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Abstract
Industrial microservice architectures vary so wildly in their

characteristics, such as size or communication method, that
comparing systems is difficult and often leads to confusion
and misinterpretation. In contrast, the academic testbeds used
to conduct microservices research employ a very constrained
set of design choices. This lack of systemization in these key
design choices when developing microservice architectures
has led to uncertainty over how to use experiments from
testbeds to inform practical deployments and indeed whether
this should be done at all. We conduct semi-structured
interviews with industry participants to understand the
representativeness of existing testbeds’ design choices.
Surprising results included the presence of cycles in industry
deployments, as well as a lack of clarity about the presence of
hierarchies. We then systematize the possible design choices
we learned about from the interviews, and identify important
mismatches between our interview results and testbeds’
designs that will inform future, more representative testbeds.

1 Introduction

Microservices architectures, first developed to enable orga-
nizations to massively scale their services [17], are quickly
becoming the de facto approach for building distributed
applications in industry. Today, major organizations including
Microsoft [18], Facebook [75, 76], Google [16], and Etsy [66]
are built around microservice architectures.

As microservices grow in importance and reach, the aca-
demic study of microservices has similarly flourished. Though
the basic principles of the microservice architectural style—
that applications should be designed as loosely-coupled,
focused services that each provide distinct functionality and
interact via language-agnostic protocols [1, 12]—are well-
known, there are many open questions around how developers
can best design, build, and manage microservice-based appli-
cations [46]. For instance, migrating a monolithic application
to a microservice architecture is currently a complex, drawn
out process [31], as developers must decide on a multitude
of factors including (but not limited to) how to determine
services’ scope and granularity, how to manage message queue
depths, and what communication protocols to use. There is
no clear guidance, in any domain, to make these choices.

Researchers have conducted a host of user studies with
practitioners in the industry to increase the community’s

understanding of microservice architectures [29, 31, 41].
Independently, the systems community has developed myriad
testbeds [2, 45, 89, 99] for evaluating microservices research.
Although these testbeds were originally developed to improve
or evaluate specific microservice characteristics (e.g.µSuite
was developed for analyzing system calls made by OLDI
Microservices), they are now being used to evaluate a range of
research on microservices [42, 45, 51, 54, 64] despite a general
understanding that the testbeds’ designs are very narrow
compared to industry practices.

Over time, the practical deployment of microservices has
diverged further from what existing microservice testbeds are
able to represent [74]. This mismatch extends to both testbeds
developed by researchers and those developed by industrial
practitioners because microservice architectures developed
at different companies are proprietary [45, 89]. Research
efforts targeted to microservice-based applications risk being
useful to only a small set of narrowly-defined (or ill-defined)
microservice designs.

The goal of this paper is to provide systematized descrip-
tions of the design axes academic testbeds are built around and
how these axes compare to industrial microservice designs.
Our systematizations will provide better understanding of the
mismatch between testbeds and actual usage of microservices.
They will allow for better translation of research results into
industry practice, create more awareness of the diversity
of microservice implementations, and enable more tailored
optimizations. Ultimately, our systematizations will aid
the systems community in developing more representative
microservice testbeds.

We pair a parameterized analysis of seven popular testbeds,
including topological characteristics of the overall microser-
vice architecture, the communication mechanisms used, and
whether individual microservices are reused across applica-
tions, with semi-structured interviews with microservice devel-
opers in industry. Our interviews probe how existing testbeds’
design choices are too narrow. They also explore features miss-
ing from testbeds that are discussed in the literature to identify
their importance for future testbeds. Finally, we contrast the
results of our semi-structured interview with the microservice
testbeds, culminating in a set of recommendations to guide
the designers of the next generation of microservice testbeds.

We find that existing testbeds do not represent the diversity
of industrial microservice designs. For example, we find
that individual industry microservice architectures use a
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heterogeneous blend of communication protocols (RPC,
HTTP) and styles (synchronous, asynchronous). We also
find that industrial microservice architectures vary greatly in
the degree to which individual services are reused amongst
different applications or endpoints of the same application.
In contrast, testbeds exhibit little to no sharing.

We find that participants were unsure of topological
characteristics of microservice architectures. Many claimed
dependencies among microservices would always form a
hierarchy (i.e., n-tier architecture), then admitted this need
not be the case. We were surprised to find that a number of
participants agreed that service-level cycles could occur within
individual requests, with one service calling another and that
service calling the original service. Participants also agreed
that cycles could also occur within requests at the granularity
of endpoints, with one endpoint calling another and that calling
the original endpoint, but agreed this wold likely represent
bugs. In contrast, the testbeds’ dependency diagrams are
always hierarchical. Their requests almost never exhibit cycles.

We present the following contributions:

1. Systematization of Design Choices: We systematize the
design choices made by seven popular microservice
testbeds [2, 45, 74, 89, 99] (Table 1). Our systematization
provides guidance to researchers about which testbeds are
best suited for their work.

2. Systematization of Industry Microservice Designs: We
expand our design table to include design choices used in
industrial microservices (Table 3). We use semi-structured
interviews with 12 industry participants to collect this data.
We collect quotes from our participants to gauge their atti-
tudes about the importance of various microservice design
options. We perform our own user study to best encapsulate
the most current trends in microservice deployments, and
avoid biases from studies that do not distinguish between in-
dustrial and experimental microservices [58,80,85,92]. To
our knowledge, there is no existing user study that contrasts
existing microservice testbeds with industry practices.

3. Recommendations for Creating New Testbeds. We present
recommendations for improving microservice testbeds by
contrasting our systematizations of testbeds design choices
with that of industry design choices.

4. Description of Future Directions: Through our conversa-
tions and analysis of various academic testbeds, we provide
a summary of the current state of microservice design,
the discrepancies between testbeds and practice, and
recommendations for how to improve future testbeds so that
they are representative of industry microservice designs.

2 Background

The microservice architecture is a style wherein a large scale
application is built as individual services (called microser-

vices) that work together to achieve a business goal. Figure 1
shows two major architectural styles used for building an E-
Commerce Application (Business Use Case). The monolithic
architecture has multiple functionalities built into a single de-
ployment unit which interfaces with the database deployments
to retrieve data to be served. However, in a microservice appli-
cation, the business use case (E-Commerce), is realized using
multiple individual parts - Authentication, Cart, Payment,
Product, and User. These individual parts are called “services”.
They are built to process specific parts of the business domain,
and may have their own storage mechanisms wherever nec-
essary instead of depending on a centralized database [87, 88].

Figure 1: Monolith vs. Microservices A monolith is a single
deployable unit, as illustrated on the left. A microservice
architecture, shown on the right, is composed of multiple
deployable units that communicate with each other.

The term “microservices” is credited to a 2011 presentation
by Netflix [17, 100]. In the early days, the large business
cases handled by an organization were combined into a
single executable and deployable entity, which is referred
to as monolithic architecture. Though the functionality of
an application grew linearly with increasing business cases,
each user’s access to different features were non-uniform [48].
To circumvent disadvantages of monolithic applications
like single-point failure, multiple organizations decomposed
their applications into various functionalities but retained a
common communication bus to facilitate communications
between different components [23]. This is called Service
Oriented Architecture (SOA). Microservices evolved from
SOA, where the common communication bus was replaced
by an API call from one service to another.

Early academic research in microservices focused on the
impact of domain characteristics when migrating from a mono-
lithic to a microservice paradigm [30, 37, 39, 41, 49, 56, 79, 90].
These extensive studies produced insights on how multiple
organizations handled various parameters in architectural
design, such as defining service boundaries, infrastructure
selection, including re-architecting, and the choice of
monitoring tools, along with challenges faced by developers
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DSB - SN DSB - HR DSB - MR TrainTicket BookInfo µSuite TeaStore

Communication

Protocol Apache Thrift gRPC Apache Thrift REST REST gRPC REST
Style Both Sync Sync Sync Sync Botha Sync
Languages Used C/C++ Go C/C++ Java Node, RoR, C++ Java

Java, Python
Topology

Number of services 26 17 30 68 4 3 5
Dependency Structure Hierarchy Hierarchy Hierarchy Hierarchy Hierarchy Hierarchy Hierarchy

Evolvability

Versioning Support No No No No Yes No No

Perf. & Correctness

Distributed Tracing Jaeger Jaeger Jaeger Jaeger Jaeger\Zipkin None Jaeger

Testing Practices U,L U,L U,L U,L L L E2E,L

Security

Security Practices TLS TLS TLS None TLS via Istio None TLS via Istio

aIt has 2 separate applications for Sync and Async, but not in single application.

Table 1: Design choices of microservice testbeds. The table shows axes by which existing microservice testbeds vary. It also
shows testbeds choices for these axes. U=Unit Testing, L=Load Testing, E2E=End-to-End.

when implementing large scale distributed systems. Multiple
projects [21,34,60,94] have also examined how to decompose
existing monolithic architectures into microservices. While
these projects present a deep and important picture of
microservice design, all of these works focused on static
analysis, which is based on functionality, rather than the
dynamic traffic experienced by these systems.

More recently, microservice research has shifted focus
from migration to a more holistic analysis of microser-
vices, ranging from surveys, to testbeds, to tools to better
understand the trade-offs of practical microservice de-
sign [29, 33, 35, 40, 73, 78–80, 85, 93, 95, 98, 99]. Of particular
note, Wang et al. [92] produced a large survey on post adoption
problems in microservices, with questions focusing on the
benefits and pitfalls of maintaining large scale microservice
deployments. We extend the areas explored in published liter-
ature and compare it with open source microservice testbeds.

2.1 Microservice Testbeds
Following the growth of microservices in industry, the
academic world has embraced the concept by building mul-
tiple applications for different use-cases using microservice
architectures. In our work, we refer to the overall group of
applications as testbeds and to an individual use-case as an
application. For this work, we only selected the testbeds
whose code is Open Source, and available to be deployed on
any platform of choice. These open-source testbeds provide
transparency and reproducibility to microservice research,

and enable multiple follow-up research projects.

