
Precision-Recall Divergence Optimization for
Generative Modeling with GANs and

Normalizing Flows

Alexandre Verine
LAMSADE, CNRS,

Université Paris-Dauphine-PSL,
Paris, France

alexandre.verine@dauphine.psl.eu

Benjamin Negrevergne
LAMSADE, CNRS,

Université Paris-Dauphine-PSL,
Paris, France

benjamin.negrevergne@dauphine.psl.eu

Muni Sreenivas Pydi
LAMSADE, CNRS,

Université Paris-Dauphine-PSL,
Paris, France

muni.pydi@dauphine.psl.eu

Yann Chevaleyre
LAMSADE, CNRS,

Université Paris-Dauphine-PSL,
Paris, France

yann.chevaleyre@dauphine.psl.eu

Abstract

Achieving a balance between image quality (precision) and diversity (recall) is
a significant challenge in the domain of generative models. Current state-of-the-
art models primarily rely on optimizing heuristics, such as the Fréchet Inception
Distance. While recent developments have introduced principled methods for
evaluating precision and recall, they have yet to be successfully integrated into
the training of generative models. Our main contribution is a novel training
method for generative models, such as Generative Adversarial Networks and
Normalizing Flows, which explicitly optimizes a user-defined trade-off between
precision and recall. More precisely, we show that achieving a specified precision-
recall trade-off corresponds to minimizing a unique f -divergence from a family
we call the PR-divergences. Conversely, any f -divergence can be written as a
linear combination of PR-divergences and corresponds to a weighted precision-
recall trade-off. Through comprehensive evaluations, we show that our approach
improves the performance of existing state-of-the-art models like BigGAN in terms
of either precision or recall when tested on datasets such as ImageNet.

1 Introduction

Evaluation of generative models has always been a challenging task. The metric used must reflect
both the quality of the sample generated (precision) and how much the sample covers the targeted
probability distribution (recall). Inception Score (IS) or Fréchet Inception Distance (FID) have
been introduced and are now widely used by the community to select the best models. Typically,
these metrics are favored because they "correlate well with the visual fidelity of the samples" and
are "sensitive to both the addition of spurious modes as well as mode dropping" [44]. However as
pointed by Kynkäänniemi et al. [28], FID and IS group these two aspects into a single value without
a clear trade-off. Depending on the use-case, generative models might require a good precision
(high-resolution image and video generation, artistic synthesis, 3D model design) or a good recall
(data augmentation, drug discovery, anomaly detection). For that reason, a number of more principled
methods [9, 15, 28, 44, 47] have emerged to assess precision and recall (hereafter abbreviated by

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

P&R) independently, however these methods cannot be optimized during training, because they are
not differentiable or because they are too computationally demanding.

To enhance either the precision or the recall of a particular model, an array of strategies and techniques
have been employed. Usually these techniques involve altering the latent distribution a posteriori (e.g.
truncation and temperature post-training). Other methods exists such as through rejection sampling,
boosting, or instance selection [3, 12, 13, 19, 23, 33, 49]. Although these approaches may utilize
proxies of P&R, they are not theoretically grounded in the principled methods of evaluating these
metrics, leaving their alignment with the foundational concepts of P&R unverified. This leads to the
following question.

Question 1: Is it possible to train a generative model that achieves a specified trade-off between
precision and recall?

In addition to this question, another of our goals is to understand existing generative models in
terms of P&R. Modern generative models, such as Generative Adversarial Networks (GANs) or
Normalizing Flows (NFs), are typically designed to minimize specific divergence measures. Given a
target distribution P and a set of parameterized distributions {Pθ|θ ∈ Θ}, a generative model aims to
find the best fit P̂ = Pθ∗ that minimizes a divergence between P and P̂ . These divergences induce
different behaviors at convergence. For instance, optimizing the Kullback-Leibler (KL) divergence
tends to favor mass-covering models [35], contrasting with the mode-seeking behavior observed
with other generative models, leading to the infamous problem of mode collapse. Transitioning
from one divergence to another does indeed alter the model’s behavior in terms of precision and
recall, however, the implicit trade-offs made during the optimization of a general divergence remain
somewhat ambiguous. This motivates the following question.

Question 2: What precision-recall trade-off does an arbitrary f -divergence minimize?

In this paper, we bridge the gap between principled methods of P&R evaluation and controlling their
trade-off. In doing so, we address Questions 1 and 2 by making the following contributions:

• We show that achieving a specified precision-recall trade-off corresponds to minimizing a
particular f -divergence between P and P̂ . Specifically, in Theorem 4.3 we give a family of
f -divergences (denoted by Dλ-PR, λ ∈ [0,∞]) that are associated with various points along
the precision-recall curve of the generative model.

• We show that any arbitrary f -divergence can be written as a linear combination of f -
divergences from the Dλ-PR family. This result makes explicit, the implicit precision-recall
trade-offs made by generative models that minimize an arbitrary f -divergence.

• We propose a novel approach to train or fine-tune a generative model on notoriously hard to
train f -divergences, with guarantees on divergences defined by the lipschitz constant of f .

• We use this approach to train models on a user specified trade-off between P&R by minimizing
Dλ-PR for any given λ. We specifically focus on GANs and NFs. For instance, Figure 1 shows
how our model performs under various settings of λ. With a high λ, we can train the model to
favor precision over recall and vice-versa.

• Through extensive experiments, we show that our approach enables effective model training
to minimize the PR-Divergence, particularly for fine-tuning pre-trained models, with a notable
impact from the choice of trade-off parameters λ, while also demonstrating scalability with
larger dimensions and datasets.

2 Related works

Generative model evaluation metrics: IS or FID are widely adopted due to their ability to assess
visual fidelity and sensitivity to mode variations. However, these metrics fall short in providing a
trade-off between P&R. Principled approaches were introduced by Djolonga et al. [15] and Sajjadi
et al. [44], and later extended by Simon et al. [47], providing a definition P&R independently using
PR-Curves detailed in Section 3.3. We adopt this extended approach in our work. In image generative
modeling, the current consensus for P&R evaluation are two methods. First, the method presented
by Kynkäänniemi et al. [28], which provides a simpler evaluation of P&R based on the estimation

2

(a) λ = 0.1 (b) λ = 1 (c) λ = 10 (d) DKL (e) DrKL

Figure 1: NFs - RealNVP [14] trained on 2D Gaussians. Fig. 1(a) to Fig. 1(c): models trained to
minimize Dλ-PR. Fig. 1(d) and Fig. 1(e): models trained to minimize DKL and DrKL respectively.
Samples drawn from the true distribution P are shown in black, samples drawn from the estimated
distribution P̂ are shown in green and the log-likelihood of P̂ is shown in blue (darker means higher
density). (a) λ = 0.1, favors recall over precision. (b) λ = 1, balanced precision vs. recall trade-off.
(c) λ = 10, which favors precision over recall. As observed in [35], and demonstrated in Theorem 4.5,
the DKL (1(d)) is mass covering and the DrKL (1(e)) in mode-seeking. The corresponding PR-Curve
are presented in Figure 2(c).

of the support of the distribution using a k-NN algorithm, akin to the most recent work by Cheema
and Urner [9]. Second, a method introduced by [36], computing the Density (D) and the Coverage
(C) which account for local density and are robust to outliers in contrast to [28]. In natural language
processing, one popular method, MAUVE [41], consists of the area under PR-Curves defined by [15].
However, because of their mathematical foundation, these methods remain unsuitable for training
due to non-differentiability and high computational requirements.

Trade-offs and techniques in generative model: The challenge of balancing P&R in generative
model training has led to a variety of techniques. Methods for enhancing precision often involve
manipulating the latent distribution post-training, such as hard truncation [7, 24, 25, 46] or standard
deviation adjustment, also called soft truncation [27]. One can also use rejection sampling in the
image space [4, 50], in the latent space [23, 49], or in the dataset [13]. There are also numerous
strategies to prevent mode collapse and boost recall [8, 31, 32], gradient-boosting methods [12, 16, 19]
and mixture based latent models [6, 40]. However, it should be noted that these approaches lack a
foundation in the principled methods of P&R evaluation. This underscores the need for a theoretically
grounded approach to balance these crucial aspects in generative models, a gap that our current work
aims to address. Note also that all these methods can be applied to any model, and in particular to the
one trained using our proposed method.

Divergence training in generative models: Modern generative models, such as GANs and NFs,
often employ specific divergence measures for model optimization. With works such as Grover et al.
[20], Nowozin et al. [39], models can be trained with a variety of divergences such as f -divergence,
thus observing different results of P&R. Another notable work by Midgley et al. [34] proposed
training with α-Divergence, under the assumption of access to data density. The work of [29], closely
aligned with our approach, defines different orders of mode seeking and evaluates the corresponding
f -divergences at these levels. Although its methodology employs the training of f -GAN models on
simple datasets to illustrate the mode-seeking property, it does not offer the flexibility to establish a
user-defined trade-off. The implicit trade-offs made by these divergence measures is still a challenge:
the recent work of [48] shows the links between P&R and any DeGroot’s divergences.

3 Background

Notation: Throughout the paper, we use X ⊂ Rd to refer to the input space and Z ⊂ Rm to the
latent space of the model we consider. We also denote P(X) and P(Z) the set of all probability
measures over measurable subsets of X and Z respectively. P and P̂ are consistently used to denote
the target and estimated distributions (both members of P(X)). We also assume that P and P̂ share
the same support in X , and that they admit densities denoted by the corresponding lower case letters
p and p̂, respectively. Finally, for any function f ∈ R → R, we define the convex conjugate (or
Fenchel transform) of f given by f∗(t) = supu∈R {tu− f(u)}.

3

3.1 f -divergences

Given a convex lower semi-continuous (l.s.c) function f : R+ → R satisfying f(1) = 0, the
f -divergence between two probability distributions P and P̂ is defined as follows.

Df (P∥P̂) =
∫
X
p̂(x)f

(
p(x)

p̂(x)

)
dx. (1)

Df is invariant to an affine transformation in f i.e., Df (P∥P̂) = Df†(P∥P̂) for f†(u) =
f(u) + c(u − 1) for any constant c ∈ R. Many well-known statistical divergences such as the
KL divergence (DKL), the reverse KL (DrKL) or the Total Variation (DTV) are f -divergences (see
Table 1). Importantly, any Df admits a dual variational form [37], with T denoting the set of all
measurable functions X → R:

Df (P∥P̂) = sup
T∈T
Ddual

f,T (P∥P̂), where Ddual
f,T (P∥P̂) = Ex∼P [T (x)]− Ex∼P̂ [f∗(T (x))]

(2)

We use T opt ∈ T to denote the function that achieves the supremum in (15).

Table 1: List of common f -divergences. The generator f is given with its Fenchel conjugate f∗. The
optimal discriminator T opt is given to compute the likelihood ratio p(x)/p̂(x) = ∇f∗(T opt(x)).
Then f ′′(1/λ)/λ3 is given to compute the Df as a combination of Dλ-PR using Theorem 4.4.

