

162

163

Algorithm 1 Self-Improving Loops for Visual Robotic Planning (SILVR)

164

Input: Initial in-domain video model ϵ_θ , Inverse dynamics model f_{IDM} , Frozen internet-pretrained video prior $\epsilon_{\text{general}}$, Number of iterations K , Number of rollouts per iteration N , Environment env , Task prompt g , In-domain initial training data \mathcal{D}_{ini} , Data filter f_r

165

Output: Self-improved in-domain video model $\hat{\epsilon}_\theta$, Optional distilled policy π

166

```

1:  $\hat{\epsilon}_\theta \leftarrow \epsilon_\theta$ 
2:  $\mathcal{D} \leftarrow \mathcal{D}_{\text{ini}}$  or  $\phi$                                  $\triangleright$  Initialize finetuning data with  $\mathcal{D}_{\text{ini}}$  or an empty set
3: for  $i = 1, \dots, K$  do
4:    $\mathcal{D}_{\text{self}} \leftarrow \phi$ 
5:    $\tilde{\epsilon} \leftarrow \text{Adaptation}(\hat{\epsilon}_\theta, \epsilon_{\text{general}}, g)$ 
6:   for  $j = 1, \dots, N$  do
7:      $\text{env.reset}(g)$ 
8:      $\mathcal{D}_{\text{self}} \leftarrow \mathcal{D}_{\text{self}} \cup f_r(\text{Visual_Planning_Rollout}(\text{env}, \tilde{\epsilon}, f_{\text{IDM}}))$ 
9:   end for
10:   $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\text{self}}$ 
11:  Finetune in-domain model  $\hat{\epsilon}_\theta$  with accumulated data  $\mathcal{D}$   $\triangleright f_{\text{IDM}}$  can be optionally finetuned
12: end for
13: Optionally distill  $\hat{\epsilon}_\theta$  into a lightweight policy  $\pi$ 
14: return  $\hat{\epsilon}_\theta, \pi$ 

```

167

168

performed in interaction with the environment. Visual planning offers the practitioner flexible computational tradeoffs; at a high level, replanning often incurs high computational cost but generally increases accurate plan following, whereas replanning infrequently is cheap but may suffer from error compounding. In this work, we focus on how such a video generative model can generalize and self-adapt to a novel task of interest through online self-collected experience.

169

170

3.2 INVERSE PROBABILISTIC ADAPTATION

171

172

Prior work (Luo et al., 2025) has investigated how in-domain demonstration data can best be integrated with large-scale pretrained video models for generalizable visual planning; in this work we leverage similar insights to successfully integrate on-the-fly experience into visual planners for iterative self-improvement. Inverse Probabilistic Adaptation (Luo et al., 2025; Yang et al., 2023a) (IPA) is a training-free approach that adapts generally pretrained text-to-video models for domain-specific video generation. To perform adaptation, the score predicted by an in-domain video model ϵ_θ trained on a small sample of demonstrations is composed with the score prediction of a web-scale pretrained model $\epsilon_{\text{general}}$ during the sampling procedure, as depicted in the function below:

173

174

$$\tilde{\epsilon}_{\text{inv}} = \epsilon_{\text{general}}(\tau_t, t) + \alpha \left(\epsilon_{\text{general}}(\tau_t, t \mid \text{text}) + \gamma \epsilon_\theta(\tau_t, t \mid \text{text}) - \epsilon_{\text{general}}(\tau_t, t) \right) \quad (1)$$

175

176

where γ is the prior strength, and α is the guidance scale of text-conditioning. Intuitively, the small in-domain text-to-video model serves as a probabilistic knowledge prior that guides the generation process of the small in-domain model during sampling. Prior work (Luo et al., 2025) has found that a visual planner constructed through IPA exhibits both strong generalization capability and in-domain understanding; it is able to synthesize performant visual plans that appear in-domain even for novel tasks unseen during video model training. This may stem from the fact that IPA utilizes the large-scale pretrained model, which inherently has stronger text-conditioned generalization, as the main denoiser. While Luo et al. (2025) based their conclusions on experiments in simulated environments, we believe the true promise of web-scale pretrained models lies in their powerful prior for real-world generalization scenarios, as demonstrated by our Panda arm object manipulation evaluations.

177

178

3.3 SELF-IMPROVING LOOPS FOR VISUAL ROBOTIC PLANNING

179

180

For visual planning approaches, task performance is fundamentally a fixed function of the video models used, and by extension, the data observed. Even when utilizing IPA, which can improve text-conditioned generalization to novel tasks by effectively increasing the amount of offline data utilized to internet-scale, performance is set after adaptation. As a result, in this paper, we wish to design agents that can not only leverage offline data as a helpful prior for generalization, but also extend beyond it to continuously improve from self-collected online experience data.

216 We therefore propose the Self-Improving Loop for Visual Robotic Planning (SILVR), a framework
217 that combines offline data with online experience to create a visual planner that iteratively improves
218 for a particular task of interest. SILVR is initialized with an in-domain video model ϵ_θ pre-trained on
219 a set of task demonstrations within the environment. In each iteration, the in-domain video model
220 is optionally integrated with a large-scale pretrained video model $\epsilon_{\text{general}}$ through IPA. The video
221 model is utilized as a visual planner to interact with the environment and solve tasks not necessarily
222 observed in the initial training stage; in SILVR, the trajectories collected through this interaction
223 are used for further finetuning of the in-domain video model (as shown in Algorithm 1). As the
224 in-domain model adapts to its own self-collected experience from deployment on a novel task, it
225 improves its ability to solve that particular task over time. In this way, SILVR iteratively bootstraps
226 an in-domain video model into a strong visual planner for a novel task of interest through a self-
227 adapting improvement cycle.
228

229 We demonstrate that the visual planning approach enables strong self-improvement in a virtuous
230 loop in a sample efficient manner, compared to reinforcement learning finetuning of behav-
231 ior cloning models. We further stress-test our framework through ablations, and demonstrate that
232 ground-truth human-defined reward functions can be replaced with an automated VLM success
233 signal without inhibiting iterative self-improvement from occurring, and that SILVR can handle subop-
234 timal initial data quality. We find that SILVR is a robust approach for iteratively adapting to a task
235 through effective utilization of both offline data and online experience, and reduces requirements on
236 human-supplied components both in terms of feedback and demonstration quality.
237

238 Whereas visual planning demonstrates strong self-improvement capabilities, and can flexibly inte-
239 grate in benefits from large-scale pretrained video models, it can be slow in execution compared
240 to direct policy approaches. However, after applying SILVR, the final video planning components
241 can be distilled into a lightweight policy for future inference. We demonstrate in our experiments
242 that such a final distilled policy achieves higher performance than applying self-improvement tech-
243 niques to such a policy from the start, and can even demonstrate slight improvement over the final
244 performance of the visual planner teacher. Thus, SILVR enables a successful balance between vi-
245 sual planning for improved and sample-efficient utilization of online experience, and a lightweight
246 distilled policy for final inference during deployment.
247

248 4 EXPERIMENTS

249 We investigate how SILVR can improve an in-domain video model initially trained on a limited
250 set of demonstrations and tasks to further solve novel robotic control tasks through self-collected
251 experience. We focus on two main robot settings to evaluate SILVR: the MetaWorld-v2 (Yu et al.,
252 2020) simulated environment, and a real-world Franka Emika Panda robot arm. We describe our
253 experimental setup for each environment, as well as different design decisions considered.
254

255 4.1 EXPERIMENTAL SETUP AND EVALUATION

256 **Synthetic Environment:** MetaWorld encompasses a wide selection of tasks, allowing us to thor-
257oughly assess visual planning performance trends through SILVR for many choices of held-out novel
258 tasks. Furthermore, MetaWorld provides ground-truth success evaluations, enabling strictly quanti-
259 tative comparisons on task performance as well as iterative improvement abilities. For MetaWorld
260 experiments, we first collect 25 demonstrations from 8 different tasks (denoted with an asterisk in
261 Table A2) for initial in-domain video model and inverse dynamics model training. Subsequently,
262 we instantiate SILVR with both models on 12 unseen tasks for self-improvement. In each SILVR
263 iteration, we collect 30 trajectories rendered from the environment via visual planning, and finetune
264 both in-domain video model and inverse dynamics model using filtered successful data. Due to the
265 sim-to-real gap, we disable the use of internet-scale video prior in MetaWorld by default.
266

267 **Real-World Environment:** Deploying SILVR on a robot arm in the real world demonstrates practi-
268 cality of the approach, as well as tests robustness to real-world confounding factors such as lighting
269 conditions. In one experiment, we utilize a Franka Emika Panda robot arm for the task of pushing
270 cups specified by a user-provided text prompt. In contrast to the MetaWorld setups, where each task
271 of interest has its own distinct visual setting, we construct the cup experiment as a consistent scene
272 setting of 3 differently colored cups (Figure 1). Success is then measured in terms of whether the
273 robot arm can accurately locate a specified color cup and push it forward. To test generalization, con-
274ditioned on natural language, we evaluate successful planning and execution performance on unseen
275

Iteration	0	1	2	3	4
DSRL (w/ GT Filter)	9.4 (± 1.7)	8.3 (± 1.6)	7.4 (± 0.9)	7.5 (± 3.4)	7.7 (± 3.4)
BCIL (w/ GT Filter)	5.6 (± 0.6)	12.3 (± 2.3)	20.9 (± 1.6)	23.3 (± 0.4)	23.2 (± 0.9)
SILVR (w/ GT Filter)	14.7 (± 0.6)	27.7 (± 1.9)	33.5 (± 2.2)	43.5 (± 2.6)	44.2 (± 4.5)
SILVR (w/ VLM Filter)	17.0 (± 0.6)	24.4 (± 0.9)	28.7 (± 2.8)	34.4 (± 1.4)	38.4 (± 1.3)
SILVR-Distilled DP					44.2 (± 4.5) \rightarrow 49.2 (± 3.4)

Table 1: **SILVR Results on MetaWorld**. We report the average performance over 12 unseen MetaWorld tasks for SILVR and all baseline methods, each aggregated over three seeds. We also provide the performance of diffusion policy distilled from the video model from the last SILVR iteration, denoted as “SILVR-Distilled DP”. SILVR outperforms all baselines by a large margin since Iteration 1. Furthermore, SILVR-Distilled DP achieves the best overall performance.

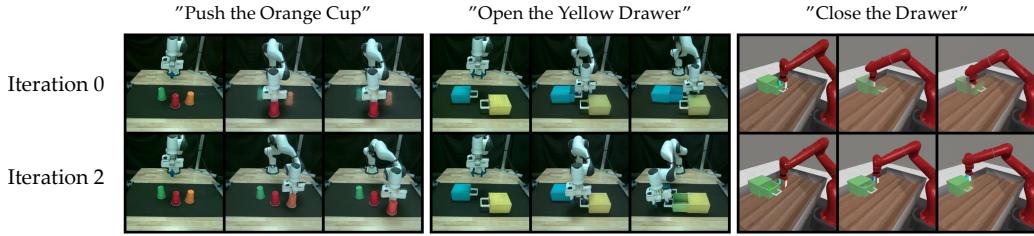


Figure 2: **Qualitative results on visual plans improvement.** We illustrate visual plans for a variety of tasks and settings at Iteration 0 (top) and Iteration 2 (bottom) with random initial object locations. Although the visual plan at Iteration 0 renders blurry objects and fails to complete the specified tasks, our approach synthesizes the correct visual plan (with slight color drift) after two SILVR iterations.

cup colors. In practice, we use a set of four colors (red, green, blue, pink) for in-domain training and two novel colors for testing generalization (orange, purple). This translates to 12 possible unique tasks formed from combinations of the seen colors, and we train our in-domain video model with 10 human-teleoperated demonstrations of each for a total of 120 training videos. Then, generalization evaluation is calculated as an average over 5 rollouts for every possible pair combination of the seen color set combined with the novel color, for a total of 30 videos. For both novel colors, we initialize SILVR using the same pretrained in-domain video model. In each SILVR iteration, we combine self-collected data with the initial demonstrations for in-domain finetuning.

In a second real-robot experiment, we utilize the Panda arm to select and open a drawer specified via a user-provided text prompt. The scene is constructed as two distinctly colored closed drawers, where the robot is prompted with one particular color and expected to open its corresponding drawer. We use a set of three colors (red, green, blue) for in-domain training and one novel color (yellow) for testing generalization. With 24 possible drawer placement combinations for each ordered pair of seen colors, of which there are six, this amounts to a total of 144 human-teleoperated demonstration training videos. Consistent with the cup pushing experiment, we use half the possible combinations for evaluation; therefore, performance is calculated as an average over 12 rollouts for every possible pairing of the novel color with a seen color, for a total of 36 self-collected trajectories per iteration.

For both real-robot experiments, success is judged by a human for evaluation. The same success signal is also used to perform data filtering on the rollouts. We study the impact of data filtering in Section 4.5, and enable adaptation with internet video priors through IPA by default.

