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Abstract

Recently, it has been observed that when training a deep neural net with SGD, the majority
of the loss landscape’s curvature quickly concentrates in a tiny top eigenspace of the loss
Hessian, which remains largely stable thereafter. Independently, it has been shown that
successful magnitude pruning masks for deep neural nets emerge early in training and remain
stable thereafter. In this work, we study these two phenomena jointly and show that they are
connected: We develop a methodology to measure the similarity between arbitrary parameter
masks and Hessian eigenspaces via Grassmannian metrics. We identify overlap as the most
useful such metric due to its interpretability and stability. To compute overlap, we develop a
matrix-free algorithm based on sketched SVDs that allows us to compute over 1000 Hessian
eigenpairs for nets with over 10M parameters—an unprecedented scale by several orders
of magnitude. Our experiments reveal an overlap between magnitude parameter masks
and top Hessian eigenspaces consistently higher than chance-level, and that this effect gets
accentuated for larger network sizes. This result indicates that top Hessian eigenvectors
tend to be concentrated around larger parameters, or equivalently, that larger parameters
tend to align with directions of larger loss curvature. Our work provides a methodology to
approximate and analyze deep learning Hessians at scale, as well as a novel insight on the
structure of their eigenspace.

1 Introduction

Deep learning (DL) benefits from overparametrization; but not all parameters are equally important. Often, a
substantial portion of parameters can be pruned, i.e. removed, without compromising the model’s performance
(see Blalock et al., 2020; Hoefler et al., 2021). One efficient and popular method to identify these subnetworks
is via parameter magnitude (Han et al., 2015). Interestingly, these subnetworks materialize very early in
training (Frankle & Carbin, 2019), and once they emerge, their topology stops changing significantly (Achille
et al., 2019; You et al., 2020). In other words, competitive subnetworks crystallize early in training and
remain stable thereafter (Section 2.2, Figures 12 and 13).

Concurrent research focuses on the loss Hessian, characterizing the loss landscape’s curvature. Multiple
studies found that empirically the Hessian spectrum separates into two parts: The bulk subspace, with many,
near-zero eigenvalues, and the top subspace with a few eigenvalues of significantly larger magnitude (e.g.
Dauphin et al., 2014; Sagun et al., 2018). Crucially, Gur-Ari et al. (2018) observed that, after initial training
iterations, the gradient predominantly lies in this top subspace where it remains relatively stable throughout
training. Analogous to the work on parameter masks, this indicates that the top Hessian eigenspace crystallizes
early in training and tends to remain stable (Section 2.1, Figures 12 and 13).

In this work, we explore the connection between these largely independent lines of research—both reporting
early crystallization of substructures. Our contributions include:

1. We establish a common theoretical ground for comparing binary parameter masks mk (which select k
parameters and discard the rest) and top-k eigenspaces of a Hessian. Both can be cast as rank-k orthogonal
matrices belonging to the same Stiefel manifold (Section 3). This allows a direct comparison of their spans
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Figure 1: Overlap between top-k parameter magnitude masks and top-k Hessian eigenspaces
is consistently and substantially above random chance. (Left) Measurements for a 7030-parameter
network trained on 16ˆ16 downsampled MNIST until convergence (see Section 6.1 and Figure 12): Exact
overlap between top-k parameters and eigenvectors with k “ 350 ( ), approximate overlap via sketched
eigendecomposition ( ), and chance-level baseline ( ) (see Section 4.2). Note how overlap is larger than
chance, and sketched overlap is a good approximation. (Right) Lines show the ratio sketched overlap vs.
chance-level baseline for a model with ą11M parameters trained on ImageNet (see Section 6.2), at three
different points during training, and as a function of k. Note how overlap is always higher than baseline, up
to a factor of 1000.

using Grassmannian metrics1 (see Section 4.1). We review popular Grassmannian metrics and identify
overlap (Eq. (2)) as the most meaningful metric (Section 4.2).

2. To efficiently compute overlap, we develop SEIGH (Section 5 and Alg. 2), a matrix-free eigendecomposition
based on sketched SVDs (Tropp et al., 2019). Our open source implementation2 allows to compute top-k
Hessian eigendecompositions for k ą103 on neural networks with over 10M parameters, an unprecedented
scale by orders of magnitude.

3. We provide empirical evidence that the similarities between the spaces induced by parameter magnitude
masks and top-k Hessian eigenspaces are consistently and substantially higher than random chance
(Figure 1). This suggests that, in DL, top Hessian eigenvectors tend to be concentrated around larger
parameters throughout the training process (Section 6).

Seminal work on “Optimal Brain Damage” (LeCun et al., 1989) established a theoretical link between
individual parameter values and loss curvature, but only at convergence. Recent work often focuses on loss
curvature for layer-wise parameter groups (e.g. Sankar et al., 2021), or involves just a few (k «10) Hessian
eigenpairs without emphasis on parameters (e.g. Gur-Ari et al., 2018; Papyan, 2020; Dangel et al., 2022).
In contrast, we connect Hessian eigenspaces to the spans of arbitrary parameter subsets, e.g. magnitude
masks, throughout the entire training—including the relevant early stage—in an interpretable and scalable
manner. We can thus jointly study the connection between these two phenomena and provide novel insights
into a neural net’s Hessian structure. This connection implies being able to approximate expensive Hessian
quantities via cheap parameter inspection, which bears potential for downstream tasks where the Hessian
plays a prominent role, such as optimization (Martens, 2016), pruning (LeCun et al., 1989), or uncertainty
estimation (Kristiadi et al., 2021).

2 Hessians, Parameters and Early Crystallization

We consider a supervised classification/regression setup with train set Dtrain :“tpxn, ynquN
n“1 of labeled data

pxn, ynqPXˆY, from an unknown data-generating distribution P . The neural net fθpxq :XÑY maps inputs x
to predictions ŷ via parameters θ PRD. A loss function ℓ :YˆYÑRě0 penalizes differences between prediction

1Grassmannians are manifolds of low-dimensional subspaces of a given vector space.
2https://anonymous.4open.science/r/hessian_overlap-3EB1

2

https://anonymous.4open.science/r/hessian_overlap-3EB1


Under review as submission to TMLR

ŷ and true label y. The goal is to minimize the inaccessible risk LP pθq :“
ş

ℓpfθpxq, yqdP via the proxy
empirical risk LDtrain pθq :“ 1

N

řN
n“1 ℓpfθpxnq, ynq. For large N , we approximate LDtrain pθq using mini-batches

B iid„Dtrain of B !N samples. For f , ℓ twice differentiable, we use the gradient gpθq :“∇θLpθqPRD and the
Hessian Hpθq :“∇2

θLpθqPRD̂ D. With g, H we refer to any loss gradient or Hessian. To emphasize the data
domain, we use a subindex, e.g. HB for the Hessian of the mini-batch loss.

2.1 The Hessian in Deep Learning

The Hessian plays a prominent role in DL applications. A useful characterization of H is its eigendecomposition
H “UΛU J “

řD
i“1 λiuiu

J
i . Here, U is orthogonal, with eigenvectors ui, and Λ is diagonal and real-valued

with (ordered) eigenvalues |λ1|ě ... ě |λD|. We call U pkq :“tuiu
k
i“1 the top-k eigenbasis of H , and spanpU pkqq

the top-k eigenspace. The top-k eigendecomposition Hpkq “
řk

i“1 λiuiu
J
i minimizes ∥H ´ Hpkq∥ for all

unitarily invariant norms (Golub & Van Loan, 2013, Th. 2.4.8).