DIVERGENCE NOTATION f(u) f∗(t) T opt(x) f ′′(1/λ)/λ3

KL DKL u log u exp(t− 1) 1 + log p(x)/p̂(x) 1/λ2

REVERSE KL DrKL − log u −1− log−t −p̂(x)p(x) 1/λ

χ2-PEARSON Dχ2 (u− 1)2 t2/4 + t 2 (p(x)p̂(x)− 1) 2/λ3

3.2 Generative models

Generative Adversarial Networks (GANs): A GAN consists of two functions, generator G :
Z → X , discriminator T : X → R, as well as a prior distribution Q ∈ P(Z) which is usually the
standard normal N (0, Im). The estimated data distribution P̂G is the push-forward distribution of Q
by G. In the original work of Goodfellow et al. [17], a specific Df is used to optimize the divergence
between P and P̂G. In this paper, we consider the more general framework of Nowozin et al. [39] that
can be used to train a GAN with any Df by solving the following min-max optimization problem:

min
G

max
T
Ddual

f,T (P∥P̂G) = min
G

max
T

Ex∼P [T (x)]− Ex∼P̂G
[f∗(T (x))] , (3)

Normalizing Flows (NFs): An NF consists of an invertible function G : Z → X and a prior
distribution Q ∈ P(Z). As for GANs, the estimated distribution P̂G is the push-forward of Q by G.
However, because G is invertible, it is possible to compute the density p̂(·) using a simple change
of variable formula, p̂(x) = q(G−1(x))|det JacG−1(x)|, where det JacG−1(x) is the determinant
of the Jacobian matrix of G−1 at x, and train the generator using the DKL between P and P̂F , or
equivalently, by maximizing the log-likelihood:

min
G
DKL(P∥P̂G) = H(P)−max

G
Ex∼P [log p̂G(x)] , (4)

where H(P) is the continuous entropy of P . In practice, the generator function G is typically
represented by neural networks such as GLOW [27], RealNVP [42], or ResFlow [5, 10] for which
det JacG−1(x) is easy to compute. Grover et al. [20] showed that it is possible to train an NF using
most f -divergences. In practice, the log-likelihood is added to the min-max objective to stabilize
learning. This gives us the following optimization problem:

min
G

max
T
Ddual

f,T (P∥P̂G)− γEx∼P [log p̂G(x)] , (5)

4

p(
x

)

x

Target P

Model P̂1

Model P̂2

(a) Distributions
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

β

α
Model P̂1

Model P̂2

(b) ∂PRD(P, P̂) curves
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

β

α

λ = 0.1

λ = 1λ = 10

λ = 0.1
λ = 1
λ = 10
DKL

DrKL

(c) ∂PRD(P, P̂) for Fig. 1

Figure 2: PR curves for two models P̂1 and P̂2 of P . Figure 2(a) shows P̂1, P̂2 and P . Figure 2(b)
shows PR curves for P̂1, P̂2 against P . P̂1 has good recall since it covers both modes of P , but
low precision since it generates points between the modes. P̂2 has good precision since it does not
generate samples outside of P but low recall since it can generate samples from only one mode.
Figure 2(c) are the PR curves corresponding to Figure 1 and are detailed in Section 6.

3.3 Precision-Recall curve for generative models

Generative models are usually evaluated using a single criterion such as the IS [45] or the FID [21].
However, these criteria are unable to distinguish between the distinct failure modes of low precision
(i.e., failure to produce quality samples) and low recall (i.e., failure to cover all modes of P). The
following definition was introduced by Sajjadi et al. [44] and later extended by Simon et al. [47].

Definition 3.1 (PRD set, adapted from Simon et al. [47]). For P, P̂ ∈ P(X), the P&R set PRD(P, P̂)
is defined as the set of pairs of precision α and recall β in R+ × R+ such that there exist
µ ∈ P(X) for which P ≥ βµ and P̂ ≥ αµ. The precision-recall curve (or PR curve) is defined as
∂PRD(P, P̂) = {(α, β) ∈ PRD(P, P̂) | ∄(α′, β′) with α′ ≥ α and β′ ≥ β}.

An equivalent definition of PRD(P, P̂) is found in Sajjadi et al. [44], where (α, β) ∈ PRD(P, P̂) if
P and P̂ can be decomposed as in (6) for some common component µ ∈ P(X) and complementary
components νP , νP̂ ∈ P(X).

P = αµ+ (1− α)νP and P̂ = βµ+ (1− β)νP̂ . (6)

Simon et al. [47] show that the PR curve is parameterized by λ ∈ [0,+∞] as ∂PRD(P, P̂) ={
αλ(P∥P̂), βλ(P∥P̂) | λ ∈ [0,+∞]

}
, with αλ(P∥P̂) =

∫
X min (λp(x), p̂(x)) dx and

βλ(P∥ P̂) = αλ(P∥ P̂)/λ. Here, λ is called the trade-off parameter and can be used to adjust the
sensitivity to precision or recall.

An illustration of the PR curve is given in Figure 2 for a target distribution P that is a mixture of
two Gaussians and two candidate models P̂1 and P̂2. We can see on Figure 2 that P̂1 offers better
results for large values of λ (with high sensitivity to precision) whereas P̂2 offers better results for
low values of λ (with high sensitivity to recall).

4 Precision and Recall trade-off as an f -divergence

In this section, we formalize the link between P&R trade-off and f -divergences, and address Ques-
tion 2. We will exploit this link in Section 5 to train models that optimize a particular P&R trade-off.

4.1 Precision-Recall as an f -divergence

We start by introducing the PR-Divergence as follows.

5

Definition 4.1 (PR-divergence). Given a trade-off parameter λ ∈ [0,+∞], the PR-divergence
(denoted by Dλ-PR) is defined as Dfλ for fλ : R+ → R given by fλ(u) = max(λu, 1)−max(λ, 1)
for λ ∈ R+ and fλ(u) = 0 for λ = +∞.

Note that fλ is continuous, convex, and satisfies fλ(1) = 0 for all λ. A graphical representation of
fλ can be found in Appendix B.2. The following proposition gives some properties of Dλ-PR.
Proposition 4.2 (Properties of the PR-Divergence).

• The Fenchel conjugate f∗λ of fλ is defined on dom (f∗λ) = [0, λ] and given by, f∗λ (t) = t/λ
for λ ≤ 1 and f∗λ (t) = t/λ+ λ− 1 otherwise.

• The optimal discriminator for the dual form is T opt(x) = λsign {p(x)/p̂(x)− 1}.

• Dλ-PR(P̂∥P) = λD 1
λ -PR

(P∥P̂).

Observe that Dλ-PR(P̂∥P) ̸= Dλ-PR(P∥P̂) in general, but for λ = 1, D1-PR(P∥P̂) = D1-PR(P̂∥P) =
DTV(P∥P̂)/2. Having defined the PR-divergence, we can now show that P&R w.r.t λ can be
expressed as a function of the divergence between P and P̂ .

Theorem 4.3 (P&R as a function of Dλ-PR). Given P, P̂ ∈ P(X) and λ ∈ [0,+∞], the PR curve
∂PRD(P, P̂) is related to the PR-divergence Dλ-PR(P∥P̂) as follows.

αλ(P∥ P̂) = min(1, λ)−Dλ-PR(P∥P̂). (7)
Conversely, suppose that there exists a strictly decreasing linear function h : [0, 1] → R+ and
an f -divergence Df such that h(αλ(P∥ P̂)) = Df (P∥P̂) for all P, P̂ ∈ P(X), then f(u) =
c1fλ(u) + c2(u− 1).

A direct consequence of Theorem 4.3 is that minimizing Dλ-PR is equivalent to maximizing αλ.
In a more explicit way, Theorem 4.3 suggests that Dλ-PR is the only f -divergence (up to an affine
transformation) for which this property holds. This makes Dλ-PR a uniquely suitable candidate
for training a generative model with a specific P&R trade-off. The proof of Theorem 4.3 is in
Appendix B.1

4.2 Relation between PR-divergences and other f -divergences

In the previous subsection, we showed that for each trade-off parameter λ, there exists a Dλ-PR that
corresponds to optimizing for it. This raises the converse question of what trade-off is achieved by
optimizing for an arbitrary f -divergence. We answer this by showing in the following theorem that
any f -divergence can be expressed as a weighted sum of PR-divergences.

Theorem 4.4 (f -divergence as weighted sums of PR-divergences). 1 For any P, P̂ ∈ P(X) supported
on all of X and any λ ∈ R+, with m = minX (p̂(x)/p(x)) and M = maxX (p̂(x)/p(x)):

Df (P∥P̂) =
∫ M

m

1

λ3
f ′′

(
1

λ

)
Dλ-PR(P∥P̂)dλ, (8)

As a sanity check, observe that the weights f ′′(1/λ)/λ3 remain invariant under an affine transforma-
tion in f much like Df .
Corollary 4.5 (DKL and DrKL as an average of Dλ-PR). The DKL Divergence and the DrKL can be
written as a weighted average of PR-Divergence Dλ-PR :

DKL(P∥P̂) =
∫ M

m

1

λ2
Dλ-PR(P∥P̂)dλ, and DrKL(P∥P̂) =

∫ M

m

1

λ
Dλ-PR(P∥P̂)dλ. (9)

As we can see in this Corollary, bothDKL andDrKL can be decomposed into a sum of PR-divergences
terms Dλ-PR, each weighted with 1/λ2 and 1/λ respectively. Note that if λ < 1 then 1/λ > 1/λ2,
and conversely, if λ > 1. DKL is thus associating more weights on recall than DrKL. This explains
the mass covering behavior observed in NFs trained with DKL. Comparatively, the DrKL assigns
more weight to terms with a large lambda, leading to the mode seeking behavior empirically observed
with flows trained with the DrKL [33]. However, as it will be observed in the Section 6, DrKL is still
favoring low values of λ. Other weights for other f -divergences are in Appendix A.1.

1An equivalent result can be found in Corollary 19 of [48]

6

5 Minimizing the Precision-Recall divergence

In this section, we address Question 1 by introducing a new method that can be used to optimize a
model with a specific precision-recall trade-off λ. A first naive strategy to achieve this is to use the
f -GAN framework introduced by Nowozin et al. [39], and minimize the dual variational form of
Dλ-PR presented in Theorem 4.3. Together, this results in solving the min-max problem:

min
G

max
T
Ddual

fλ,T
(P∥P̂) = min

G
max
T

Ex∼P [T (x)]− Ex∼P̂ [f∗λ(T (x))] , (10)

where G and T are both represented using neural networks. In practice, this strategy would fail
because training a neural network with loss functions such as f∗TV (or in this case f∗λ) is notoriously
difficult due to vanishing gradients2 that lead to poor training performance [20, 39]. Instead, training
neural networks on functions f∗ such as f∗KL or f∗χ2 , results in much better empirical performance
[29, 39, 51].

To avoid these issues, we show how to train the discriminator using an auxiliary divergence (based on
a function g ̸= f) to better estimate the target f -divergence. The main idea is to choose an auxiliary
g-divergence that is adequate for training T (e.g. DKL or Dχ2) and use it to compute the likelihood
ratio p(x)/p̂(x).

Because, at optimality, we have∇g∗(T opt(x)) = p(x)/p̂(x), we can then compute the f -divergence
as follows:

Df (P∥P̂) =
∫
p̂(x)f

(
p(x)

p̂(x)

)
dx =

∫
p̂(x)f(∇g∗(T opt(x)))dx. (11)

In practice, we do not have access to T opt. Instead, we have a discriminator T trained to maximize
Ddual

g,T . At any time during training, we can estimate the f -divergence based on T using the primal
estimate, which we define as follows.

Definition 5.1 (Primal estimate Dprimal
f,T). Let P, P̂ ∈ P(X). For any function T : X → R,

f : R+ → R, and g : R+ → R, we define the primal estimate Dprimal
f,T as follows.

Dprimal
f,T (P∥P̂) =

∫
X
p̂(x)f (r(x)) dx, (12)

where r : X → R+ is given by, r(x) = ∇g∗(T (x)).

The success of this approach depends on how well r approximates p(x)/p̂(x), which depends on
T . We first show that the approximation error of r measured in terms of the Bregman divergence
[2] (also defined in Appendix A.2). It corresponds exactly to the approximation error of Ddual

g,T , so
minimizing the latter will also minimize the former.
Theorem 5.2 (Error of the estimation of an f -divergence under the dual form.). For any discriminator
T : X → R and r (x) = ∇f∗(T (x)),

Dg(P∥P̂)−Ddual
g,T (P∥P̂) = EP̂

[
Bregg

(
r(x),

p(x)

p̂(x)

)]
. (13)

On the basis of this result, the quality of the approximation will crucially depend on ∇g. We can
show that if the auxiliary g is strongly convex, the error in the estimation of Dprimal

f,T is bounded:

Theorem 5.3 (Bound on the estimation of an f -divergence using an auxiliary g-divergence). Let
f, g : R+ → R be such that g is µ-strongly convex and f is σ-Lipschitz. For the discriminator
T : X → R, let r (x) = ∇g∗(T (x)). Then

Dg(P∥P̂)−Ddual
g,T ≤ ϵ =⇒

∣∣∣Df (P∥P̂)−Dprimal
f,T (P∥P̂)

∣∣∣ ≤ σ√2ϵ

µ
.

2The explanation for this vanishing gradient phenomenon primarily relies on the fact that the optimal
discriminator for these functions is T opt(x) = sign(p̂(x)/p(x)− 1). To approximate it, [39] recommends the
use of a tanh activation function that is known to induce vanishing gradients.

