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ABSTRACT

We demonstrate that Contrastive Decoding – a simple, computationally light, and
training-free text generation method proposed by Li et al 2022 – achieves large
out-of-the-box improvements over greedy decoding on a variety of reasoning
tasks. Originally shown to improve the perceived quality of long-form text gen-
eration, Contrastive Decoding searches for strings that maximize a weighted dif-
ference in likelihood between strong and weak models. We show that Contrastive
Decoding leads LLaMA-65B to outperform LLaMA 2, GPT-3.5 and PaLM 2-L on
the HellaSwag commonsense reasoning benchmark, and to outperform LLaMA
2, GPT-3.5 and PaLM-540B on the GSM8K math word reasoning benchmark,
in addition to improvements on a collection of other tasks. Analysis suggests
that Contrastive Decoding improves over existing methods by preventing some
abstract reasoning errors, as well as by avoiding simpler modes such as copy-
ing sections of the input during chain-of-thought. Overall, Contrastive Decoding
outperforms nucleus sampling for long-form generation and greedy decoding for
reasoning tasks, making it a powerful general purpose method for generating text
from language models.

Figure 1: Contrastive decoding improves reason-
ing across model scales and reasoning tasks.

Figure 2: Contrastive scoring significantly im-
proves performance on HellaSwag, a standard
commonsense reasoning benchmark.

1 INTRODUCTION

Text is generated from large language models (LLMs) in different ways for different tasks. For open-
ended text generation tasks, truncated sampling is normally used, as the most likely strings under a
model tend to be short and uninteresting (Holtzman et al., 2020). For reasoning problems, greedy
decoding is normally preferred, to avoid risking sampling errors. This bifurcation is undesirable; for
example it increases the likelihood of reasoning errors during open-ended generation.

We explore the use of Contrastive Decoding (Li et al., 2022) for solving reasoning problems with
LLMs. Contrastive Decoding (CD) searches for strings that maximize a weighted difference in
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Figure 3: CD accentuates what the expert model has learned that the amateur model has not. Results
are taken from greedy decoding with a 65B parameter expert, using α = 0.1, β = 0.5 for CD.

likelihood between a stronger expert and a weaker amateur model, and was shown to outperform
existing methods for open-ended text generation. It achieves this by avoiding undesirable modes of
the expert model’s distribution, such as short or generic strings, which tend to be the most likely
under any model, including the amateur.

We show that Contrastive Decoding outperforms greedy decoding on reasoning problems. On
GSM8K, a widely used benchmark consisting of grade-school word math problems, contrastive de-
coding improves the performance of various LLaMA models by up to 8 absolute percentage points.
This result outperforms LLaMA 2, which has 5 billion more parameters and is trained on 40% more
data. On HellaSwag, using the CD objective to rank answers leads LLaMA to outperform all existing
models except GPT-4. We find general improvement on arithmetic reasoning and multiple-choice
ranking tasks, including on models as large as LLaMA-65B, suggesting that Contrastive Decoding
could bring such widespread improvements to much larger models.

We also analyze the cause of the improvement from Constrastive Decoding. Empirically, we find
that Contrastive Decoding performs less surface-level copying from the prompt than greedy decod-
ing and misses fewer reasoning steps. This result suggests that, similarly to findings in Li et al.
(2022), Contrastive Decoding works by reducing repetitive or other undesirable modes of the model
distribution. Our current method yields mixed results for commonsense reasoning tasks and slightly
degrades factual retrieval, both trends that encourage further refinement of the method.

Overall, we show that Contrastive Decoding not only substantially improves LLM accuracies on
a range of benchmarks, but is also the first generation algorithm to achieve state-of-the-art results
in both reasoning and text generation problems. These results allow a more unified method for
improving generation from language models across tasks.

2 CONTRASTIVE DECODING

2.1 SIMPLIFIED FORMULATION

The original Contrastive Decoding formulation from Li et al. (2022) explicitly chooses two pa-
rameters: α and the intermediate temperature of the amateur distribution τa, with the intermediate
temperature of the expert fixed at τe = 1. We slightly refactor the hyperparameter choice to be more
interpretable and simplify the algorithm by working directly in logit space.