Implementation Details: We implement our in-domain video model based on AVDC (Ko et al., 2024), with an added cross-attention layer to each level of the denoising U-Net to further improve text-conditioning capabilities. We train in-domain video models to predict 8 future frames conditioned on the current observation and task prompt, with a frame skip of 1 for MetaWorld and 16 for real-robot experiments. For the large-scale pretrained text-to-video model, we use AnimateDiff (Guo et al., 2023) ($\sim 2B$ parameters), which is pretrained on WebVid-10M (Bain et al., 2021). Each iteration of SILVR finetunes the in-domain video model for 10,000 steps with a learning rate of 1e-6 on MetaWorld and 1e-5 on Panda Arm drawer opening tasks, and 8,000 steps with a learning rate of 2e-5 on Panda Arm pushing tasks. We investigate two IDM implementations; one that follows prior work (Luo et al., 2025) that implements the IDM as a MLP network that takes in the

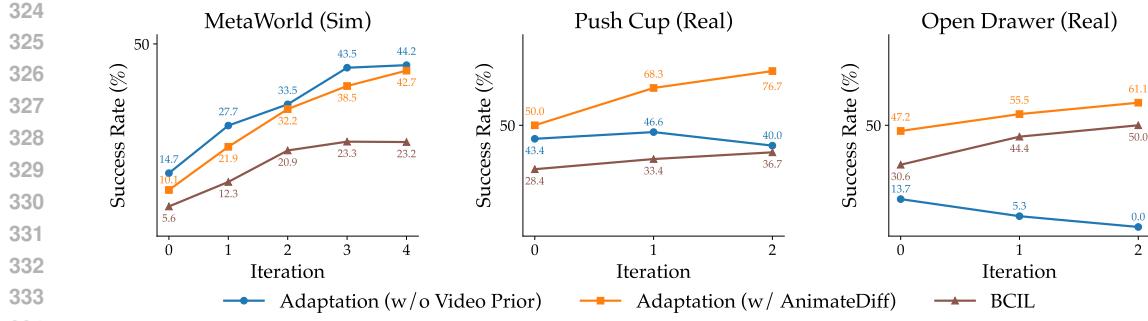


Figure 3: **SILVR Results in comparison to Behavior Cloning Improvement Loop (BCIL)**. We report the average performance over 12 unseen MetaWorld tasks, as well as novel pushing and drawer opening tasks for Panda arm experiments across several iterations of self-improvement (x-axis). Numbers in the graph correspond to success rate achieved (y-axis).

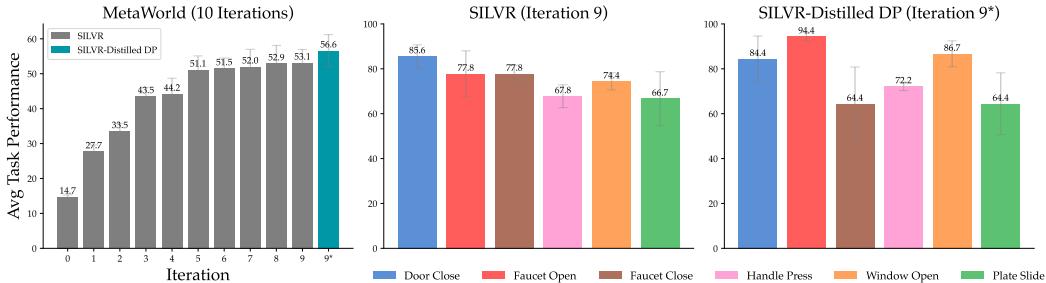


Figure 4: **SILVR results on MetaWorld for 10 iterations**. We report effects of training SILVR on an extended amount of iterations. On the left plot, we show that performance continues to monotonically increase, but with diminishing improvements and effective saturation past iteration 5. On the middle and right plots we visualize a comparison between the final iteration visual planner against its distilled student BC policy from the visual planner across 6 tasks, where we observe that certain tasks actually improve after distillation.

outputs of a VC-1 (Majumdar et al., 2023) encoder model, finetuned on in-domain demonstrations. Whereas the MLP-IDM was sufficient for real-world experiments, we found improved performance when using a Diffusion-IDM (DIDM), which is implemented as a Diffusion Policy (Chi et al., 2023) with an additional goal frame provided as conditioning, for simulated settings. Additional details on IDM design and hyperparameters are provided in Section B. For MetaWorld experiments, the DIDM is iteratively finetuned on the online collected experience along with the video model.

4.2 SILVR VIA FILTERED FINETUNING

We report incremental visual planning results for MetaWorld through five SILVR iterations, against two self-improving baseline methods built off of Diffusion Policy (DP) (Chi et al., 2023): DSRL (Wagenmaker et al., 2025) and Behavior Cloning Improvement Loop (denoted as “BCIL”). We initialize DSRL and BCIL with a Diffusion Policy trained on the same in-domain data as used for in-domain video model and inverse dynamics model pre-training in SILVR. We utilize the ground-truth task success signal to filter the same amount of self-collected data per iteration and finetune models with only successful trajectories. In Table 1, the performance is averaged over 12 unseen MetaWorld tasks and aggregated over 3 seeds. Despite the same initial in-domain data being shared across all methods, we observe that the visual planning approach achieves better performance than DP-based approaches at Iteration 0, laying solid foundations for subsequent improvement. Compared to DP, which learns to map observations to actions directly, visual planning decouples dynamics modeling from action prediction. We hypothesize that the separately learned environment visual dynamics is easier to transfer when solving a novel task, leading to stronger base generalization performance through visual planning. While DSRL fails to improve and BCIL quickly saturates at a low success rate after several iterations, SILVR continuously improves and consistently outperforms the baselines by a large margin, demonstrating its high sample efficiency.

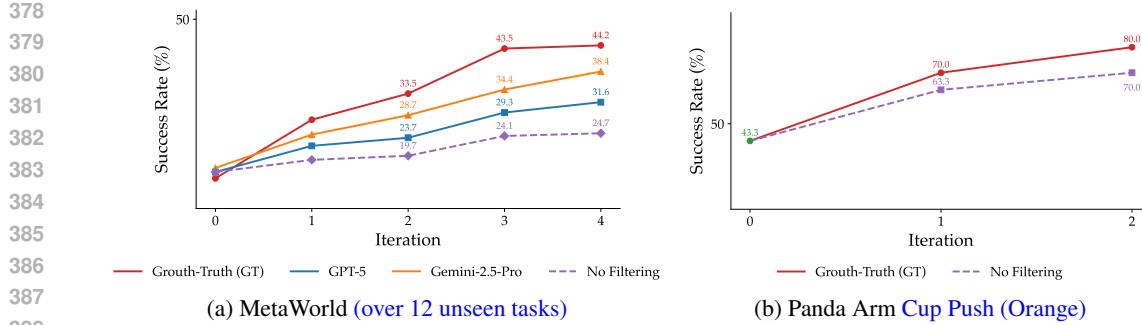


Figure 5: **Ablations on data filtering.** We compare the effect filtering has on success rate (y-axis) across iterations of finetuning (x-axis), on both MetaWorld (5a) and Panda arm (5b) setups. On MetaWorld (left plot), we further report accuracy when filtering is performed by a VLM. We observe SILVR consistently improves task performance without access to ground-truth filtering signals.

Our results suggest that visual planning has some default generalization and self-improvement benefits for decision-making compared to using direct action-prediction BC policies. We hypothesize that modeling consistent visual motions can extract more training signal from the provided data than modeling action sequences directly, as there is more supervisory training signal from pixels than low-dimensional actions. Indeed, as shown in the MetaWorld portion of Figure 2, for initial iteration 0 on a novel task concerning an unseen object, the visual planner still manages to generate coherent motions for the robot arm even if it blurs out the specific novel object interaction. These coherent motions, even if the specific object interaction is not modeled correctly (or even blurred) initially, can still be accurately translated by the IDM into meaningful robot actions; thus visual planning may have additional generalization benefits. On the other hand, the basic BC policy does not model visual details but predicts a sequence of actions entirely from the conditioning frame; having overfit to its training set, when faced with a novel object in the scene it may predict highly suboptimal actions, thus leading to poorer generalization.

4.3 SILVR WITH INTERNET-SCALE VIDEO PRIOR

One important observation from Table 1 is that the generalization capability of the visual planner in solving novel tasks has a fundamental impact on self-improving dynamics. When the task of interest is exceptionally challenging or involves confounding factors, the capacity of the in-domain video model alone might not be sufficient to elicit self-improving behaviors. In the real-world experimental setup, we adapt our in-domain model with an internet-pretrained video prior, AnimateDiff, to further strengthen the zero-shot generalization and adaptability of the visual planner. In Figure 2, we qualitatively illustrate the improvements of generated visual plans after two SILVR iterations in combination with AnimateDiff. Without observing any demonstrations of the specified tasks at Iteration 0, the visual planner can synthesize plans with blurry objects where the robot arm executes the task incorrectly. On the other hand, two iterations of SILVR not only improve the clarity of the visual plans, but also demonstrate successful task completion behaviors in the same initial layout.

In the middle plot of Figure 3, we report the average performance of pushing cups in two unseen colors, orange and purple, aggregated over 30 rollouts per iteration. We discover that SILVR consistently improves over iterations when adapting with AnimateDiff. In the rightmost plot of Figure 3, we provide the SILVR results across iterations on opening a novel colored drawer, averaged over 36 rollouts per iteration, and find that SILVR bootstraps initial visual planning performance with the help of the internet video prior. However, in both real-world experiments, the visual planner struggles to improve or even continuously deteriorates without it. This highlights the importance of internet video prior in self-improving behavior under real-world setups with increased visual complexity and task difficulty. In simulated environments like MetaWorld, we observe that the self-improving trend occurs regardless of whether internet video priors are utilized or not, indicating that the benefits of utilizing internet priors may diminish when there is a substantial sim-to-real gap.

Consistent with our findings on MetaWorld, action-predictive behavior cloning has a lower base generalization performance and slower self-improvement trend compared with SILVR on real robots, as shown in the BCIL curves of the middle and right plots in Figure 3. This highlights a key benefit of SILVR: its ability to seamlessly utilize internet-pretrained video prior for improved text-conditioned generalization and iterative online improvement in real-world robotic settings.

432 4.4 SILVR SATURATION AND DISTILLATION
433

434 To further understand the limits of self-improving behavior over iterations, we provide MetaWorld
435 results for 10 SILVR iterations in Figure 4. We find that SILVR saturates at Iteration 5 with marginal
436 gains in the following iterations. We hypothesize that this may potentially arise from discovered
437 local minima in task-specific strategy, where similar experiences are collected until saturation. We
438 believe that a possible mitigation is to introduce the notion of “exploration” into the visual planning
439 framework to avoid “unimodal” behavior. Such research may look into how to extract out more
440 diverse plans from the video planner by exploiting the stochastic nature of visual generative models.
441 We leave this investigation as promising future work.

442 While visual planning approaches demonstrate strong performance in task generalization, their in-
443 ference speed is bottlenecked by the video generation process, which can be prohibitively expensive
444 for downstream applications. To mitigate this, we distill the video model from the last SILVR iteration
445 into a lightweight diffusion policy. As shown in Figure 4, the SILVR-distilled diffusion policy at
446 Iteration 9 significantly outperforms the BCIL baseline and achieves the best overall performance.
447 A slight performance increase after distillation is a trend consistently observed across iterations,
448 such as demonstrated in Iteration 4 of Table 1. This further demonstrates that SILVR not only ex-
449 cels in sample-efficient task adaptation, but also supports high inference efficiency for downstream
450 deployment via distillation.

451 4.5 IMPACT OF DATA FILTERING SIGNALS ON SILVR
452

453 While utilizing self-collected data is a promising approach for scalable self-improvement, filtering
454 collected experience often requires some level of human intervention, whether through manually de-
455 termining successful trajectories or designing a heuristic for quality control. We therefore investigate
456 how different filtering techniques affect SILVR performance, or if SILVR is robust to such design
457 decisions. For both MetaWorld and Panda Arm settings, we compare between using a ground-truth
458 or human-evaluated notion of success to filter what trajectories the in-domain model is finetuned
459 on, against not using any filtering at all and utilizing all achieved trajectories irregardless of out-
460 come. While ground-truth success signals can often be inaccessible, we investigate whether the
461 current state-of-the-art VLMs, GPT-5 and Gemini-2.5-Pro, can provide useful task success signals
462 and serve as a robust alternative to ground-truth signals on MetaWorld.

463 In Figure 5a, we observe that both GPT-5 and Gemini-2.5-Pro can still enable self-improving be-
464 havior across SILVR iterations when serving as a task success judge, in which Gemini achieves the
465 best performance among all VLM filters. We also discover that without any data filtering, the im-
466 provement over each SILVR iteration appears to be marginal compared to the filtered setup. On the
467 other hand, in Figure 5b, for the Panda arm, we observe that no filtering still facilitates continuous
468 improvement over every iteration through SILVR when adapted with the internet video prior. **This**
469 **is an encouraging finding, as it suggests that even for settings where manual curation of experience**
470 **is expensive, self-improvement can still occur.** We attribute this property to score composition (Luo
471 et al., 2025; Yang et al., 2023a); suboptimal demonstrations can still communicate useful infor-
472 mation to the in-domain model, such as visuals, valid motions, and interaction dynamics of the specific
473 deployment environment that when combined with an internet-pretrained video model can result in
474 a final composed output plan can be both performant as well as appearing in-domain. As such, the
475 success rate may still improve from iteration to iteration without filtering, as the in-domain model
476 improves its modeling of environment dynamics and visuals, even from suboptimal self-collected
477 experience over iterations. This is an encouraging finding, as it suggests that even for settings where
478 manual curation of experience is expensive, self-improvement can still occur.