DeathStarBench Gan et al. [45] released this testbed suite
in 2019 to explore the impact of microservices across cloud
systems, hardware, and application designs. This testbed suite
has been the most widely used by researchers. The suite is built
based on the 5 core principles: Representativeness, End-to-End
Operation, Heterogeneity, Modularity and Reconfigurability.
These principles were adopted to make the testbed appropriate
for evaluating multiple tools, methods and practices associated
with microservices. Each application has a front end webpage
from which users can send requests to an API gateway which
routes it to appropriate services and compiles the result as an
HTML page. DeathStarBench consists of seven applications
as testbeds: Social Network, Movie Review, Ecommerce,
Banking System, Swarm Cloud, Swarm Edge and Hotel Reser-
vation. In this paper, we only looked into three of those: Social
Network (DSB-SN), Hotel Review (DSB-HR) and Movie
Review (DSB-MR), because their code is Open Source and
has ample documentation for deployment, testing and usage.

TrainTicket Zhou et al. [99] released this testbed in 2018 to
capture long request chains of microservice applications. To
build this testbed, the developers interviewed 16 participants
from the industry, asking about common industry practices.
The major motivation to build TrainTicket was the limitation
of existing testbeds’ small size and the need for a more
representative testbed. The authors specifically asked about
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various bugs that occur in microservice applications and
replicated them in this testbed. The authors subsequently
used this testbed to test these bugs or faults and developed
debugging strategies. There are multiple requests that can be
sent to the application to login, to display train schedules, to
reserve tickets and to do any other typical functionalities for
a ticket booking application. The requests enter a gateway and
are routed to the appropriate services based on the request, with
results compiled and sent as responses to the HTML frontend.

BookInfo BookInfo [2] was developed as part of Istio
Service Mesh [15] to demonstrate the capabilities of deploying
microservice applications using Istio. This testbed is an
application that displays information for a book, similar to
a single catalog entry of an online book store. It consists of
4 services: Product page, Details, Reviews and Rating. The
requests are sent to the product page, which gets the necessary
information from the other 3 services, aggregates the results,
and shows it in an HTML page.

µSuite Sriraman et al. [74] released this testbed in 2018 to
evaluate operating system and network overheads faced by
Online Data-Intensive (OLDI) microservices. It contains 4
different applications – HDSearch, a content based search
engine for images; Router, a replication-based protocol
router to scale key-value stores; SetAlgebra, an application to
perform Set Algebra operations on Document Retrieval; and
Recommend, a user based item recommendation system to
predict user rating. The applications were built to understand
the impact of microservice applications on the system calls,
and underlying hardware. This testbed was geared towards
Online Data Intensive applications, which handles processing
of huge amounts of data using complex algorithms. All the
applications have an interface which allows for the users to
run them on a large scale dataset and record the observations.

TeaStore Kistowski et al. [89] released this testbed in
2018 to test the performance characteristics of microservice
applications. The testbed consists of 5 services: WebUI, Auth,
Persistence, Recommender and Image Provider along with
a Registry Service which communicates with all the other
services. The Registry Service acts as the entry point for
requests and requires each service to register their presence
with this service. The testbed can also be used with any
workload generation framework, and has been tested for Per-
formance Modeling, Cloud Resource Management and Energy
Efficiency analysis. This modular design enables researchers
to add or remove services to the testbed and customize them for
specific use cases. The application caters to multiple requests
for working with a typical e-commerce application such as
login, listing products, ordering products. The requests enter
using the WebUI service, which sends a request to the registry

service that routes the requests to appropriate services, aggre-
gates the result, and displays the result as HTML webpage.

Overall, while there are multiple testbeds avail-
able, most academic papers used DeathStarBench,
specifically DSB-SN, which is the Social Network Ser-
vice [36, 44, 51, 54, 59, 64, 69, 96]. The next most widely used
testbed is TrainTicket [69, 98, 99]. The other testbeds are used
less commonly in the academic research community.

2.2 Testbeds’ Design Choices
When building these testbeds developers make choices about
various individual aspects of the application. In this section,
we explore the choices made by the original developers of
the testbeds and illustrate the various options used to build
them. We look at both the literature and the codebase of the
testbeds for various design choices, in matters of conflict
we pick the option illustrated in the codebase as it receives
constant updates from the developers and larger community.
An overview of the design choices and the options adopted
by the various testbeds are shown in Table 1.

2.2.1 Communication

Communication choices refer to the required methods and
languages used for building each of the services, as well as
for interfacing between the different services. They form the
bedrock on which the application is built, as they enable the
information passing between the services to execute requests.
We analyze the testbeds to identify the communication
Protocol between two internal microservices, as it can impact
the performance and manageability of applications [3, 8, 9].
We also identify whether the Style of communication is
synchronous or asynchronous, and further analyze the
testbeds to identify the Programming Languages used for
implementation, as microservice architectures provide the
flexibility of using multiple languages.

Protocol TrainTicket, BookInfo, and TeaStore use REST
APIs for communicating between different services to
complete a request, and also for communication between
the webpage and initial service. DSB-SN and DSB-MR use
Apache Thrift for communication between the services, but
has a REST API for communication between the Web Interface
and the gateway service. DSB-HR and all applications in
µSuite use gRPC for communication between the services.
DSB-HR uses a REST API for communicating between the
webpage and gateway service whereas µSuite makes use of
gRPC for the same purpose.

Style BookInfo, TeaStore, DSB-HR, and DSB-MR only
have synchronous communication channels between the var-
ious services and do not use any data pipelines or task queues
for coordinating asynchronous requests in their applications.
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TrainTicket has both synchronous and asynchronous REST
communication methods between the services across the appli-
cation. DSB-SN uses synchronous Thrift channels for commu-
nication between the services, but has a RabbitMQ task queue
that is used for asynchronous processing of some requests such
as compiling the Home Timeline service for a user after they
create a new post. µSuite has both synchronous and asyn-
chronous gRPC communication channels for each of the ap-
plications built separately with no overlap between each other.

Languages Used All the services in TeaStore and µSuite are
built using only one language: Java and C++ respectively. The
services that process business logic in DSB-SN and DSB-HR
are built using C++. Lua is used for processing the incoming
request and compiling the final result sent to users, Python is
used to perform unit tests and for smaller scripts that are used
to setup the testbed. DSB-MR is written using Golang, and
all the applications in µSuite are written using C++. BookInfo
consists of 4 services, each of which has been written in a dif-
ferent language: Python, Java, Ruby and Javascript (Node.js).
The services in TrainTicket are also written in 4 languages:
Java, Python, Javascript, and Golang. All testbeds except
µSuite offer a user interface written using HTML, CSS, and JS.

2.2.2 Topology

Topology relates to the overall structure of the application
including the communication channels between the services.
We look at the ways in which different testbeds have arranged
the services to fulfill requests for a particular application. We
look at the number of services and the dependency structure
of an application.

The number of services is counted as the total number of
containers (services + storage) that needs to be deployed for
the application to fulfill all its requests1. In testbeds where con-
tainers are not used, we went by the individual deployments.

The topology is represented as a Dependency Diagram as
shown in Figure 1, where the nodes represent services and
an edge from Service A to Service B means Service A is
dependent on Service B to complete a request. We analyze the
testbeds to identify whether the dependency structure of their
microservices is hierarchical, such that services first accessed
by requests are load balancers or front-ends, services accessed
after that execute various business logic, and leaf services are
databases or block storage. (Our definition of hierarchical is
the same as that of a n-tier architecture.)

Number of Services µSuite [19] has 4 distinct applications,
each of which have only 3 distinct services 2. BookInfo has
4 distinct services each deployed as a container within Istio
Service Mesh [14]. TeaStore has 5 distinct services with a

1This count was retrieved on 29 th January, 2022
2We derive this number from the installation script provided by the authors

in their code [19]

Registry Service that keeps track of the total number of ser-
vices in the application [22]. TrainTicket [24] has 68 services
including the databases which are deployed as separate con-
tainers. DSB-SN [7] has 26 individual containers including the
databases and caches, DSB-HR [5] has 17 individual contain-
ers including the databases and caches, and DSB-MR [6] has
30 individual containers including the databases and caches.

Dependency Structure µSuite was built under the assump-
tion that the OLDI microservices are hierarchical in nature,
where the application is structured as front end, mid-tier, and
leaf microservices. BookInfo is also structured in a hierarchi-
cal structure where the nodes at the end are storage services
such as MongoDB. TrainTicket doesn’t follow a strictly hier-
archical structure, as the database isn’t the last layer accessed
for some of the requests. DSB-SN, DSB-HR and DSB-MR
are strictly hierarchical as the requests entering the API gate-
way go through each service before accessing the database
towards the end of the request chain, from where it is directly
returned to the user. DSB-SN has a non-hierarchical compo-
nent where the Home-Timeline gets compiled asynchronously
when a user creates a new post. TeaStore has a hierarchical
dependency when processing requests, however every newly
deployed service calls the Registry Service to register itself.

2.2.3 Evolvability

As the application becomes larger, the architecture changes
based on the various modifications that each individual service
undergoes. We analyzed the testbeds to check if they had
already incorporated this design axes in their application.
We also looked at the support for versioning in the testbeds
to gauge the support for multiple versions of the same
service [13, 62]. For example, as shown in Figure 2, Service
A and B are dependent on Service C to fulfill their request and
they use the API /api/service_c. If Service C is modified
to accommodate newer features, or code optimizations, these
changes might not be adapted by Service A or B at the same
time. Thus, Service A will be using the older version (v1)
and Service B will have moved to the newer version (v2).
This would require Service C to run 2 instances with different
versions to support all their dependencies.

Figure 2: The Versioning Problem: one approach to maintain-
ing multiple versions of a service is by using versioned APIs.
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Versioning Support Only BookInfo provides multiple
versions of a service in its testbed. The Reviews Service
comes in 3 different versions where 2 of the versions access
the Ratings Service to display the ratings on the webpage.
Other testbeds do not explicitly provide multiple versions
of the services but have extensible APIs that the users can
program to deploy multiple versions of a service.

2.2.4 Performance & Correctness

Understanding and analyzing the performance of microser-
vices is integral to designing microservices. We analyze the
testbeds to identify the different Distributed Tracing tools
adopted by the testbeds for analyzing the performance of each
service in the request chain [20, 70].

Distributed Tracing Except µSuite all the other testbeds
offer Distributed Tracing built into the testbed. These testbeds
use a framework built on OpenTracing principles, typically
with Jaeger as the default option. They instrument each of the
applications with various tracepoints built into each of the ser-
vices to track the time spent processing each request. Though
it doesn’t use distributed tracing, µSuite uses eBPF to trace var-
ious points of the system to get the number of system calls that
were being utilized to run various applications in the testbed.

