Under review as a conference paper at ICLR 2021

INFORMATION LATTICE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Information Lattice Learning (ILL) is a general framework to learn decomposed
representations, called rules, of a signal such as an image or a probability distri-
bution. Each rule is a coarsened signal used to gain some human-interpretable
insight into what might govern the nature of the original signal. To summarize the
signal, we need several disentangled rules arranged in a hierarchy, formalized by a
lattice structure. ILL focuses on explainability and generalizability from “small
data”, and aims for rules akin to those humans distill from experience (rather than a
representation optimized for a specific task like classification). This paper focuses
on a mathematical and algorithmic presentation of ILL, then demonstrates how
ILL addresses the core question “what makes X an X” or “what makes X differ-
ent from Y” to create effective, rule-based explanations designed to help human
learners understand. The key part here is what rather than tasks like generating X
or predicting labels X,Y. Typical applications of ILL are presented for artistic and
scientific knowledge discovery. These use ILL to learn music theory from scores
and chemical laws from molecule data, revealing relationships between domains.
We include initial benchmarks and assessments for ILL to demonstrate efficacy.

1 INTRODUCTION

With rapid progress in Al, there is an increasing desire for general Al (Goertzel & Pennachinl 2007
Chollet, |2019) and explainable Al (Adadi & Berrada, 2018; Molnar, [2019), which exhibit broad,
human-like cognitive capacities. One common pursuit is to move away from “black boxes” designed
for specific tasks to achieve broad generalization through strong abstractions made from only a few
examples, with neither unlimited priors nor unlimited data (“primitive priors” & “small data” instead).
In this pursuit, we present a new, task-nonspecific framework—Information Lattice Learning (ILL)—
to learn representations akin to human-distilled rules, e.g., producing much of a standard music theory
curriculum as well as new rules in a form directly interpretable by students (shown at the end).

The term information lattice was first defined by Shannon|(1953)), but remains largely conceptual
and unexplored. In the context of abstraction and representation learning, we independently develop
representation lattices that coincide with Shannon’s information lattice when restricted to his context.
Instead of inventing a new name, we adopt Shannon’s. However, we not only generalize the original
definition—an information lattice here is a hierarchical distribution of representations—but we also
bring learning into the lattice, yielding the name ILL.

ILL explains a signal (e.g., a probability distribution) by disentangled representations, called rules. A
rule explains some but not all aspects of the signal, but together the collection of rules aims to capture
a large part of the signal. ILL is specially designed to address the core question “what makes X an X”
or “what makes X different from Y”’, emphasizing the what rather than generating X or predicting
labels X,Y in order to facilitate effective, rule-based explanations designed to help human learners
understand. A music Al classifying concertos, or generating one that mimics the masters, does not
necessarily produce human insight about what makes a concerto a concerto or the best rules a novice
composer might employ to write one. Our focus represents a shift from much representation-learning
work (Bengio et al.,[2013)) that aim to find the best representation for solving a specific task (e.g.,
classification) rather than strong concern for explainability. Instead of optimizing a task-specific
objective function (e.g., classification error), ILL balances more general objectives that favor fewer,
simpler rules for interpretability, and more essential rules for effectiveness—all formalized later.

One intuition behind ILL is fo break the whole into simple pieces, similar to breaking a signal into
a Fourier series. Yet, rather than decomposition via projection to orthonormal basis and synthesis

Under review as a conference paper at ICLR 2021

I ——e SIGNAL PROBABILITY
> |]
a0 2 =" sl
SYNTHESIZE FREQ —
(DROJECT)\L LFT) S COUNT] %z 2
LIFT 3 Z
INFORMATION RULES Tom (X1 IRR z=
LATTICE/,x' %HNEST OV« JeRRy pLAYS
’TOM PLAYS HIGHER KEVS
Q) | | BLACK KEYS Q
.] Q @ o Q Q @ o Qo .
1% 4 2
e O o] [] @ O (] Q@ [] o .
2 ? -
) & o ® ® o o e
" @ RULE @ COARSEST (@] @ CHEMISTRY RULES

Figure 1: ILL’s main idea: decompose the signal into rules that are individually simple but collectively
expressive. A lattice is first constructed regardless of the signal (prior-driven), yet the same lattice may
be later used to learn rules (data-driven) of signals from different topics, e.g., music and chemistry.

via weighted sum, we decompose a signal in a hierarchical space called a lattice. Another intuition
behind ILL is feature selection. Yet, rather than features, we use partitions to mimic human concepts
and enable structured search in a partition lattice to mimic human learning. The goal is to restore
human-like, hierarchical rule abstraction-and-realization through signal decomposition-and-synthesis
in a lattice (called projection-and-lifting, Figure[I} left), resulting in more than a sum of parts.