479 4.6 SILVR WITH SUBOPTIMAL DATA

480 Visual planners are usually trained explicitly on expert in-domain demonstrations, which commu-
481 nicate not only environment-specific visual characteristics, physics, and interaction dynamics to the
482 generative model during optimization, but also a notion of success and optimal behavior. However,
483 for arbitrary environments, such expert-quality in-domain data can be expensive to collect and curate
484 at scale. On the other hand, suboptimal demonstration data, such as utilizing random actions during
485 the collection procedure, may generally be cheaper to gather; however, training on a large dataset of
low-quality data may not result in a performant visual planning model capable of generating plans

Figure 6: **Ablation studies on in-domain data quality.** On the left plot, we report SILVR performance averaged over 12 novel tasks and 3 seeds when the provided initial demonstrations of seen tasks are expert-quality or suboptimal. We find that SILVR successfully self-improves despite suboptimal data initialization. In the middle and rightmost plots, we visualize 6 tasks that have the most distinctive performance between expert and suboptimal SILVR initializations at the final iteration.

worth following. A natural question is how robust SILVR is to initialization data, or whether a performant video planner can still be created when only suboptimal demonstrations are available.

In our setting, we construct suboptimal data as simulated trajectories where 70% of the time a random action is selected and 30% an expert action is utilized. As a consequence of this interaction procedure, the resulting trajectories are unable to successfully solve complex tasks. In MetaWorld we find that SILVR still demonstrates continuously improving behavior when initialized with suboptimal data, as shown in the leftmost plot of Figure 6, highlighting the robustness of SILVR to initial data quality. Additionally, we select 6 tasks whose performance differs most between the expert and suboptimal setup, and report their performance on Iteration 4 in the middle and rightmost plots of Figure 6. We find that Faucet Open, Faucet Close and Plate Slide benefit most from initialization with expert demonstrations, indicating that the skills acquired from seen tasks can be essentially useful when solving these novel tasks. Meanwhile, Drawer Close, Reach Wall, Button Press Wall can benefit more from random exploration than expert actions from specific seen tasks, leading to stronger performance when the in-domain model is initially trained with suboptimal demonstrations.

5 LIMITATIONS AND CONCLUSION

Limitations. SILVR implicitly assumes that the initial in-domain model, optionally through adaptation with an internet-pretrained video model, achieves a reasonable success rate to collect online experience and self-improve the models. This assumption may not hold when the novel task is too challenging. Additionally, the choice of internet-pretrained video model poses a trade-off on video quality (hence the strength of the motion prior, etc.) against computation cost. Whereas in this work we choose AnimateDiff (Guo et al., 2023) as a large-scale pretrained video model with a reasonable generation quality and good computational efficiency, more recent video generative models can be explored for better visual quality and potential improvements to downstream robotic performance.

Furthermore, there may be situations where precise video modeling is more difficult than action prediction directly, such as for dexterous manipulation. In such complex visual cases, it is possible that self-improvement through visual planning would take more iterations and samples than BCIL; Meanwhile, we expect future improvements in pretrained video models to mitigate this.

Lastly, SILVR achieves the best self-improvement performance when there is some initial success rate on the novel task; however, it may run into difficulties when dealing with the cold start problem. Just as exploration can help address the cold start problem for standard reinforcement learning, we believe that investigating how to improve exploration for the visual planning framework in a principled manner is a promising future direction to study.

Conclusion. We present SILVR, a self-improvement loop for solving novel robotic tasks via visual planning. Initializing from an in-domain video model pretrained on a small set of demonstrations, SILVR iteratively updates the visual planner through self-collected online experience. In comparison to equivalent setups with behavior cloning, or utilizing online experience through reinforcement learning finetuning, we find that SILVR achieves superior self-improvement capabilities and demonstrates sample efficiency. We demonstrate that SILVR is able to succeed as a self-improving visual planner not only for synthetic environments, but also deployed on a robot arm in the real world.

540 6 REPRODUCIBILITY STATEMENT

541 To support reproducibility, all codebases utilized in this submission were modified versions of publicly
542 available repositories. Furthermore, we provide extensive details of hyper parameters and settings both in the main body of the text as well as in the Appendix. We also commit to open sourcing
543 our code upon acceptance.

544 REFERENCES

545 Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenenbaum, Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models
546 for hierarchical planning. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023. 3

547 Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
548 to refinement-residual rl for precise assembly. In *2025 IEEE International Conference on Robotics
549 and Automation (ICRA)*, pp. 01–08. IEEE, 2025. 3

550 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
551 image encoder for end-to-end retrieval. In *IEEE International Conference on Computer Vision
552 (ICCV)*, 2021. 6

553 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
554 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
555 generation models as world simulators. *OpenAI Blog*, 2024. URL <https://openai.com/research/video-generation-models-as-world-simulators>. 2

556 Jake Bruce, Michael Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
557 Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, Yusuf Aytar, Sarah Bechtle,
558 Feryal M. P. Behbahani, Stephanie Chan, Nicolas Manfred Otto Heess, Lucy Gonzalez, Simon
559 Osindero, Sherjil Ozair, Scott Reed, Jingwei Zhang, Konrad Zolna, Jeff Clune, Nando de Freitas,
560 Satinder Singh, and Tim Rocktaschel. Genie: Generative interactive environments. *arXiv preprint
561 arXiv:2402.15391*, 2024. 2, 3

562 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
563 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Proceedings of
564 Robotics: Science and Systems (RSS)*, 2023. 3, 7, 15

565 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
566 Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in Neural
567 Information Processing Systems*, 36, 2024a. 3

568 Yilun Du, Sherry Yang, Pete Florence, Fei Xia, Ayzaan Wahid, brian ichter, Pierre Sermanet, Tianhe
569 Yu, Pieter Abbeel, Joshua B. Tenenbaum, Leslie Pack Kaelbling, Andy Zeng, and Jonathan Tomp-
570 son. Video language planning. In *International Conference on Learning Representations (ICLR)*,
571 2024b. 1, 3

572 Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay Jain, Xue Bin Peng, Ken Goldberg, Young-
573 woon Lee, Danijar Hafner, and Pieter Abbeel. Video prediction models as rewards for reinforce-
574 ment learning. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2023. 3

575 Yuwei Guo, Ceyuan Yang, Anyi Rao, Yaohui Wang, Yu Qiao, Dahua Lin, and Bo Dai. Animatediff:
576 Animate your personalized text-to-image diffusion models without specific tuning. *arXiv preprint
577 arXiv:2307.04725*, 2023. 2, 6, 10, 15

578 Yuwei Guo, Ceyuan Yang, Anyi Rao, Maneesh Agrawala, Dahua Lin, and Bo Dai. SparseCtrl:
579 adding sparse controls to text-to-video diffusion models. In *European Conference on Computer
580 Vision (ECCV)*, 2024. 15

581 Jiaxin Huang, S. Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei Han. Large
582 language models can self-improve. In *Conference on Empirical Methods in Natural Language
583 Processing*, 2022. 3

594 Tao Huang, Guangqi Jiang, Yanjie Ze, and Huazhe Xu. Diffusion reward: Learning rewards via
595 conditional video diffusion. *arXiv preprint arXiv:2312.14134*, 2023. 3
596

597 Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B. Tenenbaum. Learning to act
598 from actionless videos through dense correspondences. In *International Conference on Learning
599 Representations (ICLR)*, 2024. 1, 3, 6, 15, 16

600 Junbang Liang, Ruoshi Liu, Ege Ozguroglu, Sruthi Sudhakar, Achal Dave, Pavel Tokmakov, Shuran
601 Song, and Carl Vondrick. Dreamitate: Real-world visuomotor policy learning via video genera-
602 tion. *arXiv preprint arXiv:2406.16862*, 2024. 1, 3
603

604 Calvin Luo, Mandy He, Zilai Zeng, and Chen Sun. Text-aware diffusion for policy learning. In
605 *Advances in Neural Information Processing Systems*, volume 37, 2024. 3
606

607 Calvin Luo, Zilai Zeng, Yilun Du, and Chen Sun. Solving new tasks by adapting internet video
608 knowledge. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
609 <https://openreview.net/forum?id=p01BR4nj1Y>. 1, 4, 6, 9, 14, 15, 16
610

611 Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan
612 Jain, Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, Pieter Abbeel, Jitendra Malik, Dhruv Batra,
613 Yixin Lin, Oleksandr Maksymets, Aravind Rajeswaran, and Franziska Meier. Where are we in
614 the search for an artificial visual cortex for embodied intelligence? In *Conference on Neural
Information Processing Systems (NeurIPS)*, 2023. 7, 14
615

616 Robert McCarthy, Daniel C.H. Tan, Dominik Schmidt, Fernando Acero, Nathan Herr, Yilun Du,
617 Thomas George Thuruthel, and Zhibin Li. Towards generalist robot learning from internet video:
618 A survey. *arXiv preprint arXiv:2404.19664*, 2024. 3
619

620 Ajay Patel, Markus Hofmarcher, Claudiu Leoveanu-Condrei, Marius-Constantin Dinu, Chris
621 Callison-Burch, and Sepp Hochreiter. Large language models can self-improve at web agent
622 tasks. *arXiv*, 2405.20309, 2024. 3
623

624 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
625 dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
626 tion. *arXiv preprint arXiv:2409.00588*, 2024. 3
627

628 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
629 national Conference on Learning Representations (ICLR)*, 2021. 16
630

631 Achint Soni, Sreyas Venkataraman, Abhranil Chandra, Sebastian Fischmeister, Percy Liang,
632 Bo Dai, and Sherry Yang. Videoagent: Self-improving video generation. *arXiv preprint
633 arXiv:2410.10076*, 2024. 3
634

635 Ye Tian, Baolin Peng, Linfeng Song, Lifeng Jin, Dian Yu, Lei Han, Haitao Mi, and Dong Yu. Toward
636 self-improvement of LLMs via imagination, searching, and criticizing. In *Conference on Neural
Information Processing Systems (NeurIPS)*, 2024. 3
637

638 Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
639 game engines. *arXiv preprint arXiv:2408.14837*, 2024. 3
640

641 Veo-Team, :, Agrim Gupta, Ali Razavi, Andeep Toor, Ankush Gupta, Dumitru Erhan, Eleni Shaw,
642 Eric Lau, Frank Belletti, Gabe Barth-Maron, Gregory Shaw, Hakan Erdogan, Hakim Sidahmed,
643 Henna Nandwani, Hernan Moraldo, Hyunjik Kim, Irina Blok, Jeff Donahue, José Lezama, Kory
644 Mathewson, Kurtis David, Matthieu Kim Lorrain, Marc van Zee, Medhini Narasimhan, Miaosen
645 Wang, Mohammad Babaeizadeh, Nelly Papalampidi, Nick Pezzotti, Nilpa Jha, Parker Barnes,
646 Pieter-Jan Kindermans, Rachel Hornung, Ruben Villegas, Ryan Poplin, Salah Zaiem, Sander
647 Dieleman, Sayna Ebrahimi, Scott Wisdom, Serena Zhang, Shlomi Fruchter, Signe Nørly, Weizhe
648 Hua, Xinchen Yan, Yuqing Du, and Yutian Chen. Veo 2. 2024. URL <https://deepmind.google/technologies/veo/veo-2/>. 2
649

650 Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
651 Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
652 latent space reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025. 3, 7, 17
653

648 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
649 Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
650 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pan-
651 deng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
652 Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
653 Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
654 Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
655 Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han,
656 Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. *arXiv*
657 *preprint arXiv:2503.20314*, 2025. 2

658 Mengjiao Yang, Yilun Du, Bo Dai, Dale Schuurmans, Joshua B Tenenbaum, and Pieter Abbeel.
659 Probabilistic adaptation of text-to-video models. *arXiv preprint arXiv:2306.01872*, 2023a. 4, 9

660 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
661 Abbeel. Learning interactive real-world simulators. *arXiv preprint arXiv:2310.06114*, 2023b. 1,
662 3

664 Sherry Yang, Jacob Walker, Jack Parker-Holder, Yilun Du, Jake Bruce, Andre Barreto, Pieter
665 Abbeel, and Dale Schuurmans. Video as the new language for real-world decision making. *arXiv*
666 *preprint arXiv:2402.17139*, 2024a. 2

667 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
668 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
669 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024b. 2

671 Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
672 Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
673 In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020. 5

674 Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao, and Zhou Yu. Teaching language models
675 to self-improve through interactive demonstrations. In Kevin Duh, Helena Gomez, and Steven
676 Bethard (eds.), *Proceedings of the 2024 Conference of the North American Chapter of the As-
677 sociation for Computational Linguistics: Human Language Technologies (Volume 1: Long Pa-
678 pers)*, pp. 5127–5149, Mexico City, Mexico, June 2024. Association for Computational Linguis-
679 tics. doi: 10.18653/v1/2024.naacl-long.287. URL <https://aclanthology.org/2024.naacl-long.287/>. 3

681 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
682 and Jason E Weston. Self-rewarding language models. In *International Conference on Machine
683 Learning (ICML)*, 2024. 3

685 Siyuan Zhou, Yilun Du, Jiaben Chen, Yandong Li, D. Y. Yeung, and Chuang Gan. Robodreamer:
686 Learning compositional world models for robot imagination. *arXiv preprint arXiv:2404.12377*,
687 2024. 3

688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 A TASKS AND TEXT PROMPTS

703
 704 Below we list the tasks and associated text prompts used for evaluating SILVR. Tasks with demon-
 705 strations seen during training of the in-domain model are denoted with an asterisk.