Testing Practices Except µSuite all the other services have
unit testing built into the repository which can be used to test
the individual services for correctness. TeaStore also has an
end-to-end testing module that interfaces with the WebUI
service to mimic a user clicking the UI. Load testing can be
performed on all the testbeds except µSuite using wrk2 [27]
since they use HTTP for receiving requests. µSuite has an
inbuilt load generator in the codebase that can be used for
generating higher request loads to test the application.

2.2.5 Security

Security Practices DSB-SN, DSB-HR, and DSB-MR have
a Transport Layer Security built-in between the services which
helps in encrypting communication between the services.
TeaStore and BookInfo were deployed using Istio Service
Mesh which comes with built-in encryption channels that can
be enabled by the developer when deploying the application.
µSuite and TrainTicket do not provide communication
encryption between the services.

3 Methodology

We conducted semi-structured interviews with industry
participants to 1) better understand the designs of industrial
microservices and 2) understand how these designs contrast
with those of available testbeds. Our IRB-approved study
follows the procedure shown in Figure 3.

Study design

Data Collection & Analysis

2 Pilots

Interview questions

Grounding questions

Questions that explore 
features discussed in other 
studies but missing from 

testbeds

Questions that probe 
choices for testbeds’ design 

axes

12 
Interviews Analysis

Results

Are there any questions 
about Microservice design 
that we should have asked 

but didn’t? 

1 2

3 4

5

Systematization 
of design choices

Mismatches between 
testbeds’ and 

participants responses

Figure 3: Methodology: The interview process starts with
study design, followed by data collection & analysis, and ends
with our results.

3.1 Recruiting Participants

We recruited participants from different backgrounds, aiming
to collect various perspectives of microservice design choices.
(See Appendix A for the demographics questions we asked.)
We recruited participants by: 1) reaching out to industry prac-
titioners and 2) advertising our research study on social media
platforms (Twitter, Reddit, and Facebook). After the first few
participants were recruited, we used snowball sampling [84,
92] to recruit additional participants. We recruited fourteen
participants in total, including the two pilot studies (see below).

Table 2 shows demographics of the participants we recruited
for our interviews for which we have IRB approval. Our
participants’ organizations ranged from very small in size
(< 10 employees) to very large (>10,000). The table shows
that out of the twelve participants [38], seven assess their
skill level with microservices as advanced-level, four as
intermediate-level, and one as beginner-level. On average,
they have five years of experience working with microservices.
Sectors that the interviewees work in include government,
consulting, education, finance and research labs. 9 of the 12
interviewees work on all aspects of microservices, (defined as
design, testing, scaling, deployment and implementation). The
remaining 3 work only on a smaller subset of those aspects.

3.2 Creating Interview Questions

We created 32 interview questions designed to increase the
authors’ understanding of industrial microservice architec-
tures and to contrast microservice testbeds with them (see
Appendix B). The questions span four categories, described
below.

1 Grounding questions: These questions ask partici-
pants to define microservices and state their advantages and
disadvantages. We use these questions to determine whether
participants exhibit a common understanding of microservices,
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ID Skill level YoE Sectors worked Current role

P1 Advanced 10 Government Full Cycle
P2 Intermediate 3 Finance, Tech, Government, Consulting, Education Full Cycle
P3 Advanced 5 Tech Full Cycle
P4 Beginner 1 Tech, Research Design, Testing
P5 Advanced 5 Finance, Tech, Education Full Cycle except Deployment
P6 Advanced 4 Tech Full Cycle except Deployment
P7 Advanced 10 Academia, Tech Full Cycle
P8 Intermediate 3.5 Tech Design, Testing, Implementation
P9 Intermediate 2 Tech Full Cycle except Scaling
P10 Advanced 7 Tech Deployment
P11 Advanced 7 Tech, Government, Consulting Full Cycle
P12 Intermediate 2 Tech Full Cycle except Scaling

Table 2: Participant Demographics Each participant, which can be identified by their ID, has their self reported skill level, years
of experience YoE with microservices, sectors worked in with respect to microservices, and current role. Full Cycle covers all
the five aspects of microservices: design, testing, scaling, deployment, implementation.

and whether this understanding agrees with that described in
previous literature [35, 39, 45, 78–80, 89, 92, 95, 99].

2 Probing questions These questions probe whether
design elements present in microservice testbeds accurately re-
flect or are narrower than those in industrial microservices. For
example, Table 1 shows that all microservice testbeds exhibit a
hierarchical topology where leaves are infrastructure services.
So, we asked whether microservice topologies can be non-
hierarchical. We asked similar questions about tooling. For
example, only one out of the seven testbeds include versioning
support. So, we asked whether industrial microservices at
participants’ organizations include versioning support.

3 Exploratory questions: These questions focus on
microservice-design features discussed in the literature [58,
85, 86, 92]) that are completely missing from all or most of the
testbeds. For example, cyclic dependencies within requests—
i.e., service A calling service B which then calls A again—
occur in Alibaba traces [61], but are only present in one of the
testbeds. This mismatch led us to investigate if request-level
cyclic dependencies occur in participants’ organizations. Sim-
ilarly, the testbeds do not make statements about application-
level or per-service SLAs (i.e., the minimum performance or
availability guaranteed to the caller over a set time period [43,
83, 97]). So, we asked questions about whether microservice
architectures within participants’ organizations include SLAs.

4 Completeness check question: We ended each inter-
view by asking if there is anything about microservice design
that we should have asked, but did not. This question helped
us gain confidence in the systematization we report on in
Section 4. (Though, we cannot guarantee comprehensiveness.)

5 Pilot studies: We conducted two pilot studies before
the first interview. We refined the interview questions based
on the results of these pilots.

3.3 Interviews & Data Analysis

Our hour-long interviews consisted of a 5-10 minute intro-
duction, followed by the questions. Participants were told
they could skip answering questions (e.g., due to NDAs).
We encouraged participants to respond to our questions
directly and also to think-aloud about their answers. We asked
clarifying questions in cases where participants’ responses
seemed unclear and moved on to the next question if we were
unable to obtain a clear answer in a set time period. At times,
we probed participants with additional (unscripted) questions
to obtain additional insights.

For data analysis, three of the co-authors analyzed
participants’ responses together. Our questions about cycles
failed to specify that we were interested in cycles within
individual requests’ processing. We were concerned that
participants’ may have interpreted the questions to be about
cycles in dependency diagrams, which can contain spurious
paths that never occur within individual requests’ processing.
We followed-up with our participants via additional interviews
and surveys to clarify their answers to these questions (see
Appendix C) for our clarification questions.

We used the labels below to categorize the final set of
participants’ responses. We additionally identified themes in
the interview answers and extracted quotes about them.

1. Unable to interpret: The three co-authors’ could not come
to a consensus on the interpretation

2. Unsure: Interviewees did not know the answer

3. Yes: for a yes-or-no question

4. No: for a yes-or-no question

We report only on participants who provided answers and
whose answers we can interpret (hence the denominators for
participants’ responses in Section 4 may not always be 12).
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3.4 Systematization & Mismatches
Systematization: We used the responses to our questions to
expand the testbed design axis table presented in Table 1 and
create Table 3. New rows either correspond to 1) exploratory
questions about microservice design that elicited strong
participant support or 2) design elements a majority of
participants verbalized while thinking out loud. Columns
correspond to specific technologies or methods participants
discussed for the corresponding row.

Mismatches: We compared the results of our expanded
design axis table to the table specifically about testbeds, in
order to identify cases where the testbeds could provide
additional support.

4 Results

Table 3 describes the design space for microservices based
on the testbeds and interview results. The rows are grouped
into high-level design categories including Communication,
Topology, Service Reuse, Evolvability, Performance &
Correctness, and Other. Within each category, there are
specific design axes along with the range of responses from
participants and specific examples, when applicable. For
example, the communication category includes specific axes
for protocol, style of communication, and languages used.

In the following sections, we discuss each row of Table 3.
We first state the number of participants who provided
responses that were interpretable. We then state the high-level
results, which are applicable to all of our participants. We also
present specific granular breakdowns for each result where
applicable. Following these statistics, we provide quotes from
the interviews, referencing participants by their ID in Table 2.

4.1 Grounding questions
Participants’ responses were similar to results in existing user
studies [73, 92] and other academic literature [45, 89, 99]. In
describing what microservices are, 7 out of 12 participants
identified them as independently deployable units and 3
participants explicitly mentioned that applications are split
into microservices by different business domains. Almost
all participants noted the ease of deployment, testing, and
iterating on services as being benefits of microservices. On the
other hand, a monolith was described by most participants as a
single deployable unit with all of its business logic in one place.
Participants noted that monoliths have many downfalls, such
as their inability to scale granularly, having a tight coupling
of components, and being a single point of failure.

While participants agreed on common benefits like isolated
deployment and failures, they disagreed on the challenges
caused by using microservices. Concerns range from
high-level views, such as difficulty with seeing the big picture
of the whole application, to more specific ones like extra work

(e.g. getting data from a database) caused by strict boundaries
and backwards compatibility (e.g. the versioning problem).

We asked participants to compare shared libraries with
microservices. Shared libraries refer to functionality used by
many applications that is packaged together as its own indepen-
dent entity. Libraries can be dynamically or statically linked
to any service executable. (A traditional example from C pro-
grams would be glibc). Most participants were unsure of a true
distinction between the two, while some tied microservices
to stateful entities and shared libraries to stateless entities.

4.2 Communication
Protocol We have 11 interpretable responses for the
communication protocols used at participants’ organizations.
5 of the total 11 responses included HTTP, and 6 responses
had a combination of both HTTP and RPCs. No participants
use only RPCs for communication. For these communication
protocols, participants shared specific mechanisms including
REST APIs (6/11) and gRPC (3/6).

Of the eleven participants that mentioned using HTTP as
a communication protocol, three of them mentioned using
standard HTTP without mentioning REST specifically. Two
participants shared that any communication protocol can be
used, beyond HTTP and RPCs, in appropriate scenarios.

Participants expressed differing opinions on which commu-
nication protocol is best suited for microservice applications,
with P2 saying “in the real world [use] REST... if your team
needs RPC you’re probably doing some sort of cutting edge
problem” since “the overhead for using REST is relatively
negligible to RPC,” while others, such as P9, felt more drawn
to RPCs: “we use both [HTTP and RPC], but generally we
would prefer to use RPC.”