Let s(i)a and s
(i)
e be the unnormalized scores (logits) assigned to token i by the amateur and ex-

pert models, respectively. α is the same hyperparameter in the original paper: a proportion of the
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maximum probability assigned by the expert model, with any tokens assigned a lower probability
masked out. β is a hyperparameter corresponding to the strength of the amateur penalty. We include
a leading (1 + β) coefficient to the expert logits to decouple the strength of the contrastive penalty
from the expected scale of the output logits, cleanly delineating between the contrastive tradeoff and
the final sampling temperature. This matches the formulation of DExperts (Liu et al., 2021), with
the expert model serving both as the base prior and steering expert.

1. Determine α-mask.

Vvalid = {j ∈ V, s
(j)
e ≥ logα+maxk∈V s

(k)
e }

2. Subtract amateur logits.

s
(i)
CD =

{
(1 + β)s

(i)
e − βs

(i)
a i ∈ Vvalid

−∞ i ̸∈ Vvalid

A PyTorch implementation for this formulation, as well as the original, can be found in subsec-
tion A.1 of the appendix. Our implementation takes three lines of readable code.

2.2 PROBABILISTIC INTERPRETATION

Our implementation of α-masking has the same interpretation as in Li et al. (2022), given that the
expert temperature is fixed to τe = 1. We show the equivalence in Appendix A.2.

Further, we can consider the post-softmax probabilities produced by CD as a perturbation of the
probabilities predicted by the expert model. Not including α-masking, the probability assigned to
token i by CD is a normalized adjustment of the probability assigned by the expert model:

p
(i)
CD ∝ p(i)e

(
p
(i)
e

p
(i)
a

)β

(1)

It is therefore clear that as β → 0 the contrastive penalty disappears, and as β → ∞ the distribution
collapses to the argmax of p(i)e /p

(i)
a , which is the original formulation from Li et al. (2022).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Models. We use untuned models from the LLaMA 1 family (Touvron et al., 2023) at all scales.
Unless otherwise stated, we use an untuned LLaMA-65B as the expert and an untuned, LLaMA-
architecture model with 1.5B parameters trained on the same data as the other LLaMA 1 models as
an amateur. For one ablation study, we use models from the FLAN-T5 family (Chung et al., 2022).

Decoding Parameters. We set β = 0.5 and α = 0.1 for all experiments unless otherwise stated.
We use greedy decoding, except for self-consistency experiments for which we sample at τ = 0.7
following Touvron et al. (2023).

Prompting. For generation tasks, we use 8-shot chain-of-thought prompting, in line with Tou-
vron et al. (2023). The examples are the same as in LLaMA for tasks contained in that paper, and
taken from Wei et al. (2023) for other mathematical tasks.

Datasets. Following prior works, we evaluate on a number of datasets. The following tasks
measure performance on algebraic word problems: AQuA (Ling et al., 2017), ASDiv (Miao et al.,
2021), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021). We also evaluate on MATH
(Hendrycks et al., 2021b), a larger and more challenging benchmark.
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For commonsense reasoning, we measure open-ended performance on CommonsenseQA (Talmor
et al., 2019) and StrategyQA (Geva et al., 2021). We also evaluate on a battery of multiple-
choice reasoning benchmarks: both the easy and challenge splits of the AI2 Reasoning Challenge
dataset (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), MMLU
(Hendrycks et al., 2021a), PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), and WinoGrande
(Sakaguchi et al., 2019).

3.2 HYPERPARAMETER SELECTION

Contrastive decoding has three major hyperparameters: the masking ratio α, the contrastive strength
β and the size of the amateur model. We find that results are fairly insensitive to α as long as β is
reasonably small (below 1); unless otherwise stated we use α = 0.1 across experiments.