707 Task	708 In-Domain Model Prompts	709 Internet-Domain Model Prompts
708 Coffee Button*	709 coffee button	a robot arm pressing the coffee machine button
709 Door Open*	710 door open	a robot arm reaching a door handle and pulling it to open the door
710 Drawer Open*	711 drawer open	a robot arm opening a drawer by pulling its white handle backward
711 Peg Unplug Side*	712 peg unplug side	a robot arm unplugging a peg by pulling it from the right to the left
712 Plate Slide Side*	713 plate slide side	a robot arm sliding a plate from the left into the net on the right side
713 Push*	714 push	a robot arm pushing an object forward to a green sphere
714 Reach*	715 reach	a robot arm reaching a red sphere
715 Sweep*	716 sweep	a robot arm moving an object to the left side of the table
716 Door Close	717 door close	a robot arm pushing a door to close it
717 Window Close	718 window close	a robot arm closing a window by pulling its handle from the left to the right
718 Window Open	719 window open	a robot arm opening a window by pushing its handle from the right to the left
719 Drawer Close	720 drawer close	a robot arm closing a drawer by pushing its white handle forward
720 Faucet Close	721 faucet close	a robot arm pulling a faucet counterclockwise
721 Faucet Open	722 faucet open	a robot arm pushing a faucet clockwise
722 Handle Press	723 handle press	a robot arm pressing down a handle
723 Handle Press Side	724 handle press side	a robot arm pressing down a handle on the side
724 Dial Turn	725 dial turn	a robot arm turning a dial counterclockwise
725 Plate Slide	726 plate slide	a robot arm sliding a plate forward into the net
726 Reach Wall	727 reach wall	a robot arm reaching toward a red sphere over a wall
727 Button Press Wall	728 button press wall	a robot arm reaching over a wall to press a button
728 Push Red Cup*	729 red	a robot arm pushing the red cup
729 Push Blue Cup*	730 blue	a robot arm pushing the blue cup
730 Push Green Cup*	731 green	a robot arm pushing the green cup
731 Push Pink Cup*	732 pink	a robot arm pushing the pink cup
732 Push Orange Cup	733 orange	a robot arm pushing the orange cup
733 Push Purple Cup	734 purple	a robot arm pushing the purple cup
734 Open Red Drawer*	735 red	a robot arm opening the red drawer
735 Open Green Drawer*	736 green	a robot arm opening the green drawer
736 Open Blue Drawer*	737 blue	a robot arm opening the blue drawer
737 Open Yellow Drawer	738 yellow	a robot arm opening the yellow drawer

729
 730 **Table A2: Task-Prompt Pairs.** We include a comprehensive list of tasks and their text prompts for
 731 in-domain training and evaluation. “*” denotes tasks seen during initial training of the in-domain
 732 model. We also provide the prompts used to interface with the internet-pretrained text-to-video
 733 model during adaptation with IPA.

734 B IMPLEMENTATION DETAILS

735
 736 We provide detailed architecture configurations of the models used in SILVR, and their relevant
 737 hyperparameter settings below.

738 **MLP Inverse Dynamics Model:** Following prior work (Luo et al., 2025), we design one choice
 739 of inverse dynamics model as a small MLP network built on top of a pretrained pixel-based
 740 representation network. The MLP-IDM takes as input the embeddings of two video frames, which are
 741 extracted using VC-1 (Majumdar et al., 2023), and outputs a prediction of the action that enables the
 742 transition between the provided frames.

743 For the Panda arm experiments, the MLP-IDM is tasked with predicting the end effector position of
 744 the last frame provided. This is then executed in the physical environment through inverse kinemat-
 745 ics. Furthermore, the two video frames have a frameskip of 16; the frequency at which the camera
 746 is queried for trajectories is so high such that two temporally consecutive frames is not more sub-
 747 stantially meaningful than just observing the last frame. For MetaWorld experiments, the two video
 748 frames are consecutive, and thus have a frameskip of 1.

749 The total parameter count of the MLP-IDM used in real-world experimentation is 85.81M. Of these,
 750 85.80M parameters are inherited from VC-1 whereas our MLP-IDM design contributes only an
 751 additional 10759 parameters due to the additional MLP on top.

752 In our real-world experiments, we reuse the same MLP-IDM for all tasks within the same envi-
 753 ronments, and do not perform any finetuning during the SILVR iterations with subsequently self-

756 collected data. In such a way, the MLP-IDM is trained on a set of seen tasks, but applied to a novel
757 task without further modification. The subsequent success on such novel tasks therefore highlights
758 not only the robustness of the MLP-IDM learned, but also the visual quality of the synthesized visual
759 plans. The detailed hyperparameters of MLP-IDM training are provided in Table A3.
760

Hyperparameter	Value
Input Dimension	1536
Output Dimension (Panda)	7
Training Epochs	20
Learning Rate	1e-5
Optimizer	AdamW

761
762
763
764
765
766
767
768
769 **Table A3: Hyperparameters of MLP Inverse Dynamics Model Training.** We list the relevant
770 hyperparameters of training the MLP inverse dynamics model.
771

772 **Diffusion Inverse Dynamics Model (DIDM):** Whereas the MLP-IDM does continue to facilitate
773 self-improvement for MetaWorld experiments through SILVR, we find that the most performant
774 implementation for our simulated experiments was a Diffusion Inverse Dynamics Model (DIDM).
775 The DIDM is built off the UNet implementation of a Diffusion Policy (Chi et al., 2023); it is modified
776 to take in not only the current frame but also a frame 9 timesteps into the future and outputs an action
777 chunks of size 8. We further implement the DIDM to operate directly in StableDiffusion latent space,
778 where each frame is of dimension (64,64,4), rather than RGB space of (512,512,3) for further speed
779 efficiency. The DIDM is initially trained on the 8 seen-task set (with 25 initial demonstrations per
780 task) for 200 epochs, with a learning rate of 1e-4, and a batch size of 128. At each SILVR iteration
781 on MetaWorld, the DIDM is further finetuned on the 30 collected demonstrations for 30 epochs,
782 reusing a lr of 1e-4, and with a batch size of 30.
783

Hyperparameter	Value
Input Dimension	32768
Output Dimension (MetaWorld)	4
Training Epochs	200
Learning Rate	1e-4
Optimizer	AdamW

784
785
786
787
788
789
790 **Table A4: Hyperparameters of Diffusion Inverse Dynamics Model Training.** We list the relevant
791 hyperparameters of training the diffusion inverse dynamics model.
792

793 **In-Domain Model:** We reuse the implementation of a small-scale diffusion model that conditions on
794 both natural language and an initial pixel frame from (Ko et al., 2024). To improve text-conditioned
795 capabilities of the model, we add an additional Cross-Attention layer to every level of the U-Net,
796 which attends to the CLIP-encoded text prompt. Specifically, we instantiate UNet with 3 ResNet
797 blocks for MetaWorld settings and 2 ResNet blocks for Panda arm tasks. We report the detailed list
798 of model parameters in Table A5. In total, the in-domain model consists of 179.91M parameters
799 for MetaWorld and 156.58M parameters for Real-World experiments. We perform initial in-domain
800 training for 70K training steps on MetaWorld and 88K steps on Panda, with a batch size of 8 and a
801 learning rate of 2e-5. In each SILVR iteration, we finetune the in-domain video model for 10K steps
802 with a batch size of 4 and a learning rate of 1e-6 on MetaWorld. On Panda Arm, we finetune
803 for 8,000 steps with a batch size of 8 and a learning rate of 2e-5 on Cup Pushing and for 10,000
804 steps with a batch size of 8 and a learning rate of 1e-5 on Drawer Opening. All experiments are
805 performed on a single NVIDIA A6000 or RTX3090 GPU.
806

807 **Internet-Domain Model:** Following Adapt2Act (Luo et al., 2025), we employ AnimateDiff (Guo
808 et al., 2023) as the frozen internet-pretrained video model for inverse probabilistic adaptation. Addi-
809 tionally, we use SparseCtrl (Guo et al., 2024) to enable image-conditioned video generation. Model
810 components and their parameter counts are listed in Table A6. In total, AnimateDiff consists of
811 2.005B parameters.
812

Component	# Parameters (Millions)
U-Net (MetaWorld)	116.71
U-Net (Panda Arm)	93.38
Text Encoder (<code>openai/clip-vit-base-patch32</code>)	63.2

Table A5: **In-Domain Model Components.** SILVR relies on a small in-domain text-to-video model, which we base our implementation off of prior work (Ko et al., 2024). We list the size of the components of the model architecture used.

Component	# Parameters (Millions)
VAE (Encoder)	34.16
VAE (Decoder)	49.49
U-Net	1302.16
Text Encoder	123.06
ControlNet	496.73

Table A6: **AnimateDiff Components.** IPA relies on a internet-scale text-to-video model; in this work we use AnimateDiff. We thus list the size of components of the AnimateDiff checkpoint used. The checkpoint is used purely for inference, and is not modified or updated in any way. Note that the VAE Decoder is not utilized in our framework.

Visual Planning Hyperparameters: In visual planning, we predict 8 future frames conditioned on the current observation and task prompt. We follow (Luo et al., 2025) to perform DDIM (Song et al., 2021) sampling for 25 steps to synthesize visual plans, in which the text-conditioning guidance scale is set to 2.5 for MetaWorld experiments and 7.0 for Panda Arm Pushing. We use 0.5 as the prior strength for inverse probabilistic adaptation.

Choices of Control Loop: Visual planning provides the user control over the quality of execution against the speed. In our experiments, each visual plan consists of 9 frames, including one current observation and eight future frames, and can be translated into 8 actions. By performing open-loop control, we execute all 8 actions from a single visual plan sequentially in the environment without any re-planning. While synthesizing a visual plan can often involve multiple sampling steps and thus be time-consuming, open-loop control greatly improves the interaction efficiency. However, since open-loop control does not adjust the control actions based on the feedback from the environment, the subsequent actions from the plan might become suboptimal to the latest states and cause error accumulation. To mitigate this issue, closed-loop control adjusts the action for every interaction step. Specifically, we execute only the first action from the plan, and perform re-planning based on the new observation received from the environment. Although this control style allows us to interact most reliably, it incurs a large computational overhead due to frequent re-planning. To balance the execution quality and efficiency, we can flexibly choose a control loop between the two extremes of open-loop and closed-loop. For example, we execute half of the plan (e.g. 4 actions) before re-planning, which we reference as semi-open-loop control.

To achieve the best execution speed, we employ open-loop control in Panda Arm Pushing and Drawer Opening tasks, in which we discover that visual plans can be performed decently, with negligible deviation in the real execution. For all MetaWorld experiments, we utilize semi-open-loop control to balance performance and efficiency.

Behavior Cloning Improvement Loop: A Diffusion Policy is initially trained on the same data as used in SILVR for 150 epochs with learning rate 1e-4 and batch size 64. For each iteration, we deploy the diffusion policy to interact with the environment and collect 30 task demonstrations. The policy will then be fine-tuned on the successful data filtered by ground-truth task success signals for 50 epochs with batch size 30 and learning rate 1e-4.

SILVR-Distilled Diffusion Policy: After applying SILVR, we optionally distill the visual planning components into a diffusion policy. This has the benefit of lightweight, fast inference for final deployment, while still leveraging the self-improving benefits of visual models during the training

process, thus balancing both worlds. The architecture of the DP is consistent with that used in the DSRL and BCIL experiments. During distillation, the visual planner teacher model first collects 120 demonstrations from the environment. Then, a DP is trained for 300 epochs with a batch size of 64 and a learning rate of 1e-4 on only these 120 demonstrations collected by the teacher.

In essence, SILVR can be thought of as composed of two systems. The slower system is the video planner approach, where the advantage appears in greater autonomous improvement capabilities. The faster system is the distilled diffusion policy, which although has weaker self-improvement, can capture the current performance of the slower system and be deployed with fast inference.

DSRL Implementation: We utilize the open-source implementation of DSRL (Wagenmaker et al., 2025) for our experiments. We maintain the vast majority of parameters from the default setting, but make sure to collect 30 demonstrations for each iteration as in SILVR. When optimizing over the collected experience, we utilize a comparable amount of gradient steps with the amount found in the default settings of DSRL; we use a batch size of 256 with 60000 gradient steps per update. We find that given the same amount of experience and a sufficiently large update budget, DSRL is unable to match the iterative performance improvements of SILVR. This highlights the sample inefficiency of reinforcement learning, which may need extra experience to successfully bootstrap a value function for the novel task of interest.

We performed a light ablation, comparing a roughly equivalent amount of gradient updates with SILVR (150 gradient steps per update) against the amount of updates used across multiple standard robotic tasks provided by the DSRL publicly available codebase, and found no significant difference in improvement trend. This suggests that the bottleneck for self-improvement through DSRL is not update computation, but experience collection; on the other hand, SILVR demonstrates significantly better sample efficiency for iterative self-improvement.

Iteration	0	1	2	3	4
DSRL (150 Updates)	10.1 (± 0.1)	8.9 (± 0.6)	8.6 (± 1.0)	9.4 (± 0.1)	8.3 (± 0.2)
DSRL (60000 Updates)	9.4 (± 1.7)	8.3 (± 1.6)	7.4 (± 0.9)	7.5 (± 3.4)	7.7 (± 3.4)

Table A7: **DSRL Performance Ablation over Different Update Rates.** We report the mean success rate and standard deviation across three iterations for DSRL with different numbers of updates per iteration. We show that the bottleneck for DSRL is not gradient updates, but collected experience.