Recent literature has extensively investigated the Hessian spectrum of neural nets, revealing that the
eigenvalues are typically clustered into two parts: (1) The bulk of eigenvalues with near-zero magnitude
and (2) a few top eigenvalues with significantly larger magnitude (e.g. Sagun et al., 2018; Papyan, 2019).
Thus, H can be well-approximated by its top eigenpairs. For the Hessian eigenspace, Li et al. (2018a)
showed that projecting the whole space onto a few random, fixed dimensions still allows Stochastic Gradient
Descent (SGD) to perform competitively—provided enough dimensions are given—leading to the idea of an
intrinsic dimensionality of problems. Gur-Ari et al. (2018) observed that this restriction to a lower-dimensional,
fixed subspace seems to happen spontaneously anyway: After a brief initial training period, the gradient
predominately lies within a small subspace spanned by the few top Hessian eigenvectors and this space
changes little over the remaining training process. However, these phenomena might rely on optimizer and
model choices (Li et al., 2018a; Ghorbani et al., 2019).

One fundamental issue greatly limiting the use of H for DL is its prohibitively large size, with D2 entries.
Consequently, most scalable methods are matrix-free, relying on Hessian-Vector Products (HVPs) to compute
linear maps w “Hv in just OpDq memory and time (Pearlmutter, 1994). Examples are the computation of
spectral densities (Yao et al., 2020; Papyan, 2018) or top-k eigendecompositions (Gur-Ari et al., 2018; Dangel
et al., 2022). To make Hessian properties more accessible, specialized DL libraries have been developed
recently (e.g. Dangel et al., 2020; Yao et al., 2020; Elsayed & Mahmood, 2022), but efficiently accessing large
portions of the Hessian remains a major challenge (see Section 5).

2.2 Parameter Masks and Early Crystallization

Binary parameter masks mk PBD, with B“ t0, 1u, consisting of k ones and the rest zeros, can be used to
define subsets of parameters from a given model. A mask is k-sparse if it has k non-zero elements. We
measure mask sparsity using the ratio ρ :“ k{D. For non-binary vectors v PRD, we instead measure whether a
small subset of indices ι contains a large proportion of the total norm of the vector. When ι is known, this
can be directly expressed as the ratio: κpvq :“ ∥vι∥2

2{∥v∥2
2 (see Hurley & Rickard, 2009). A popular choice

for mk is to take the k-largest parameters by magnitude: it is computationally cheap, and has been shown
to be effective for neural net pruning (Han et al., 2015), leading to smaller models that can often achieve
competitive performances with ρPr1%, 10%s (e.g. Gale et al., 2019; Blalock et al., 2020; Hoefler et al., 2021).

In this work, we do not perform any pruning, but rather focus on a key feature of parameter magnitude
masks. Not only can they lead to competitive performance when used for pruning and be found very early in
training (Frankle & Carbin, 2019; Frankle et al., 2020) but they also stabilize soon afterwards: You et al.
(2020) compared Hamming distances between periodically extracted pruning masks and found they stop
changing early in training, aligning with the loss of information plasticity reported in Achille et al. (2019).
This early crystallization bears a striking parallel with observations made for the top Hessian subspace, and
motivates our investigation: Are these two phenomena connected? How would one measure this connection?
What would such a connection tell us about the parameters and the Hessian?
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3 Parameter Masks as Orthogonal Projections

Quantifying the connection between parameter magnitude masks and top-k Hessian eigenspaces—both
exhibiting early crystallization—requires a way to relate a mask to a subspace. In this section, we observe
that both U pkq (the top-k eigenbasis) and any k-sparse mask3 mk can be characterized as elements of the
same compact Stiefel manifold ODˆk “tQ:QPRDˆk, QJQ“Iku (Absil et al., 2004), where Ik PRk̂ k denotes
the identity. Specifically for masks, we further consider the subset MD̂ k ĂOD̂ k, with columns having exactly
one 1, each row at most one 1, and the rest is zeros.

Reordering parameters: Recall from Section 2.1 that the Hessian eigenvalues are sorted by descending
magnitude, exposing a single cutting point between top and bulk eigenspace at dimension k. To simplify
notation, we impose a similar cutting point to the parameters, by defining a permutation matrix P PMD̂ D

for any given mask mk, such that the mask entries are grouped in selected (i.e. k entries with mi “1) and
discarded (i.e. mi “0), i.e. m̃ :“P Jm“p1, ..., 1, 0, ..., 0q. For a parameter magnitude mask, for example, we
can define P to order the parameters by nonincreasing magnitude such that i ď j ñ |P m|i ě |P m|j . We
can now permute the parameters θ̃ “P Jθ, as well as the Hessian rows and columns H̃ :“P JHP “ŨΛŨ J.
This has no loss of generality, since pm, θ, Hq–pm̃, θ̃, H̃q is an isomorphism, H and H̃ are similar, and the
loss curvature remains unaltered (θ̃JH̃θ̃ “θJHθ). Then, any permuted k-sparse masking operation can be
expressed as:

P Jpmk ˝̈ θq “ m̃k ˝̈ θ̃ “

ˆ

Ik 0
0 0

˙

loooomoooon

:“Φ̃

θ̃ “: ID,kIJ
D,kθ̃,

where ID,k “
`

Ik
0

˘

PRD̂ k, which is clearly an element of the (binary) Stiefel manifold MD̂ k. Also note that
this holds for any P , not only for those defined for parameter magnitude masks.

Partitioning H̃: Consider now the following partition of the reordered Hessian with V , D PRkˆk, W̄ , Ē P

RpD´kqˆpD´kq, and V̄ , W̄ J PRpD´kqˆpkq:

H̃ :“
˜

V W

V̄ W̄

¸

Ũ“P JU

˜

D

Ē

¸

Λ

˜

V J V̄ J

W J W̄ J

¸

ŨJ“UJP

. (1)

With this partition, Ũ pkq “:
`

V
V̄

˘

is the top-k Hessian eigenbasis, and
`

W
W̄

˘

the bulk eigenbasis. Conversely, the
rows of pV |W q correspond to the selected parameters, and pV̄ |W̄ q to the discarded ones. Since Ũ is orthogonal,
we have Ũ pkq PODˆk, i.e. an element of the same Stiefel manifold.

4 Measuring Subspace Similarity via Grassmannian Metrics

We set out now to quantify the similarity between a k-sparse parameter mask and the top-k Hessian eigenspace.
Specifically, we are only interested in the similarity of their spans, since the spaces are the ones reported to
undergo early crystallization. To connect parameter spaces to loss curvature, one may consider perturbing the
parameters, and empirically measuring the impact on the loss. This turns out to be problematic due to the
non-PSD nature of H (see Appendix A.1). Instead, Grassmannian metrics provide a natural and theoretically
grounded way of achieving this, given that k-sparse parameter masks and the top-k Hessian eigenspace
can both be cast as elements of the same Stiefel manifold (Section 3). We review popular Grassmannian
metrics in Section 4.1, and analyze them in more depth in Section 4.2, finding that the overlap metric is both
interpretable and stable.

4.1 Grassmann Manifolds and their Metrics

Grassmann manifolds are extensively studied (e.g. Witten, 1988; Absil et al., 2004; Bendokat et al., 2020)
and have recently been applied to DL (e.g. Gur-Ari et al., 2018; Zhang et al., 2018; Dangel et al., 2022). A

3This can be generalized to masks and eigenspaces with different k using Schubert varieties (Ye & Lim, 2016).
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Figure 2: Behavior of different
Grassmannian metrics for random
pairs of matrices and masks. (Left)
As a function of D, for different spar-
sity ratios ρ :“ k{D. (Right) As a func-
tion of ρ, for different ambient dimensions
D. Lines show the median metric for 50
random pairs, the (almost imperceptible)
shaded regions span the 5-95 percentiles
(see Figure 8 for broader distributions).
Each row shows a selected Grassmannian
metric (see Appendix A.3 for more met-
rics): distc,2 is a representative example
of a collapsing metric, being « 0 almost
everywhere. The overlap metric is non-
collapsing, and its expectation equals ρ.