ILL comprises two phases: (a) lattice construction; (b) learning (i.e., searching) in the lattice. This
is similar to many machine learning (ML) models comprising (a) function class specification then
(b) learning in the function class, e.g., constructing a neural network then learning—finding optimal
parameters via back-propagation—in the network. ILL’s construction phase is prior-efficient: it builds
in universal priors that resemble human innate cognition (cf. the Core Knowledge priors (Spelke &
Kinzler, |2007)), then grows a lattice of abstractions. The priors can be customized, however, to cater
to a particular human learner, or facilitate more exotic knowledge discovery. ILL’s learning phase is
data-efficient: it learns from “small data” encoded by a signal, but searches for rich explanations of
the signal via rule learning, wherein abstraction is key to “making small data large”. Notably, the
construction phase is prior-driven, not data-driven—data comes in only at the learning phase. Hence,
the same construction may be reused in different learning phases for different data sets or even data
on different topics (Figure 1} right). Featuring these two phases, ILL is thus a hybrid model that
threads the needle between a full data-driven model and a full prior-driven model, echoing the notion
of “starting like a baby; learning like a child” (Hutson, 2018)).

ILL is related to many research areas. It draws ideas and approaches from lattice theory, information
theory, group theory, and optimization. It shares algorithmic similarity with a range of techniques
including MaxEnt, data compression, autoencoders, and compressed sensing, but with a much greater
focus on achieving human-like explainability and generalizability. Below, we broadly compares ILL
to prominent, related models, leaving more comparisons to the Appendix for most similar ones.

Compared to ILL is
deep learning a “white-box” model balancing human-explainability and task performance
Bayesian inference modeling human reasoning with widely shared, common priors and few, simple

rules rather than using probabilistic inference as the driving force

tree-like models structurally more general: a tree (e.g., decision tree or hierarchical clustering)
is essentially a linear lattice (called a chain formally) depicting a unidirectional
refinement or coarsening process

concept lattice in FCA conceptually more general and may include both known and unknown concepts;
(Ganter & Wille,2012) ILL does not require but discovers domain knowledge (more details in AppendixEI)

We illustrate ILL applications by learning music theory from scores, chemical laws from compounds,
and show how ILL’s common priors facilitate mutual interpretation between the two subjects. To
begin, imagine Tom and Jerry are playing two 12-key pianos simultaneously, one note at a time
(Figure [} right). The frequency of the played two-note chords gives a 2D signal plotted as a 12 x 12
grayscale heatmap. Inspecting this heatmap, what might be the underlying rules that govern their
co-play? (Check: all grey pixels have a larger “Jerry-coordinate” and project to a black key along the
“Tom-axis”.) We now elaborate on ILL and use it to distill rules for complex, realistic cases.

Under review as a conference paper at ICLR 2021

SIGNAL PARTITION LATTICE INFORMATION LATTICE 2D EXAMPLE
¢ mB. SIGNAL LIFTING
X 123 SIGNAL - ml - < =

12:"7 Az \12 ,,,,, ;
PARTITION / | \ I T AN
PROJECT
P A2 PROJECT - BN . A
arz® @z @ l LIFT 1723 2[3D) @12
merE | | \ | / ! A ll -
- B .
P A[2®» RULE a23®» PROJECTION

Figure 2: Basic information-lattice terms: signal, partition, rule, lattice, projection and lifting.

2 INFORMATION LATTICE: ABSTRACTIONS AND RULES OF A SIGNAL

Signal. A signal is a function £ : X — R. For notational brevity and computational reasons,
assume ¢ is non-negative and X C R™ is finite (not a limitation: see Appendix [B)). For example,
asignal £ : {1,...,6} — R being a probability mass function (pmf) of a dice roll, or a signal
€:40,...,27}2 — R being a 28 x 28 grayscale image. We denote the set of all signals on X by Sx.