C METAWORLD TASK PERFORMANCE DECOMPOSITION

Iteration	0	1	2	3	4	5	6	7	8	9
Button Press Wall	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)
Dial Turn	4.4 (± 1.9)	25.6 (± 22.7)	17.8 (± 15.8)	23.3 (± 20.8)	24.4 (± 19.0)	25.6 (± 22.2)	28.9 (± 25.9)	36.7 (± 31.8)	36.7 (± 32.8)	34.4 (± 30.2)
Door Close	35.6 (± 6.9)	57.8 (± 26.9)	58.9 (± 25.2)	74.4 (± 15.8)	72.2 (± 18.4)	80.0 (± 13.3)	81.1 (± 11.7)	83.3 (± 8.8)	78.9 (± 12.6)	85.6 (± 5.1)
Drawer Close	1.1 (± 1.9)	11.1 (± 7.7)	20.0 (± 6.7)	21.1 (± 6.9)	20.0 (± 12.0)	31.1 (± 10.7)	27.8 (± 10.7)	27.8 (± 13.5)	28.9 (± 19.0)	31.1 (± 13.5)
Faucet Close	17.8 (± 6.9)	27.8 (± 25.2)	41.1 (± 20.1)	50.0 (± 24.0)	66.7 (± 26.5)	67.8 (± 13.9)	73.3 (± 16.7)	80.0 (± 13.3)	73.3 (± 17.3)	77.8 (± 3.8)
Faucet Open	6.7 (± 6.7)	24.4 (± 18.4)	37.8 (± 6.9)	57.8 (± 6.9)	60.0 (± 8.8)	82.2 (± 1.9)	78.9 (± 10.2)	80.0 (± 10.0)	71.1 (± 11.7)	77.8 (± 10.2)
Handle Press	35.6 (± 7.7)	41.1 (± 10.2)	40.0 (± 3.3)	56.7 (± 8.8)	58.9 (± 13.5)	56.7 (± 3.3)	63.3 (± 5.8)	70.0 (± 5.8)	72.2 (± 9.6)	67.8 (± 5.1)
Handle PressSide	18.9 (± 5.1)	31.1 (± 12.6)	48.9 (± 19.0)	72.2 (± 13.5)	60.0 (± 8.8)	70.0 (± 14.5)	75.6 (± 8.4)	66.7 (± 6.7)	68.9 (± 18.4)	65.6 (± 11.7)
Plate Slide	17.8 (± 5.1)	26.7 (± 16.7)	33.3 (± 17.3)	47.8 (± 15.8)	52.2 (± 11.7)	70.0 (± 5.8)	60.0 (± 5.8)	62.2 (± 18.4)	71.1 (± 15.0)	66.7 (± 12.0)
Reach Wall	10.0 (± 5.8)	32.2 (± 1.9)	22.2 (± 9.6)	30.0 (± 6.7)	27.8 (± 5.1)	35.6 (± 13.9)	26.7 (± 3.3)	24.4 (± 8.4)	26.7 (± 12.0)	30.0 (± 3.3)
Window Close	3.3 (± 3.3)	10.0 (± 0.0)	25.6 (± 36.0)	14.4 (± 13.5)	16.7 (± 15.3)	20.0 (± 15.3)	21.1 (± 13.5)	20.0 (± 12.0)	34.4 (± 13.5)	25.6 (± 8.4)
Window Open	25.6 (± 5.1)	44.4 (± 18.4)	56.7 (± 11.5)	74.4 (± 1.9)	71.1 (± 13.5)	74.4 (± 7.7)	81.1 (± 11.7)	73.3 (± 8.8)	72.2 (± 15.0)	74.4 (± 3.8)
AVG	14.7 (± 0.6)	27.7 (± 1.9)	33.5 (± 2.2)	43.5 (± 2.6)	44.2 (± 4.5)	51.1 (± 4.0)	51.5 (± 3.0)	52.0 (± 5.0)	52.9 (± 5.2)	53.1 (± 3.8)

Table A8: **MetaWorld Task Performance.** We provide a detailed list of task performance for the leftmost plot in Figure 4. We report the mean success rate and standard deviation aggregated over 3 seeds each, across 10 iterations. We reiterate that none of these 12 tasks had been seen a priori during initial in-domain video model training.

D FULL METAWORLD SUBOPTIMAL RESULTS

As mentioned in Section 4.6, we evaluate SILVR on 12 unseen MetaWorld tasks with suboptimal initial in-domain data. We provide a detailed task performance breakdown in Figure A1 and Ta-

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ble A9. We observe that most tasks, as well as average performance, exhibit an improving trend overall across iterations, demonstrating the robustness of SILVR to initial data quality.

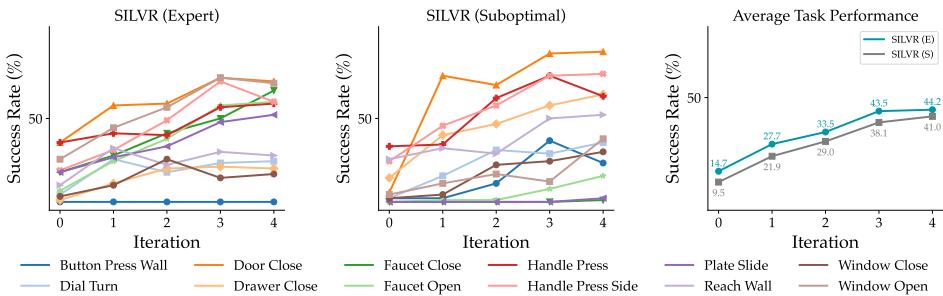


Figure A1: **SILVR Curves with suboptimal in-domain data.** For each task, we plot the mean success rate across 5 iterations, aggregated over 3 seeds.

Iteration	0	1	2	3	4
Button Press Wall	2.2 (± 1.9)	2.2 (± 3.8)	11.1 (± 10.2)	36.7 (± 32.1)	23.3 (± 20.8)
Dial Turn	2.2 (± 1.9)	15.6 (± 12.6)	31.1 (± 13.5)	28.9 (± 23.4)	35.6 (± 11.7)
Door Close	5.6 (± 3.8)	75.6 (± 18.4)	70.0 (± 8.8)	88.9 (± 7.7)	90.0 (± 3.3)
Drawer Close	14.4 (± 6.9)	40.0 (± 21.9)	46.7 (± 20.3)	57.8 (± 29.1)	64.4 (± 28.3)
Faucet Close	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	1.1 (± 1.9)
Faucet Open	0.0 (± 0.0)	1.1 (± 1.9)	1.1 (± 1.9)	7.8 (± 8.4)	15.6 (± 16.8)
Handle Press	33.3 (± 5.8)	34.4 (± 6.9)	62.2 (± 15.0)	75.6 (± 13.9)	63.3 (± 21.9)
Handle Press Side	24.4 (± 1.9)	45.6 (± 9.6)	57.8 (± 10.2)	75.6 (± 20.4)	76.7 (± 5.8)
Plate Slide	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	0.0 (± 0.0)	2.2 (± 1.9)
Reach Wall	25.6 (± 5.1)	32.2 (± 6.9)	28.9 (± 7.7)	50.0 (± 6.7)	52.2 (± 6.9)
Window Close	2.2 (± 1.9)	4.4 (± 1.9)	22.2 (± 12.6)	24.4 (± 21.7)	30.0 (± 23.3)
Window Open	4.4 (± 1.9)	11.1 (± 6.9)	16.7 (± 12.0)	12.2 (± 6.9)	37.8 (± 22.7)
AVG	9.5 (± 0.3)	21.9 (± 0.9)	29.0 (± 2.3)	38.1 (± 4.9)	41.0 (± 4.4)

Table A9: **SILVR Performance with Suboptimal Initial Data.** For each task, we report the mean success rate and standard deviation aggregated over 3 seeds, across 5 iterations.

Additionally, we provide BCIL and DSRL performance with suboptimal in-domain data in Table A10. Surprisingly, we observe that BCIL benefits more from suboptimal initialization. We hypothesize that the exploration brought by initial random actions is crucial for bootstrapping the Diffusion Policy performance in BCIL.

Iteration	0	1	2	3	4
DSRL	7.4 (± 3.8)	7.1 (± 0.6)	8.6 (± 1.3)	7.8 (± 1.0)	8.1 (± 0.8)
BCIL	8.1 (± 1.0)	21.6 (± 0.9)	29.1 (± 2.3)	37.2 (± 6.1)	39.6 (± 5.3)

Table A10: **Baseline Performance with Suboptimal Initial Data.** We report the mean success rate and standard deviation across 12 unseen tasks, aggregated over 3 seeds each.

E METAWORLD COMPONENT ABLATIONS

We investigate the importance of finetuning different visual planning components with respect to online experience on final task performance in the MetaWorld suite. We find that in contrast with the real-world experiments, keeping the IDM frozen for the MetaWorld suite struggles to adjust to novel objects and motions, resulting in modest performance gains even when the video model improves. Similarly, we have found that when the IDM is finetuned but the video model is not, there are indeed some performance gains most likely from better translation of the base generalization

Iteration	0	1	2	3	4
Finetuning All (SILVR)	14.7 (± 0.6)	27.7 (± 1.9)	33.5 (± 2.2)	43.5 (± 2.6)	44.2 (± 4.5)
No IDM Finetuning	14.1 (± 1.6)	22.2 (± 3.1)	24.6 (± 2.5)	24.8 (± 1.7)	26.8 (± 1.9)
Only IDM Finetuning	15.0 (± 1.8)	24.4 (± 3.2)	27.7 (± 3.5)	26.9 (± 4.1)	29.8 (± 3.4)

977
978 Table A11: **Component Update Ablations.** We report the mean success rate and standard deviation
979 across 12 unseen tasks, aggregated over 3 seeds each.
980

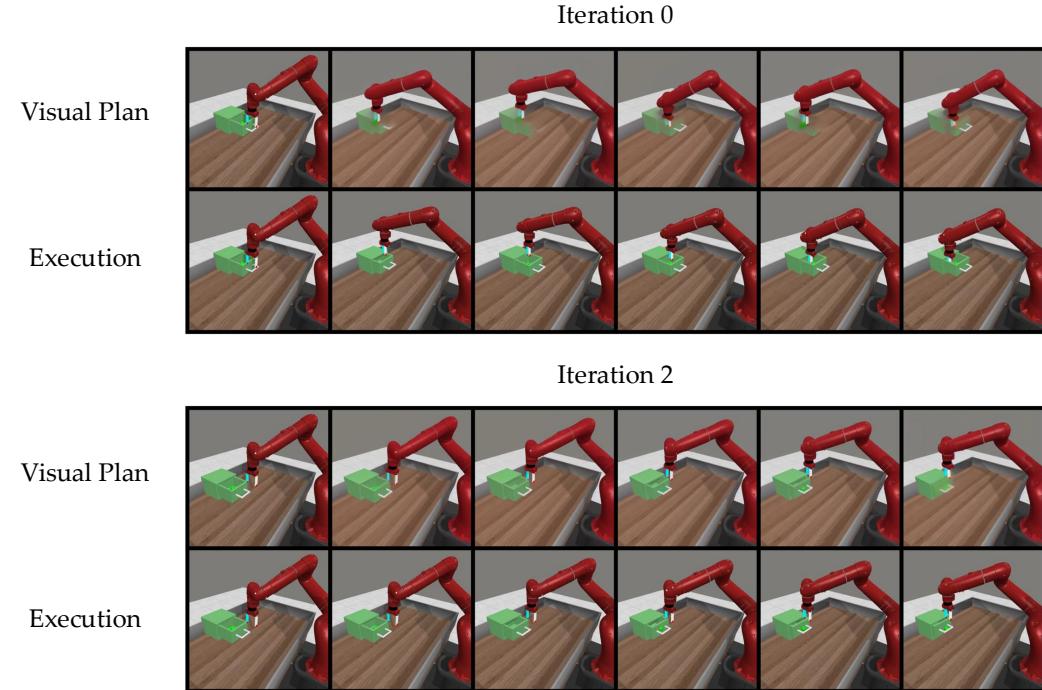
981 ability of the video model; but performance also saturates quickly. Thus, under situations with
982 heavy novelty such as across objects and motions, updating both components with respect to online
983 experience is critical. Meanwhile, in real-world experiments, we observed that the initially trained
984 IDMs are inherently robust to novel tasks, in which many motions learned from seen tasks can be
985 reused, and can be utilized directly to great effect without additional finetuning.
986

987 F ADDITIONAL PLAN VISUALIZATIONS

988
989 We show additional visual plans for SILVR, across multiple environments and tasks, along with
990 their execution results.
991