Grassmann manifold Gk,D is the set of all k-dimensional subspaces of a given D-dimensional Euclidean space.
Two orthogonal matrices Q1,Q2 POD̂ k map to the same element gPGk,D if and only if their column span
is identical. Thus, the subset of all matrices in OD̂ k that map to gi “spanpQiq forms an equivalence class
SO

i :“tQj: QjZj “Qi, ZJ
j Zj “Iku (e.g. Edelman et al., 1998).

The geodesics (i.e. shortest paths) between two elements in Gk,D are available in closed-form and can be
characterized in terms of the principal angles σ Pr0, π

2 sk, i.e. the “amount of rotation” required to transition
from one space to another. The principal angles between two matrices in OD̂ k can be obtained via an SVD
of their product, satisfying the invariance to changes within SO

i (see Appendix A.2). Based on this, there are
several Grassmannian metrics capturing different notions of distance between subspaces (Qiu et al., 2005).
Here we highlight overlap, defined as:

overlappQ1,Q2q“
1
k

∥QJ
1Q2∥2

F “
1
k

∥cospσq∥2
F Pr0,1s . (2)

We see e.g., that if overlap is 0, then the spans of both matrices are orthogonal to each other, and an overlap
of 1 indicates that both spaces are identical. We provide definitions and a more exhaustive review of overlap
and other Grassmannian metrics in Appendix A.3.

4.2 Comparing Grassmannian Metrics

Our aim is now to identify the most useful Grassmannian metric for comparing neural net parameter masks
and Hessian eigenspaces. To empirically compare how different Grassmannian metrics change as a function of
ambient dimension D (for fixed ρ) and sparsity ratio ρ“k{D (for fixed D), we conduct a synthetic experiment:
We randomly draw matrices from OD̂ k and masks from MD̂ k and compute various Grassmannian metrics
between them, normalized to be in r0, 1s, with higher metric indicating higher similarity. Results are
highlighted in Figure 2 (experimental procedure and further experiments in Appendix A.4). This empirical
analysis is complemented with a theoretical result showing that the expected overlap equals exactly ρ, as
seen in Figure 2 (proof in Appendix A.5). The main insights from this analysis (Appendix A.6 extends the
discussion) are:

I. For a fixed sparsity ratio ρ, the expectation of all measured metrics becomes predictable as D increases:
Already in the D «103 regime (much smaller than modern DL scenarios), expectations converge tightly
to values that seem to only depend on ρ (Figure 2 left). We gathered empirical baseline values in
Table 2.

II. Not all metrics are equally informative: Some metrics quickly collapse to 0 as D increases and ρ
decreases (see e.g. Figure 2 (top) or Figures 9 and 10). Looking at the metric definitions in Appendix A.3,
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we can see the reason: Collapsing metrics (e.g. distc,2, distp,2 and dista) are strongly influenced by
individual angles, whereas non-collapsing metrics (e.g. distg, distc,F, distp,F and overlap) average over
all angles.

With these insights, we identify overlap as the most suitable metric among the reviewed ones, since: (1)
It provides a stable and efficient baseline: Among the non-collapsing metrics, it features the smoothest
expectation, equaling exactly ρ “ k{D. This provides us with a stable, simple, theoretically-grounded, and
analytical baseline, establishing a “chance-level overlap” that we can compare against4. This is particularly
beneficial for deep learning, bypassing the need to compute empirical baselines for large D over many ρ.
(2) It is related to other metrics: overlap can be mapped to other popular metrics such as the Hamming
distance, Intersection over Union (IoU), or distp,F via bijections (see Appendix A.3). (3) It has precedence in
the literature: The overlap metric has been used to measure eigenspace similarity in recent deep learning
works (e.g. Gur-Ari et al., 2018; Dangel et al., 2022).

5 Sketched Hessian Eigendecompositions to Measure Overlap

To compute the overlap between parameter magnitude masks and top-k Hessian eigenspaces, we can now
simply plug in the permutation from Section 3 into Eq. (2): Q1 becomes the permuted mask matrix ID,k,
and Q2 the correspondingly permuted top eigenspace Ũ pkq, yielding:

overlappID,k, Ũ pkqq“
1
k

∥IJ
D,kŨ pkq∥2

F “
1
k

∥V ∥2
F , (3)

i.e. our problem reduces to computing the Frobenius norm of V , a kˆk submatrix of Ũ pkq (Eq. (1)).

A case for eigendecompositions: We aim to estimate ∥V ∥2
F , where V is part of Ũ pkq, a Dˆk orthogonal

matrix spanning the top eigenspace. Since all standard algorithms to find such matrices (Gram–Schmidt,
Householder transformation, Givens rotation) require to keep track of at least k full vectors (Golub &
Van Loan, 2013), a memory requirement of OpkDq seems inescapable in general. Still, one may recognize
that any orthogonal matrix Q̂ with the same span as Ũ pkq yields the same Frobenius norm (due to unitary
invariance). However, we need to ensure that the span of said Q̂ does not overlap with the bulk eigenspace: It
needs to be exclusively associated with the top-k eigenvalues. As a consequence, knowledge of the eigenvalues
also seems inescapable in general. In conclusion, to measure the top-k overlap, we argue that a rank-k
eigendecomposition is generally needed.

A case for sketched decompositions: Among the methods that satisfy the memory requirement of OpkDq,
orthogonal iterations (Golub & Van Loan, 2013), an extension of Rayleigh’s power method, is a popular and
effective one, requiring Opkq measurements per iteration and τ iterations, to converge at a rate proportional
to |λk`1{λk|τ (Golub & Van Loan, 2013, Th. 7.3.1). This leads to large τ for smoothly decaying spectra,
likely scenario for H , thus Opτkq Hessian-Vector Products (HVPs) can become infeasible. Ritz accelerations
provide better convergence but still suffer from this issue (Golub & Van Loan, 2013, 10.1). Alternatively,
Lanczos iterations convergence faster (Saad, 1980), (Golub & Van Loan, 2013, 10.1.6), but measurements
must be done in sequential form, which can get very slow for H , and they involve matrix powers, numerically
unstable for rank-defficient matrices like H. Lanczos iterations have been successfully applied to estimate
spectral densities of large-scale deep learning Hessians (Papyan, 2018), but not to obtain their eigenpairs.
Sketched methods (e.g. Halko et al., 2011), based on random measurements, not only satisfy OpkDq

memory, they also exhibit good convergence for Opkq measurements and are parallelizable and numerically
stable (Halko et al., 2011, 1.4.2, 4.2, and 6.2). This, combined with the ability to perform matrix-free
random measurements (Tropp et al., 2019, 3.2), makes it possible to compute Hessian eigendecompositions at
unprecedented scales, since the main bottleneck is now the OpkDq memory requirement (Tropp et al., 2019,
7.1) (for example, storing 1000 eigenpairs for a ResNet-18 (He et al., 2016) with 13M float parameters requires
roughly 50GB of memory, same as 100 eigenpairs for a 10ˆ larger model). Last but not least, affordable a
posteriori methods allow to measure the approximation error and rank of the recovered decomposition (Halko
et al., 2011; Tropp et al., 2019).