Next we consider the size of the amateur model. In agreement with Li et al. (2022), we find that
performance benefits from smaller amateur models ( Figure 4); while a 1B-parameter amateur helps
reasoning performance, a 7B-parameter amateur harms it. We also examine different types of am-
ateurs; ablation studies show that a partially-trained amateur performs better than a fully-trained
one, and that a poorly-prompted expert can be successfully used as an amateur as well (see subsec-
tion 4.2).

Finally, we examine the effect of β. The optimal value depends on the task, but for both generation
tasks like GSM8K and multiple-choice ranking tasks like PIQA we find that β = 0.5 performs well.
Setting β too high can place too much weight in the contrastive penalty and harm performance,
especially with a larger gap between amateur and expert models. β = 0 corresponds to standard
greedy decoding with no contrastive penalty. Results of β hyperparameter sweeps can be found in
Table 1, Figure 4, Figure 5 and Appendix B.

The best result on GSM8K, with LLaMA-65B and β = 0.25, is 57.7 (Table 1), outperforming
PaLM-540B (56.5), LLaMA-2 (56.8) and GPT-3.5 (57.1).* (Anil et al., 2023; OpenAI, 2023)

Figure 4: Results on GSM8K with LLaMA-
65B as the expert. While a 7B amateur harms
performance, a 1.5B amateur helps.

Expert β = 0 β = 0.25 β = 0.5 β = 1
7B 10.7 11.5 13.6 11.0

13B 17.0 21.0 22.9 20.4
30B 35.2 40.0 43.4 42.0
65B 51.0 57.7 56.8 44.6

Table 1: Results on GSM8K. β = 0.5 tends to give
good results across expert sizes.

3.3 ARITHMETIC REASONING

We find that contrastive decoding tends to help on arithmetic reasoning tasks with chain-of-thought
prompting; see Table 2 for all results. One exception to this is the MATH dataset, which proves to
be challenging for both standard and contrastive decoding. We conjecture that because contrastive
decoding amplifies skills that the expert has learned better than the amateur, it cannot help on tasks
that are well beyond the expert’s ability.

We also experiment with normalizing the α-masked CD scores via softmax, then temperature sam-
pling from the resulting distribution. This permits CD to generate multiple candidate reasoning
chains to be used for self-consistency (taking the majority answer) (Wang et al., 2023b). We show
across both mathematical and commonsense reasoning, CD improves self-consistency performance.

*OpenAI (2023) evaluates GPT-3.5 5-shot; all others are 8-shot.
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(a) (b)

Figure 5: Two examples of sweeping through β values on multiple-choice reasoning tasks across
model scales. Dashed horizontal lines mark performance without contrastive decoding.

Table 2: Results on math generation tasks. Contrastive decoding generally improves performance.

Model CD AQuA ASDiv GSM8K MATH SVAMP Average
7B ✗ 21.0∗ 40.2 10.7 3.0 27.3 20.4
13B ✗ 18.1∗ 49.0 17.4 4.2 39.4 25.6
30B ✗ 23.8 60.1 35.3 6.9 55.9 36.4
65B ✗ 33.3 67.2 51.0 10.6 69.1 46.2
65B maj@20 ✗ 38.2 73.6 68.0 –† 77.3 64.3
7B ✓ 19.0∗ (-2.0) 39.7 (-0.5) 14.3 (+3.6) 2.9 (-0.1) 31.5 (+4.2) 21.5 (+1.1)

13B ✓ 16.0∗ (-2.1) 52.0 (+3.0) 22.7 (+5.5) 3.8 (-0.4) 43.1 (+3.7) 27.5 (+1.9)

30B ✓ 29.8 (+6.0) 62.5 (+2.4) 43.1 (+8.1) 8.1 (+1.2) 59.3 (+3.4) 40.6 (+4.2)

65B ✓ 36.9 (+3.6) 71.9 (+4.7) 56.8 (+5.8) 10.3 (-0.3) 67.8 (-1.3) 48.7 (+2.5)

65B maj@20 ✓ 39.4 (+1.2) 77.4 (+3.8) 74.0 (+6.0) –† 79.0 (+1.7) 67.5 (+3.2)

3.4 COMMONSENSE REASONING

Results are more mixed for CommonsenseQA and StrategyQA. For both of these tasks, we 8-shot
prompt our model and compute the exact match score against the ground-truth answers. We find that
contrastive decoding harms performance for smaller models, but that this harm equalizes somewhat
for the 65B model and evens out when using self-consistency. See Table 3 for full results.