7

If T successfully maximizes Ddual
g,T , then the primal estimation converges to Df . To implement this

approach, we propose the following simplified version of the algorithm: Repeat until convergence
these 3 steps:

1. Let xreal1 . . . xrealN ∼ P and xfake1 . . . xfakeN ∼ P̂G.
2. Update the parameters of T by ascending the gradient

∇LT =
1

N
∇
{∑N

i=1T
(
xreali

)
−

∑N
i=1g

∗ (T (xfakei)
)}
.

3. Update the parameters of G by descending the gradient

∇LG =
1

N
∇

{∑N
i=1f

(
∇g∗

(
T (xfakei)

))}
.

This method closely parallels the GAN training procedure, with the key distinction that T and G
optimize objectives based on different f . In practice, our implementation uses a stochastic gradient
descent, fully detailed in Algorithm 1 in Appendix C.

6 Experiments

In this section, we employ the auxiliary loss approach outlined in Section 5 to train various models.

Specifically, we train NFs on 2D synthetic data, MNIST and FashionMNIST, while we train BigGAN
on CIFAR-10, CelebA64, ImageNet128, and FFHQ256. All models are tested in terms of IS and FID
with 50k samples, and on P&R with 10k samples using the method of Kynkäänniemi et al. [28] with
k = 3 for MNIST and FashionMNIST and with k = 5 for CelebA64, ImageNet128 and FFHQ256.
Also, we test every model in terms of Density and Coverage [36] on 10k samples with k = 5. In this
paper, we present a selection of experimental results. For a comprehensive set of results, including
model parameters, optimizers, learning rates, and samples, please refer to Appendix D. We also
included in this Appendix a set of experiments run using the naive approach based on Equation 10,
thus showing that the discriminator fails to train as explained in Section 5. To ensure reproducibility,
our models and code are available on the GitHub repository of the project3.

We show that: 1) the auxiliary loss approach effectively enables the training of a model to minimize
the PR-Divergence, 2) this method is suitable for fine-tuning pre-trained models, 3) the choice of
trade-off parameter λ significantly influences the results on P&R, and finally, 4) our method scales
well with larger dimensions and datasets.

Normalizing Flows on synthetic data: NFs are typically trained to minimize DKL, in addition
to their structural limitation [11, 52], resulting in good recall but poor precision. Prior work has
employed various techniques [27, 49] to improve model precision post-training, we use our method
to directly train the model on a given trade-off. We demonstrate our approach by training RealNVP
models on a 2D synthetic dataset using Dλ-PR with various λ values and using DKL and DrKL for
baseline comparison. As we can see in Figure 1, increasing λ leads to an increase in precision in the
resulting models. Using our Dλ-PR estimation, we compute the corresponding PR curves (Figure 2(c)).
The λ = 0.1 model, while best at α0.1, performs poorly at α1 and α10, clearly demonstrating
the impact of maximizing αλ.This pattern across models validates the efficacy of our method in
minimizing the desired trade-off.

UsingDKL vsDχ2 on MNIST and FashionMNIST: We now demonstrate that we can improve the
precision by directly minimizing the Dλ-PR with the correct λ using pre-trained GLOW models [27]
on both MNIST [54] and FashionMNIST [53]. Figure 3 and Figure 4 present the samples obtained.
First, we observe that while λ increases, the visual quality improves, but the models focus on a few
modes only (0, 1, 7, 6, 9 for MNIST and "Trouser" for FashionMNIST). Then training with bothDKL

and DrKL divergences aligns with our expectations: DKL training leads to high recall, while DrKL, to
higher precision. However, according to Corollary 4.5, DrKL still favors low λ values; consequently,
our models trained with λ > 0.1 demonstrate better precision than standard flow-GAN models.
Furthermore, we find that both auxiliary g functions (fKL and fχ2) used to train the discriminator T
perform well. In practice, training with fχ2 proves to be more stable, particularly for FashionMNIST,
with results reported in Appendix D.3. For larger models, we use exclusively g = fχ2 .

3https://github.com/AlexVerine/PrecisionRecallBigGan

8

https://github.com/AlexVerine/PrecisionRecallBigGan

(a) λ = 0.1 (b) λ = 1 (c) λ = 10

(d) λ = 0.1 (e) λ = 1 (f) λ = 10

Figure 3: Samples from NFs - GLOW trained on MNIST
(3(a) to 3(c)) and FashionMNIST (3(d) to 3(f)). Recall
decreases as precision increases for λ between 0.1 and 10.

10−1 100 101

λ

0.700

0.725

0.750

0.775

0.800

0.825

P

10−1 100 101

λ

0.66

0.68

0.70

0.72

0.74

0.76

R

PR-Chi2

PR-KL

MLE

KL

rKL

Figure 4: Precision and Recall as a func-
tion on λ for GLOW trained on MNIST
with T trained with fKL or fχ2 , and for
models trained DKL, DrKL and MLE.

Training BigGAN on CIFAR-10 and CelebA64 Now we demonstrate that our method can also be
used to train large generative models. Our choice to adopt the BigGAN architecture [7] was informed
by several factors: its competitive performance close to state-of-the-art models; its versatility,
permitting diverse experimental explorations; and the fact that it is
publicly accessible, ensuring experiment reproducibility. We train Big-
GAN using both the baseline method (i.e., hinge loss) and our proposed
method on CIFAR-10 [1] and CelebA64 [30]. A notable observation
when training with different precision-recall trade-offs is the early elim-
ination of modes from the target distribution at higher values of λ. As
illustrated in Figure 5, models with low values of λ converge to achieve
maximum recall, while those with λ > 1 rapidly saturate to a lower
recall value. A similar behavior can be observed for models trained on
CelebA, as shown in Figure D.18. In Table 2, we present the quanti-
tative metrics (Precision, Recall, and FID) for the baseline BigGAN,
the BigGAN models trained with varying trade-offs and the current
state-of-the-art models: EDM-G++ [26] for CIFAR-10 and ADM-IP
[38] for CelebA64. Employing our proposed method enables us to ad-
just the trade-off, allowing us to train models that closely approach the
state-of-the-art recall and, for high λ, even outperform state-of-the-art
models in terms of precision.

0 20k 40k 60k 80k

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Recall

1.50
2.00
3.00

5.00
10.00
20.00

Figure 5: Recall during
training of BigGAN op-
timizing different trade-
off on CIFAR-10. Mod-
els for high λ saturates in
an early stage at decreas-
ing values of recall.

Table 2: BigGAN trained with the vanilla approach [7] and with a variety of λ using our approach on
CIFAR-10 and CelebA64. We compare our approach with hard truncation on the baseline model.
FID (↓), Precision (↑), Recall (↑), Density (↑) and Coverage (↑) are reported. In bold, our best model
is highlighted and the state-of-the-art FID is marked with an exponent ∗.

MODEL CIFAR-10 32× 32 CELEBA 64× 64
FID P R D C FID P R D C

BASELINE BIGGAN 13.37 86.51 65.66 0.76 0.81 9.16 78.41 51.42 0.89 0.48
HARD ψ = 2.0 13.95 86.82 63.58 0.77 0.79 10.60 80.81 48.21 0.96 0.50
HARD ψ = 1.0 17.23 88.03 53.63 0.83 0.75 17.97 84.30 37.46 1.11 0.49
HARD ψ = 0.5 20.11 87.87 44.98 0.83 0.70 25.70 83.70 28.81 1.08 0.42
λ = 0.05 13.29 81.10 70.63 0.61 0.80 - - - - -
λ = 0.1 11.62 81.78 74.58 0.66 0.83 - - - - -
λ = 0.2 13.36 84.85 65.13 0.74 0.82 8.79 83.37 44.07 1.09 0.54
λ = 0.5 14.50 83.27 68.23 0.70 0.81 6.03 77.60 55.98 0.88 0.50
λ = 1.0 14.03 83.04 69.35 0.68 0.79 13.07 81.70 36.85 1.00 0.47
λ = 2.0 16.94 84.93 59.79 0.75 0.78 14.23 82.98 32.87 1.16 0.49
λ = 5.0 32.54 83.39 56.94 0.68 0.73 22.45 83.96 25.81 1.21 0.43
λ = 10.0 39.69 84.11 39.29 0.75 0.67 - - - - -
λ = 20.0 67.03 90.03 21.81 0.98 0.56 - - - - -
DENSEFLOW [18] − 88.90 60.81 0.86 0.71 − 85.83 38.22 1.17 0.82
ADM-IP [38] 3.25 80.67 83.65 0.65 0.87 1.53∗ 23.42 64.48 0.09 0.24
EDM G++ [26] 1.77∗ 78.48 85.83 0.60 0.87 - - - - -
STYLEGAN-XL [46] 1.85 85.11 70.04 0.75 0.85 - - - - -

9

In every experiment, we compare our approach with traditional post-training techniques. In Table 2,
we give the results for the hard truncation (also called the truncation trick in [7]) of the latent
distribution Q for different ψ. We observe that this method enables to improve solely the precision
by trading off the recall; however, note that the truncation can be use in addition to our approach.

Fine-tuning BigGAN on Imagenet128 and FFHQ Finally, we apply our method to pre-trained
BigGAN models. To accomplish this, we implement a straightforward technique: initially, we train
the discriminator for a brief period, allowing the model to transition from the vanilla training objective
to the Ddual

g . This approach enables us to train BigGAN on large datasets such as ImageNet128
[43] and datasets with high dimensions such as FFHQ256 [24]. We compare our method with both
hard truncation and soft truncation (also denoted temperature in [27]). Both methods can be used
in addition to our approach. The metrics presented in Table 3 demonstrate that (1) we enhance
a given model’s precision (by +2.83%) or recall (by +1.17%) on ImageNet, thereby achieving
state-of-the-art precision, and (2) our method compromises less on the trade-off than truncation. For
instance, in FFHQ, for a similar precision improvement (≈ +15.5%), recall is decreased by more
than 5% for truncation methods and only by 1.65% with our approach.

Table 3: BigGAN fine-tune with the vanilla approach [7] and with a variety of λ using our approach
on ImageNet128 and FFHQ256. We compare our approach with hard truncation on the baseline
model. FID (↓), Precision (↑), Recall (↑), Density (↑) and Coverage (↑) are reported. In bold, our
best model is highlighted and the state-of-the-art FID is marked with an exponent ∗.

MODEL IMAGENET 128× 128 FFHQ 256× 256
FID P R D C FID P R D C

BASELINE BIGGAN 9.83 28.04 41.21 0.14 0.17 41.41 65.57 10.17 0.52 0.47
SOFT ψ = 0.7 11.39 23.04 31.13 0.11 0.15 56.43 76.59 4.87 0.70 0.41
SOFT ψ = 0.5 15.49 20.20 19.83 0.10 0.14 82.05 84.48 1.58 0.89 0.32
HARD ψ = 2.0 9.69 25.83 39.89 0.13 0.18 43.32 68.84 8.66 0.58 0.47
HARD ψ = 1.0 12.12 21.86 35.42 0.11 0.15 56.19 76.44 4.76 0.75 0.44
HARD ψ = 0.5 15.21 21.13 29.55 0.10 0.13 71.32 80.99 4.84 0.84 0.36
λ = 0.2 9.92 26.69 42.04 0.13 0.17 35.66 78.70 9.45 0.88 0.60
λ = 0.5 10.82 26.83 42.38 0.13 0.16 35.24 78.41 9.66 0.89 0.60
λ = 1.0 20.42 29.72 28.21 0.15 0.15 35.91 78.95 8.32 0.90 0.57
λ = 2.0 20.21 30.27 30.49 0.14 0.14 36.33 81.10 8.69 1.05 0.64
λ = 5.0 20.76 30.87 28.38 0.15 0.15 38.16 84.31 8.52 1.15 0.63

ADM [22] 2.97 26.63 68.54 0.14 0.16 - - - - -
STYLEGAN-XL [46] 1.81∗ 11.35 68.04 0.04 0.09 2.19∗ 79.91 38.79 0.86 0.73

7 Conclusion

In this paper, we present a novel method for training generative models using a new PR-divergence,
Dλ-PR. Our approach offers a unique advantage over existing methods as it allows for explicit control
of the precision-recall trade-off in generative models. By varying the trade-off parameter λ, one
can train a variety of models ranging from mode seeking (high precision) to mode covering (high
recall), as well as more balanced models that may be more suitable for various applications. Through
extensive experiments, we demonstrate the validity of our method and show that it scales well with
larger dimensions and datasets. Our approach also provides insights into the implicit P&R trade-offs
made by models trained with other f -divergences. By introducing theDλ-PR divergence and providing
a systematic approach for training generative models based on user-specified trade-offs, we contribute
to the development of more customizable generative models. Our method currently applies to GANs
and NFs only, it is still unclear if a similar approach can be applied to trained diffusion models: a
promising work [26] uses a discriminator to refine diffusion models, and could be used to estimate
the Dλ-PR.