4In Appendix A.7 we also compare this analytical baseline to the empirical alternative of sampling random masks, showing it
yields similar results.
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Algorithm 1: SSVD (from Tropp et al. (2019))
Input: NI PN // No. of inner measurements

Input: NO ď NI // No. of outer measurements

Input: APCDL̂ DR // Linear operator

Input: ΥI PCDL̂ NI // Left inner random matrix

Input: ΥO PCDL̂ NO // Left outer random matrix

Input: ΩI PCDR̂ NI // Right inner random matrix

Input: ΩO PCDR̂ NO // Right outer random matrix

Output: pP , U , Σ, V ˚, Q˚q with P UΣV ˚Q˚ «A
// Perform outer measurements

1 M ˚
LO Ð Υ˚

OA // CNO ˆDR

2 MRO Ð AΩO // CDLˆNO

// Perform inner measurements

3 MI Ð Υ˚
IAΩI // CNI ˆNI

// Orthogonalize outer measurements

4 pP , _q Ð qrpMLOq // P has orthonormal columns

5 pQ, _q Ð qrpMROq // Q has orthonormal columns

// Solve core matrix via least squares and svd

6 C Ð pΥ˚
I P q:MI

7 C Ð
“

pΩ˚
I Qq:C

‰˚

8 pU , Σ, V ˚q Ð svdpCq // Σ are the singular values

9 return pP , U , Σ, V ˚, Q˚q

Algorithm 2: SEIGH
Input: NI PN // No. of inner measurements

Input: NO ď NI // No. of outer measurements

Input: APCD̂ D // Hermitian linear operator

Input: pΥ, ΩqPCD̂ NI // Random measurement matrices

Output: pQ, U , Λq with QUΛU ˚Q˚ «A
// Perform all measurements. Note that AΩ1...NO

is recycled

1 MI Ð Υ˚AΩ1...NI
// CDˆNI

2 MO Ð AΩ1...NO
// CDˆNO

// Orthogonalize outer measurements

3 pQ, _q Ð qrpMOq // Q has orthonormal columns

// Solve core matrix via least squares and eigh

4 pŪ , Λ̄, V̄ ˚q Ð svdpMIq

5 CL Ð pΥ˚Qq:Ū

6 CR Ð pΩ˚Qq:V̄

7 C Ð CLΛ̄C˚
R // C is Hermitian

8 pU , Λq Ð eighpCq // Λ are the eigenvalues

9 return pQ, U , Λq

The core idea behind the sketched SVD is that, given a linear operator APCDL̂ DR of numerical rank k, any
orthogonal matrices P PCDL̂ NO , QPCDR̂ NO that approximately capture the column and row space of A,
respectively, satisfy A«P P ˚AQQ˚ and can be efficiently obtained from NO “Opkq random measurements
and QR orthogonalization (Halko et al., 2011). Then, the core matrix C :“P ˚AQ is much smaller than A
and can be decomposed via classical methods. A further development features an oversampled inner matrix
MI :“ Υ˚

I AΩI for random measurements ΥI ,ΩI of NI ą NO columns each (Boutsidis et al., 2016). The
SSVD from (Tropp et al., 2019, Sec. 2), gathered in Alg. 1, follows this idea:

A « P pP ˚AQqQ˚ « P pΥ˚
I P q:Υ˚

I AΩI

“

pΩ˚
I Qq:

‰˚

looooooooooooooooomooooooooooooooooon

C“UΣV ˚ psvdq

Q˚ “ pP UqΣpV ˚Q˚q, (4)

This yields an SVD, since P U and QV are orthogonal. It requires 2NO `NI measurements (lines 1-3 in
Alg. 1), followed by thin matrix operations only. The memory cost is dominated by storing P and Q, i.e.
OpNOpDL`DRqq. Arithmetic is dominated by the QR orthogonalizations needed to obtain P and Q, as well
as the two least-squares problems needed to solve the pseudoinverses (see (Tropp et al., 2019)). Crucially,
this approximation only requires a single pass over A, yields tight bounds (Tropp et al., 2019, Th. 5.1) and
leads to superior performance (Tropp et al., 2019, Sec. 7), due to its numerical stability, oversampled MI , as
well as uncorrelated measurements between P , Q and MI (Halko et al., 2011, 5.5) (Tropp et al., 2019, 2.8.1).

Leveraging Symmetry: While previous works studied Hermitian extensions (Halko et al., 2011; Clarkson
& Woodruff, 2017; Tropp et al., 2017), none of them proposes a single-pass sketched eigendecomposition
via oversampled and uncorrelated inner matrix. In this work, we propose SEIGH (Alg. 2), a variant of
SSVD that retains core oversampling while leveraging conjugate symmetry to drastically reduce the required
measurements and memory. Without loss of generality (Halko et al., 2011), we assume Q “ P , so only Q
needs to be computed via AΩ outer measurements. Then, C is also Hermitian and can be eigendecomposed:

A « QpQ˚AQqQ˚ «QpΥ˚
I Qq: Υ˚

I AΩI
looomooon

MI “ŪΛ̄V̄ ˚

“

pΩ˚
I Qq:

‰˚
Q˚ “Q pΥ˚

I Qq:ŪΛ̄V̄ ˚
“

pΩ˚
I Qq:

‰˚

loooooooooooooooomoooooooooooooooon

C“C˚“UΛU˚ peighq

Q˚

Setting ΥI “ΩI would further simplify the structure, saving one pseudoinverse, but there is one caveat: We
also wish to recycle part of the AΩI inner measurements to obtain Q, since this is a major bottleneck for the
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Hessian. But recycling measurements and setting ΥI “ΩI would lead to correlated measurements between Q
and MI which, as mentioned, has negative impact in the quality of this procedure (Tropp et al., 2019, 2.8.1).
We opt to recycle the measurements, while keeping the uncorrelated ΥI “ΩI and the two pseudoinverses.
This way, only MI measurements are needed, memory is roughly halved, and arithmetic is reduced by one
QR decomposition and increased by one inner SVD. With SEIGH, we are now able to approximate ∥V ∥2

F

for large Hessians, leading to the sketched overlap approximation.

6 Magnitude Masks and Hessian Eigenspaces Overlap Substantially

We now investigate the similarity between the space spanned by the parameter magnitude masks and the top
Hessian eigenspaces over the course of neural network training. We first study a small-scale toy problem
(Section 6.1), where all involved quantities can still be computed exactly. This allows us to verify the existence
of early crystallization, as well as the quality of our sketched overlap approximation. We observe an overlap
consistently above random chance. We then move onto larger problems (up to D ą11M and k “1500), where
we also confirm that the similarity between parameter magnitude masks and top Hessian eigenspaces is orders
of magnitude above random chance (Section 6.2) , and that this effect is accentuated with network size.

6.1 Exact Computations on 16ˆ16 MNIST

Table 1: Overview of experimental settings, detailing number of model parameters (D), learning rate
(η), batch size (B), steps per epoch (T ), test accuracy (acc) at step t, number of train/test samples used
to compute Htrain/Htest (Ntrain{Ntest respectively), and number of SEIGH outer measurements (NO, see
Alg. 2)

Problem Model D η B T acc Ntrain{Ntest NO

16ˆ16 MNIST tanh-MLP Martens & Grosse (2015) 7030 0.3 500 100 95.78% (t“1000) 500/500 355
CIFAR-10 3c3d-CNN Schneider et al. (2019) 895,210 0.0226 128 312 74.52% (t“8000) 500/500 1000
CIFAR-100 All-CNN-C Springenberg et al. (2015) 1,387,108 0.1658 256 156 40.50% (t“8000) n.a./1000 1000
ImageNet ResNet-18 He et al. (2016) 11,689,512 0.1 150 8207 17.33% (t“8000) n.a./5000 1500

For our toy problem, we seek a setup that is overparametrized enough to exhibit mask crystallization, but
small enough so that full Hessian eigendecompositions can be computed. This is achieved by the setup
from Martens & Grosse (2015), which is able to achieve zero training loss on downsampled MNIST digit
classification with only 7030 parameters. We train using SGD as detailed in Table 1, reaching a test accuracy
of 95.78% after 10 epochs (Figure 12). To compute the training and test Hessians, we use a fixed set of 500
random samples (50 per class) from each respective data split. At every fifth training step ti, we compute the
sparsity ratio κ (defined in Section 2.2) for the parameters θ and the Hessian spectrum Λ, observing that both
subspaces experience early collapse (Figure 12). Then, for pairs of steps pti,tjq, we compute the IoU between
successive parameter magnitude masks, as well as the overlap between successive Hessian eigenspaces. We
observe that both subspaces also experience early crystallization (Figure 13). We reiterate that we merely
inspect the parameter magnitude masks, but we never apply them, i.e., we never prune the network. Once we
established our desired scenario, we compute several Grassmannian metrics between the spans of parameter
magnitude masks and top Hessian eigenspaces (Figure 14). All non-collapsing metrics report that both
subspaces show a substantial and consistent similarity. In particular, our sketched overlap approximation
closely tracks the exact overlap (Figure 1, left), which is largest shortly after initialization and then decays,
but still stabilizes well above random chance.