992 F.1 SILVR WITH GROUND-TRUTH FILTERING

993 Visual plans and their executions for SILVR with Ground-Truth filtering are illustrated below.
994



1019 Figure A2: **SILVR on Drawer Close with Ground-Truth filtering.**
1020
1021
1022
1023
1024
1025

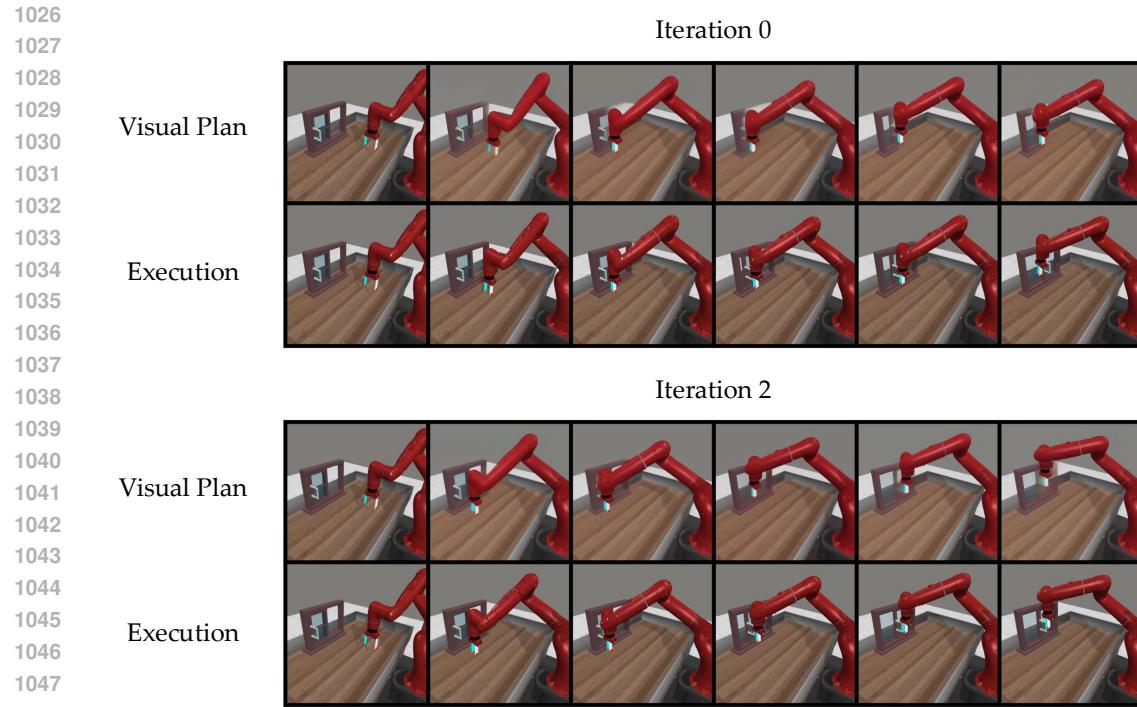


Figure A3: **SILVR on Window Close with Ground-Truth filtering.**

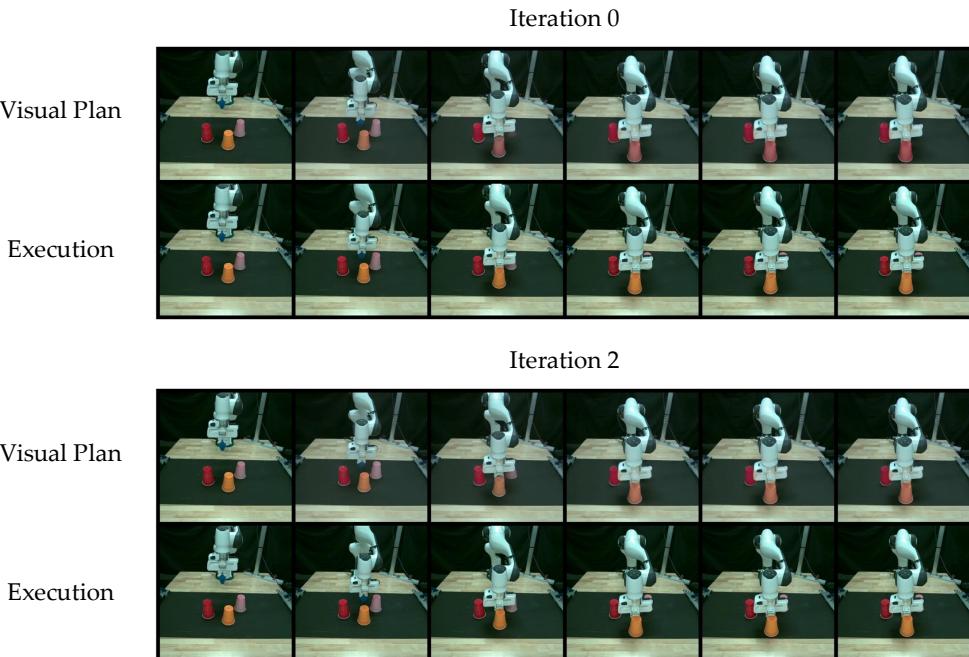


Figure A4: **SILVR on Orange Cup Pushing (Red/Pink/Orange) with Ground-Truth filtering.**

F.2 SILVR WITHOUT FILTERING

Visual plans and their executions for SILVR without filtering are illustrated below.

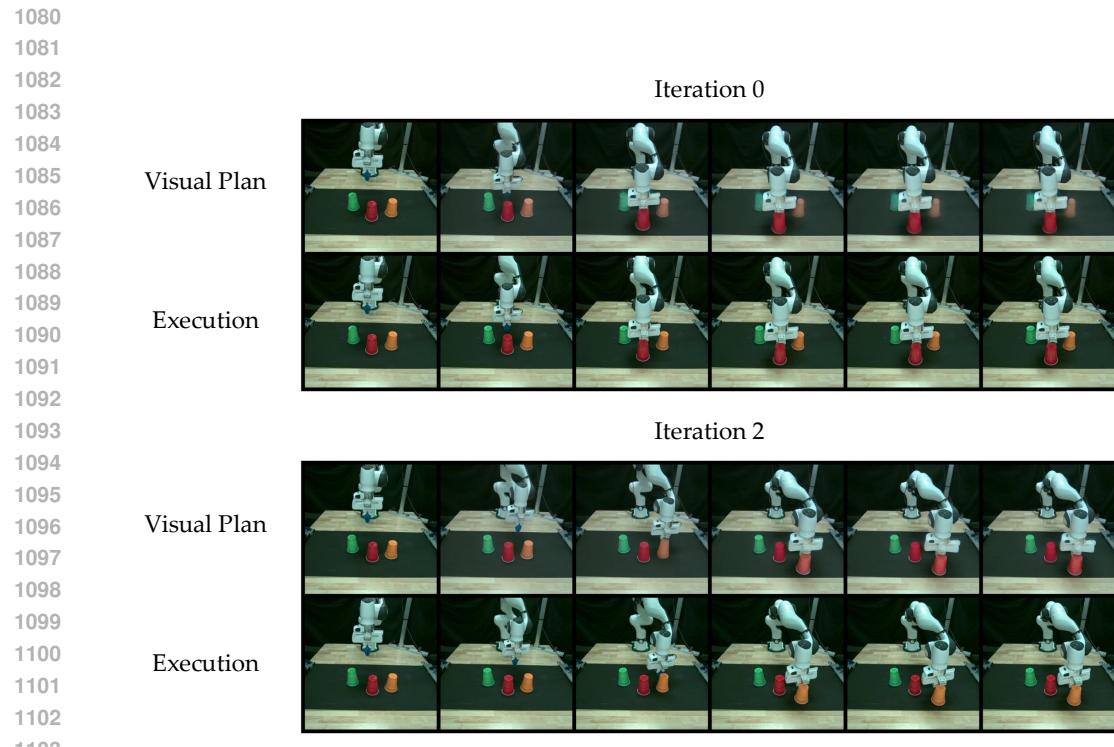
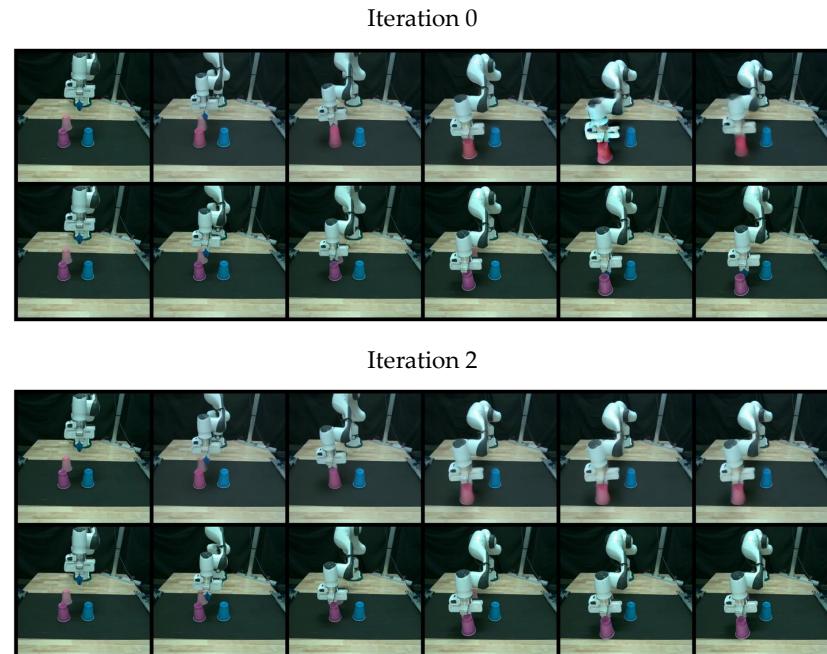


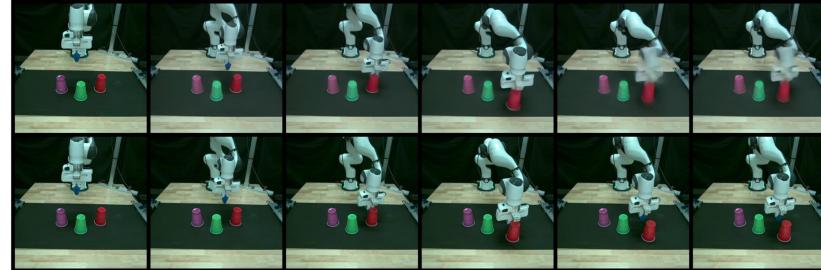
Figure A6: SILVR on Purple Cup Pushing (Blue/Pink/Purple) with Ground-Truth filtering.

1134
1135

1136 Iteration 0

1137

1138 Visual Plan



1139

1140 Execution

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150 Visual Plan

1151

1152

1153

1154

1155

1156

1157

1158

Figure A7: SILVR on Purple Cup Pushing (Red/Green/Purple) with Ground-Truth filtering.

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178 Visual Plan

1179

1180

1181

1182

1183

1184

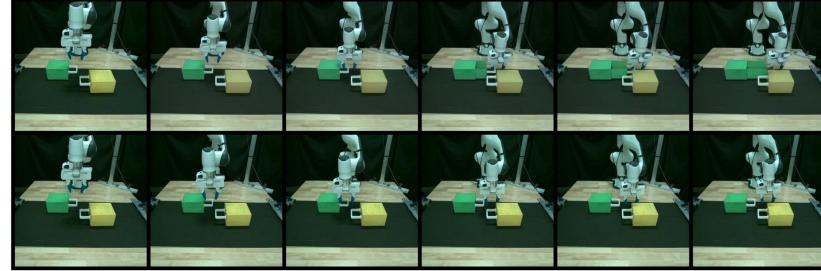
1185

1186

1187

Iteration 0

Visual Plan



Execution

Visual Plan

Execution

Figure A8: SILVR on Yellow Drawer Opening (Yellow/Green) with Ground-Truth filtering.

1188

1189

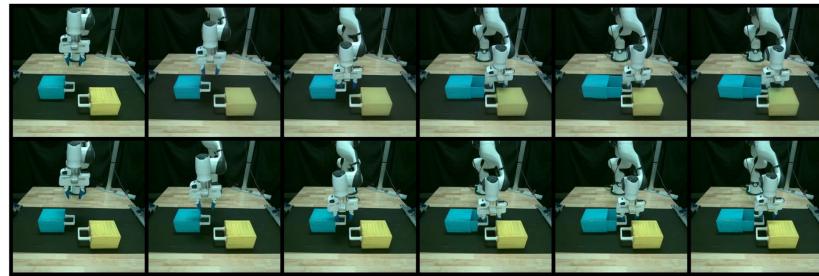
1190

1191

1192

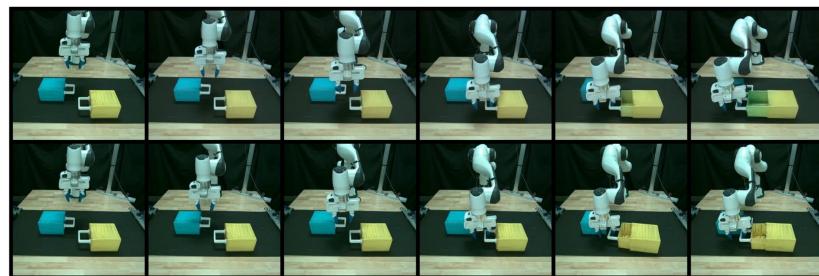
1188
1189
1190
1191
1192
1193 Visual Plan
1194
1195
1196
1197 Execution
1198
1199
1200

Iteration 0



1201
1202
1203
1204 Visual Plan
1205
1206
1207
1208 Execution
1209
1210
1211

Iteration 2

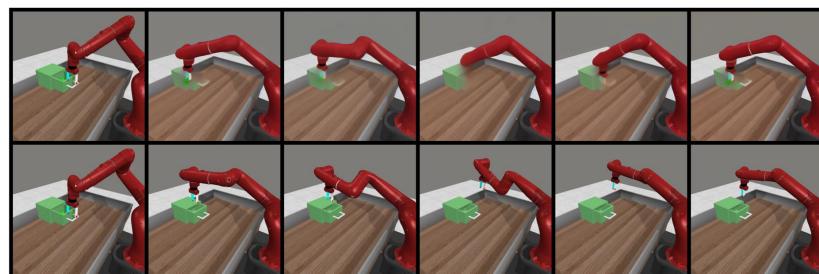


1212
1213
1214
1215
1216
1217
1218

Figure A9: SILVR on Yellow Drawer Opening (Yellow/Blue) with Ground-Truth filtering.