Style We have 5 interpretable responses for the commu-
nication styles used at participants’ organizations. 3 of the
5 participants with interpretable responses suggested that
their organizations have a mixture of both synchronous and
asynchronous communication styles in their services, while
the remaining 2 participants only mentioned synchronous
forms of communication.

Out of the three participants that use both forms of communi-
cation, P5 warned of the dangers of poor design combined with
only synchronous communication saying “you certainly don’t
want a scenario where somebody has to make multiple calls to
multiple services and all those calls are synchronous in a way
that is hazardous and... I think folks are mindful of this when
they make broad designs. I think this starts to break down when
folks are trying to make nuanced updates within.” P3 also
noted that one benefit of asynchronous communication is that
“[dependencies are] more dotted lines than solid lines right,
they’re not strictly dependent on this.” Additionally, P1 pointed
out that “[logging] is completely asynchronous,” indicating
a specific use case for asynchronous communication.

8



Journal of Systems Research (JSys) 2022

Design Axes Range of Responses Examples

Communication

Protocol HTTP, RPC, both gRPC, REST, Apache Thrift
Style Synchronous, Asynchronous, Both -
Languages Used Multiple - Restricted, Multiple - Unrestricted, One Java, Python, C\C++, Go

Topology

Number of Services Varies 8-30, 50-100, 1000+
Dependency Structure Hierarchical, Non-Hierarchical -
Cycles None, Service-level, Endpoint-level -
Service Boundaries Business Use Case, Cost, Single Team Ownership -

Distinct Functionality, Performance, Security

Service Reuse

Within an Application Yes, No -
Across Applications Yes, No -
Storage Shared, Dedicated, Both -

Evolvability

Versioning Support Yes, No Versioned API, Explicit Support (UDDI),
Proxy

Perf. & Correctness

SLAs for Microservices Yes - Applications, Yes - Applications and Services, No -
Distributed Tracing Yes, No Jaeger, Zipkin, Homespun
Testing Practices Unit, Integration, End-to-End, Load, CI\CD -

Security

Security Practices Granular Control, Communication Encryption -
Attack Surface Awareness

Table 3: Design Space for Microservice Architectures These design axes were identified through the practitioner interviews.
Rows in the table, which are specific design axes, are grouped by design category. Each design axis has the range of responses
from the interviews as well as specific examples of specific design choices mentioned by the interviewees.

Languages Used We have interpretable responses for all 12
participants regarding the languages used at their organization.
Participants’ responses included 3 restricted to using only
one language, 4 using multiple languages with restrictions
on which ones could be used, and 5 using multiple languages
with no restrictions.

All three participants that only use one language at their
organization are restricted to using Java. P1 attributed this to
their hiring pool: “...management will typically look at what’s
cheaper in the general market. Which technical skill sets are
readily available in case someone leaves and they need to
replace [them] and so on.”

Out of the four participants who used a restricted set of
languages (more than one), P8 shared that using a small set
of languages is due to “shared libraries. If you have very good
shared libraries that make things super easy in one language
and if you were to switch to another language, even if you like
writing in that language, there’s almost no... Look, at the end

of the day, the differences between languages are not [great
enough] to be able to throw away a lot of shared libraries that
you would otherwise be able to use.”

Out of the five participants who have unrestricted language
choices, P2 explained that “some of these [services] were
forced to use a [new] language because the library is only
available for this language.”

Out of the nine participants that use multiple languages, six
use three to five languages in their applications, two use more
than eight languages, and one did not know the number, saying
“ I’d go to Stack Overflow and [ask] how many languages exist?”
(P4). Table 3 shows the most commonly used languages among
our participants’ organizations: Java, Python, C\C++, and Go.

4.3 Topology

We asked participants to draw a Service Dependency Diagram
to explain microservices for a novice entering the field.
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Figure 4: Topology Approaches For the most part, participants used one of four approaches when asked to draw a microservice
dependency diagram that would be used to explain microservices to a novice. Note that C represents a hybrid deployment
retaining some monolithic characteristics.

This gave us a sense of the important characteristics of
microservices that participants think about most prominently.
3 of the 12 participants drew two different diagrams, giving
us 15 total diagrams. We present these results in Figure 4
showing the most common approaches taken by participants.

The first common approach was to draw a monolith
then completely refactor it into a microservice architecture
(1/15, A ). The second approach was similar, starting with
a monolith and pulling out specific bits of functionality into
microservices. This incremental refactoring approach resulted
in a monolith connected to a set of microservices (3/15, C ).
The third approach was to take one service and expand the
architecture by considering its dependencies (4/15, B ). The
final and most popular approach was to consider a business
use case, listing all services needed to accomplish the task,
then connecting the dependencies (6/15, D ). The single other
approach, which is not included in the figure, was centered
on container orchestration (P4).

Number of Services We have 12 interpretable responses
for the number of services in the applications managed by
participants’ organizations. As shown in Table 3, the number
of services ranged from 8-30 services (3/12), 50-100 services
(5/12), and over 1,000 services (1/12). The responsibility
of development and maintenance of these services is shared
across multiple teams at the organizations. (3/12) participants
were unsure of the number of services at their organizations.

Of the 3 participants that were unsure, P7 explained that
“I can’t [estimate the number of services] because it depends
how you divide. For example, I have some services that
run multiple copies of themselves as different clusters with
slightly different configurations. Are those different services
or not?... Not only could I not even tell you the count of them,
I can’t tell you who calls what, because it might depend on
the call and it could change day to day.”

Dependency Structure We have 10 interpretable results
for participants’ experiences with microservice dependency
structures. The responses consisted of hierarchical (2/10),
non-hierarchical (6/10), and unsure or no strong stance either
way (2/10).

Most participants rejected the notion that microservice de-
pendency structures are hierarchical. Recall that a hierarchical
topology is one where the top-level services are API gateways
or load balancers and the leaves are storage. Participants often
initially said yes, but then changed their minds and thought
of counterexamples. For example, P11 explained “now that
I’m evaluating microservices and I’m recognizing that the
services should be completely independent, there’s no reason
that they should always follow that paradigm... I’m coming
to an answer, no, it is not always the case.” Participants
provided different reasons for non-hierarchical topologies.
For example, both P7 and P8 described non-root entry points:
“I guess the way I think about it [is], where does work originate.
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And it is perfectly valid for it to originate from outside the
microservices or from inside the microservice architecture,
so I think it can go both ways”(P8).

Of the two participants that agreed microservice dependency
structures are strictly hierarchical, both attributed this belief
to only having experiences with hierarchical topologies. For
example, P9 said “all the ones I’ve seen have been that way
I guess. I can’t rule out the there may be some other reason
to architect [it] another way, but yeah I would agree [that
microservice dependency diagrams are strictly hierarchical].”

Cycles We have 8 interpretable responses about cyclic
dependencies within individual requests. (We do not report
cycles in dependency diagrams as they may represent spurious
paths not observed by any single request.) We define cyclic
dependencies at two granularities, service-level and endpoint-
level. A service-level cycle exists when the same service is
visited more than once on the forward path (call portion) of
a request. For example, while processing a request, service A
could call service B which calls service A again. A service can
have multiple endpoints (e.g. REST API or RPC function) for
different tasks, such as loading different components of web-
pages. An endpoint-level cycle exists when the same endpoint
is visited more than once on the forward path (call portion) of
a request. For example, while processing a request, service A
endpoint 1 could call service B endpoint 3 which calls service
A endpoint 1 again. There is a danger an endpoint-level cycle
could result in an infinite loop without specific countermea-
sures, such as state carried in request parameters. No such
danger exists with service-level cycles. If an endpoint-level
cycle exists, this implies a service-level cycle exists.

We only consider cycles involving two or more microser-
vices as we believe these are more likely to be unexpected
by microservice developers. For both cycle granularities,
the request must visit a different service before revisiting the
original one.

Most participants (6/8) said service-level cycles could
exist in a microservice environment with the remaining 2/8
participants being unsure. For endpoint-level cycles, half of
the participants (4/8) said they could exist in microservice en-
vironments, (3/8) participants were unsure, and the remaining
(1/8) participant said endpoint-level cycles could not exist.

All 5 participants that said cyclic dependencies between
services could represent valid, non-buggy behavior attributed
this to "call[ing] different endpoints" when revisiting a
service (P6). Three of these participants shared that they
have encountered cyclic dependencies at the service-level
amongst their organizations’ microservices. For example, P7
said "such calls are known to exist between e.g., [between
the] user service and various user specific services. [They]
can also occur in batch/proxy services." The remaining 3
participants did not think service-level cyclic dependencies
could represent valid, non-buggy behavior. For example, P10
explained "the intent of a microservice is to have [a] specific

definition" which should not support cyclic dependencies.
Despite half of the participants seeing the potential for

endpoint-level cyclic dependencies, the majority (7/8)
explained that this should be avoided since it may not represent
valid, non-buggy behavior. P2, a consultant, shared they "have
observed this in customer code" but that it "honestly becomes
a nightmare," resulting in bugs. In addition, P10 said "this
level of complexity introduces more potential for cycles that
are buggy." One participant, P7, explained that endpoint-level
cycles likely exist at their organization and could represent
valid behaviors.

Service Boundaries We have 9 interpretable responses for
service boundaries. Participants listed many different ways to
create service boundaries: by business use case (2/9), by single
team owner(4/9), in ways that optimize performance (3/9), in
ways that reduce cost (2/9), and by distinct functionality (2/9).
(Participants provided multiple answers, so our tallies add up
to more than nine.)

The most frequent answer among the participants was set-
ting service boundaries to have single team ownership. P2
warns of “the pain of having an improperly scoped business
domain where multiple teams are trying to compete basically
for the same bit of business logic. Make only one team [respon-
sible] for that logic even if... multiple have to co-parent, one
needs to be accountable.” P3 explains, when reflecting on refac-
toring one microservice into a user and enterprise service, “we
had two different teams that were going to be focusing on dif-
ferent things and iterating on those things very, very quickly.”

P4 discusses how overheads could change due to service
boundaries: “If I’m able to do everything internally by just
sharing memory buffers or just shooting little message queues
around, that’s one thing. If I suddenly have to communicate
through a bunch of HTTP [requests] or sockets [due to
refactoring my service], am I adding additional overhead in
there that may be degrading my performance in a meaningful
way?” In addition, P4 weighs the security costs of having
more, smaller services: “suddenly let’s say we decompose
[one service] into four things. Each one of these might have a
different attack surface that we need to reexamine. Is it worth
the cost of looking into that?”