6.2 Sketched overlap on larger problems (CIFAR-10, CIFAR-100 and ImageNet)

We aim now to verify our discovery of substantial overlap in larger setups. Using the DeepOBS framework
(Schneider et al., 2019) and SGD, we train larger models on CIFAR-10/100 Krizhevsky & Hinton (2009)
and on ImageNet Deng et al. (2009) (see Table 1 for details). At steps t2000, 4000, 8000u, we gather the
parameters and compute the top Hessian eigenspaces using SEIGH, which allows us to compute the sketched
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Figure 3: Overlap between parameter magnitude masks and top Hessian eigenspaces as a
function of k at three different points during the training process. Shown is the sketched overlap
between the mask of the largest k parameters by magnitude and the top-k Hessian eigenspace. Consistently
across the training process and for all problems and values of k, we observe an overlap substantially larger
than the random chance baseline ( ) introduced in Section 4.2.

overlap for every k P t1, ..., NOu. To compute the Hessians, we choose Ntrain{Ntest to have several (balanced)
samples per class, and NO to be substantially larger than the number of classes, which has been shown to be
linked to the top eigenspace dimensionality (e.g. Gur-Ari et al., 2018; Papyan, 2020). We elaborate on these
choices and report runtimes in Appendix B.2. Note that training CIFAR-100 and ImageNet relies on noisy
data augmentations, which lead to nondeterministic behavior in Htrain. For this reason, we compute their
overlap for Htest only. This choice is supported by the CIFAR-10 results, showing minimal difference in
overlap for either Htrain or Htest.

We observe that the measured overlap is significant for all problems, steps and dimensions (Figure 3 and
Figure 4, left), confirming the findings from our 16ˆ16 MNIST toy problem. Furthermore, this effect is
accentuated by model size, surpassing a factor of 103 times the baseline for the ResNet-18 on ImageNet
(Figure 4, right). The observed sketched overlap also raises in the very early steps, perhaps linked to the
crystallization covered in Section 2. We also note that, while the precision of sketched decompositions
is reported to decay sharply for eigenpairs close to NO (Tropp et al., 2019, 7.9), this does not affect our
observation, since the obtained overlap is particularly high for the lower regimes of k, far from NO and where
the method is most reliable.

7 Conclusion

We started with the observation that, at the early stages of neural network training, both parameter magnitude
masks and loss Hessian eigenspaces collapse and crystallize. To connect these two phenomena throughout
the training process, we proposed a principled methodology that compares these two fundamental deep
learning quantities using Grassmannian metrics, and identified overlap as a particularly advantageous one.
We further developed SEIGH, a matrix-free sketched eigendecomposition that works for Hessians of over
107 parameters, allowing us to approximate overlap. Our experiments reveal an overlap between parameter
magnitude masks and top Hessian eigenspaces well above chance level for all observed problems, training
steps and dimensionalities, indicating that, in DL, top Hessian eigenvectors tend to be concentrated around
larger parameters, or equivalently, that large parameters tend to align with directions of large loss curvature.

While the obtained overlap may be considered small in absolute terms, the fact that it is orders of magnitude
above chance could play a crucial role at large scales, analogously to how mini-batch gradients produce
very noisy fluctuations in the short term, but lead to qualitative performance and generalization over larger
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Figure 4: (Left) Overlap between parameter magnitude masks and top Hessian eigenspaces as
a function of training step. Shown is the sketched overlap between masks of k-largest parameters by
magnitude and top-k Hessian eigenspaces, for different values of k at different training steps. The observed
overlap raises early on, and is consistently and substantially above random chance baseline ( , introduced
in Section 4.2). (Right) Factor by which the measured sketched overlap is greater than the random
baseline. For most of the measured training process and choices of k, the observed overlap is at least 10ˆ

larger than random chance baseline. This multiple factor over the random baseline is largest for small k and
increases with network size, surpassing 103.

training spans. The relevance of this connection could also bear potential for downstream tasks where the
Hessian plays a prominent role (e.g. by approximating expensive Hessian quantities via cheap parameter
inspection).
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A Supplementary Material for Grassmannian Metrics

A.1 Perturbing the Parameters to Measure their Importance

In order to prove that a certain subset of parameters is “sensitive” whithout using the theoretical framework
we propose, one may consider a perturbation study where large parameters are perturbed, and the resulting
loss variation is measured. More variation would then relate to more sensitivity. Here we show that, in
general, such an experiment does not yield an informative quantity towards this goal (unlike our proposed
Grassmannians), due to the non-PSD nature of H, (i.e. negative and positive directions of curvature may
cancel out for arbitrary sets of parameters) and the lack of details about the loss landscape regularity.

At any parameter vector θ PRD, and under additive perturbations δ PRD, the loss can be expressed via its
Taylor expansion (for gradient g, Hessian H and Lagrange remainder R3):

Lpθ ` δq “ Lpθq ` gJδ `
1
2δJHδ ` R3pδq

Then, given a parameter mask mPBD, the proposed perturbation study would consist in drawing random
perturbations δ from any i.i.d. distribution N with zero mean µ and unit variance, and then mask said
perturbations via δm “pm ˝̈ δq and add them to θ in order to estimate the expectation:

EN rLpθ ` δmqs “ Lpθq ` gJEN rδms `
1
2xH,EN

“

δmδJ
m

‰

y ` EN rR3pδmqs
looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

ε

This way, we are perturbing only the selected parameters in m, and measuring their impact on the (known)
loss Lpθq: If |ε| is larger, this can be interpreted as the subset ξ being more “sensitive".

Since we assumed µm :“ EN rδms “ 0 (otherwise reparametrize pθ ` δmq“:pθ ` µmq ` pδm ´ µmq such that
the reparametrized mean of the perturbations will be 0), and we also assumed a (masked) unit covariance
Cov rδms “ Im, we have:

Cov rδms :“ EN
“

pδm ´ µmqpδm ´ µmqJ
‰

“ EN
“

δmδJ
m

‰

“ Im

Then, the expectation of the perturbed loss simplifies:

EN rLpθ ` δmqs “ Lpθq ` gJEN rδms
looooomooooon

0

`
1
2xH,EN

“

δmδJ
m

‰

loooooomoooooon

Im

y ` EN rR3pδmqs

“ Lpθq `
1
2 TrmpHq ` EN rR3pδmqs
loooooooooooooooomoooooooooooooooon

ε

We see now how, in general, this technique cannot be relied upon: since H is non-PSD in general, any of its
subtraces could cancel R3, leading to ε “ 0. Therefore, this procedure is not guaranteed to be informative
in measuring the impact of parameter subsets on the loss curvature. In contrast, our proposed method is
guaranteed to yield larger similarities whenever the selected parameters in m tend to align with directions of
larger loss curvature, as shown in the paper.
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Alternatively, one could consider to sample perturbations for parameters one by one, i.e. by setting m to
equal 1 at exactly mi, and 0 otherwise. Then, the expectation of the perturbed loss becomes:

EN rLpθ ` δmqs “ Lpθq `
1
2Hii ` EN rR3pδmqs
loooooooooooomoooooooooooon

εi

The idea here is that the aggregated perturbation ε1 “
ř

i|εi| is now more likely to be informative, since
positive and negative diagonal entries don’t cancel anymore. This still entails a problematic trade-off that
favours our Grassmannian characterization, for the following reasons: (1) In DL, the loss landscape may
be far from convex or regular (e.g. Li et al., 2018b, Fig. 1), and to interpret ε1 meaningfully we would still
require some characterization of R3 similar in spirit to the theoretically founded Grasmannian that we use.
(2) This method requires to estimate one expectation per scalar parameter. For a set of k parameters and
n samples per expectation, this means performing Opn ¨ kq forward propagations over a given dataset. In
contrast, our method is theoretically grounded and our proposed sketched method requires just Opkq HVPs
(see Section 5 and (Halko et al., 2011, 4.2) for more discussion).