1219
1220
1221
1222
1223
1224
1225
1226
1227

Iteration 0



1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Iteration 2

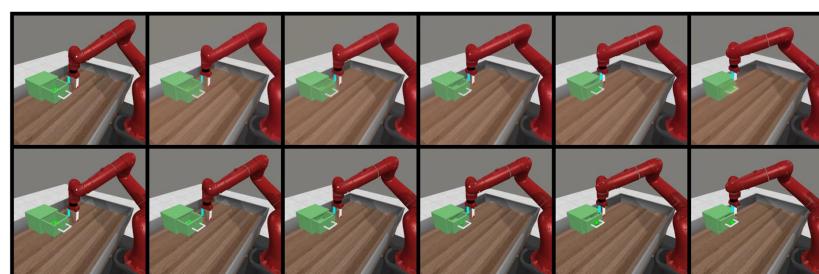
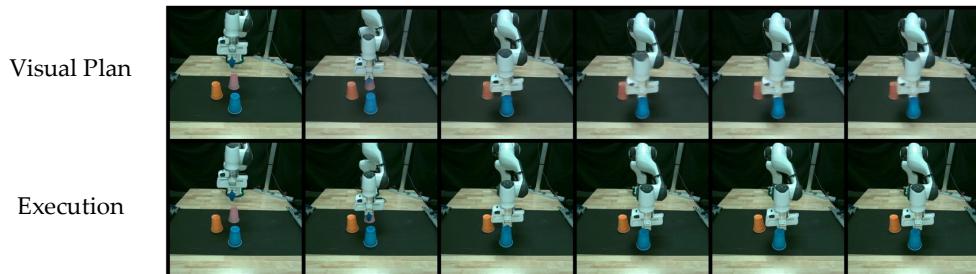


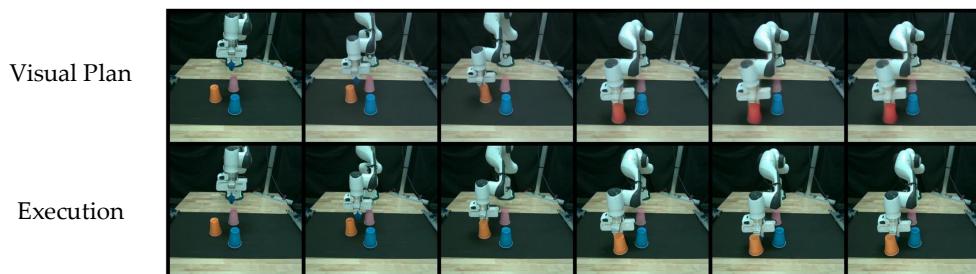
Figure A10: SILVR on Drawer Close without filtering.

```
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
```

Iteration 0



Iteration 2



```
1279
1280 Figure A11: SILVR on Orange Cup Pushing (Blue/Pink/Orange) without filtering.
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
```

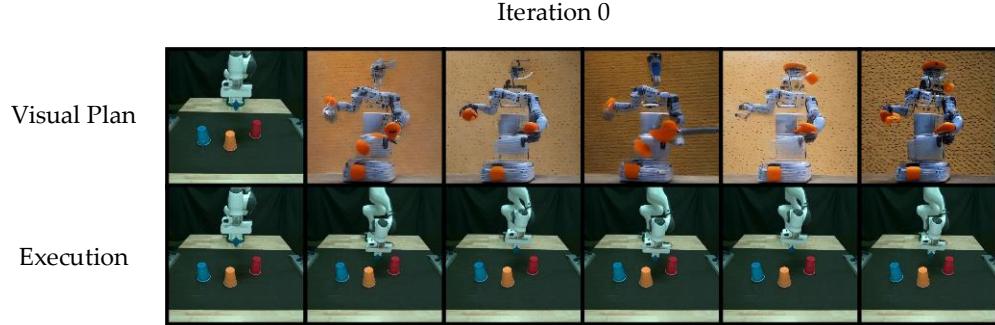
1296
1297

F.3 VISUAL PLANNING WITH ANIMATEDIFF ONLY

1298
1299
1300
1301
1302
1303
1304
1305

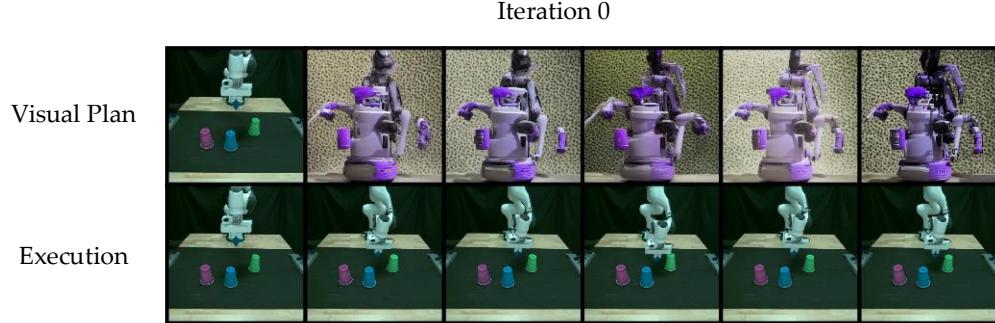
A natural question to consider is if score composition is necessary, or if a powerful large-scale video model alone can be utilized as a generalizable visual planner. We find that when using AnimateDiff alone as the planner, it is unable to produce visually in-domain plans a priori, and thus fails to achieve any success on real-world robotic tasks and is unable to perform self-improvement. This highlights that SILVR’s utilization of score composition with an in-domain model is critical for achieving initial performance and facilitating subsequent self-improvement throughout iterations of the loop, a novel and crucial finding for understanding how visual planners can achieve self-improvement for novel tasks of interest.

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317



1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331

Figure A12: “A robot arm pushing the orange cup” (with AnimateDiff only)



1332
1333
1334

Figure A13: “A robot arm pushing the purple cup” (with AnimateDiff only)

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

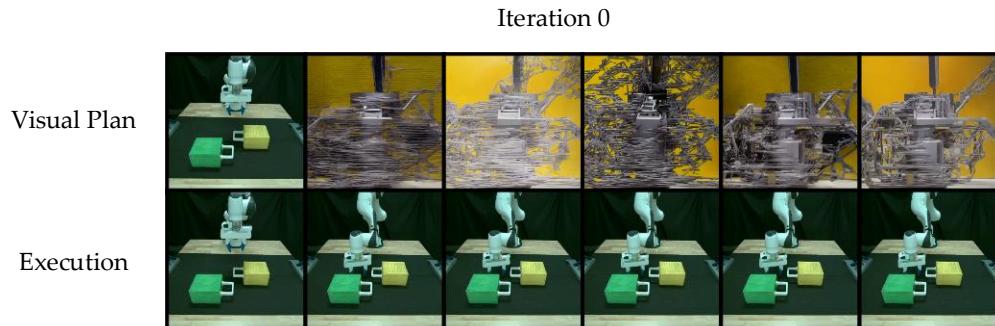


Figure A14: “A robot arm opening the yellow drawer” (with AnimateDiff only)

1350
1351

F.4 CORRECTIVE INFLUENCE OF INTERNET-SCALE VIDEO MODEL ADAPTATION

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

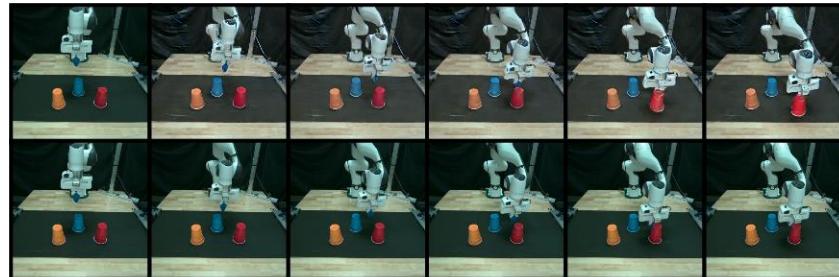
1375

1376

1377

Visual Plan

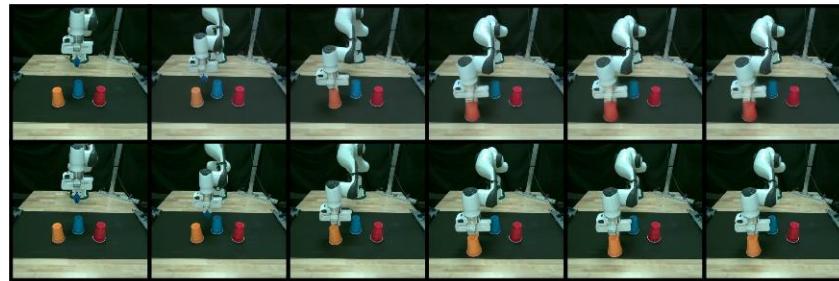
In-Domain Only



Execution

Adapted w/ AnimateDiff

Visual Plan

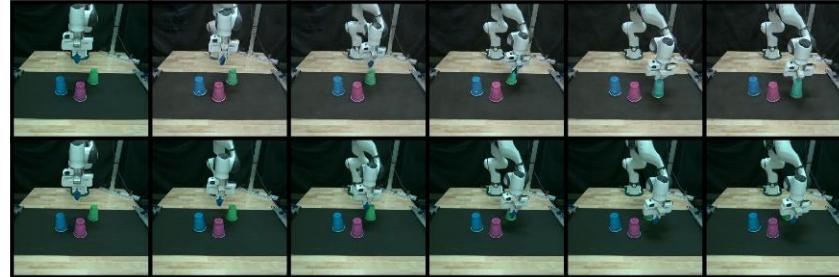


Execution

Figure A15: Push Orange Cup

Visual Plan

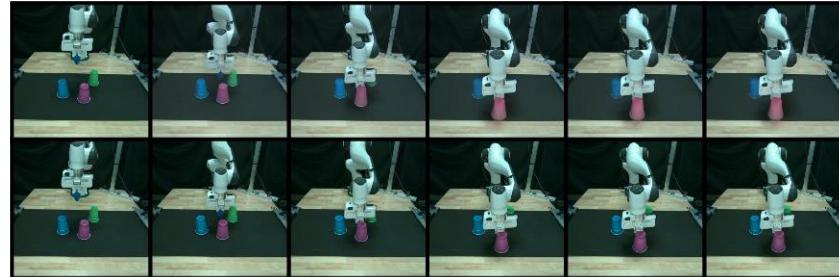
In-Domain Only



Execution

Adapted w/ AnimateDiff

Visual Plan



Execution

Figure A16: Push Purple Cup

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

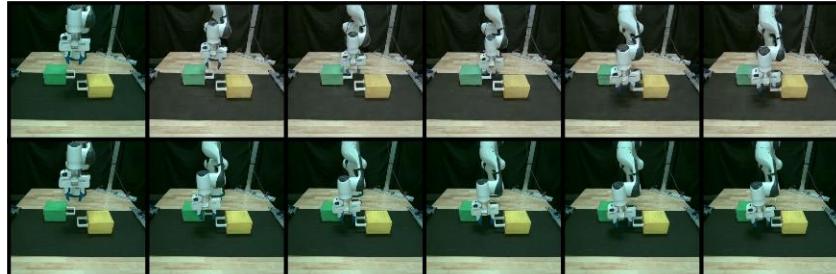
1451

1452

1453

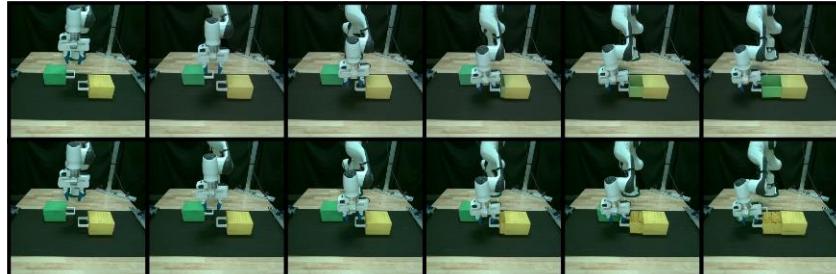
Visual Plan

In-Domain Only



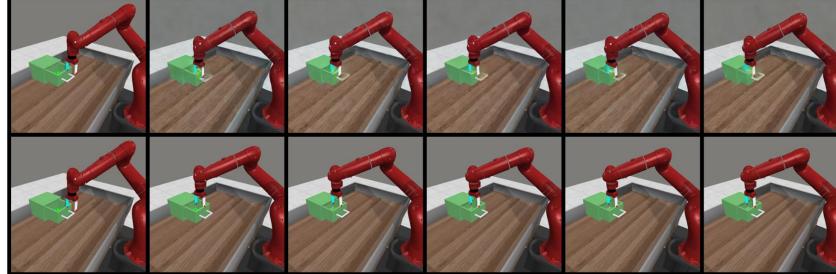
Visual Plan

Adapted w/ AnimateDiff

Figure A17: **Open Yellow Drawer**

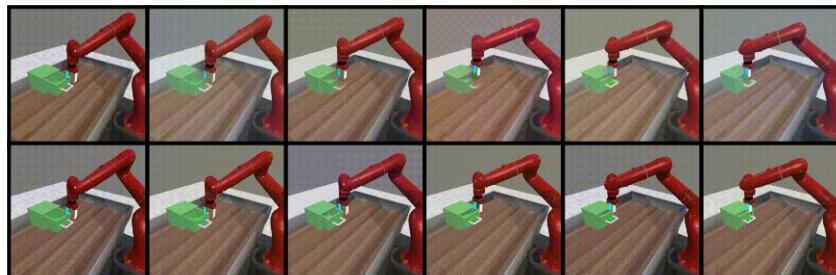
Visual Plan

In-Domain Only



Visual Plan

Adapted w/ AnimateDiff

Figure A18: **Drawer Close**

F.5 LONG-HORIZON TASK EVALUATION

Whereas the experiments thus far have demonstrated how SILVR can iteratively improve performance on single tasks, a natural question to consider is how applicable it is to complex tasks. We note that many long-horizon tasks can be broken down into atomic tasks with shorter horizons, for which SILVR can already demonstrate clear and robust self-improvement behaviors. We thus investigate how SILVR, by learning individual abilities, naturally facilitates the direct iterative im-

provement of a sequential long-horizon tasks where success rate depends on the full completion of behaviors in a specific order.