4.4 Service Reuse
Within an Application We have 4 interpretable responses
about service reuse within a single application. All 4
participants indicated a significant amount of service reuse
within an application.

P2 explained “you always have a few [services] that
everybody is dependent on.” In addition to this, P12 shared
that microservices could be reused within an application,
specifically for different endpoints. They added that when mi-
croservices are reused within an application, they “don’t think
the same request would go to the same microservice twice,
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that seems like bad engineering to me. You should be able to
do everything you’re supposed to do on the first time around.”

Across Applications We have 9 interpretable responses
about services being used in multiple applications. (8/9) said
some of their services were shared across applications while
(1/9) said none of their services were reused.

Of the participants who said services were shared across
applications, P2 said it’s “pretty common” and P12 said “that is
why we made microservices.” In a similar vein, P7 explained
“that’s almost always, yeah. With the exception of maybe the
very front end of them”. P8’s organization has “some core
services that are used by all applications.” For example, they
mentioned “the authentication service is used by all.”

P4, an industry researcher, explained “we have a specific
service which we have actually containerized to test these
things out and we are looking at potentially having multiple
applications ping it.” As for how many dependencies this
shared service would have, P4 said, “it’s going to depend
on what we’re trying to research. In this case, since we are
doing some research on scalability, we will eventually very
deliberately go through and see how many different things can
we connect to it before it falls over sort of thing.”

As for the participant whose organization does not reuse
service across applications, P11 shared that “I don’t see
that. It’s just one application and it’s just a collection of
microservices bounded by that application context that mirrors
the silo that the application is built in.” When asked if the
same functionality was required for two different applications,
they shared that “they would generally be making a new
microservice to fill” the need.

Storage We have 10 interpretable responses about database
reuse. The responses include dedicated database per service
(3/10), shared databases (5/10), and a combination of both
(2/10).

Of the three participants that have only dedicated databases
for their services, P8 shared “the one thing I can say is that
[our] core services will have their own devoted data store
so like authentication, [has an] authentication database.”
They could not share information about their application
specific services’ databases. P11, a consultant, said dedicated
databases “is what I’m seeing most often, yes.”

Of the five participants with databases used by multiple
services, P3 said “ideally, they don’t. In practice, they
absolutely did.” Not all participants felt as though databases
shouldn’t be shared. For example, P2 explained “they always
share! Every time, they always share.” P6 said “my previous
company definitely reused databases. Microservices and
teams might have their own tables within that database, but
that database was still the same.” Finally, P5 shared that “we
have a legacy database. In fact, every one of our customers has
its own database. That’s necessary for compliance reasons.”

Of the two participants whose organizations have a combi-
nation of dedicated and shared storage. P9 initially explained
“each [service] I’m aware of uses a dedicated storage,” but later
added “there is a microservice that can be used for storage that
I guess, in a sense, is a way storage can be shared.”

4.5 Evolvability

Versioning Support We have 11 interpretable responses
about how participants approach adding new versions of a
microservice. 6/11 participants have some sort of versioning
support in place while the remaining 5/11 did not. As shown in
Table 3, the methods of versioning support used by the partici-
pants include versioned APIs (2/6), explicit support like UDDI
(1/6) [26] and a proxy (1/6). The remaining 2/6 participants
with versioning support did not provide a specific mechanism.

Of the six participants that have a mechanism in place for
adding new versions of services, P1 shared “there’s things
like UDDI that help with versioning, but we typically don’t
depend on that. We will literally just publish a new endpoint.”
P7 explained using a proxy for versioning, where a copy of
a small amount of production traffic would be routed to the
new version instead of the old one and the results of the two
versions would be compared. P3 shared the preference to
“translate internally. Right, so a request can still come to the
old [version], but you’re just using the new code.”

The two participants that did not provide a specific
mechanism for versioning explained that they use Blue/Green
Deployment for verifying that new versions should be shipped
to production.

Of the five participants that did not have a mechanism in
place for versioning, P9’s approach to adding new versions
is to “deploy into a different version of the cluster. That’s how
I test my services- manually configure the route headers to
contact this test cluster.” P11, shared that at the companies
they consult at, they “for lack of a better option they’re simply
coding and hoping that it will say the same.”

Two of the participants shared the challenges with version-
ing. P2 warned “that’s the problem with microservices that
you’re coming to... that no matter what [with] microservices
you get into a dependency hell. The biggest thing I can say
is [please] version your API. If you’re going to use an API,
version it and have some sort of agreement for how many old
versions you want to maintain.” P12 explained that at their
previous company, they deemed this “the versioning problem...
Your change in your one domain, when you’re updating the
microservice, has to be reflected company wide on anything
that depends on it or utilizes it, and so I mean there are ways
to handle this which is like, you know bend over backwards,
for the sake of backwards compatibility.” They explained
their process for versioning as “whenever a microservice gets
changed, try to determine through... regular expression code
search where all of the references in the code base to that
particular stream of characters were but that’s not enough. So
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what you then have to do is you’d have to actually grundge
through the abstract syntax tree of each Python program in
order to determine the parameters that were given [and] the
types of those parameters.” They ended this discussion with
“I’ve left that job and I continue to [think] about it on a near
weekly basis because it’s such an interesting problem.”

4.6 Performance & Correctness
SLAs for Microservices We have 11 interpretable responses
about SLAs with respect to microservice based applications
and microservices themselves. 8/11 have SLAs with the
remaining 3/11 not having SLAs. Of the 8 participants that
have SLAs, 7/8 have SLAs for entire applications and 3/8 have
SLAs for individual microservices.

Of the eight participants that have SLAs, P6 explained “we
had SLAs with respect to the entire product’s behavior and the
product was composed of the microservices. So as a unit the mi-
croservices had an SLA which was like, we wanted four nines
reliability like 99.99% uptime. But that was considering the
product as a unit not as the microservice. We did, internal to the
company, have individual targets where... it was just part of like
your performance review as a team.” Plus, P1 shared “we have
SLAs for everything, [including individual microservices].”

The remaining three participants expressed varying sen-
timents on why their organization did not have SLAs. For
example, P3 explained a challenge of supporting SLAs: “there
[were] a lot of fights about it. It was one of those things I wish
we did. But I think before you can have those... like there were
things we were missing to tell what service level you’re actually
offering. And before you can have agreements we have to know
how to measure if you’re actually hitting those agreements or
not. That was a rather consistent argument between the engi-
neering teams and the infrastructure teams.” On the other hand,
P5 explained “we’re not known as high availability and we’re
not.... Nothing is transactional or urging in that particular way”
as the reason for not needing SLAs at their organization.

Distributed Tracing We have interpretable responses for all
12 participants on whether they use distributed tracing. 1/12
was unfamiliar with distributed tracing, 8/12 did not use dis-
tributed tracing, and 3/12 did use distributed tracing. As shown
in Table 3, of the participants that use distributed tracing, one
uses Zipkin, one uses Jaeger, and one uses a homespun tracing
framework. Of the participants that do not use distributed
tracing, 2/8 want to and 2/8 understand the need for tracing.

Of the three participants that use distributed tracing, P7
explained “we use Zipkin... we rely on the features that are
enabled by it so it shows things like service dependencies, we
use [it] for capacity planning, we use it for debugging. If we
want to know why there is a performance problem, my team
doesn’t do a lot of this right now because there hasn’t been a lot
of pressure on that, but, other teams do look at this and they’re
like ’Why is [there] a performance problem?’ and they’ll look

at the traces and be like ’oh yeah this call is taking three times
as long as you’d expect’.” P10 shared that “we have multi-
tenancy environments meaning we have multiple customers,
multiple people accessing the same services.” P10 also shared
how they use the trace data to “[get] management in place, in
other words, when you step into a cluster, by default- it’s a free
for all... everything [can] talk to everything. What you really
want to start doing is...basically [build] highways/roadways
inside the cluster and [define] those roadways... and we
actually apply policy for our applications so that... We know
that this namespace and this "pod" and the services [are]
talking to the parts and services it’s exposed to, and nothing
else. You want to prohibit that kind of anomalous activity.”

Of the nine participants that don’t use distributed tracing, P1
shared “we’re not that far yet.” P2, a consultant, explained that
“normally by the time that’s really a problem, fortunately I’m
out of there... I’m more involved in the early few months of
work. If you’re into that level of debugging, you’re normally
months in or years and something’s gone really wrong some-
where and you’re trying to figure out who broke it.” Finally,
P3 explained “there are some places that it got set up [but] I
didn’t have too much experience with it. That was one of those
[things] if we had invested more time into it, we would have
gotten more out of it. We just never really invested the time.”

Testing Practices We have 11 interpretable responses about
testing practices with respect to microservices. The most
common tests are unit tests (9/11), integration tests (5/11),
end-to-end tests (4/11), load testing (4/11), and using a CI\CD
pipeline (3/11). (Participants provided multiple answers, so
our tallies add up to more than eleven.)

Participants listed a wide variety of testing types and prac-
tices in addition to the ones listed above including smoke tests,
static code analysis, chaos testing, user acceptance testing, and
so on. Even with an abundance of available testing methods,
some participants, including P9, “stick to testing the individual
functionality of the microservice.” Other participants aim to
expand their testing practices as their company grows. For
example, P11, a consultant, shared “blue green canary deploy-
ments... those are things that we talked about but it doesn’t hap-
pen there- [the companies are] not mature enough to do that.”

Two participants expressed dissatisfaction with the testing
practices at their companies. For example, P3 shared “where
we could, we would do load testing, but I have yet to see
a place that does that particularly well. It’s really hard to
mimic [production] load in any sort of staging environment.
It’s really hard to mimic [production] data in any sort of
staging environment.” P5 explained that they use “end-to-end
[testing], but for the product broadly, [the tests are] incredibly
flimsy. And they’re hard to write, so a lot of our microservices
that we think are tested are not tested.” In addition, P2 shared
another testing challenge: “What do I do when I’m dependent
on another thing changing? That’s a great question and [I] still
do not have a good answer for that.”
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As a result of the challenges of testing microservice based ap-
plications, some participants shared a different mindset about
testing. For example, P3 explained, “at some point, in some
places we cared less about testing before the thing went out and
more being able to very quickly un-break it when it does break.”