Table 3: CD harms commonsense reasoning with a smaller expert,
but performance evens out with a larger expert-amateur gap.

Model CD CSQA StrategyQA Average
7B ✗ 40.0 59.2 49.6
13B ✗ 60.4 64.5 62.5
30B ✗ 66.4 68.7 67.6
65B ✗ 77.5 69.5 73.5

65B maj@20 ✗ 77.0 79.3 78.2
7B ✓ 37.3 (-2.7) 58.3 (-0.9) 47.8 (-1.8)

13B ✓ 58.5 (-1.9) 65.5 (+1.0) 62.0 (-0.5)

30B ✓ 62.8 (-3.6) 67.6 (-1.1) 65.2 (-2.4)

65B ✓ 77.1 (-0.4) 71.5 (+2.0) 74.3 (+0.8)

65B maj@20 ✓ 77.9 (+0.9) 79.3 (+0.0) 78.6 (+0.4)

*In the AQuA task, the model selects one out of five given options. Thus the random baseline is 20%, and
results below that threshold are not meaningful.

†Given the size of the dataset and length of generations, we do not evaluate maj @ 20 on MATH.
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3.5 CONTRASTIVE RANKING

We further evaluate a contrastive objective as a scoring function to rank answers to multiple-choice
questions. These tasks are zero-shot, multiple-choice cloze tasks; instead of open-ended generation
the model scores each potential completion, length-normalizing following Touvron et al. (2023).
We find comparable performance across most tasks, with more substantive gains on HellaSwag and
ARC-Challenge. Notably, on HellaSwag CD leads LLaMA-65B to score 88.0, which outperforms
LLaMA-2 (85.3), GPT-3.5 (85.5) (OpenAI, 2023) and PALM 2-Large (86.8) (Anil et al., 2023).

Table 4: Results on multiple-choice reasoning tasks. CD generally provides a modest boost.

β ARC-E ARC-C BoolQ HSwag PIQA SIQA WGrande MMLU Avg
0.0 79.1 56.1 84.2 84.2 82.6 52.3 77.3 63.5 72.4
0.5 79.0 59.5 84.3 87.4 83.1 53.3 77.8 63.4 74.9
1.0 76.9 59.7 84.1 88.0 82.9 53.3 76.5 63.2 74.5

4 ADDITIONAL STUDIES

4.1 EFFECTS OF CONTRASTIVE DECODING

CD is worse at arithmetic but better at logical reasoning. We conduct a manual error analysis
of 100 randomly selected examples from the GSM8K set between continuations from greedy decod-
ing and CD (β = 0.5, α = 0.1). We follow Wang et al. (2023a) and categorize wrong answers as
primarily being due to an arithmetic error, a missing step or a semantic misunderstanding. We add
one category of “degeneration,” chosen when the model lapses into excessive repetition. Our small-
scale analysis finds that CD makes more arithmetic errors, but that this is offset by better semantic
reasoning and fewer missing steps (see Table 5).

Table 5: Proportion of errors in of a set of 100 GSM8K questions. CD makes more
arithmetic errors, but omits fewer steps and avoids semantic misunderstandings.

CD Arithmetic Missing Step Semantic Degeneration Total Errors
✗ 4% 22% 24% 4% 54%
✓ 8% 20% 21% 3% 52%

To further explore the claim that the benefit of CD does not stem from arithmetic evaluation, we
generate a toy dataset of 1,0000 multiplication and subtraction equations with operands up to four
digits and then 8-shot prompt models to complete the expression, measuring exact match accuracy.
We find that CD does not improve performance on this task, and in fact may degrade it slightly.
Results are shown in Table 8.