In particular, we construct an experiment of pushing cups in an order specified by natural language. For example, in Figure A19 the prompt is “Push Cups in the order of Red, Orange, Green”, where success is only satisfied if done so in the correct order. We evaluate SILVR checkpoints automatically using a VLM, implemented as Gemini 2.5, to determine what atomic skill (e.g., pushing the cup of a specific color) to currently execute from the instruction sequence and when to switch to the subsequent one by querying if the visual execution of the current atomic skill was successful.

We find that over successive iterations, despite only applying SILVR to individual atomic tasks, the performance on the overall long-horizon tasks improves. This suggests that for arbitrary complex long-horizon tasks of interest, SILVR can be combined with an efficient subtask segmentation mechanism to improve individual performance on atomic behaviors and thus improve the final overall performance on long-horizon sequential compositions.

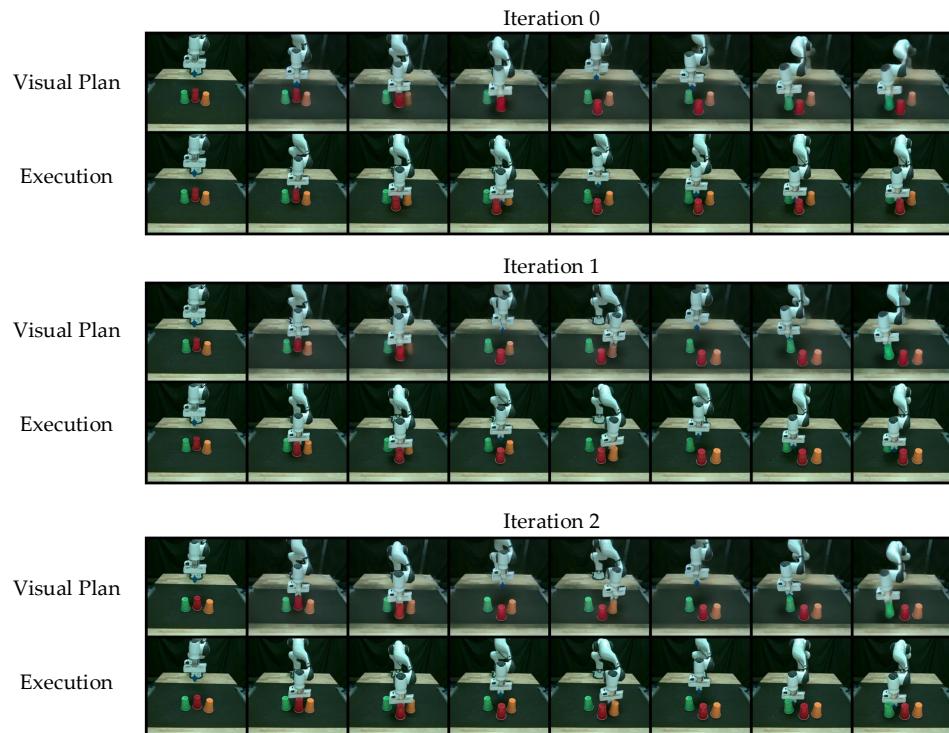


Figure A19: **Push Cups in the order of Red, Orange, and Green.** The final-iteration visual planner completed the long-horizon task, whereas those from the first two iterations failed.

The image displays a 3x7 grid of images illustrating a robotic arm's visual planning and execution for a three-cup stacking task across three iterations. The columns represent time steps, and the rows represent different stages of the process: Visual Plan (top row) and Execution (bottom row). The columns are labeled 'Iteration 0', 'Iteration 1', and 'Iteration 2' at the top of each group of images. The rows are labeled with line numbers on the left: 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519 for the first group; 1520, 1521, 1522, 1523, 1524, 1525, 1526, 1527 for the second; and 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535 for the third. The images show the robotic arm's gripper and the three colored cups (green, blue, red) on a table, with the arm's position and orientation changing over time as it plans and executes the task.

Figure A20: **Push Cups in the order of Blue, Purple, and Green.** The visual planners of the last two iterations completed the long-horizon task, whereas the one from the first iteration failed.

F.6 FAILURE CASES

F.6.1 FAILURE MODE OF FINAL-ITERATION VISUAL PLANNER

Below we visualize the failure cases from the final-iteration visual planners across both real-world and simulation task settings. Most real-world failures arise from semantically incorrect visual plans, in which the robot arm attempts to push the cup (Figure A21 and A22) or open the drawer (Figure A23) of a wrong color, whereas in simulation, we observe a mixture of execution (Figure A24) and semantic (Figure A25) errors, both of which can contribute to unsuccessful task completion.

Figure A21: **Push the Orange Cup (Iteration 2)**

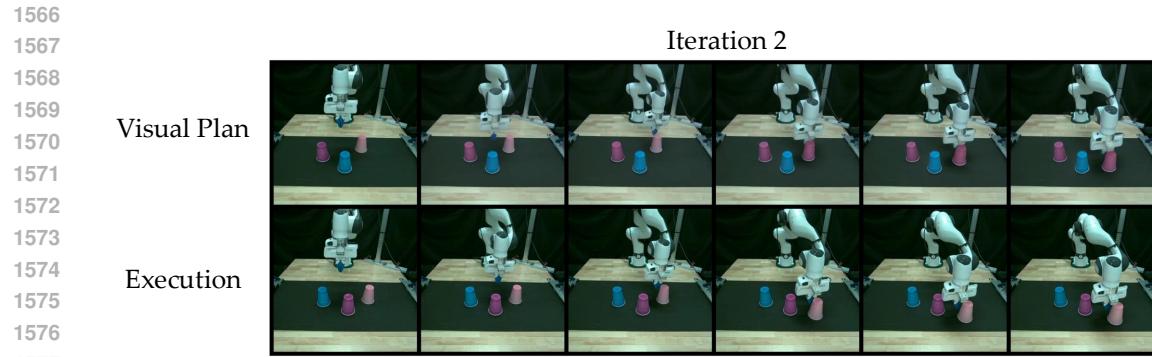


Figure A22: **Push the Purple Cup (Iteration 2)**

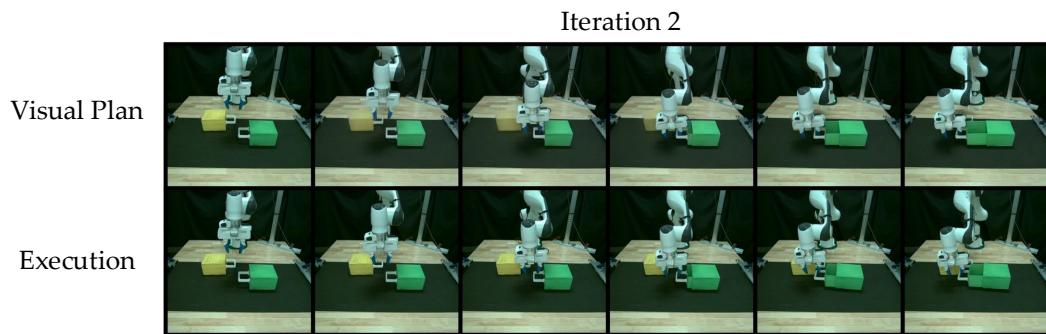


Figure A23: **Open the Yellow Drawer (Iteration 2)**

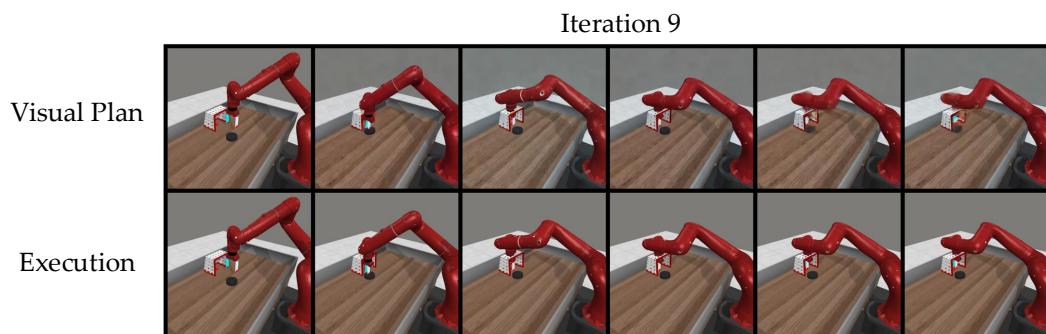


Figure A24: **Plate Slide (Iteration 9)**

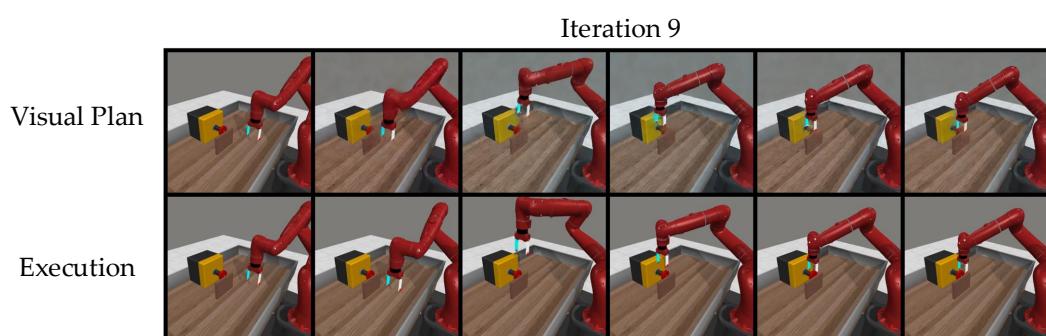
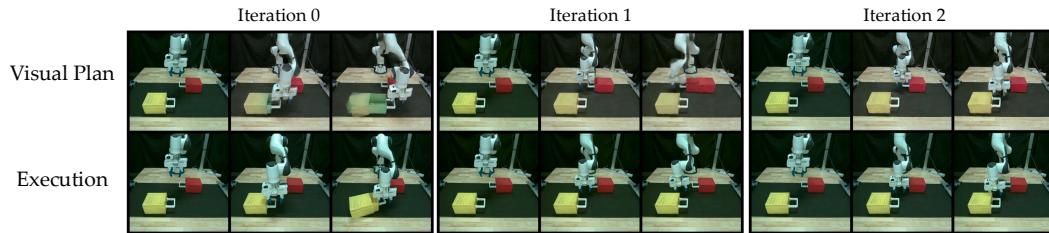


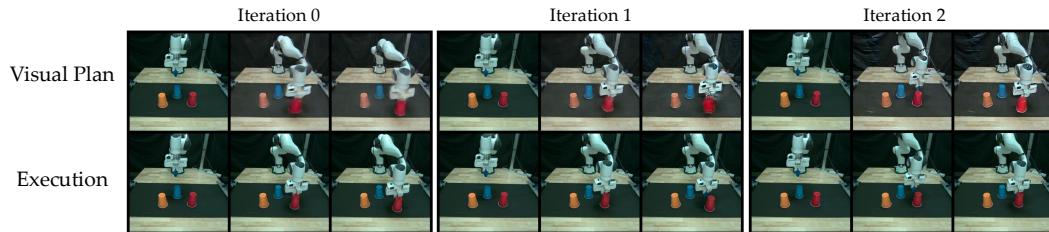
Figure A25: **Button Press Wall (Iteration 9)**

1620 **F.6.2 FAILURE MODE OF IN-DOMAIN ONLY OVER ITERATIONS**
1621

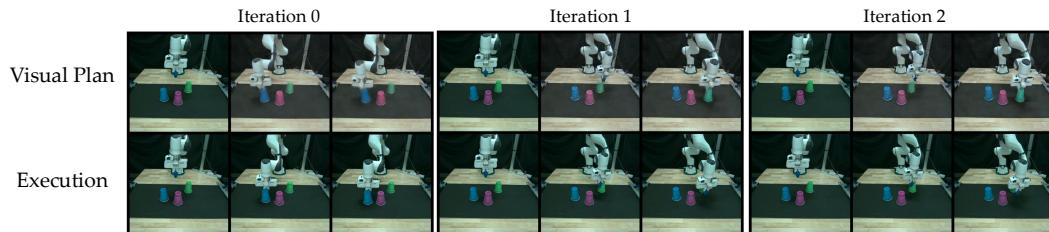
1622 We also visualize the failure modes exhibited by in-domain models when deployed alone in real-
1623 world settings. In the Drawer Open tasks, we conjecture that the irregular motions produced in the
1624 early iteration (as shown in Figure A26, Iteration 0), despite opening the drawer successfully, can
1625 propagate and confuse subsequent iterations of the in-domain model during finetuning. As a result,
1626 we found that the visual plan in Iteration 2 indeed behaves more erratically and “jumps” towards the
1627 yellow drawer. The Cup tasks do not exhibit a strong degradation in performance trend, and suffer
1628 more from a general lack of improvement; we thus visualize consistent failure modes that suppress
1629 the self-improving behaviors across all iterations (e.g., Figure A27 and Figure A28).



1638 **Figure A26: Open the Yellow Drawer (In-Domain)**
1639



1649 **Figure A27: Push the Orange Cup (In-Domain)**
1650



1660 **Figure A28: Push the Purple Cup (In-Domain)**
1661