4.7 Security

Security Practices We have 11 interpretable responses
about security practices with respect to microservices. Three
themes emerged among the responses: exercising granular
control over security (4/11), encrypting communication (4/11),
and having awareness of your attack surfaces (3/11).

Since microservices have well defined endpoints and bound-
aries, it is possible to have granular control over the security of
each endpoint. P5 explains “you can have really clear granular
control, about which [services] can communicate with which
other [services]” and what the service is allowed to do. For
example, “service A might have some users that are only
authorized for certain GET calls. And other services [are]
authorized perhaps maybe to write certain things, but it should
not be able to ask questions of that thing. And then yet another
service has the right to write to a queue that that service will
eventually pick up and do something with that, but doesn’t
otherwise give any knowledge of what’s there.” P7 echoed this
sentiment by saying “you may have different trust boundaries
on the different services.” P3 explained that security efforts
can be focused on certain aspects of a system, asking “do we
need to care about this? In many cases, no. Admitting logs
to a log server like if you’re not logging sensitive information,
who cares? Sending billing data back and forth, like, I care
a lot. So it depends on what bits you care about.”

In addition to focusing security efforts, participants pointed
out that communication between services should be secure. For
example, P7 said “you have to deal with the network, so your
network has to be secure.” P1 agreed that “with microservices
you’re typically having to encrypt and secure the communica-
tion between services themselves... given the chatty-ness of
them and the fact that they’re typically communicating over
REST APIs, you need to secure all of that. It’s handled typ-
ically, at least in my world, using sidecar injections and con-
tainers and so on. ” Not all participants agreed who should
be responsible for communication encryption. P2 shared “the
reality is that nobody cares about security, they push it off to
the... so I’m a security nerd. [But,] developers don’t care about
security... If your subnet can truly be trusted, [it’s] not an is-
sue. But if you can’t and run into issues with eavesdropping,
this is something where having a service mesh can help basi-
cally encrypting those connections.” P6 explained “I would
say some organizations can probably get away with less strict
security practices, where if you’re internal to their network,
they don’t have to be as careful. They’re not encrypting the
traffic. They’re not using TLS because they’re assuming that
everything’s locked down, all the hardware [it’s] running on is

locked down and no one else can access it. And if you’re in their
network, you’re in their network, so it doesn’t really matter.”

With microservices, the number of externally available end
points can have an impact on security. P8 shared “if all your mi-
croservices are publicly exposed to the Internet, someone can
enter that topology from any node” which would make penetra-
tion testing more difficult as well as tracking down malicious
actors. In addition, P4 explained “your attack surfaces [with
microservices] look fundamentally different on some level.”

Participants shared that microservices can simplify security.
For example, P9 said “it’s a lot easier to audit your security
concerns in a microservice architecture, just because you have
to define each of your individual dependencies.” Similarly,
P11 said “from a microservices standpoint you would typically
expect a higher level of scrutiny of the code, because you have
better visibility, things are more discrete.”

5 Recommendations and Analysis

The interview results we present in Section 4 illustrate that
there are a series of gulfs between the assumptions under which
testbeds (§ 2.1) are designed and the expectations and needs of
users and architects in production-level microservice deploy-
ments. Following the key design considerations outlined in
Table 3, we analyze the discrepancy between testbeds and the
systems they claim to represent, as well as providing guidance
for creating a more representative microservice testbed. We
expand on the findings of newer design axes in Table 4.

5.1 Communication

We compare the design decisions that developers in industry
make regarding communication protocol, style, or language
with the choices made by the testbeds. Overall, the testbeds
encompass the wide range of options used by industry
practitioners, but diverge in the finer design aspects of
communication channels in microservices.

5.1.1 Protocol

The first decision that developers need to make regards the
way services communicate with each other. Typically, the
entry point to a service will be using a REST API, as most
microservices applications are accessed using a browser or
mobile application. For internal services, the tradeoffs are
more complicated. RPC frameworks offer performance ben-
efits compared to REST—e.g., due to more widely-available
support for binary serialization—and can accommodate a
wide-range of functionality via its procedural model [3, 8, 9].
On the other hand, REST APIs can lead to simpler, more man-
ageable code because they require clients and servers to use a
more restricted (entity-based) model when communicating [8].
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DSB - SN DSB - HR DSB - MR TrainTicket BookInfo MSuite TeaStore

Communication

Style Both Sync Sync Async Sync Both Sync

Topology

Cycles None None None Service-level None None None

Service Boundaries BUC, STO BUC, STO BUC, STO DF DF Three Tiers Performance

Service Reuse

Within an Application Yes Yes Yes Yes Yes No No
Across Applications No No No No No No No
Storage In Some In Some In Some In Some In Some None Dedicated

Perf. & Correctness

SLA for Microservices Supported Supported Supported Supported Supported Supported Supported

Table 4: Additional design axes for microservice testbeds These new design axes were discovered after conducting practitioner
interviews. In some indicates that databases are included within some services, but is not a separate services. Dedicated indicates
that a separate service interfaces with all the databases, and exposes an endpoint for other services. BUC=Business Use Case,
STO=Single Team Ownership, Three Tiers meant each application is just three tiers deep, DF=Distinct Functionality

Academic Testbeds: TrainTicket, BookInfo and TeaStore
make use of REST and DSB-SN, DSB-HR use Apache Thrift,
while µSuite, along with DSB-MR, use gRPC. No testbed
uses more than one communication protocol.
Interview Summary: Even though all participants agree that
their application contains both REST or RPC in appropriate
scenarios, 7/11 participants leaned towards REST for its
robustness and ease of implementation. Participants also
indicate using a mixture of both these protocols, as some parts
of the application might be more latency sensitive.
Recommendation: There is a need for testbeds that have a
mixture of REST and RPC protocol(s) within the same applica-
tion to replicate a section of the use cases seen in the industry.
Choosing a communication protocol has significant effects
on latency, resource utilization, and other characteristics of
the application [10, 11]. Thus, an application with a mixture
of these protocols would help us measure and mitigate effects
of various protocols on resource utilization, latency, etc.

5.1.2 Style

The style of communication impacts the performance of
the application, with asynchronous services having higher
throughput than synchronous services [77, 91]. This increased
performance comes with more complex faults, as the requests
might arrive out of order or get dropped in transit.
Academic Testbeds: The major communication channels
between the services in testbeds are synchronous in nature,
with some testbeds having some services which process
information asynchronously. DSB-HR, DSB-MR, TeaStore,
and BookInfo do not use any asynchronous communication

in their architecture.

DSB-SN is the only DSB application with an asynchronous
component that helps in populating the WRITE-HOME-
TIMELINE service, which constructs the home timeline and
stores it in a cache. This makes use of message queues for
the asynchronous calls between services. TrainTicket is the
only testbed that contains both asynchronous REST calls
and Message Queues. µSuite applications have two variants;
synchronous and asynchronous as two separate applications
in the codebase.

Interview Summary: Participant studies show two ways
to implement asynchronous communication: asynchronous
requests between two services and using a message queue.
The overall findings can be summarized by a quote from
Participant 5: “You certainly don’t want a scenario where
somebody has to make multiple calls to multiple services and
all those calls are synchronous in a way that is hazardous and...
I think folks are mindful of this when they make broad designs,
I think this starts to break down when folks are trying to make
nuanced updates within.” Asynchronous updates can also be
a part of design choices arising from the requests originating
from within an application, a design choice we discovered
during our conversations with practitioners.

Recommendations: There is a gap in understanding the
impact on asynchronous RPC calls in a synchronous setting.
This presents an opportunity for expanding the existing
testbeds to include asynchronous behaviors, particularly
in handling message queues. There is also a need for
understanding the impact of periodic internal requests on the
performance and resource utilization of the application.
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5.1.3 Majority Languages

We track the programming language used across testbeds and
compare them to the languages our participants reported for
their applications.
Academic Testbeds: To make this comparison, we only look
at the language that was used to write core application logic.
DSB-SN and DSB-MR are largely written in C++ as the core
language, with Python being used for testing the RPC channel,
Lua for interfacing between external requests and internal
applications, and C for workload generation. DSB-HR is
completely written in Golang. TrainTicket and BookInfo use
4 languages, Java, Javascript, and Python being the common
languages, with TrainTicket opting for Golang and BookInfo
choosing Ruby as the other language. In TrainTicket, the ma-
jority of the services are written using Java, whereas BookInfo
has 4 services, each of which is written in a different language.
All the applications in µSuite are written in C++ and do not
use any other language. TeaStore is completely written using
Java, with Javascript used in parts for integration purposes.
Interview Summary: While 75% of the participants
indicated using multiple languages for their applications,
half stuck with a few core languages for the majority of their
services, and experimented with other languages based on
specific needs. The major reason for using a limited set of
languages was to leverage the power of core libraries which
are available for those particular languages. Java, Python and
C# are the most commonly used languages of development
among our participants’ organizations.
Recommendations: Overall, we find that the diversity of
languages is similar across the industry and academic testbeds.
While some testbeds, such as TrainTicket, work with multiple
languages using REST, there is a need for benchmarking
polyglot applications that make use of RPC communication
mechanisms, as there is fluctuation in performance and
resource utilization between implementations of RPC mech-
anisms in different languages [4]. This will help application
developers make better decisions on the choice of language
used to build a specific part of an application.

5.2 Topology

Topology has a profound impact on individual requests’
response times and the overall latency of the application.
We compare the structure of microservice testbeds with mi-
croservice characteristics observed in actual implementations.
Overall, the large, intricate connectivity of microservice
topologies (colloquially referred to as “Death Star graphs” due
to a resemblance to certain space stations) is not reflected in
the capabilities of the benchmarks. Topology also has impacts
beyond application, where it can dictate the way in which
software engineering teams are set up as well [57, 67] 3.

3This is referred to as “Conway’s Law.”