Standard CD
Correct % 44.6 51.1

Parseable % 95.2 95.6
Average # chars 215.2 217.2

Table 6: High-level generation statistics
from sampled generations on GSM8K.
Responses are similar lengths, despite
the performance improvement from CD.

Figure 6: CD reduces copying from the question
in the generated Chain of Thought, as measured
by n-gram overlap on GSM8K generations.

CD reduces copying from the prompt. We analyze 26,000 sampled generations from CD-
sampling on GSM8K against the corresponding set from temperature sampling; both of these sets
of generations are used in our self-consistency study. We find that responses are roughly the same
length and follow the few-shot template roughly the same proportion of the time. This rules out the
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hypothesis that contrastive decoding simply leads the model to follow the template better, prevents
degeneration or induces longer answers with more reasoning steps. Further, we run an automatic
evaluation of greedy generations using ROSCOE (Golovneva et al., 2022) but do not find significant
differences in any of these metrics. However, we measure the precision and recall of the tokens in
the prompt by the sampled generations and find that CD systematically reduces token-level copying
from the prompt. This may be related to increased reasoning ability, as surface-level copying from
the prompt does not provide new information to the problem.

CD can harm factual recall. Our primary claim is that contrastive decoding improves chain-
of-thought reasoning. However, we also test CD on two pure factual-recall tests that do not utilize
chain-of-thought: OpenBookQA (Mihaylov et al., 2018) and TriviaQA (Joshi et al., 2017). Open-
BookQA (“OBQA”), is a multiple-choice completion task, while TriviaQA is a 5-shot generation
task. Reusing the same setup from reasoning leads to a slight degradation of performance, as seen
in Table 7.

Table 7: CD can harm perfor-
mance on factual recall tasks.

CD OBQA TriviaQA∗

✗ 60.0 72.2
✓ 57.8 (-2.4) 69.9 (-2.1)

Table 8: CD slightly harms perfor-
mance on a synthetic task of evaluat-
ing arithmetic expressions.

CD 7B 13B 30B 65B
✗ 31.0 36.3 52.3 58.4
✓ 30.9 35.6 52.2 57.6

CD outperforms other reasoning enhancements in FLOP efficiency. We note that contrastive
decoding introduces relatively little overhead in comparison to other reasoning-enhancing methods.
We estimate that with a 1.5B amateur and 65.2B expert, contrastive decoding increases the total
number of FLOPs by 3.25% (see section C of the appendix). This compares favorably to self-
consistency, which requires several extra full generation loops. We show in Figure 9 that CD is
significantly more efficient than self-consistency.

4.2 ABLATION STUDIES

α-masking alone is not enough. When sampling and performing self-consistency, α-masking
prevents the sampling of tokens the expert finds to be unlikely. It is natural to ask what portion of
the benefit comes purely from α-masking and not the contrastive objective itself.

To answer this, we set β = 0 but α = 0.1; that is, we mask out candidates based on the expert but do
not apply the contrastive objective. When sampling one path, we expect α-masking to improve over
temperature sampling alone as it eliminates unlikely results and thus provides a closer approximation
to greedy sampling. This holds, but as we increase the number of paths we find no benefit from α-
masking alone. This suggests that the contrastive objective, and not α-masking, is the primary
source of improved self-consistency results. See Figure 7 for results of this ablation.

CD requires chain-of-thought prompting to improve results. We next study whether con-
trastive decoding provides an advantage in the absence of chain-of-thought prompting. We remove
the chains of thought from the GSM8K fewshot prompt, and find that as expected performance drops
for both standard and contrastive decoding (Figure 8); further, without chains of thought contrastive
decoding provides no consistent improvement. As with the MATH dataset, solving problems with-
out explicit reasoning steps may be too challenging of a task for the expert model, and thus leave
too small a gap between the expert and amateur to contrastively exploit.