Acknowledgment

We are grateful for the grant of access to computing resources at the IDRIS Jean Zay cluster under
allocations No. AD011011296 and No. AD011014053 made by GENCI.

10

References
[1] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.
[2] Shun-ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry. volume 191 of

Translations of Mathematical Monographs, Providence, Rhode Island, April 2007. American
Mathematical Society. ISBN 978-0-8218-4302-4 978-1-4704-4605-5. doi: 10.1090/mmono/191.
URL http://www.ams.org/mmono/191.

[3] Lynton Ardizzone, Radek Mackowiak, Carsten Rother, and Ullrich Köthe. Training Nor-
malizing Flows with the Information Bottleneck for Competitive Generative Classification.
arXiv:2001.06448 [cs, stat], January 2021. URL http://arxiv.org/abs/2001.06448.
arXiv: 2001.06448.

[4] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Goodfellow, and Augustus Odena.
Discriminator Rejection Sampling, February 2019. URL http://arxiv.org/abs/1810.
06758. arXiv:1810.06758 [cs, stat].

[5] Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
Invertible Residual Networks. In Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019, May 2019. arXiv: 1811.00995.

[6] Matan Ben-Yosef and Daphna Weinshall. Gaussian Mixture Generative Adversarial Networks
for Diverse Datasets, and the Unsupervised Clustering of Images. arXiv:1808.10356 [cs, stat],
August 2018. URL http://arxiv.org/abs/1808.10356. arXiv: 1808.10356.

[7] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training for High Fi-
delity Natural Image Synthesis, February 2019. URL http://arxiv.org/abs/1809.11096.
arXiv:1809.11096 [cs, stat].

[8] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode Regularized
Generative Adversarial Networks, March 2017. URL http://arxiv.org/abs/1612.02136.
arXiv:1612.02136 [cs].

[9] Fasil Cheema and Ruth Urner. Precision Recall Cover: A Method For Assessing Generative
Models. In Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, pages 6571–6594. PMLR, April 2023. URL https://proceedings.mlr.press/
v206/cheema23a.html. ISSN: 2640-3498.

[10] Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual Flows
for Invertible Generative Modeling. In 33rd Conference on Neural Information Processing
Systems (NeurIPS 2019), Vancouver, Canada., July 2020. arXiv: 1906.02735.

[11] Rob Cornish, Anthony L. Caterini, George Deligiannidis, and Arnaud Doucet. Relaxing
Bijectivity Constraints with Continuously Indexed Normalising Flows. In Proceedings of the
37th International Conference on Machine Learning, April 2021. URL http://arxiv.org/
abs/1909.13833. arXiv: 1909.13833.

[12] Zac Cranko and Richard Nock. Boosted Density Estimation Remastered. In Proceedings of
the 36th International Conference on Machine Learning, pages 1416–1425. PMLR, May 2019.
URL https://proceedings.mlr.press/v97/cranko19b.html. ISSN: 2640-3498.

[13] Terrance DeVries, Michal Drozdzal, and Graham W. Taylor. Instance Selection for GANs,
October 2020. URL http://arxiv.org/abs/2007.15255. arXiv:2007.15255 [cs, stat].

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP,
February 2017. URL http://arxiv.org/abs/1605.08803. arXiv:1605.08803 [cs, stat].

[15] Josip Djolonga, Mario Lucic, Marco Cuturi, Olivier Bachem, Olivier Bousquet, and Sylvain
Gelly. Precision-Recall Curves Using Information Divergence Frontiers, June 2020. URL
http://arxiv.org/abs/1905.10768. arXiv:1905.10768 [cs, stat].

[16] Robert Giaquinto and Arindam Banerjee. Gradient Boosted Normalizing Flows.
arXiv:2002.11896 [cs, stat], October 2020. URL http://arxiv.org/abs/2002.11896.
arXiv: 2002.11896.

[17] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. In 27th
Conference on Neural Information Processing Systems (NeurIPS 2014), June 2014. URL
http://arxiv.org/abs/1406.2661. arXiv: 1406.2661.

11

http://www.ams.org/mmono/191
http://arxiv.org/abs/2001.06448
http://arxiv.org/abs/1810.06758
http://arxiv.org/abs/1810.06758
http://arxiv.org/abs/1808.10356
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1612.02136
https://proceedings.mlr.press/v206/cheema23a.html
https://proceedings.mlr.press/v206/cheema23a.html
http://arxiv.org/abs/1909.13833
http://arxiv.org/abs/1909.13833
https://proceedings.mlr.press/v97/cranko19b.html
http://arxiv.org/abs/2007.15255
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1905.10768
http://arxiv.org/abs/2002.11896
http://arxiv.org/abs/1406.2661

[18] Matej Grcić, Ivan Grubišić, and Siniša Šegvić. Densely connected normalizing flows, November
2021. URL http://arxiv.org/abs/2106.04627. arXiv:2106.04627 [cs].

[19] Aditya Grover and Stefano Ermon. Boosted Generative Models, December 2017. URL
http://arxiv.org/abs/1702.08484. arXiv:1702.08484 [cs, stat].

[20] Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-GAN: Combining Maximum Likelihood
and Adversarial Learning in Generative Models, January 2018. URL http://arxiv.org/
abs/1705.08868. arXiv:1705.08868 [cs, stat].

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochre-
iter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equi-
librium. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
8a1d694707eb0fefe65871369074926d-Abstract.html.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models, December
2020. URL http://arxiv.org/abs/2006.11239. arXiv:2006.11239 [cs, stat].

[23] Thibaut Issenhuth, Ugo Tanielian, David Picard, and Jeremie Mary. Latent reweighting, an
almost free improvement for GANs. In 2022 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pages 3574–3583, Waikoloa, HI, USA, January 2022. IEEE. ISBN
978-1-66540-915-5. doi: 10.1109/WACV51458.2022.00363. URL https://ieeexplore.
ieee.org/document/9706934/.

[24] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Gen-
erative Adversarial Networks, March 2019. URL http://arxiv.org/abs/1812.04948.
arXiv:1812.04948 [cs, stat].

[25] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and Improving the Image Quality of StyleGAN, March 2020. URL http://arxiv.
org/abs/1912.04958. arXiv:1912.04958 [cs, eess, stat].

[26] Dongjun Kim, Yeongmin Kim, Se Jung Kwon, Wanmo Kang, and Il-Chul Moon. Refining Gen-
erative Process with Discriminator Guidance in Score-based Diffusion Models. In Proceedings
of the 40 th International Conference on Machine Learning., volume 202, Honolulu, Hawaii,
USA, April 2023. JMLR. URL http://arxiv.org/abs/2211.17091. arXiv:2211.17091
[cs] version: 3.

[27] Durk P. Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolu-
tions. In 32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal,
Canada., volume 31, 2018.

[28] Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
Precision and Recall Metric for Assessing Generative Models. In 33rd Conference on Neural
Information Processing Systems (NeurIPS 2019), Vancouver, Canada., October 2019. arXiv:
1904.06991.

[29] Cheuk Ting Li and Farzan Farnia. Mode-Seeking Divergences: Theory and Applications to
GANs. In Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics, pages 8321–8350. PMLR, April 2023. URL https://proceedings.mlr.press/
v206/ting-li23a.html. ISSN: 2640-3498.

[30] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep Learning Face Attributes in the
Wild, September 2015. URL http://arxiv.org/abs/1411.7766. arXiv:1411.7766 [cs].

[31] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial Variational Bayes:
Unifying Variational Autoencoders and Generative Adversarial Networks, June 2018. URL
http://arxiv.org/abs/1701.04722. arXiv:1701.04722 [cs].

[32] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled Generative Adversarial
Networks, May 2017. URL http://arxiv.org/abs/1611.02163. arXiv:1611.02163 [cs,
stat].

[33] Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, and José Miguel Hernández-
Lobato. Bootstrap Your Flow, March 2022. URL http://arxiv.org/abs/2111.11510.
arXiv:2111.11510 [cs, stat].

12

http://arxiv.org/abs/2106.04627
http://arxiv.org/abs/1702.08484
http://arxiv.org/abs/1705.08868
http://arxiv.org/abs/1705.08868
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
http://arxiv.org/abs/2006.11239
https://ieeexplore.ieee.org/document/9706934/
https://ieeexplore.ieee.org/document/9706934/
http://arxiv.org/abs/1812.04948
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/2211.17091
https://proceedings.mlr.press/v206/ting-li23a.html
https://proceedings.mlr.press/v206/ting-li23a.html
http://arxiv.org/abs/1411.7766
http://arxiv.org/abs/1701.04722
http://arxiv.org/abs/1611.02163
http://arxiv.org/abs/2111.11510

[34] Laurence Illing Midgley, Vincent Stimper, Gregor N. C. Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow Annealed Importance Sampling Bootstrap, November
2022. URL http://arxiv.org/abs/2208.01893. arXiv:2208.01893 [cs, q-bio, stat].

[35] Thomas Minka. Divergence measures and message passing. page 17, 2005.
[36] Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo.

Reliable Fidelity and Diversity Metrics for Generative Models, June 2020. URL http://
arxiv.org/abs/2002.09797. arXiv:2002.09797 [cs, stat].

[37] XuanLong Nguyen, Martin J. Wainwright, and Michael I. Jordan. On surrogate loss functions
and f-divergences. The Annals of Statistics, 37(2), April 2009. ISSN 0090-5364. doi:
10.1214/08-AOS595. URL http://arxiv.org/abs/math/0510521. arXiv:math/0510521.

[38] Mang Ning, Enver Sangineto, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Input
Perturbation Reduces Exposure Bias in Diffusion Models, February 2023. URL http://
arxiv.org/abs/2301.11706. arXiv:2301.11706 [cs].

[39] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-GAN: Training Generative Neural
Samplers using Variational Divergence Minimization, June 2016. URL http://arxiv.org/
abs/1606.00709. arXiv:1606.00709 [cs, stat].

[40] Teodora Pandeva and Matthias Schubert. MMGAN: Generative Adversarial Networks for
Multi-Modal Distributions. arXiv:1911.06663 [cs, stat], November 2019. URL http://
arxiv.org/abs/1911.06663. arXiv: 1911.06663.

[41] Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin
Choi, and Zaid Harchaoui. MAUVE: Measuring the Gap Between Neural Text and Human Text
using Divergence Frontiers, November 2021. URL http://arxiv.org/abs/2102.01454.
arXiv:2102.01454 [cs].

[42] Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows.
In arXiv:1505.05770 [cs, stat], June 2016.

[43] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge, January 2015. URL http://arxiv.
org/abs/1409.0575. arXiv:1409.0575 [cs].

[44] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Sylvain Gelly.
Assessing Generative Models via Precision and Recall. In 32nd Conference on Neural In-
formation Processing Systems (NeurIPS 2018), Montréal, Canada, October 2018. URL
http://arxiv.org/abs/1806.00035. arXiv: 1806.00035.

[45] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved Techniques for Training GANs, June 2016. URL http://arxiv.org/abs/1606.
03498. arXiv:1606.03498 [cs].

[46] Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-XL: Scaling StyleGAN to Large
Diverse Datasets. In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Proceedings, pages 1–10, Vancouver BC Canada, August 2022. ACM. ISBN
978-1-4503-9337-9. doi: 10.1145/3528233.3530738. URL https://dl.acm.org/doi/10.
1145/3528233.3530738.

[47] Loic Simon, Ryan Webster, and Julien Rabin. Revisiting precision recall definition for generative
modeling. In Proceedings of the 36th International Conference on Machine Learning, pages
5799–5808. PMLR, May 2019. URL https://proceedings.mlr.press/v97/simon19a.
html. ISSN: 2640-3498.