Partition / abstraction. We use a partition P of a set X to denote an abstraction of X; we call a cell
C € P an (abstracted) concept. The intuition is simple: a partition of a set renders a “coarse-grained
view” of the set, or more precisely, an equivalence relation on the set. In this view, we identify
equivalence classes of elements (concepts) instead of individual elements. For example, the partition
P = {{1,3,5},{2,4,6}} of the six outcomes of the roll of a die identify two concepts (odd, even).

Rule / representation. A rule of a signal £ : X — R is a “coarsened” signal r¢ : P — R defined on
a partition P of X with r¢(C) := Y~ &(x) forany C' € P. In this paper, a rule of a signal is what
we mean by a representation of a signal. If the signal is a grayscale image, a rule can be a special type
of blurring or downsampling of the image; if the signal is a probability distribution, a rule can be a pmf
of the “orbits” of the distribution for lifted inference algorithms (Holtzen et al.,[2019; Kersting, [2012).
More generally, we define a rule (regardless of any signal) over a set X by any signal on any partition
of X accordingly, we denote the set of all rules over X by Rx := Upc tall partitions of X }SP-

Partition lattice. Abstractions are hierarchical: one coarse-grained view can be coarser than another.
Let the partition lattice (P x, <) of a set X be the partially ordered set (poset) containing all partitions
of X equipped with the partial order coarser than (X), or finer than (=), defined in the standard way.
Let P := {{z} | x € X} and P := {X} denote the finest and the coarsest partition, respectively.
Per general lattice theory (Davey & Priestleyl [2002), P x is a complete lattice: every subset 3 C B x
has a unique supremum V*B3 and a unique infimum A$3, where V33 is called the join of I3 denoting its
coarsest common refinement and A is called the meet of B denoting its finest common coarsening.

Information lattice. The information lattice (R¢, <) of a signal £ : X — R is the poset of all rules
of ¢ equipped with the partial order more general than: for any two rules r,7’ € R, we say r is
more general than 7/ (or 7/ is more specific), denoted r < 7/, if domain(r) < domain(r’). Notably,
R¢ € Rx and R is isomorphic to the underlying partition lattice via projection defined below.

Projection and lifting. For any signal £ € Sx, we define the projection operator [¢: Px — Re¢ by
letting /¢ () be the rule of £ on P. One can check that [*: (Px, <) — (Re¢, <) is an isomorphism.
Conversely, we define the general lifting operator %: Rx — 25X by letting }* (r) denote the
set of all signals that satisfy the rule r, i.e., % (r) := {¢ € Sx | |¢ (domain(r)) = r} C Sx.
To make lifting unique and per Principles of Indifference (Eval [2019), we introduce a special
lifting 1% (r) to pick the most “uniform” signal in X (r). Formally, define || - ||, : Sx — R by
[€llg == (Cpex &(x)9)9. For any &, ¢ € Sy satisfying ||€]1 = [|¢’]l1, we say that £ is more
uniform than &’ (or £’ is more deterministic) if ||£[|o < [|£’[|2. We define the (special) lifting operator
X Ry = Sx by X (r) := argming x4 [|€||2 (can be computed by simply averaging). Notation
here follows the convention as to function projections to quotient spaces (Kondor & Trivedi, [2018).
Lifting a single rule to the signal domain can be extended in two ways: (a) lift to a finer rule domain P
instead of X, i.e., #% () or 17 (7); (b) lift more than one rules. Accordingly, we write {} := ¥ and
1:= 1% as defaults, write R = |* () := {J°(P) | P € P} C R¢ to denote a rule set, and write
T(R) :==Nrer 1 (1) = {n € Sx [17 (P) = R} and T(R) := argmin, ¢4, [|7]2 to denote signals
that satisfy all rules in R (general lifting) and the most uniform one (special lifting), respectively.
More computational details on lifting and its intimate relation to join are in Appendix

Under review as a conference paper at ICLR 2021

3 INFORMATION LATTICE LEARNING (ILL)

We first formalize ILL as a single optimization problem and then solve it practically in two phases.
Let £ : X — R be a signal we want to explain. By explaining, we mean to search for a rule set
R=15(p) C Re¢ such that: (a) R recovers £ well, or R is essential; (b) R is simple. The main idea
agrees with Algorithm Information Theory (Chaitin, 1987} |Chater & Vitanyi, 2003)), but we use an
information-lattice based formulation focusing on explainability. We start our formulation below.