A.2 Main Properties of Grassmannian Metrics

A desirable property of Grassmann manifolds is the availability of closed-form expressions for their geodesics
(i.e. the shortest paths between any two elements gi, gj P G) and metric functions. We can thus measure
distances between subspaces in an interpretable and computationally amenable manner: geodesics from gi to
gj follow circular trajectories, and therefore their distance can be interpreted as the “amount of rotation”
needed to go from one space to another. Such rotations can be succinctly expressed in terms of principal
angles σi�j P r0, π

2 sk, and they can be efficiently obtained from ODˆk matrices via their Singular Value
Decomposition (SVD) (e.g. Edelman et al., 1998, s. 4.3):

QJ
i Qj “: Li�j diag

`

cospσi�jq
˘

RJ
i�j , L, R orthogonal. (5)

Since Qi,Qj have orthonormal columns, cospσi�jq P r0,1sk (e.g. Neretin, 2001), and more similar spans will
yield larger singular values, which translate to smaller rotations. Importantly, singular values are invariant
under similarity:

diag
`

cospσi�jq
˘

“ LJ
i�jQJ

i QjRi�j (6)
“ L1J

i�jpZJ
i QJ

i qpQjZjqR1
i�j . (7)

In other words, they are invariant under the action of any orthogonal Z, which means that σ does not change
if we replace an input matrix with any other matrix from the same equivalence class (see definition for SO

i in
Section 4.1). The family of functions that satisfy this invariance, plus the axioms of metric spaces, form the
family of Grassmannian metrics (e.g. Qiu et al., 2005), each capturing a different notion of distance between
subspaces (largest principal angle, sum of principal angles...). See Appendix A.3 for more details on specific
metrics.

A.3 Popular Grassmannian Metrics

In the following, we highlight popular metrics from the literature (e.g. Edelman et al., 1998). We abbreviate
dist˚pgi, gjq“fpσi�jq as dist˚ “fpσq, where ˚ here parametrizes any unitarily invariant norm:

a) Geodesic distance: This is the arc length of the geodesic between the respective spaces in G,
defined as distg “∥σ∥2 Pr0, π

2
?

ks.

b) Chordal norm: distc,˚, obtained by minimizing ∥QiZi ´ QjZj∥˚ over orthogonal matrices pZ1, Z2q

(for that reason it is also called Hausdorff distance). The ℓ2 and ℓF norms admit a closed-form solution
in terms of principal angles: distc,2 “∥2 sin

` 1
2 σ

˘

∥8 Pr0,
?

2s and distc,F “∥2 sin
` 1

2 σ
˘

∥2 Pr0,
?

2ks.
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c) Projection norm: Also called the gap metric, it uses the unique orthogonal projector representation
of a given subspace, i.e. Ψi “ QiQ

J
i , as follows: distp,˚ “∥Ψi´Ψj∥˚. Here, we also have closed-form

expressions for the ℓ2 and ℓF norms: distp,2 “∥sinpσq∥8 Pr0, 1s and distp,F “∥sinpσq∥2 Pr0,
?

ks.

d) Fubini-Study: This quantity is a measure of the acute angle between both spaces, generalized to
higher dimensions: dista “arccos

`

|detpQJ
i Qjq|

˘

“arccos p
ś

i cospσiqqPr0, π
2 s.

e) Overlap: The overlap“ 1
k ∥ΨiQj∥2

F Pr0, 1s quantity was used in Gur-Ari et al. (2018) to measure
subspace similarity. It is not a metric per se, since it is highest for equivalent subspaces and
decreases with their distance, but it is a bijection of distp,F, as follows: 1

k ∥ΨiQj∥2
F “ 1

k ∥QJ
i Qj∥2

F “
1
k ∥cospσq∥2

F “1´∥cospσq∥2
F “1´ 1

k dist2
p,F .

While the above metrics apply to any pair of matrices from OD̂ k, there are also relevant metrics specific to
MD̂ k (boolean subset of OD̂ k defined in Section 3), that can be characterized in a similar manner. Consider
an arbitrary pair of k-sparse masks pmi, mjq, and their corresponding orthogonal projectors Φ :“ diagpmq.
Then we have:

i) IoU: Typically used as an evaluation metric, it is defined as the relative number of entries present
in both masks, i.e. IoU:“ miXmj

miYmj
Pr0, 1s. Then we have miXmj “∥ΦiΦj∥2

F “ k¨overlap, and if both
masks are k-sparse, we also have miYmj “2k´pmiXmjq “ kp2 ´ overlapq, yielding the bijection
overlap“ 2 IoU

1̀ IoU .

ii) Hamming distance: This quantity, defined as the minimum number of bit-flips needed to pass
from one mask to another, was used in You et al. (2020) to measure distances between pruning masks.
It is in fact a Grassmannian metric: distH :“∥mi ´ mj∥2

2 “∥Φi´Φj∥2
F “dist2

p,F P r0, ks, which means
that the bijection overlap“1´ 1

k distH also holds.

A.4 Synthetic Experiment on Grassmannian Metrics

Here we provide details about the synthetic experiment discussed in Section 4.2. We compute the reviewed
Grassmannian metrics a) to e) from Appendix A.3 between randomly drawn matrices from OD̂ k and masks
from MD̂ k. We use the subgroup algorithm (Diaconis & Shahshahani, 1987) to sample matrices uniformly
from OD̂ k and column permutations of ID,k to sample uniformly from MD̂ k. To determine if the metrics
behave differently for masks than for general orthogonal matrices, we inspect three different modalities: pairs
of matrices (O-to-O, Figures 5 and 6), masks (M-to-M, Figures 7 and 8), and matrix-mask pairs (O-to-M,
Figures 9 and 10). We normalize all metrics, denoted by dist˚, to be in r0, 1s, with 1 indicating highest
similarity (i.e. smallest distance). The overall procedure is gathered in Alg. 3.

We want to inspect how the distribution of the metrics changes as a function of sparsity k and sparsity ratio
ρ“ k

D . First, given fixed values of ρ, we study the distribution of all Grassmannian metrics as a function of
D (Figures 5, 7 and 9). Additionally, given fixed values of D we study how the Grassmannian metrics change
as a function of ρ (Figures 6, 8 and 10). We used the following values:

• Number of random (matrix or mask) samples: T “ 50

• For Figures 5, 7 and 9 we investigate four different (fixed) ratios ρ P t0.4, 0.2, 0.05, 0.01u at several
increasing dimensions d P t16, 32, 64, 128, 256, 512, 1024, 2048u.

• For Figures 6, 8 and 10 we investigated four (fixed) dimensions d P t128, 256, 512, 1024u at several
increasing ratios ρ P t0.005, 0.01, 0.05, 0.1, 0.33, 0.66, 0.9, 0.95, 0.99, 1u.