5.2.1 Number of Services

The number of services in a microservice-based application
is based on the business domain and goals of the organization.
Participants had varying definitions for what constituted a
service; however, for the testbeds, we counted a single service
to be a container that is deployed in production.
Academic Testbeds: µSuite, BookInfo and TeaStore have
fewer than 10 services. DSB-SN, DSB-MR, DSB-HR have
26, 30 and 17 services respectively, with scalability tests
performed using multiple deployments of the existing services.
TrainTicket has 68 services in their testbed, and in the original
work [99], they mention this not being representative of the
scale at which industry operates.
Interview Summary: Half of our participants’ organizations
had worked with more than 50 services in their architecture,
with the services split between multiple teams which were
responsible for development and maintenance of the services.
One of the participants also shared that it was impossible to
count the number of services in production, as the number was
not static; it changed periodically due to new services being
added, breaking down existing services to manage at least
one load, deploying replicas of existing services, or deploying
newer versions of existing services.
Recommendations: The number of services in testbeds
do not represent the true scale of these applications. This is
evident from our survey data, as well as published reports
which state that typical microservice deployments include
hundreds of services [55, 61, 99]. There is still no single
testbed that mimics the scale of services in industry, thus
presenting an opportunity for an industry scale testbed for
performing scalability and complexity studies.

5.2.2 Dependency Structure & Cycles

Understanding and emulating the dependency structures
that define microservice topology is critical to provisioning,
tracing, and failure analysis. This is one of the areas of
strongest mismatch between testbeds and actual use.
Academic Testbeds:

All of the testbeds we studied follow a hierarchical
topology, with requests originating from outside the system.
For example, µSuite has only one external root endpoint,
which goes through all three tiers of the application before
returning a result. No testbeds exhibit endpoint-level cycles.
Only TrainTicket exhibits service-level cycles within select
endpoints’ processing (e.g., GETBYCHEAPEST).
Interview Summary: Most of our participants reported that
microservice architectures are not strictly hierarchical, where
the root node might be an API gateway with storage layer in
the leaf node and other application logic in between. They are
more non-hierarchical, with some requests originating from
within the system. The participants that assumed hierarchy
noted that their assumptions were from lack of experience
or exposure to non-hierarchical systems, indicating that
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the limited topology in academic microservice work may
be actively limiting them. Participants indicated that both
service-level and endpoint-level cycles could occur, with the
latter sometimes representing bugs.
Recommendations: Existing testbeds are universally
hierarchical in request processing, which does not represent
the majority of production systems we encountered. More
accurate representation would enable researchers to study and
develop tools for a broader variety of realistic dependency
structures. There is also an opportunity for testbeds to include
more flexibility in storage models, such that different caching
configurations and privacy-preserving data placements are
easier to analyze. A key finding of our study is that requests’
processing within microservice architectures may contain
cycles, both at the service level and at the endpoint level. These
results validate and extend Luo et al’s [61] results, which
show that service-level cycles occur in Alibaba’s microservice
architecture. Only one testbed has (TrainTicket) service-level
cyclic dependencies and none of them have endpoint-level
cycles. Testbeds should incorporate more cyclic dependencies
at both granularities to study their effects on deployments.

5.2.3 Service Boundaries

Given the modular nature of microservice architectures, there
is a need for understanding the motivation behind creating
these service boundaries. We compare the motivations behind
creating such boundaries in industry and academic settings,
and provide recommendations on the ways in which these
gaps can be bridged.
Academic Testbeds: All the DeathStarBench applications
have been demarcated using “Business Use Case” and
encouraging “Single Team Ownership”. TrainTicket and
BookInfo have distinct functionality for each of the services
in their architecture, whereas TeaStore services are conceived
to maximize the performance of the system. In contrast to
the industry practices, µSuite was built with three tiers as the
basis for all microservice applications, a design choice that
is different from the industry practitioners.
Interview Summary: While the industry practitioners
provided various responses for splitting service boundaries,
the most common response was to split it based on Single
Team Ownership, where each service is owned by a single
team in accordance with Conway’s Law [57]. They also talked
about the dynamic aspect of microservices where a single
service can be decomposed into multiple services based on
a variety of factors specific to organizations. New services
can also be added due to expanding the feature set of a product.
However, the caveat of spawning multiple new services is that
this adds communication overhead placed on the system, with
new network calls being made to various services.
Recommendations: Most of the existing testbeds are built
as static communication graphs, but the industry practitioners,
and also the literature [32, 50, 55, 61, 75], tend to look at

microservices as dynamic entities. Since the testbeds are
built with extensibility as a core design pillar, researchers
can extend existing testbeds to accommodate newer services.
This can be used for comparing the performance and resource
utilization of the application before and after the changes.

5.3 Service Reuse
Microservice architecture literature, and the testbeds derived
therein, assume each service is built with loose coupling
and high cohesion in order to maximize service sharing
and minimizing duplicate code. We compare the extent of
sharing of services between the industry implementations and
academic testbeds.

5.3.1 Within an Application

Academic Testbeds: The testbeds are built with a principle of
modularity, which is a core tenet of microservice architecture.
Applications in DeathStarBench (DSB-SN, DSB-MR,
DSB-HR) and TrainTicket have a modular design wherein a
service can be accessed by other services based on the needs of
each request. When looking at each request chain that emerges
in the traces, there is little overlap between the different
services used for processing different kinds of requests.
Interview Summary: A third of the participants pointed out
some level of sharing of existing services in their architectures,
noting sharing as one of the major benefits of the microservice
architectures. Sharing of services ranges from sharing key
infrastructure services to large parts of application code.
Recommendations: Even though service sharing is portrayed
in testbeds, the level of sharing does not entirely match
practices in industry. This can be fixed by creating new
features which would use the existing services as well as
extending the current functionality of the testbeds.

5.3.2 Across Application

Academic Testbeds: Only DeathStarBench and µSuite have
multiple applications which can be used for analyzing the
sharing of services across applications. When looking at their
traces and the codebase, there is no overlap or reuse of services
between their applications.
Interview Summary: The participants whose organizations
had multiple applications indicated that they reuse services be-
tween different applications as well. The extent of this ranged
from sharing parts of the application such as authentication
to sharing critical infrastructure services such as logging.
Recommendations: Testbeds with multiple applications can
be modified to share services among the different applications
for reuse between multiple services. Since the various
applications have different access patterns, this would help
researchers study the effects of mixed application workloads
on the performance and resource utilization of services.
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5.3.3 Storage

Academic Testbeds: All the testbeds currently have the stor-
age layer in their leaf nodes, or towards the end of the request
chain. The testbeds, with the exception of µSuite applications,
use a variety of persistent storage (both SQL (MySQL) and
NoSQL (Mongo)) for storing the data. µSuite applications do
not make use of any persistent storage, as the dataset to run
the testbeds were stored as CSV files. DSB-SN, DSB-MR,
DSB-HR, and µSuite use a caching layer of memcached or
redis to store the transient results for faster access. TeaStore
has a specific service which acts as as an interface between the
database and other services. This gives them the flexibility to
swap out the database without the application being affected.
Interview Summary: From our interviews, we did not
get a consensus on a single kind of criteria for placement of
databases in Microservice architecture. Some organizations
preferred having a single database per microservice for ease
of maintenance, while others preferred this design only for
critical services such as authentication. Many participants
preferred having shared databases, at least in non-critical parts
of the application, with the exception of one participant who
mentioned always sharing the databases.
Recommendations: While placement of storage is subject
to the design and use case of the application, the testbeds do
not have extensive sharing of databases with each other. The
testbeds can be extended to explore the design paradigm of
database sharing where multiple services access the same
data store for retrieving information. This would be useful to
explore, particularly in the context of privacy regulations such
as GDPR [65,71]. There is also literature that has explored the
field of caches for microservices, for example placing caches
based on workloads experienced by each service [53].

5.4 Evolvability
When evaluating the design in terms of production capabilities,
we deployed each of the testbeds on machines using the
instructions provided in their repositories.

5.4.1 Versioning Support

Academic Testbeds: Only BookInfo offers a single service
with multiple versions which can be used for evaluating
versioning support. Similar to Adding Services, other testbeds
provide avenues by which a researcher could edit existing
services and re-deploy as separate versions. TrainTicket, TeaS-
tore and BookInfo use REST which can be easily extended by
writing another version of a service in any language and mod-
ifying the request chain. The service can be deployed using a
Docker container and given a new REST API endpoint which
is interfaced with other services. DSB-SN and DSB-MR use
Apache Thrift, while DSB-HR and µSuite make use of gRPC
as their communication protocol. Adding or removing versions
of services is more complex in these cases as the underlying

code-generation file needs to be modified with updated depen-
dencies, then application code must be written for the newly
generated service, which then must be deployed using Docker.
Interview Summary: The survey results indicate that manag-
ing versioning is a problem in active microservice deployments
and that there is no consensus on how to address it. Some engi-
neers deploy new versions as a separate service, and systemati-
cally fix the errors that occur because of these changes. Partici-
pants used existing methods and tools to alleviate the problems
that arise when multiple services are running concurrently.
Recommendations: To catalyze academic research into the
versioning problem, we recommend that testbeds be extended
to readily allow for multiple versions of the same service in
order to help understand the effects on performance.

5.5 Performance Analysis Support

5.5.1 SLA for Services

SLAs are used for comparing the necessary metrics of a
service to ensure a promised level of performance, and define
a penalty if that level is not met.
Academic Testbeds: Existing testbeds can define
SLAs, and resources can be allocated based on the traffic
experienced by the service. SLAs have been set on Death-
StarBench [44, 47, 69, 96] and TrainTicket [69, 98], and these
papers tested various methods to scale resources for individual
services. While FIRM [69] set a fine grained SLA for each
service, other works explored SLAs for the system as a whole.
Interview Summary: A majority of participants had an SLA
defined for their organization’s microservices and used it for
tracking the performance of their applications. Participants
did not have strict SLAs for individual services, but some used
them internally for tracking performance regression.
Recommendations: While testbeds and follow-up research
can represent systemwide SLAs, an ideal testbed should also
include support for fine grained SLAs for each service.

5.5.2 Distributed Tracing

Distributed tracing is used by developers to monitor each
request or transaction as it goes through different services in
the application under observation. This enables them to iden-
tify bottlenecks and bugs, or track performance regression in
applications in order to identify and fix the bottlenecks in them.
Academic Testbeds: All testbeds except µSuite came with a
built-in distributed tracing module, whereas µSuite used eBPF
for tracing the system calls made by the services. DSB-SN,
DSB-HR, DSB-MR, TrainTicket and TeaStore used Jaeger
as the tool used for tracing, and BookInfo used generic
OpenTracing tools for the same.
Interview Summary: Only a quarter of participants used
distributed tracing in their applications, and their techniques
matched those used in the testbeds.
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Recommendations: Given the fledgling adoption of
distributed tracing in the production sphere, we recommend
testbed designers leave tracing modular and easy to experiment
with, and, moreover, we highly recommend this as a fruitful
area for further study.