CD can benefit non-LLaMA models. We conduct a short study to show that CD can benefit
models outside of the LLaMA family. For this study, we choose the FLAN-T5 family as it is open-
source, has a wide range of model sizes that share a single tokenizer, and obtains good performance
on chain-of-thought reasoning tasks. We use FLAN-T5-XXL (11B) as the expert model and FLAN-
T5-Small (80M) as amateur. We evaluate on GSM8K using the 8-shot random prompts from Fu

*On manual examination, we find the set of correct answers provided by TriviaQA to be insufficient. Ran-
domly sampling 100 supposedly incorrect answers generated by CD and standard decoding, we find roughly
half are in fact correct (46/100 with CD and 49/100 without). A rough linear extrapolation gives us estimates
for non-CD and CD scores of 85.8 and 83.7, respectively.
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Figure 7: GSM8K scores via temperature sam-
pling and maj @ k with various values of k.
α-masking alone does not yield significant im-
provement, while full CD does.

Figure 8: Comparison of GSM8K scores with
LLaMA-65B, both with and without chain-of-
thought prompts. CD only helps when using
CoT.

et al. (2023); note that GSM8K is within the set of tasks that FLAN-T5 is finetuned on. CD provides
a slight boost in performance, as seen in Table 9. We leave more extensive experiments on other
families of models to future work.

Figure 9: FLOP increases, with increasing
compute from using more samples for self-
consistency. CD achieves similar or better per-
formance with a smaller increase in FLOPs.

CD β GSM8K
✗ 0 16.4
✓ 0.5 17.1
✓ 1.0 17.4

Table 9: FLAN-T5 per-
formance on GSM8K. CD
provides a boost to perfor-
mance.

Small-scale amateurs beat “negative prompting.” We experiment to determine if there is a
more effective weak amateur model to use for contrastive decoding. We define a set of “negative
prompts” by sampling 7B model outputs on the fewshot prompts and collecting the incorrect re-
sponses. We use these responses as fewshot prompts to mimic the failure modes of the family of
models. These negative prompts should harm the performance of models they are prompted with,
and specifically bias results towards the error distribution of the 65B model.

We find that contrasting with a negative prompt does not harm performance, but does not improve
it as much as contrasting with a small amateur (see Table 10). In an ablation study, we find that
negative prompting does not harm performance that much; prompting a 65B model with incorrect
fewshot examples on GSM8K gives a score of 41.3, which underperforms prompting with cor-
rect examples (51.2) but significantly beats non-chain-of-thought prompting (13.5). This supports
Wang et al. (2023a), who find that even incorrect chain-of-thought rationales improve reasoning. A
prompting strategy which better incapacitates the expert model might yield better results.

Mid-training checkpoints make for good amateurs. We experiment with checkpoints of a mid-
training 7B-parameter LLaMA model taken 10% and 23% of the way through the full training run.
Even while a fully-trained 7B amateur harms performance on GSM8K, we find that a partially-
trained amateur improves performance. We do not perform extensive hyperparameter sweeps here,
instead reusing α = 0.1, β = 0.5 as before. We do not pursue partially-trained amateurs for our main
results as results may vary based on the order of training data, but this result allows us to interpret
contrastive decoding as a first-order optimization step over the output of a model, highlighting the
high-level behaviors that it learns later on in the course of training. See Table 11 for full results.
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Table 10: On GSM8K, negative prompting out-
performs greedy decoding but weakens CD.

Expert Greedy NP CD CD + NP
7B 10.7 11.4 14.3 12.7

13B 17.4 17.5 22.7 20.7
30B 35.3 36.9 43.1 42.9
65B 51.0 52.0 56.8 54.7

Table 11: Early-training checkpoints can be
good amateurs, even when late-stage check-
points harm performance.

Amateur Amateur Tokens GSM8K
7B 130B 57.0
7B 300B 56.8
7B 1.3T 49.9

5 RELATED WORK

Steering methods for reasoning. Other works more explicitly model the error distribution of
reasoning steps and use this to steer decoding. For example GRACE (Khalifa et al., 2023) uses a
contrastive loss to train an external step-level discriminator, which it then uses to select between
candidate steps sampled from a base model. Using the interpretation of contrastive decoding as
mutual distinguishability between amateur and expert, we see that our method is close to FUDGE
(Yang & Klein, 2021) where the binary predictor is an estimate of the probability that the generated
token has come from the expert rather than the amateur.