[48] Rodrigue Siry, Ryan Webster, Loic Simon, and Julien Rabin. On the Theoretical Equivalence
of Several Trade-Off Curves Assessing Statistical Proximity. Journal of Machine Learning
Research, 24, 2023.

[49] Vincent Stimper, Bernhard Schölkopf, and José Miguel Hernández-Lobato. Resampling Base
Distributions of Normalizing Flows. arXiv:2110.15828 [cs, stat], February 2022. URL
http://arxiv.org/abs/2110.15828. arXiv: 2110.15828.

[50] Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, and Jeremie Mary. Learning disconnected
manifolds: a no GANs land. In Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020, December 2020. arXiv: 2006.04596.

13

http://arxiv.org/abs/2208.01893
http://arxiv.org/abs/2002.09797
http://arxiv.org/abs/2002.09797
http://arxiv.org/abs/math/0510521
http://arxiv.org/abs/2301.11706
http://arxiv.org/abs/2301.11706
http://arxiv.org/abs/1606.00709
http://arxiv.org/abs/1606.00709
http://arxiv.org/abs/1911.06663
http://arxiv.org/abs/1911.06663
http://arxiv.org/abs/2102.01454
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1806.00035
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://dl.acm.org/doi/10.1145/3528233.3530738
https://dl.acm.org/doi/10.1145/3528233.3530738
https://proceedings.mlr.press/v97/simon19a.html
https://proceedings.mlr.press/v97/simon19a.html
http://arxiv.org/abs/2110.15828

[51] Chenyang Tao, Liqun Chen, Ricardo Henao, Jianfeng Feng, and Lawrence Carin Duke. Chi-
square Generative Adversarial Network. In Proceedings of the 35th International Conference
on Machine Learning, pages 4887–4896. PMLR, July 2018. URL https://proceedings.
mlr.press/v80/tao18b.html. ISSN: 2640-3498.

[52] Alexandre Verine, Benjamin Negrevergne, Yann Chevaleyre, and Fabrice Rossi. On the
expressivity of bi-Lipschitz normalizing flows. In Proceedings of The 14th Asian Conference
on Machine Learning, pages 1054–1069. PMLR, April 2023. URL https://proceedings.
mlr.press/v189/verine23a.html. ISSN: 2640-3498.

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms, September 2017. URL http://arxiv.org/
abs/1708.07747. arXiv:1708.07747 [cs, stat].

[54] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs, 2,
2010. URL http://yann.lecun.com/exdb/mnist.

14

https://proceedings.mlr.press/v80/tao18b.html
https://proceedings.mlr.press/v80/tao18b.html
https://proceedings.mlr.press/v189/verine23a.html
https://proceedings.mlr.press/v189/verine23a.html
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://yann.lecun.com/exdb/mnist

A Supplementary background

A.1 f -divergences

f -divergence between two probability distributions P and Q over a common support X is defined as:

Df (P∥Q) =

∫
X
q(x)f

(
p(x)

q(x)

)
dx, (14)

where p(x) and q(x) denote the densities of P and Q, respectively, and f is a convex function such
that f(1) = 0. Any Df admits a dual variational form [37], with T denoting the set of all measurable
functions X → R:

Df (P∥P̂) = sup
T∈T

(
EP [T (x)]− EP̂ [f∗(T (x))]

)
, (15)

The properties of f -divergence are as follows:

• Non-Negativity: For any two probability distributions P and P̂ on X , we haveDf (P∥P̂) ≥
0. The equality holds if and only if P = P̂ .

• Convexity in f : If f(u) is a convex function, then Df (P∥P̂) is convex in the input
distributions P and P̂ .

• Non-Symmetry: Generally, f -divergence is not symmetric, i.e., Df (P∥P̂) ̸= Df (P̂∥P).

• Linearity: f -divergence is linear in f , i.e., for any two convex functions f1(u) and f2(u),
and for any two real numbers a and b, the divergence Daf1+bf2(P∥P̂) = aDf1(P∥P̂) +
bDf2(P∥P̂).

Specific choices of the function f in the f -divergence definition can yield various well-known
divergence measures. We will review some of them of the principal properties. For every divergence,
we report here the generator function f , its convex conjugate f∗, the domain of the convex conjugate
dom(f∗), the typical activation function used to ensure that T (x) ∈ dom(f∗) and finally the optimal
discriminator T ∗.

Kullback Leibler:

• Notation: DKL,

• Generator Function: f(u) = u log(u),

• Convex Conjugate domain: dom(f∗) = R,

• Convex Conjugate: f∗(t) = exp(t− 1),

• Activation: v 7→ v,

• Optimal discriminator: T ∗(x) = 1 + log
(

p(x)
p̂(x)

)
.

Reverse Kullback Leibler:

• Notation: DrKL,

• Generator Function: f(u) = − log(u),

• Convex Conjugate domain: dom(f∗) = R−,

• Convex Conjugate: f∗(t) = −1− log−t,

• Activation: v 7→ − exp v,

• Optimal discriminator: T ∗(x) = − p̂(x)
p(x) .

15

χ2 Pearson:

• Notation: Dχ2 ,

• Generator Function: f(u) = (u− 1)2,
• Convex Conjugate domain: dom(f∗) = R,
• Convex Conjugate: f∗(t) = t2/4 + t,
• Activation: v 7→ v,

• Optimal discriminator: T ∗(x) = 2
(

p(x)
p̂(x) − 1

)
.

GAN:

• Notation: DGAN,
• Generator Function: f(u) = u log(u)− (u+ 1) log(u+ 1),
• Convex Conjugate domain: dom(f∗) = R−,
• Convex Conjugate: f∗(t) = − log (1− exp(t)),
• Activation: v 7→ − exp− log (1− exp(v)),

• Optimal discriminator: T ∗(x) = log p(x)
p(x)+p̂(x) .

Total Variation:

• Notation: DTV,
• Generator Function: f(u) = |u− 1|,
• Convex Conjugate domain: dom(f∗) =

[
− 1

2 ,
1
2

]
,

• Convex Conjugate: f∗(t) = t,
• Activation: v 7→ tanh(v),

• Optimal discriminator: T ∗(x) = 1
2 sign

(
p(x)
p̂(x) − 1

)
.

PR-Divergence:

• Notation: Dλ-PR for λ > 0,
• Generator Function: f(u) = max(λu, 1)−max(λ, 1),
• Convex Conjugate domain: dom(f∗) = [0, λ],
• Convex Conjugate: f∗λ (t) = t/λ for λ ≤ 1 and f∗λ (t) = t/λ+ λ− 1 otherwise,
• Activation: v 7→ λσ(v), where σ is the sigmoid function,

• Optimal discriminator: T ∗(x) = λsign
(

p(x)
p̂(x) − 1

)
.

A.2 Bregman Divernce

The Bregman Divergence under a strictly convex function f : Rn → R with a continuously
differentiable interior, between two points x and y in the interior of the domain of f , is denoted by
Bregf and is defined as:

Bregf (x,y) = f(x)− f(y)− ⟨∇f(y),x− y⟩

where∇f(y) is the gradient of f at y, and ⟨., .⟩ is the inner product in Rn. It follows some properties
as a distance metrics:

• Non-Negativity: For any x,y in the interior of the domain of f , we have Bregf (x,y) ≥ 0.
The equality holds if and only if x = y.

16

• Convexity: The Bregman Divergence Bregf (x,y) is convex in its first argument. That is,
for any x1,x2,y in the interior of the domain of f and any t ∈ [0, 1], we have:

Bregf (tx1 + (1− t)x2,y) ≤ tBregf (x1,y) + (1− t)Bregf (x2,y)

• Non-Symmetry: Unlike some other distances or divergences, the Bregman Divergence is
not symmetric, meaning that in general, Bregf (x,y) ̸= Bregf (y,x).

• Additivity: If f(x) = f1(x1) + · · ·+ fd(xd) where each fi is a convex function, then the
Bregman Divergence decomposes into a sum of Bregman Divergences, i.e., Bregf (x,y) =
Bregf1(x1, y1) + · · ·+Bregfd(xd, yd).

• Taylor Approximation: Bregman Divergence is essentially the error of the first-order
Taylor approximation of f around the point y at the point x.

• Connection with Dual Functions: If f is convex, then it has a convex conjugate (or dual
function) f∗. The Bregman Divergence Bregf (x,y) is related to the Bregman Divergence
Bregf∗(∇f(y),∇f(x)) between the gradients of f at x and y, where the gradient map
∇f serves as a Legendre transformation between the primal and dual spaces.

B Proof and supplementary for Section 4

B.1 Proof for Theorem 4.3

We have to prove that α(λ) can be written as a function of an f -divergence for any λ ∈ R+. First we
can develop the expression of α(λ):

α(λ) =

∫
X
min (λp(x), p̂(x)) dx (16)

=

∫
X
p̂(x)min

(
λ
p(x)

p̂(x)
, 1

)
dx (17)

For this integral to be considered as an f -divergence, we need f to be first convex lower semi-
continuous and then to satisfy f(1) = 0. However, for every a, b ∈ R, the min satisfies min(a, b) =
a+ b−max(a, b). Therefore,

α(λ) =

∫
X
p̂(x)

[
λ
p(x)

p̂(x)
+ 1−max

(
λ
p(x)

p̂(x)
, 1

)]
dx (18)

= λ

∫
X
p(x)dx+ 1−

∫
X
max

(
λ
p(x)

p̂(x)
, 1

)
dx (19)

= λ+ 1−
∫
X
p̂(x)max

(
λ
p(x)

p̂(x)
, 1

)
dx (20)

Thus, we can take f(u) = max(λu, 1)−max(λ, 1) such that f(1) = 0. The precision becomes:

α(λ) = λ+ 1−
∫
X
p̂(x)f(

(
p(x)

p̂(x)

)
−max(λ, 1)

∫
X
p̂(x)dx (21)

= min(λ, 1)−
∫
X
p̂(x)f(

(
p(x)

p̂(x)

)
dx = min(λ, 1)−Dλ-PR(P, P̂). (22)

Consequently, α(λ) can be written as a function of an f -divergenceDλ-PR with f(u) = max (λu, 1)−
max (λ, 1).

Now we prove the converse. Suppose there exists a strictly decreasing linear4 function h : [0, 1]→
R+ and an f -divergence Df such that h(αλ(P∥ P̂)) = Df (P∥P̂) for all P, P̂ ∈ P(X).

For P = P̂ , we get from the definition of αλ that αλ(P∥P) = min(λ, 1). Hence,

0 = Df (P∥P) = h(αλ(P∥P)) = h(min(λ, 1)).

4We omitted the critical constraint of h being linear in the original statement of the theorem in our submission
by mistake. We apologize for this oversight. We stress again that the first part of the Theorem, which is the most
important part, remains completely unaffected.

17

Combining the above with the fact that h is a strictly decreasing linear function, we see that for any
fixed λ, h must be of the form, h(u) = cλ(min(λ, 1)− u), where cλ > 0 is a constant. Now,

Df (P∥P̂) = h(αλ(P∥ P̂)) = cλ(min(λ, 1)− αλ(P∥ P̂)) = cλDλ-PR(P∥P̂),

where the last equality follows from the first part of the theorem, which shows that αλ(P∥ P̂) =
min(λ, 1)−Dλ-PR(P∥P̂). Rewriting the above inequality, we get the following.

Dλ-PR(P∥P̂) =
1

cλ
Df (P∥P̂) = D 1

cλ
f (P∥P̂).

By the uniqueness theorem of f -divergence f(u) = c1
cλ
fλ(u) + c2(u − 1) for some constants

c1, c2 ∈ R.

B.2 Proof of Proposition 4.2

If the generator function f of the Precision-Recall Divergence is f(u) = max(λu, 1)−max(λ, 1)
then its Fenchel conjugate function is:

f∗(t) = sup
u∈dom(f)

{tu− f(u)} = max(λ, 1) + sup
u∈R+

{tu−max (λu, 1)} (23)

If t > λ or λ < 0, then the supu∈R+ {tu−max (λu, 1)} = ∞ for respectively u → ∞ and
u → −∞. The domain of f∗ is thus restricted to [0, λ]. Thus for 0 ≤ t ≤ λ, the supremum is
obtained for u = 1/λ since 0 is in the sub-differential of the function in 1/λ as Figure 6(b).