5.5.3 Testing Practices

Academic Testbeds: All the DeathStarBench testbeds
have provisions to perform unit testing using a mock Python
Thrift Client which is used for testing individual services
in the application. TrainTicket also has unit testing on the
individual services to check for correctness. FIRM [69]
built a fault injector for DSB-SN and TrainTicket to test fault
detection algorithms on these testbeds. TeaStore has a built-in
end-to-end testing module for testing each service and the
application as a whole. BookInfo and µSuite do not use any
form of testing to test the correctness of their applications.
One can use a load testing tool such as wrk2 [27] to perform
load test on all the testbeds except µSuite, as it uses gRPC for
interfacing a frontend with a mid-tier microservice.
Interview Summary: While participants used Unit Testing
to test individual components of the application, there was
no consensus on the testing methods and strategies to test
microservice applications as a whole. Efficient strategies
for testing microservices was noted to be a pain point in
various organizations, though there was an awareness of the
importance of testing.
Recommendations: There is some testing framework within
existing testbeds, but it has not led to clear, translatable
policy recommendations for production systems. The existing
testbeds cover the need for performing unit tests on individual
services, but the tools for testing microservice applications
as a whole are still lacking. Twitter’s Diffy [25]4 allowed
developers to test multiple versions of the same application
in production. Researchers could use extended versions of
these testbeds to implement and verify tooling around testing
practices for microservices. We recommend that future testbed
designers build in fault injectors, which will ideally encourage
more testing-focused future work.

5.6 Security
5.6.1 Security Practices

Academic Testbeds: DSB-SN, DSB-HR, and DSB-MR have
encrypted communication channels by way of offering TLS
support in their deployments. TeaStore and BookInfo can be
deployed using Istio Service Mesh which can be configured to
have encrypted communication channels between the services.
TrainTicket and µSuite do not offer encrypted communication
channels. None of the testbeds offer granular control or
provide avenues to analyze the awareness of attack surfaces.

4Diffy was archived on July 1 2020.

Interview Summary: The participants’ responses showed
3 major themes regarding security in microservices: granular
control, communication encryption, and attack surface
awareness [68, 86]. The participants elaborated that granular
control would be realized by way of having access controls
implemented for a service’s API to prevent attackers from
gaining access to the overall system even if one service is
compromised. They also cautioned about exposing too many
services to the outside world, as each one would become an
attack surface for entry into the application.
Recommendations: Apart from encrypting communication,
the testbeds are not developed with security considerations
as a design choice. There is a need for research on the
appropriate security practices for microservices, both in terms
of policy and the right tooling to achieve them. With the
number of attack surfaces growing as the service boundaries
increase, there is a need for literature on threat assessment for
microservice applications.

6 Conclusion

Over the course of our systematization work, we arrived at a
few key insights. The first, primary takeaway is that no existent
benchmarks faithfully represent any of the production services
that our participants had experience with. Although this is
unsurprising, because each testbed was originally designed
to investigate specific, narrowly defined questions, the lack
of ready knowledge of the details of testbed limitations has
given the community implicit permission to use testbeds to
form conclusions about systems that are increasingly complex.
While we focus on testbed mismatches, we encourage
anyone investigating this area to also read the large body of
microservice literature that has tackled the individual topics
we address [58, 85, 92].

We also learned some surprising characteristics of current
microservices from our user studies. For instance, the presence
of cycles in operational, non-faulty production systems was
unexpected, and indicates that the topologies the community
has studied for microservices have been unnecessarily limited
by outdated assumptions. Another surprising result was
the overall lack of consensus between the members of our
survey on simple questions such as “how would you describe
microservices?”. There was confusion between the role of
microservices and shared libraries, indicating a need for better
characterization and definitions of these terms such that the
correct questions are being asked about the correct systems.
Finally, hybrid and transitional monolith-microservice archi-
tectures were shockingly common in our interview cohort,
which further muddles the definitions and roles in this space.

6.1 Future Directions
Systematization of microservice testbeds, guided by the in-
sights from the user study we performed, opens a wealth of criti-
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cal and complex research areas. Distributed tracing in microser-
vices is poorly understood, and there is a sense in the commu-
nity that such tracing is too complex to be practical. While there
is a reasonable body of academic work about microservice trac-
ing [42, 51, 52, 63, 72], very few projects [81] explore what to
trace, where in the highly variable topology (§ 4.3) to add trace-
points, and, even, whether the topology itself is worth tracing.

Along with investigating if topology is worth tracing, we en-
courage the community to investigate how microservice topolo-
gies, as well as other aspects of microservice architectures,
need to evolve to reduce complexity, improve understandabil-
ity, and allow for more resilient scaling of distributed systems.
The versioning problem (§ 5.4.1), for instance, is an immediate
concern where substantial progress could be made by modify-
ing testbeds to allow for different service versions [28, 82].

Finally, based on our findings of the mismatches between
testbed capabilities and production environments (§ 5) we
strongly encourage the community to build new testbeds,
iterating on the recommendations we lay out. Such com-
prehensive, representative testbeds will be key for realistic
experimentation with any aspect of microservice design, and
will likely lead to exciting future innovations in performance
and scalability for distributed computing.
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Appendix A Demographics Questions

1. What sectors have you worked in with respect to
microservices? (Academia, Finance, Tech, Government,
Consulting, Medical, Education, Other)

2. How would you assess your skill level with microser-
vices? (Novice, Beginner, Intermediate, Advanced,
Expert)

3. How many total years of experience do you have working
with microservices?

4. Have you worked at an organization that uses microser-
vices?

5. Select all that describe your role(s) in the organization
with respect to microservices? (A single microservice or
a small set of them, Microservice infrastructure, Research
on microservices, Not related to microservices, Other)

6. Pursuant to the above, is/are your role(s) related to (select
all that apply). (Design, Testing, Scaling, Deployment,
Implementation, Other)

7. Have you been involved in the migration from a monolith
to microservices? (Yes, No, Other)

Appendix B Interview Questions

General

1. Based on your experience, how would you describe
microservices?

2. From your experience, what do you think are the most
beneficial characteristics of microservices?

3. In your opinion, what are some of the drawbacks of
working with microservices?

4. In your organization, is each microservice consistently
owned by one team?

5. The communications structure of your organizations’
microservices mirrors the communications structure of
your organization itself. That is, are the dependencies
between your organization’s microservices a copy of the
dependencies between various units in your organization

6. What references do you use when building microser-
vices? (e..g specific books/blogs)

Graphs

1. Imagine that you are asked to explain microservices to
a novice. Draw a picture of a microservice dependency
diagram that you might use to explain microservices to
this person. Be as specific as possible.

2. Let’s discuss two structural features of microservice
dependency graphs. Do you agree or disagree that
microservice dependency graphs are strictly hierarchical,
with the top-level being front-ends or load balancer
microservices and leaves being infrastructure microser-
vices, such as databases or block storage? Similarly, do
you agree or disagree that requests in a microservice
environment could have cycles in the services they call
that represent valid (non buggy) behavior in the system.

3. Can you sketch a microservice dependency diagram that
has a different topology than the one that you previously
drew? Please be specific as possible and include names
that indicate individual microservices’ functionality. For
example, one microservice might be named “database
for storage.”

Migration and Refactoring
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1. Can you describe characteristics of the monolithic
application?

2. What tools, metrics, or rules of thumb did you use
to decide how to decompose the monolith(s) into
microservices?

3. For an existing microservice, what factors would you
consider when deciding whether to re-factor it into
multiple (perhaps smaller) microservices?

4. What is the difference between a shared library and
microservice? For example, what factors would you
consider when deciding if a shared library should be a
microservice instead?

5. Do you think security and privacy practices are different
in microservice architecture vs. a monolith?

Your Organization’s Microservices

1. Approximately, how many unique microservices does
your organization operate?

2. Does your organization have service-level agreements
(SLAs) for entire applications that use microservices?

3. Do individual microservices in your organization have
SLAs?

4. Does your organization allow different microservices to
be built using different programming languages?

5. What is your best numerical estimate of how many
programming languages are used?

Scaling Methods

1. Which scaling methods are used within your organiza-
tion’s microservices?

2. Does your organization use on-demand replication
(depending on traffic demand and resource availability)
of services to improve scalability?

3. What is your criterion for on-demand replication?

4. What mechanisms do you use to introduce new versions
of services that may use different APIs and ensure that
they work and perform well?

Sharing and dependencies amongst your organization’s
microservices

1. In your organization, is one microservice used by
multiple applications? Is this an often occurrence?

2. In your organization, given a typical microservice, how
many other microservices use it? Could you answer this
both within one application and across all applications?

3. Next, let’s talk about storage: if we consider storage as
broadly defined to include any medium for storing data in-
cluding, but not limited to: databases, block storage, and
object storage. Does each microservice in your organiza-
tion use its own dedicated storage mechanism? Or does
it use storage that’s shared among other microservices?

4. In your organization, how would a change in one
microservice affect other microservices?

Testing and Debugging

1. List all methods of testing and debugging you use in the
context of microservices.

2. Do you use distributed tracing? If so, where would you
include tracing instrumentation?

Appendix C Cycle Clarification Questions

Cycles could arise among one or more microservices. All of
our questions except the last are restricted to cycles that involve
2 or more services. We group all instances of microservices
together into a single node.

Cyclic dependencies can be defined in three ways.

Dependency Diagram (only considering services)
In the Dependency Diagram (only considering services):

A microservice dependency diagram is a graph where nodes
are microservices. Directed edges connect services that have
been observed to communicate with one another in one or
more requests. Edge direction indicates the request path (from
caller to callee), not the response one.

For one request (only considering services)
A service-level cycle exists when the same service is visited

more than once while processing a request. Since we restrict
the definition of cycles to be at least of size 2, the request must
visit a different service before revisiting the original one.

For one request (considering services and endpoints)
An endpoint level cycle exists when the same endpoint is

visited more than once while processing a request.

Given each of the three definitions of cycles, please answer

1. Do you think cycles of this definition could exist?

2. Could cycles of this nature represent valid, non-buggy
behavior? Please explain your answer.

3. Do you know if cycles of this nature exist amongst your
organization’s microservices? Elaborate if possible.

Cycles of size 1
Finally, do you believe cycles of size 1 could exist at any

of the granularities discussed above? Could they represent
valid, non-buggy behavior? Please explain your answer.
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