Prompting Methods for Reasoning. There are many recent prompting methods to improve lan-
guage model reasoning; see Qiao et al. (2023) for a survey. We perform our experiments with
chain-of-thought prompting (Wei et al., 2023).

Sampling methods Several decoding methods exist to improve the quality of generations from
large language models. For open-ended generation, truncated sampling schemes like top-k sampling
(Fan et al., 2018), nucleus sampling (Holtzman et al., 2020) and typical sampling (Meister et al.,
2023) have been shown to reduce repetition in comparison to greedy decoding and beam search
while producing more coherent generations than standard temperature sampling. However, sampling
can still introduce errors into logical chains, and so greedy decoding is used to more effectively solve
reasoning tasks. (Wei et al., 2023; Anil et al., 2023)

Contrastive Generation Methods. Our formulation’s objective can be interpreted as a special
case of DExperts (Liu et al., 2021), using the larger model as both an expert and base LM prior.
Yona et al. (2023) identify model biases with Contrastive Input Decoding, a contrastive-decoding-
style technique similar to negative prompting that operates on perturbed text inputs.

Concurrently to our work, Chuang et al. (2023) propose DoLA, which improves factuality and rea-
soning through contrastive decoding between the predictions of later layers and earlier layers in a
language model. We study a wider array of reasoning tasks and demonstrate that a 7B amateur is
too large, finding greater gains in reasoning just by scaling down the amateur to 1.5B parameters.

Our paper differentiates itself from Li et al. (2022), which initially proposed Contrastive Decoding,
in several ways: by testing on standard reasoning benchmarks, by our exploration of β as a hyper-
parameter, by ablations with various types of amateurs, and by a careful analysis of the combination
of Contrastive Decoding with chain-of-thought prompting and self-consistency.

6 LIMITATIONS

Our investigation is also limited mainly to the LLaMA family of models. While the method contin-
ues to provide benefit to larger LLaMA models, further work is required to definitively establish the
effect of contrastive decoding on larger, tuned models.

7 CONCLUSION

Our study shows that contrastive decoding can improve chain-of-thought reasoning in large lan-
guage models. While challenges like factual recall remain, this strengthens the case for contrastive
decoding as a simple, general-purpose method to elicit more desirable behavior from large language
models.
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REPRODUCIBILITY STATEMENT

The training process and model architecture for the 1.5B-parameter LLaMA model used as the ama-
teur in several results is publicly available, but the weights are not, which limits public reproducibil-
ity of results relying on that model. The results on FLAN-T5, as well as the negative-prompting
study and examination of 7B-LLaMA as an amateur, are all built on entirely open-source models
and data.
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A APPENDIX

A.1 CODE IMPLEMENTATION

We include PyTorch implementations of contrastive decoding in Algorithm 1 and Algorithm 2

Algorithm 1: Original formulation
# expert logits - unnormalized scores from the expert model
# amateur logits - unnormalized scores from the amateur model
# amateur temp - temperature to normalize amateur distribution
# alpha - masking threshold

expert probs = softmax(expert logits, dim=-1)
amateur probs = softmax(amateur logits / amateur temp, dim=-1)
cutoff = alpha*expert probs.max(dim=-1, keepdim=True).values
diffs = log(expert probs) - log(amateur probs)
cd logits = diffs.masked fill(expert probs < cutoff, -float(’inf’))

Algorithm 2: Our formulation
# expert logits - unnormalized scores from the expert model
# amateur logits - unnormalized scores from the amateur model
# alpha - masking threshold
# beta - expert-amateur tradeoff parameter

cutoff = log(alpha) + expert logits.max(dim=-1, keepdim=True).values
diffs = (1 + beta)*expert logits - beta*amateur logits
cd logits = diffs.masked fill(expert logits < cutoff, -float(’inf’))
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A.2 EQUIVALENCE - MASKING