1/ 2 1 1/ 3
u

0

f(u
)

1 < 1
2 = 1
3 > 1

(a) Function f(u) for different values of λ.

0 1/
u

t1/ 1

t2/ 1

t3/ 1

ut
m

ax
(

u,
1)

t1 = /10
t1 = /2
t1 = 9 /10

(b) Function u 7→ ut − max(λu, 1) for values of t
between 0 and λ.

Figure B.6: Graphical illustration of fλ and f∗λ . Both are piece-wise linear

Consequently the Fenchel conjugate of f is:

∀t ∈ [0, λ] , f∗(t) = max(λ, 1) + tλ− 1 =

{
t/λ if λ ≤ 1,

t/λ− 1 + λ otherwise.
(24)

Finally, the optimal discriminator T opt by taking the derivative of f in p(x)
p̂(x) , we get:

T opt(x) = ∇f
(
p(x)

p̂(x)

)
=

{
λ if p(x)

p̂(x) ≤ 1/λ,

0 otherwise.
(25)

18

Then we can compute the compute the reverse Dλ-PR:

Dλ-PR(P̂∥P) =
∫
X
p(x)fλ

(
p̂(x)

p(x)

)
dx (26)

=

∫
X
max(λp̂(x), p(x))− p(x)max(λ, 1) dx (27)

= λ

(∫
X
max(p̂(x), p(x)/λ)dx−max(1, 1/λ)

)
(28)

= λ

∫
X
p̂(x)max(1,

p(x)

p̂(x)
/λ)− p̂(x)max(1, 1/λ) dx (29)

= λ

∫
X
p̂(x)f1/λ

(
p(x)

p̂(x)

)
dx (30)

= λD 1
λ -PR

(P∥P̂). (31)

With this results, we can show that :

DTV(P∥P̂) =
∫
X
|p(x)− p̂(x)|dx (32)

=

∫
X
max(p(x)− p̂(x), 0) + max(p̂(x)− p(x), 0)dx (33)

Then since D1-PR(P∥P̂) =
∫
X max(p̂(x), p(x)) − p(x)dx =

∫
X max(p̂(x) − p(x), 0)dx and

D1-PR(P∥P̂) = D1-PR(P̂∥P), we have:

DTV(P∥P̂) = D1-PR(P∥P̂) +D1-PR(P̂∥P) (34)

= 2D1-PR(P∥P̂). (35)

B.3 Proof of Theorem 5.2

From now on, assume the support of P and P̂ coincide. For any T : X → R,

Ddual
f,T (P∥P̂) = Ex∼P [d (x)]− Ex∼Q [f∗ (d (x))]

= Ex∼Q

[
p(x)

p̂(x)
d (x)− f∗ (d (x))

]
Let T opt ∈ arg supDdual

f,T (P∥P̂). For any T : X → R

Df (P∥P̂)−Ddual
f,T (P∥P̂) = Ddual

f,T opt(P∥P̂)−Ddual
f,T (P∥P̂)

= EP̂

[
p(x)

p̂(x)

(
T opt(x)− T (x)

)
− f∗

(
T opt(x)

)
+ f∗ (T (x))

]
It is known that for all x ∈ X we have∇f∗(T opt(x)) = p(x)

p̂(x) :

Df (P∥P̂)−Ddual
f,T (P∥P̂) = EP̂

[
∇f∗(T opt(x))

(
T opt(x)− T (x)

)
− f∗

(
T opt(x)

)
+ f∗ (T (x))

]
Recall that for any continuously differentiable strictly convex functionf , the Bregman divergence of
f is Bregf (a, b) = f(a)− f(b)− ⟨∇f(b), a− b⟩. So we have

Df (P∥P̂)−Ddual
f,T (P∥P̂) = EP̂

[
Bregf∗

(
T (x), T opt(x)

)]
Let us now use the following property: Bregf (a, b) = Bregf∗ (a∗, b∗) where a∗ = ∇f(a) and
b∗ = ∇f(b).

19

Df (P∥P̂)−Ddual
f,T (P∥P̂) = EP̂

[
Bregf

(
∇f∗(T (x)),∇f∗(T opt(x))

)]
= EP̂

[
Bregf

(
∇f∗(T (x)), p(x)

p̂(x)

)]

Let us define r (x) = ∇f∗T (x) as our estimator of p(x)/p̂(x). So finally, we have

Df (P∥P̂)−Ddual
f,T (P∥P̂) = EP̂

[
Bregf

(
r(x),

p(x)

p̂(x)

)]

B.4 Proof of Theorem 5.3

Now assume that f is µ-strongly convex, then Bregf (a, b) ≥ µ
2 ∥a− b∥

2 If

EP̂

[
Bregf

(
r(x), p(x)p̂(x)

)]
≤ ϵ and if f is µ-strongly convex, then

EP̂

[(
r(x)− p(x)

p̂(x)

)2
]
≤ 2ϵ

µ
. (36)

Consider an arbitrary f-divergence Dg(P∥P̂) =
∫
g
(

dP

dP̂

)
dP̂ . Define Dprimal

g,T (P∥P̂) =∫
g (r(x)) dP̂ . Then,

∣∣∣Dg(P∥P̂)−Dprimal
g,T (P∥P̂)

∣∣∣ = ∣∣∣∣EP̂

[
g

(
p(x)

p̂(x)

)
− g (r(x))

]∣∣∣∣
≤ EP̂

[∣∣∣∣g(p(x)p̂(x)

)
− g (r(x))

∣∣∣∣]
(a)

≤ EP̂ [σ |e(x)|]
= σEP̂ [|e(x)|]
(b)

≤ σ
√

EP̂ [e(x)2]

(c)

≤ σ

√
2ϵ

µ
,

where (a) follows from the σ-Lipschitz assumption on g, (b) follows from Jensen’s inequality and
finally, (c) follows from equation (36). s

B.5 Proof of Theorem 8

Let c : R+ 7→ R be a C2 function and take umin and umax. The goal is to express f(u) for all
u ∈ [umin, umax] as a weighted average of fPR

λ :

∀u ∈ R+
∗ ,

∫ 1/umin

1/umax

c′′(λ)fPR
λ (u)dλ =

∫ 1/umin

1/umax

c′′(λ) [max(λu, 1)−max (λ, 1)] dλ (37)

20

First, let us assume that umin ≤ 1 and umax ≥ 1, then the terms can be decomposed and the integral
split to evaluate the max:∫ 1/umin

1/umax

c′′(λ)fPR
λ (u)dλ =

∫ 1/umin

1/umax

c′′(λ)max(λu, 1)dλ−
∫ 1/umin

1/umax

c′′(λ)max (λ, 1) dλ (38)

=

∫ 1/u

1/umax

c′′(λ)max(λu, 1)dλ+

∫ 1/umin

1/u

c′′(λ)max(λu, 1)dλ

−
∫ 1

1/umax

c′′(λ)max (λ, 1) dλ−
∫ 1/umin

1

c′′(λ)max (λ, 1) dλ

(39)

=

∫ 1/u

1/umax

c′′(λ)dλ+

∫ 1/umin

1/u

c′′(λ)λudλ−
∫ 1

1/umax

c′′(λ)dλ−
∫ 1/umin

1

c′′(λ)λdλ.

(40)

By integrating by parts, we have:
∫ 1/umin

1/umax
c′′(λ)λdλ = [c′(λ)λ]

1/umin

1/umax
−

∫ 1/umin

1/umax
c′(λ)dλ so it

satisfies:∫ 1/umin

1/umax

c′′(λ)fPR
λ (u)dλ =

∫ 1/u

1/umax

c′′(λ)dλ+ u [c′(λ)λ]
1/umin

1/u − u
∫ 1/umin

1/u

c′(λ)dλ

−
∫ 1

1/umax

c′′(λ)dλ− [c′(λ)λ]
1/umin

1 +

∫ 1/umin

1

c′(λ)dλ

(41)

= [c′(λ)]
1/u
1/umax

+ u [c′(λ)λ]
1/umin

1/u − u [c(λ)]1/umin

1/u

− [c′(λ)]
1
1/umax

− [c′(λ)λ]
1/umin

1 + [c(λ)]
1/umin

1

(42)

= c′
(
1

u

)
− c′(0) + uc′

(
1

umin

)
− uc′

(
1

u

)
1

u
− uc

(
1

umin

)
+ uc

(
1

u

)
− c′(1)

+ c′(0)− c′
(

1

umin

)
1

umin
+ c′(1)× 1 + c

(
1

umin

)
− c(1)

(43)

=

[
c′
(

1

umin

)
1

umin
− c

(
1

umin

)]
(u− 1) + uc

(
1

u

)
− c(1). (44)

We would like
∫ 1/umin

1/umax
c′′(λ)fPR

λ (u)dλ to be equal to f between umin and umax. But since two
f -divergences generated by f and g are equals if there is a c ∈ R such that f(u) = g(u) + c(u −
1), the Divergence generated by

∫ 1/umin

1/umax
c′′(λ)fPR

λ (u)dλ is equal to the divergence generated by
uc

(
1
u

)
− c(1). Therefore, we require c to satisfy:

∀u ∈ [umin, umax], f(u) = uc

(
1

u

)
− c(1).

By differentiating with respect to u, we have:

f ′(u) = lim
λ→∞

[c′(λ)λ− c(λ)] + c

(
1

u

)
− 1

u
c′
(
1

u

)
. (45)

And finally:

f ′′(u) = − 1

u2
c

(
1

u

)
+

1

u2
c′
(
1

u

)
+

1

u3
c′′

(
1

u

)
(46)

=
1

u3
c′′

(
1

u

)
. (47)

Consequently, with λ = 1/u, we have that:

c′′(λ) =
1

λ3
f ′′

(
1

λ

)
. (48)

21

With such a results, with m = minX (p̂(x)p(x)) and M = maxX (p̂(x)p(x)), we can write any f -divergence
as:

Df (P∥P̂) =
∫
X
p̂(x)f

(
p(x)

p̂(x)

)
dx

=

∫
X
p̂(x)

∫ M

m

1

λ3
f ′′

(
1

λ

)
fPR
λ

(
p(x)

p̂(x)

)
dλdx

=

∫ M

m

∫
X

1

λ3
f ′′

(
1

λ

)
p̂(x)fPR

λ

(
p(x)

p̂(x)

)
dλdx

=

∫ M

m

1

λ3
f ′′

(
1

λ

)[∫
X
p̂(x)fPR

λ

(
p(x)

p̂(x)

)
dx

]
dλ

=

∫ M

m

1

λ3
f ′′

(
1

λ

)
Dλ-PR(P∥P̂)dλ

B.6 Proof of Corollary 4.5

In particular for the DKL, f(u) = u log u, therefore f ′′(u) = 1/u which gives:

DKL(P∥P̂) =
∫ M

m

1

λ2
Dλ-PR(P∥P̂)dλ. (49)

And for the DrKL we can either use Equation 48 with f(u) = − log u or use the fact that
Dλ-PR(P∥P̂) = λD1/λ-PR(P̂∥P):

DrKL(P∥P̂) =
∫ M

m

1

λ
Dλ-PR(P∥P̂)dλ. (50)

C Minimizing the Precision-Recall divergence

In Section 5, we outline a novel strategy to train models for challenging f -divergences. Rather than
directly employing the f -GAN framework and minimizing the dual variational form of Dλ-PR, we
introduce an auxiliary function, denoted by g, which is easier to train. Practical choices for g could
include functions such as fKL or fχ2 , which have been shown to be easily trainable.

Using this approach, a discriminator T is trained with the objective of maximizing Ddual
g,T . This is

achieved by drawing samples from both P and P̂ and computing the estimate in the dual form. Under
optimal conditions, we find∇g∗(T opt(x)) = p(x)/p̂(x), enabling us to estimate the f -divergence
based on T using what we term the primal estimate.

The primal estimate is defined as Dprimal
f,T (P∥P̂) =

∫
X p̂(x)f (r(x)) dx, where r(x) = ∇g∗(T (x)).

This strategy and its corresponding training procedure are visually represented in Figure C.7.