Note how, in the second case, we concentrate the sparsity ratios around the extremes. This is to better
capture the behavior of collapsing metrics, as discussed in Section 4.2.
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Algorithm 3: Synthetic experiment on Grassmannian metrics (see Section 4.2 for details).
Input: tD1, D2, ...u // Matrix height (Di P N)

Input: tr1, r2, ...u // Width-to-height ratio (ri P r0, 1s)

Input: tpO,Oq, pO,Mq, pM,Mqu // Modality

Input: tdistg, distc,2, distc,F, distp,2, distp,F, distā, overlapu // Metric (normalized)

Input: T // Number of random samples

1 R Ð H // Result (a dictionary)

2 for d P tD1, D2, ...u do
3 for r P tr1, r2, ...u do
4 k Ð maxp1, roundpr ¨ dqq

5 for dist P tdistg, distc,2, distc,F, distp,2, distp,F, distā, overlapu do
6 for pM1, M2q P tpO,Oq, pO,Mq, pM,Mqu do
7 H Ð H // Collection of samples

8 for t1, . . . , T u do
9 pQ1, Q2q unif.„ pMdˆk

1 , Mdˆk
2 q H Ð H Y dist

`

spanpQ1q, spanpQ2q
˘

10 end
11 Rrd,r,dist,M1,M2s Ð H // Gather samples into result

12 end
13 end
14 end
15 end
16 return R

A.5 Expectation of overlap for Uniformly Random Matrices

In Section 4.2 we empirically observed that the expectation under uniformly distributed random matrices
becomes predictable for all reviewed metrics, converging to a baseline value. Here we show that, for overlap,
such expectation equals exactly ρ “ k

D . This lemma depends on a standard calculation that was communicated
to us by [redacted for anonymity].

Lemma A.1
Let Q1, Q2 be random matrices drawn uniformly from the Stiefel manifold ODˆk :“ tQ :QPRDˆk, QJQ“Iku.
Then,

E roverlappspanpQ1q, spanpQ2qqs “
k

D
(8)

Proof. We start by rewriting the definition of overlap, presented in Section 4.1, in terms of the trace of
orthogonal projectors Ψ “ QQJ P RDˆD. We make use of the idempotence of Ψ and the unitary invariance
of the Frobenius norm:

overlappspanpQ1q, spanpQ2qq “
1
k

∥QJ
1 Q2∥2

F “
1
k

∥Ψ1Ψ2∥2
F “

1
k

TrpΨ1Ψ2
2Ψ1q (9)

“
1
k

TrpΨ1Ψ2Ψ1q (10)

We further observe that, if Q is drawn uniformly from ODˆk, the marginal distribution of every column q is
the uniform distribution over the Euclidean unit sphere, hence it is isotropic:

E
“

qqJ
‰

“
1
D

ID (11)

Where ID is the rank-D identity matrix. Then, leveraging linearity of expectation, the orthogonal projector
Ψ “ QQJ can be expressed as follows:

E rΨs “

k
ÿ

i“1
E

“

qiq
J
i

‰

“
k

D
ID (12)
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Now, given two independent realizations Q1, Q2, we form the associated orthogonal projectors Ψ1, Ψ2. Write
E1,E2 for the expectations of the respective distributions of Q1 and Q2. Then, leveraging independence of
Q1 and Q2, idempotence of Ψ, linearity of expectation, and TrpΨq“k, we have:

E rTrpΨ1Ψ2Ψ1qs “ E1 rTrpΨ1E2 rΨ2s Ψ1qs “
k

D
E1 rTrpΨ1IDΨ1qs “

k

D
TrpΨ1q “

k2

D
(13)

Replacing in the definition of overlap concludes the proof.

Table 2: Empirical baselines for Grassmannian metrics. Shown are the measured expectations
(averaged over 50 samples at D “2048) of different Grassmannian metrics between two uniformly random
matrices in O for different values of ρ “ k

D . Note how overlap converges to exactly ρ (see Appendix A.5).

Metric ρ

0.005 0.01 0.05 0.2 0.4

distg 0.03711 0.05191 0.11909 0.24534 0.36536
distc,2 0.00197 0.00161 0.00048 0.00046 0.00026
distc,F 0.02983 0.04202 0.09984 0.21754 0.33783
distp,2 10´5 10´5 0 0 0
distp,F 0.00248 0.00479 0.02513 0.1057 0.22527
dista 0 0 0 0 0
overlap 0.00495 0.00955 0.04962 0.20022 0.39980

A.6 Extended Discussion on Grassmannian Metrics

We extend here the main insights presented in Section 4.2:

Mask-vs-mask metrics have larger variance, and in some cases lower expectations: All distributions
for the mask-vs-mask modality have higher variance compared to the other modalities (see Appendix A.4).
Furthermore, the distributions for the distg and distc,F metrics seem to follow lower trajectories for the
mask-vs-mask modality, compared to the other modalities. This is not the case for distp,F and overlap, whose
expectation does not seem to be affected by the modality.

Extremal values of ρ lead to saturation, except for overlap: Most metrics exhibit a nonlinear behavior
near the extremes (Figure 6). This is particularly so for collapsing metrics, but saturation can also be
observed in the non-collapsing ones. The only exception is overlap, whose expectation is linear as shown in
Appendix A.5.
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Figure 5: Grassmannian metrics for random pairs of matrices pQ1, Q2q unif.„ pODˆk,ODˆkq as a
function of D. Each subplot shows a different metric, and each color corresponds to a different ratio r “ k

D .
For each pD, kq, we sample 50 random pairs and report the median of the resulting distribution (line plot) as
well as the 5-95 percentiles (shaded regions).
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Figure 6: Grassmannian metrics for random pairs of matrices pQ1, Q2q unif.„ pODˆk,ODˆkq as
a function of ρ “ k

D . Each subplot shows a different metric, and each color corresponds to a different
dimension D. For each pD, kq, we sample 50 random pairs and report the median of the resulting distribution
(line plot) as well as the 5-95 percentiles (shaded regions).
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Figure 7: Grassmannian metrics for random pairs of masks pQ1, Q2q unif.„ pMDˆk,MDˆkq as a
function of D and for fixed ρ. Each subplot shows a different Grassmannian metric with the different
lines indicating four different ratios ρ. For each value of D, we report the median metric over 50 random
pairs with the shaded regions showing the 5-95 percentiles.
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Figure 8: Grassmannian metrics for random pairs of masks pQ1, Q2q unif.„ pMDˆk,MDˆkq as a
function of ρ and for fixed D. Each subplot shows a different Grassmannian metric with the different
lines indicating four different dimensions D. For each value of ρ, we report the median metric over 50 random
pairs with the shaded regions showing the 5-95 percentiles.
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Figure 9: Grassmannian metrics for random pairs of matrices and masks pQ1, Q2q unif.„

pODˆk,MDˆkq as a function of D and for fixed ρ. Each subplot shows a different Grassmannian
metric with the different lines indicating four different ratios ρ. For each value of D, we report the median
metric over 50 random pairs with the shaded regions showing the 5-95 percentiles.
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Figure 10: Grassmannian metrics for random pairs of matrices and masks pQ1, Q2q unif.„

pODˆk,MDˆkq as a function of ρ and for fixed D. Each subplot shows a different Grassmannian
metric with the different lines indicating four different dimensions D. For each value of ρ, we report the
median metric over 50 random pairs with the shaded regions showing the 5-95 percentiles.
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A.7 Analytical overlap Baseline vs. Sampling Random DL Masks

In Section 4.2 we justify the use of ρ :“k{D as an analytical, “chance-level” baseline for overlap, that we use in
Section 6 to observe that the overlap between spaces spanned by magnitude prunning masks and top Hessian
eigenspaces in DL is substantially large (see e.g. Figures 3 and 4).

In this context, one natural question one may ask is: Do random DL masks also lead to higher-than-baseline
overlaps? To answer this question, we trained the 16ˆ16 MNIST setup following settings described in
Table 1, and for steps t P t0, 100, 1000u, we computed the overlap between the top-k Hessian eigenspace and
10 randomly chosen masks of k nonzeros. Results are shown in Figure 11: We observe that, indeed, random
DL masks tend to behave like our analytical baseline, which supports the use of the analytical baseline in our
experiments.
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Figure 11: overlap measurements for different masking criteria against Htrain (top row) and
Htest (bottom row). Best magnitude mask represents the overlap obtained if we pick the k parameters with
largest overlap with the top-k eigenspace. Param. magnitude mask corresponds to the k-largest parameters
by magnitude. The random mask grey area covers ˘ one standard deviation for the overlap between H and
10 randomly sampled masks

.