For the sake of completeness, we show the equivalency between the two masking schemes. We
restrict our consideration to the generation of a single token. Let

- V be the vocabulary size of each model

- {ei}Vi=1 be the logits produced by the expert model

- {ai}Vi=1 be the logits produced by the amateur model

- Ne and Na be the normalization terms of the softmax function; for example, Ne =
∑V

j=1 exp(ei)

The probability that the expert assigns to token i after the softmax is by definition pe(i) =
exp(si)

Ne

Now consider any token that is masked out. We have that pe(i) < α ∗ pe(imax), where imax is the
the token that maximizes pe.

Because ex and log x are both strictly increasing functions, we obtain:

si − logNe < logα+ smax − logNe

si < logα+ smax

These two conditions are equivalent, and so we can mask tokens by thresholding their logits against
logα+ smax.

Further, let us introduce an expert temperature parameter τ ∈ (0,∞) that scales the logits arbitrarily.
Then we obtain a new set of logits ci = si

τ

By then substituting ατ = α1/τ , we obtain the same mask. Thus the mask is a function that depends
only on the quantity τ logα, or equivalently α exp(τ). As we later show, we can fix τ = 1 by
introducing a new hyperparameter β. So if we fix τ = 1, then our mask depends solely on α.

Letting p
(i)
e correspond to the post-softmax probability that the expert assigns to token i, we have

shown that the valid set produced by our method is the same as in the original:

Vvalid =

{
j ∈ V, p(j)e ≥ 1

α
max
k∈V

p(k)e

}

A.3 EQUIVALENCE - LOGIT COMBINATION

To be concise, first define q(i) = pe(i)
pa(i)

be the ratio of the probability assigned by the expert model
over the probability from the amateur model, both on token i.

Further, let si denote the value of the logit that CD assigns to token i. Then

si = (1 + β) log pe(i)− β log pa(i)

exp(si) = pe(i)q(i)
β

pcd(i) ∝ pe(i)q(i)
β

Expanding this, we obtain:

pcd(i) ∝ exp ((1 + β)ei − βai)

which is equivalent to simply linearly combining the expert and amateur logits.

When we introduce temperatures, the equation becomes
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pcd(i) ∝ exp

(
1 + β

τe
ei −

β

τa
ai

)
mask(i) = f(τe logα)

When sampling, the temperature with which we sample from the CD logits is introduced as τout

pcd(i) ∝ exp

(
1

τout

(
1 + β

τe
ei −

β

τa
ai

))
These four parameters τout, τe, τa and β combine into only two coefficients – one for ei and one for
ei.

pcd(i) ∝ exp (κeei − κaai)

We now fix τa and τe to 1. We can obtain almost the same range of values with the τout, β formu-
lation as with the κe, κa formulation. The only exception is the case for which κe = κa, which
we exclude after finding that weighing expert and amateur equally gives worse results than down-
weighing the amateur. Despite this exception, we prefer the β, τout formulation because it decouples
the scale of the final logits from the β parameter: in expectation β does not scale the logits up or
down, and so when sampling τ will affect generation diversity and β will affect the expert-amateur
tradeoff.
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B MULTIPLE-CHOICE BETA SWEEP RESULTS

Here we include the plots for all beta sweeps through the multiple-choice tasks.

16



C FLOP ESTIMATES

We follow Kaplan et al. (2020) and estimate the number of flops for one forward pass of a Trans-
former model with N non-embedding parameters as roughly 2N . For the purposes of this analysis,
we drop the negligibly small 2nlayernctxdattn term. This allows us to consider the cost of generating
one token to be constant regardless of the context length.

With this approximation, we find that contrastive decoding adds 1.5
65.2 ≈ 2.30% to the number of

FLOPs per forward pass for a 65B expert model. To ensure a fair comparison, we also include the
small increase in generation lengths induced by CD (see Table 6), bringing its total percent increase
up to 3.25%.
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