Figure C.7: Training procedure: the discriminator T is trained based on Ddual
g,T and G is trained on

Dprimalf, T .

22

We have shown that the choice of g affects the quality of the estimation of Df . We have shown that to
have guarantees on the quality of the estimation, g must be strictly convex. We show empirically that
g = fχ2 leads to a better approximation than g = fKL. We train 200 discriminators on 20 Gaussian
random two-dimensional mixtures to maximize Ddual

g,T with g = fKL and g = fχ2 . In Figure C.8,
we report the results. On the x-axis, we report the training loss quality Dg(P∥P̂) − Ddual

g,T (P∥P̂)
and on the y-axis we report the estimation quality : Df (P∥P̂)−Dprimal

f,T (P∥P̂)|. The dotted lines
correspond to the Mahalanobis distance of each set of experiments. In this experiment, we use a 4
linear layers 2-1024-512-256-1 neural network with LeakyRelu activation between layers. The last
activation is set to match dom(f∗) (see Section A.1). We use a learning rate of 2.10−5 with Adam
optimizer.

0.00 0.05 0.10 0.15 0.20 0.25

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
|Df(P‖P̂)−Dprimal

f,T (P‖P̂)|

Dg(P‖P̂)−Ddual
g,T (P‖P̂)

fχ2

fKL

Figure C.8: We compare the quality of the primal estimation using two discriminators, one trained
using the DKL and Dχ2 over 200 experiments. The lower the point is on the y-axis, the better the
estimate. As we can see, even distant dual estimates of the fχ2 (points on the right side of the chart)
tend to provide better estimates of the primal.

We observe in this experiment that 1) the difference between DKL and its dual is usually lower (the
blue circle is lower on x-axis) and yet 2) the estimation of Df is usually better with g = fχ2 (the red
circle is lower on y-axis). These observations corroborate our claim that employing fχ2 as the auxil-
iary divergence is a more advantageous choice compared to fKL. Although both divergence measures
exhibit satisfactory performance in the context of the MNIST and FashionMNIST experiments, we
find fχ2 to demonstrate superior stability, reinforcing its suitability in this training framework.

Complete version of the algorithm In Section 5, we introduce a condensed version of our training
algorithm. For practical purposes, however, we implement a more refined variant of this algorithm
using stochastic gradient descent, detailed in Algorithm 1. This approach involves segmenting the
dataset into batches of size N and computing the distinct losses for each individual batch. Our
algorithm is closely related to the GAN training procedure, operating on an iterative principle of
alternating updates to the discriminator T and the generator G until a convergence state is reached.
In particular, our method differs from the standard GAN training protocol in two key aspects. First,
the generator G in our case is trained based on an estimation of a distinct f -divergence. Second, this
specific f -divergence is calculated in terms of its primal form, rather than its dual form, a marked
departure from the established GAN training practice.

23

Algorithm 1 Stochastic Gradient Descent for the two-step approach for minimizing Dλ-PR. For each
batch B composing the dataset D, the discriminator T is trained on LT , the empirical estimation of
Ddual

f,T (P∥P̂) and the generator G is trained on LG, the empirical estimation of Dprimal
λ-PR

(P∥P̂).
Input: Generator G, Discriminator T , Dataset D
g∗ ← f∗χ2orf∗KL

f ← fλ
for epoch e = 1, . . . , E do

for B ∈ D do
LT ,LG ← 0, 0
for xreal

1 , . . . ,xreal
N ∈ B do

for i = 1 to N do
Generate xfake

i = G(z) with z ∼ N (0d, Id)
LT ← LT + T (xreal

i)− f∗(T (xfake
i))

end for
Update parameters of T by ascending the gradient∇LT .
for i = 1 to N do
LG ← LG + g

(
∇f∗(T (xfake

i)
)

end for
Update parameters of G by descending the gradient∇LG.

end for
end for

end for

D Experiments

D.1 Naive Approach

In this section, we juxtapose the straightforward method with our technique delineated in Section 5.
We achieve this by evaluating the optimization process of two identical G models: one is trained
using the conventional approach and the other using our methodology. In reality, there exist two
significant variations between these two training procedures: training losses and the final layer of
the discriminator T . In both procedures, we use f∗(T (x)), implying that the co-domain must be
encapsulated within dom(f∗). More information on activation can be found in the Appendix A.1.
Aside from these disparities, we utilize the identical training process as outlined in the previous
section to train the models on CIFAR-10. The training procedures are compared in Figure D.9. To
evaluate training procedures, we plot the loss LG, used to train G, either the dual estimation of Dλ-PR

in the naive approach or the primal estimation of Dλ-PR in our method. To track the evolution of the
discriminator, we plot discriminating predictions on the input conditioned on the class (real or fake).
Precisely, we compute the accuracy on a batch of real or fake images, how many the discriminator
achieves to identify as such. Finally, we plot the Precision and Recall computed at each epoch.

We observe that for varying values of λ, the discriminator T undergoes the training process using the
naive approach, leading to an unsatisfactory estimation of Ddual

f,T .

24

0 20000 40000

0.0

0.2

0.4

0.6

0.8

Precision

0 20000 40000

0.0

0.2

0.4

0.6
Recall

0 20000 40000 60000
−1.5

−1.0

−0.5

0.0

λ
=

0.
20

Loss on G: LG

0 20000 40000 60000

0

25

50

75

100

Accuracy of T (in %)

0 20000 40000

0.0

0.2

0.4

0.6

0.8

Precision

0 20000 40000

0.0

0.2

0.4

Recall

0 20000 40000 60000
−1.5

−1.0

−0.5

0.0

λ
=

1.
00

Loss on G: LG

0 20000 40000 60000

0

25

50

75

100

Accuracy of T (in %)

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

Precision

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

Recall

0 20000 40000 60000 80000

Iterations

−1.5

−1.0

−0.5

0.0

λ
=

5.
00

Loss on G: LG

0 20000 40000 60000 80000

Iterations

0

25

50

75

100

Accuracy of T (in %)

Figure D.9: Results for training BigGAN models on CIFAR-10 using the naive approach (in blue) and
our method (in red). For λ = 0.2, λ = 1 and λ = 5, the loss represented by G in learned. We obverse
that for the naive approach, this loss is constant. Then, we plot the accuracy of the discriminator. We
plot the accuracy conditioned on the class: in the dotted line the accuracy on the images of the dataset
xreal and in the solid line the accuracy on the generated images xfake. Then we plot the Precision
and Recall during training.

D.2 Synthetic data: 8 Gaussians

For the synthetic data, we use a RealNVP [14] for the generator
G. We use an 8-coupling step composed of each of 2 linear
layers 2-256-2 with LeakyRelu activation in between. For the
discriminator, we used a 4 linear layers 2-1024-512-256-1 neural
network with LeakyRelu activation between layers. For both, we
use Adam optimizer with a learning rate of 2.10−5 for G and
1.10−4 for T . G has 540k parameters and 660k for T .

Then, to estimate the PR curves, both methods from Sajjadi et al.
[44] and Simon et al. [47] are developed for image dataset. To
estimate these curves, we use our own estimation of Dλ-PR. We
computed Dλ-PR for λ = tan(θ) with θ between 0 and π/2. The
observations from the generated curves underscore a compelling
finding: Each model has been effectively optimized for a unique,
specific λ, resulting in its superior performance on the correspond-
ing Dλ-PR. This indicates a clear correspondence between the
intended optimization and the achieved performance, suggest-
ing the efficacy of our training algorithm in optimizing models
for specific performance metrics. Such a successful matching of
model optimization to λ underscores the feasibility of tailoring
model training according to a specific precision-recall trade-off
objective.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β

α

λ = 0.1

λ = 1λ = 10

λ = 0.1
λ = 1
λ = 10
DKL

DrKL

Figure D.10: PR Curves of the
models in Figure 1. In shades
of blue, the curves correspond
to the model trained to min-
imize Dλ-PR, with dark blue
for λ = 0.1, medium blue
for λ = 1, and light blue for
λ = 1. The green curve cor-
responds to DKL and the red
curve to DrKL.

D.3 MNIST and FashionMNIST

The training procedure for MNIST and FashionMNIST is strictly the same. For both we use a
multiscale glow [27]. The model has three levels processing images of size 4× 16× 16, 16× 8× 8,
64× 8× 8. Each level has 16 blocks of affine coupling with 3 layers of 512 channels of convolutional

25

operations, leading to a total of 85.2M parameters. For the discriminator, we use a 4 linear layers 1024-
1024-512-256-1 neural network with LeakyRelu activation between layers, with 1.7M parameters.
Both are trained with Adam using a learning rate of 1.10−5 for T and 1.10−6 for G. For both dataset,
we train a model for 250 epochs using maximum likelihood estimation (MLE) in 4 GPUs V100 (∼
200 hours). The models are then fine-tuned with their different losses on 12 V100 GPUs for 30
epochs (∼ 2 hours). For two epochs we train the discriminator only and then both. For MNIST, we
report results as graphs in Figure D.11, the quantitative results in Table 4 and samples in Figure D.3.
For FashionMNIST, we report the results as graph in Figure D.13, the quantitative results in Table 4
and samples in Figure D.3.

Table 4: Quantitative evaluation of various Glow [27] models on the MNIST and FashionMNIST
datasets. Models differ by their choice of Df , Dg, and λ. The performance metrics include the FID
(↓), P (↓) and R (↑). The best model is highlighted in bold. FID is calculated for 50k samples.P and
R are culculated for 10k samples and k = 3.

Model MNIST FashionMNIST
Dg Df λ FID P R FID P R

MLE 7.68 70.03 76.52 66.64 58.19 47.35
DKL DKL - 7.76 70.68 77.19 71.72 51.44 45.61
DrKL DrKL - 10.50 74.64 67.21 51.65 67.68 40.76
Dχ2 Dλ-PR 0.10 6.84 78.24 72.11 48.11 66.57 45.80
Dχ2 Dλ-PR 0.20 6.48 78.84 71.02 41.97 66.41 46.62
Dχ2 Dλ-PR 0.50 6.57 79.09 70.26 46.04 71.20 46.37
Dχ2 Dλ-PR 1.00 7.95 79.55 69.08 52.88 73.32 36.44
Dχ2 Dλ-PR 2.00 10.01 80.37 67.84 101.33 76.47 39.40
Dχ2 Dλ-PR 5.00 15.31 81.34 67.00 118.54 73.44 35.14
Dχ2 Dλ-PR 10.00 20.88 81.71 66.62 91.20 72.14 19.48
DKL Dλ-PR 0.10 4.66 76.06 73.88 42.85 66.48 49.73
DKL Dλ-PR 0.20 4.45 76.92 71.92 48.25 72.87 49.52
DKL Dλ-PR 0.50 5.94 77.98 71.42 54.12 71.28 41.70
DKL Dλ-PR 1.00 8.21 79.92 70.02 62.33 62.58 42.89
DKL Dλ-PR 2.00 9.40 79.89 67.15 64.74 72.78 41.41
DKL Dλ-PR 5.00 14.01 82.08 66.13 83.25 73.12 33.80
DKL Dλ-PR 10.00 27.61 83.20 65.09 79.37 70.74 27.05

10−1 100 101

λ

2.375

2.400

2.425

2.450

2.475

2.500

IS

10−1 100 101

λ

5

10

15

20

25

FID

10−1 100 101

λ

0.700

0.725

0.750

0.775

0.800

0.825

P

10−1 100 101

λ

0.66

0.68

0.70

0.72

0.74

0.76

R

PR-Chi2

PR-KL

MLE

KL

rKL

Figure D.11: MNIST: Glow models [27] are trained for different λ. From left to right, we plot IS (↑),
FID (↓), P (↑) and R (↑). IS and FID are calculated using 50k samples, and P and R are calculated
using 5k samples with k = 3 using Kynkäänniemi et al. [28]’s method. For comparison, we also
report models trained with MLE (in black), for DKL (in blue) and for DrKL in red.

26

(a) MLE (b) λ = 0.1

(c) λ = 1 (d) λ = 10

Figure D.12: MNIST: Samples are drawn from different models (only models trained with g = fχ2).
From 12(a) to 12(d), we observe that visual quality improves while diversity decreases. Models
geared towards high recall, specifically MLE and those with λ = 0.1, are found to generate a wide
variety of samples. However, these are characterized by lower precision, and approximately 20% of
the generated samples are incoherent. On the contrary, the model trained with λ = 10 appears to
focus on a smaller subset of modes, demonstrating higher precision but limited diversity. Specifically,
this model primarily generates classes 1, 6, 7, and 9.