Another natural follow-up question is: How special are the parameter magnitude masks? Would some other
non-random mask also achieve a high overlap? To tackle this question, we also plot in Figure 11 the overlap
for the top-k parameter magnitude masks, and the maximal overlap achievable by the best possible k-mask,
serving as upper bound. We observe that, while the magnitude pruning mask is substantially larger than
baseline, it is still far from optimal.

Still, there is a limited number of masks that can yield high overlap: Due to the orthogonality of the Hessian
eigenbasis, each column of Ũ pkq must have an ℓ2 norm of 1. This means that if a given set of parameters
has an overlap of α, the overlap for any non-intersecting set of parameters is at most 1 ´ α. Intuitively, the
overlap is a limited resource, and masks with an overlap significantly above chance-level are therefore bound
to be scarce.

B Supplementary Material for the Experiments in Section 6

B.1 Results for 16ˆ16 MNIST

This section includes supplementary material as part of the exhaustive experiments done for the MNIST toy
problem. Figure 12 and Figure 13 verify the existence of early collapse and stabilization in both Hessian top
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space and parameter masks. They also show that SGD was able to successfully train the model under this
setting. Figure 14 corroborates that the behavior of the Grassmannian metrics analyzed in Section 4 is also
present for DL problems.
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Figure 12: Both the parameters of the a neural network as well as their Hessian spectrum
collapse early during training. (top) The top two subplots show the mini-batch loss LB as well as the
train/validation/test accuracy of the 7030-parameter model trained on 16ˆ16 downsampled MNIST (see
Section 6.1). (middle) Looking at the top 20%, 5%, 1%, 0.5% of parameters by magnitude, we can see that
very early during training, most of the energy is concentrated on a small subset of the parameters (see
Section 2.2 for a definition of κ). For example, shortly after initialization, the top 0.5% largest parameters
by magnitude have roughly 1{4 of the total ℓ2 norm of all parameters. (bottom) We can observe a similar
behavior for the Hessian spectrum on both the training set (fourth subplot) and the test set (fifth subplot).
Only a few steps after training, most of the energy is concentrated in only 0.5% of the eigenvalues.
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Figure 13: Both parameter pruning masks (top row) and Hessians (bottom two rows) remain
relatively stable after an initial training phase. Following You et al. (2020), the depicted matrices
represent all pairwise similarities (i.e. higher is better) from the beginning of training (top left corners) until
step 250 (bottom right corners), for the 7030-parameter model trained on 16ˆ16 downsampled MNIST
(see Section 6.1). For this reason, all matrices are symmetric and have unit diagonals. (top) Even when
selecting only 0.5% of the parameters (left column), masks collected at different training steps show a
remarkable similarity after an initial phase of training. (middle and bottom) The overlap metric for top
Hessian eigenspaces on the train (middle) and test set (bottom) extracted at different training steps and
for different subspace sizes (columns). Starting from initialization, the Hessian eigenspaces do not change
significantly over the course of training. No substantial differences in behavior between Htest and Htrain can
be observed.
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Figure 14: Different Grassmannian metrics between pruning masks and top Hessian subspaces.
Each line shows a particular sparsity level ρ, i.e.. the ratio of unpruned parameters or the size of the top
Hessian subspace relative to the full Hessian, as a function of training progress for the 7030-parameter model
trained on 16ˆ16 downsampled MNIST (see Section 6.1). All non-collapsing metrics reveal a consistent
and substantial similarity between spaces spanned by pruning masks and top Hessian subspaces well above
random chance (random baselines gathered from our synthetic experiments are shown in dashed lines for
ρ “ 0.2), while collapsing metrics are effectively zero due to the large D. For better visibility, we limit the
plot to the first 1000 steps but all metrics remain stable afterwards.
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B.2 Discussion on Computational Resources

We now discuss the resources involved in the computation of the Hessian eigendecompositions, as well as the
experimental design choices sourrounding them. The goal is to reflect the scale of computations involved in
our experiments, and to convey an idea of the overall resources needed to reproduce them. For more rigorous
asymptotics involving memory, arithmetic and measurement costs, readers are invited to review the references
exhaustively provided in Section 5, particularly (Tropp et al., 2019, Sec. 4).
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Figure 15: Runtimes of main SEIGH operations to compute a single Hessian eigendecomposition,
assuming a single computer with 400GB RAM equipped with an NVIDIA A100 (40GB) graphics card. Note
that the three involved eigendecompositions feature different networks, datasets, and rank, so a blind one-to-
one comparison of runtimes is not possible: refer to Appendix B.2 for an interpretation of this figure.

Figure 15 gathers the average times it took to compute a single sketched Eigendecomposition, for each one of
the Hessians covered in Section 6.2. Specifically:

• Resources needed to tune or train the model are here ignored. We used PyTorch Paszke et al. (2019).
• The layout step allocates the OpDkq storage memory in the form of virtual HDF5 datasets5. This

allows to efficiently write numerical data in parallel, which is instrumental for the scalability of the
procedure.

• The HVPs, computed with the help of CurvLinOps6, correspond to the AΩ1...NI
measurements

in line 1 of Alg. 2. As we can see, they take the bulk of the runtime: each HVP requires two
forward and backward passes over the Hessian dataset (consisting of 500, 1000 and 5000 samples
for the three respective problems, see Ntrain{Ntest in Table 1). While this can be done in batched
fashion, the HVP runtime is linearly affected by dataset size. Another linear factor is the number
of measurements (see NO in Table 1). Crucially, those can be fully parallelized, so the runtimes
reported under the HVPs column can be divided by the number of available machines. This property
of sketched methods, combined with the HDF5 technology, is the main enabler for scalabiltiy here.

• The merge step stems from a technicality: most operative systems don’t allow a process to open
thousands of files at the same time. Hence, we need to merge the virtual HDF5 dataset into a
monolithic file. This can be done with only OpDq memory overhead.

• Although (Tropp et al., 2019, Sec. 4) points out that the QR decomposition (line 3 of Alg. 2) dominates
the (asymptotic) arithmetic cost for the whole procedure, interestingly this a relatively fast step.
We also note that the main reason why we needed so much RAM memory was the need to load
OpDkq entries in-memory to perform this step. Out-of-core QR orthogonalizations would greatly
help reducing RAM requirements.

• The remaining operations (lines 4-8 in Alg. 2) are here gathered under the lstsq label, which takes
a considerable portion of the overall runtime. To improve this, lines 5 and 6 could be parallelized,
roughly halving the runtime, but still faster solutions would greatly help towards more scalable
Hessian eigendecompositions.

5https://github.com/HDFGroup/hdf5
6https://github.com/f-dangel/curvlinops
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Figure 15 also reports the TOTAL runtime of the steps purely involved with the eigendecomposition. Further
overheads, related e.g. to the use of a computational cluster, are reported separately. In practice, computing
e.g. a single ResNet-18 Hessian eigendecomposition with up to fifteen A100s took a bit over a day. While
this may seem like a heavyweight computation, it is still a substantial improvement, enabling previously
intractable computations. In this section we have also outlined a few ways in which this could be further
improved.

Due to the scale of the experiments, we had to be conservative with the choice of hyperparameters. We chose
dataset sizes Ntrain{Ntest such that all classes are balanced, and each class has at least 5 examples. While
the chosen number of measurements NO is much smaller than the ambient dimension D, the tremendously
rank-defficient structure of H (see Section 2.1) allows for such a disparity. Still, it has been noted that the
numerical rank of H may be linked to the number of classes (eg Gur-Ari et al., 2018; Papyan, 2020; Dangel
et al., 2022). For this reason we chose NO values well above this limit.
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