10−1 100 101

λ

2.2

2.4

2.6

2.8

3.0

3.2

IS

10−1 100 101

λ

40

60

80

100

120
FID

10−1 100 101

λ

0.55

0.60

0.65

0.70

0.75

P

10−1 100 101

λ

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R

PR-Chi2

PR-KL

MLE

KL

rKL

Figure D.13: FashionMNIST: Glow models [27] are trained for different λ. From left to right, we
plot IS (↑), FID (↓), P (↑) and R (↑). IS and FID are calculated using 50k samples, and P and R are
calculated using 10k samples with k = 3 using Kynkäänniemi et al. [28]’s method. For comparison,
we also report models trained with MLE (in black), for DKL (in blue) and for DrKL in red.

27

(a) MLE (b) λ = 0.1

(c) λ = 1 (d) λ = 10

Figure D.14: FashionMNIST: Samples are drawn from different models (only models trained with
g = fχ2). From 14(a) to 14(d), we observe that visual quality improves while diversity decreases.
Models geared towards high recall, specifically MLE and those with λ = 0.1, are found to generate a
wide variety of samples. However, these are characterized by lower precision, and approximately 15%
of the generated samples are incoherent. On the contrary, the model trained with λ = 10 appears to
focus on a smaller subset of modes, demonstrating higher precision but limited diversity. Specifically,
this model primarily generates the class "trouser".

D.4 Training BigGAN on CIFAR-10 and CelebA64

In this section we give the details of the experiments on training BigGAN [7] models. To do this, we
modify the official implementation of PyTorch5 of BigGAN by Brock et al. [7]. G and T respectively
count 4.3M and 4.2M parameters for CIFAR-10 and 32.0M and 19.5M for CelebA64. CIFAR-10’s
models are trained on 2 A100 80GB GPUs with a batch size of 128 for approximately 100k iterations
(∼ 7 hours), while CelebA64’s models have been trained on 4 A1200 32GB GPUs with a batch
size of 128 for 95k iteration (∼ 20 hours). Quantitative results are reported in Table 2. The graphic
representation of the results is in Figures D.16 and D.20. The training curves representative of FID,
IS, P and R during training are reported in Figures D.17 and D.18.

5https://github.com/ajbrock/BigGAN-PyTorch

28

https://github.com/ajbrock/BigGAN-PyTorch

(a) BigGAN Baseline (b) λ = 0.10

(c) λ = 1 (d) λ = 10

Figure D.15: CIFAR-10: Samples are drawn from different BigGAN trained on the PR-Divergence.
We observe that when λ increases, the recall decreases going to a various range of colored images to
mostly brown images.

10−1 100 101

λ

4

5

6

7

IS

10−1 100 101

λ

0.82

0.84

0.86

0.88

0.90

P

10−1 100 101

λ

0.7

0.8

0.9

D

10−1 100 101

λ

10

20

30

40

50

60

FID

10−1 100 101

λ

0.2

0.3

0.4

0.5

0.6

0.7

R

10−1 100 101

λ

0.55

0.60

0.65

0.70

0.75

0.80

C

Our Appoach

Baseline

Figure D.16: CIFAR-10: BigGAN models [7] are trained for different λ. From left to right, we
plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are calculated using 50k samples,
and P and R are calculated using 10k samples with k = 5 using Kynkäänniemi et al. [28]’s method.
For comparison, we also report a model trained hinge loss (in black), following the vanilla training
procedure.

29

0 20000 40000 60000 80000

Iterations

0

1

2

3

4

5

6

7

Inception Score

0.05

0.10

0.20

0.30

0.50

0.67

1.00

20000 40000 60000 80000

Iterations

0

50

100

150

200

250

FID

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Precision

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Recall

0 20000 40000 60000 80000

Iterations

0

1

2

3

4

5

6

7

Inception Score

1.00

1.50

2.00

3.00

5.00

10.00

20.00

20000 40000 60000 80000

Iterations

10

20

30

40

50

60

70

80

FID

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Precision

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Recall

Figure D.17: CIFAR-10: Evolution of the IS, FID, P and R during training. We can observe that
the precision quickly achieves its maximal value and saturates. We can also observe that the model
is evicting modes of the target distribution early in the training, R is quickly saturates to different
levels depending on λ. However, for low values of λ, the recall does not increase when λ decreases,
indicating that the model capacity limits the maximum recall.

0 20000 40000 60000 80000

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Inception Score

0.20

0.50

0.67

1.00

0 20000 40000 60000 80000

Iterations

10

20

30

40

50

60

FID

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Precision

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Recall

0 20000 40000 60000 80000

Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Inception Score

1.00

1.50

2.00

5.00

0 20000 40000 60000 80000

Iterations

20

40

60

80

100

120
FID

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Precision

0 20000 40000 60000 80000

Iterations

0.0

0.2

0.4

0.6

0.8

1.0
Recall

Figure D.18: CelebA Evolution of the IS, FID, P and R during training. We can observe that precision
quickly achieves its maximal value and saturates. We can also observe that the model is evicting
modes of the target distribution early in the training, R is quickly saturates to different level depending
on λ.

30

(a) BigGAN Baseline (b) λ = 0.5

(c) λ = 1 (d) λ = 10

Figure D.19: CelebA64: Samples are drawn from different BigGANs with our apprach. For λ = 0.5,
the model generated faces with various background, while the model generate only grey, black and
brown backgrounds. However there are less artifacts on the latter model.

100

λ

2.50

2.55

2.60

2.65

2.70

2.75

IS

100

λ

0.78

0.79

0.80

0.81

0.82

0.83

0.84

P

100

λ

0.9

1.0

1.1

1.2

D

100

λ

10

15

20

FID

100

λ

0.25

0.30

0.35

0.40

0.45

0.50

0.55

R

100

λ

0.42

0.44

0.46

0.48

0.50

0.52

0.54
C

Our Appoach

Baseline

Figure D.20: CelabA64: BigGAN models [7] are trained for different λ. From left to right, we
plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are computed using 50k samples
and P and R are computed using 10k samples with k = 5 using Kynkäänniemi et al. [28]’s method.
For comparison, we also report a model trained hinge loss (in black), following the vanilla training
procedure.

31

D.5 Fine-tuning BigGAN on ImageNet128 and FFHQ256.

In this section, we fine-tune the pre-trained BigGAN models. For ImageNet128, we use the weights
of the model trained by Brock et al. [7], while for FFHQ256 we use a model pre-trained by our self,
explaining why the FFHQ models is under performing. We train models on 4 V100 GPUs with a
batch size of 128 for 10k iterations each. The graphic representation of the results is reported in
Figures D.21 and D.22 and samples are shown in Figures D.5 and D.5.

100

λ

50

60

70

80

90

IS

100

λ

0.27

0.28

0.29

0.30

0.31
P

100

λ

0.135

0.140

0.145

0.150

0.155
D

100

λ

10

12

14

16

18

20

FID

100

λ

0.300

0.325

0.350

0.375

0.400

0.425

R

100

λ

0.145

0.150

0.155

0.160

0.165

0.170

C

Our Appoach

Baseline

Figure D.21: ImageNet128: BigGAN models [7] are trained for different λ. From left to right, we
plot IS (↑), P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are calculated using 50k samples,
and P and R are calculated using 10k samples with k = 5 using Kynkäänniemi et al. [28]’s method.
For comparison, we also report a model trained hinge loss (in black), following the vanilla training
procedure.

100

λ

2.8

2.9

3.0

3.1

3.2

3.3

IS

100

λ

0.65

0.70

0.75

0.80

0.85
P

100

λ

0.5

0.6

0.7

0.8

0.9

1.0

1.1

D

100

λ

35

36

37

38

39

40

41

FID

100

λ

0.085

0.090

0.095

0.100

R

100

λ

0.50

0.55

0.60

C

Our Appoach

Baseline

Figure D.22: FFHQ: BigGAN models [7] are trained for different λ. From left to right, we plot IS (↑),
P (↑), D (↑), FID (↓), R (↑) and C (↑). IS and FID are computed using 50k samples and P and R are
computed using 10k samples with k = 5 using Kynkäänniemi et al. [28]’s method. For comparison,
we also report a model trained hinge loss (in black), following the vanilla training procedure.

32

(a) BigGAN Baseline (b) λ = 0.2

(c) λ = 1 (d) λ = 5

Figure D.23: ImageNet128: Samples are drawn from different BigGANs trained on the PR-
Divergence.

33

(a) BigGAN Baseline (b) λ = 0.5

(c) λ = 1 (d) λ = 2

Figure D.24: FFHQ256: Samples are drawn from different BigGAN trained on the PR-Divergence.

E Training the AUC

In this paper, we propose a method to optimize any trade-off between precision and recall. In practice,
we optimize a model to maximize any αλ(P∥P̂). We could also optimize for the area under the
PR-Curves PRD(P, P̂)(P, P̂). In this section, we will show how we can compute the AUC in terms
of αλ(P∥P̂) and train a model on a small dimension dataset and compare the results with the model
trained on several λ. First, we must compute the AUC:

Proposition E.1 (AUC under the ∂PRD(P, P̂)). The area under the curve is:

AUC =

∫ +∞

0

αλ(P∥P̂)2

λ2
dλ (51)

Proof. The AUC can be computed by integrating with respect to an angle θ in the first quadrant:

AUC =

∫ π/2

θ=0

∫ r(θ)

u=0

ududθ =

∫ π/2

0

r2(θ)

2
dθ. (52)

34

Therefore, with λ = tan θ, we have r(θ) = αtan(θ)(P∥P̂)/ sin θ (see Figure E.25). Thus:

AUC =

∫ π/2

0

αtan(θ)(P∥P̂)2

sin2 θ
dθ (53)

=

∫ π/2

0

αtan(θ)(P∥P̂)2
(
1 +

1

tan2 θ

)
dθ (54)

=

∫ +∞

0

αλ(P∥P̂)2
(
1 + 1

λ2

)
1 + λ2

dλ with dλ = (1 + tan2 θ)dθ, (55)

=

∫ +∞

0

αλ(P∥P̂)2

λ2
dλ. (56)

Using such expression, we can estimate the AUC and train model to directly optimize the AUC. It
loses the focus on a specific trade-off between precision and recall, but instead optimizes overall
performance. We trained a RealNVP model on a 2D 8 Gaussians example, similar to Section 6. We
observe in Figure 27(d) that while the model trained to minimize the AUC performs poorly in terms
of λ = 0.1 and λ = 1. However, we can clearly see that the AUC is greater and the model performs
better in λ = 1 than the model trained for λ = 1 itself. We can also observe in Figure 27(d), the
resulting model.

Figure E.25: Illustration of the change of
variable to compute the AUC. Instead of
parametrising the frontier ∂PRD(P, P̂) with
λ ∈ R ∪ [0,∞], we take θ ∈

[
0, π2

]
with

λ = tan θ.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β

α

λ = 0.1

λ = 1λ = 10

λ = 0.1

λ = 1

λ = 10

AUC

Figure E.26: PR-Curves corresponding to the
models represented in Figure E.

(a) λ = 0.1 (b) λ = 1 (c) λ = 10 (d) AUC

35

	Introduction
	Related works
	Background
	f-divergences
	Generative models
	Precision-Recall curve for generative models

	Precision and Recall trade-off as an f-divergence
	Precision-Recall as an f-divergence
	Relation between PR-divergences and other f-divergences

	Minimizing the Precision-Recall divergence
	Experiments
	Conclusion
	Supplementary background
	f-divergences
	Bregman Divernce

	Proof and supplementary for Section 4
	Proof for Theorem 4.3
	Proof of Proposition 4.2
	Proof of Theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 8
	Proof of Corollary 4.5

	Minimizing the Precision-Recall divergence
	Experiments
	Naive Approach
	Synthetic data: 8 Gaussians
	MNIST and FashionMNIST
	Training BigGAN on CIFAR-10 and CelebA64
	Fine-tuning BigGAN on ImageNet128 and FFHQ256.

	Training the AUC