We say a rule set R recovers the signal £ exactly if T(R) = &. Yet, exact recovery may not always
be achieved. The information loss occurs for two reasons: (a) insufficient abstractions, i.e., the join
VP is strictly coarser than P; (b) the choice made in favor of uniformity is inappropriate. Instead of
pursuing exact recovery, we introduce A(1(R), {)—a distance (e.g., £, distance) or a divergence
(e.g., KL divergence) function—to measure the loss, with a smaller A indicating a more essential R.

We say a rule set R is simpler if it contains fewer and simpler rules. Formally, we want R minimal,
i.e., eachrule € R is indispensable so as to achieve the same 1 (R). Also, we want each rule r € R
informationally simple, measured by smaller Shannon entropy Ent(r), so r is more deterministic (Falk
& Konold| [1997), easier to remember (Pape et al.,|2015) and closer to our common-sense definition
of a “rule”. Notably, the partial order renders a fradeoff between the two criteria: r < r/ implies r is
dispensable in any R 2O {r, 7’} but on the other hand Ent(r) < Ent(r’), so including more-specific
rules makes the rule set small yet each individual rule (informationally) hard.

The main problem. The formal definition of an ILL problem is: given a signal £ : X — R,
m%lér%ize AT (R),§) subjectto R is minimal; Ent(r) < eforanyr € R. (1)
=g

The search space involves the full information lattice (R, <), or isomorphically, the full partition
lattice (Px, <). Yet, the size of this lattice, i.e., the Bell number B‘ Xx|» scales faster than exponentially
in | X|. It is unrealistic to compute all partitions of X (unless X is tiny), let alone the partial order.
Besides computational concerns, there are two reasons to avoid the full lattice (but to leave it implicitly
in the background): (a) the full lattice has unnecessarily high resolution, comprising many nearly-
identical partitions particularly when X is large; (b) considering explainability, not every partition
has an easy-to-interpret criterion by which the abstraction is made. As such, Formulation (T)) is only
conceptual and impractical. Next, we relax it and make it practical via two ILL phases.

3.1 PRACTICAL LATTICE CONSTRUCTION: TO START LIKE A BABY (PHASE I)

Information lattice construction plays a role similar to building a function class in ML, sometimes
called meta-learning. While its importance is commonly understood, the construction phase in many
data-driven models is often treated cursorily—using basic templates and/or ad-hoc priors—leaving
most of the computation to the learning phase. In contrast, we put substantial effort into our prior-
driven construction phase. Pursuing generality and interpretability, we want universal, simple priors
that are domain-agnostic and close to the innate cognition of a human baby (Marcus|,2018). Here
we draw those from Core Knowledge (Spelke & Kinzler, 2007; Chollet, [2019), which include “the
(small) natural numbers and elementary arithmetic prior” and “the elementary geometry and topology
prior”. We then give algorithms to construct abstractions from these priors, and consider such a
construction prior-efficient if it is interpretable, expressive, and systematic. In the following flowchart,
we summarize information lattice construction as generating a partition sublattice.

PRIOR-DRIVEN STAGE ! HIERARCHY STAGE ! COMPLETION STAGE

I I
® ©) ' ® ' ® ®
SEEDS FEATURES/ PARTITION PARTITION PARTITION PARTITION
(PRIORS) SYMMETRIES MULTISET POSET SEMILATTICE SUBLATTICE
F S O(F),G(S) Brs) = Pary UPgsy (Birsy, 2) Brs))" Brs))

(1) (2) Feature / Symmetry-induced partitions. Unlike data clustering, our prior-driven partitions
are induced from two data-independent sources—features and symmetries. We draw priors—in the
form of seed features F' and seed transformations S—from Core Knowledge as a basis, and then
generate a set of partitions 3y sy as follows: as an example, for X = R2:

F = {wp), wyg), wp 9, sort, argsort, sum,diff,divy,...,divig,mody, ..., modig} (2)

S = {horizontal, vertical, diagonal translations} U {rotations} U {reflections} 3)

Under review as a conference paper at ICLR 2021

&(F) : set of features generated by F’ via function composition
G(S): setof subgroups generated by subsets of S via subgroup generation
Pgry = set of partitions generated by features in &(F') via preimages
Pg(sy = setof partitions generated by subgroups in G(S) via orbits

In (), wr denotes coordinate selection (like indexing/slicing in python) and the other functions are
defined as in python (div and mod are like in python divmod). Then, Br 5y = Po(r) U Pg(s)-

(3) Partition poset. We next sort B (F,s)» computationally a multiset, into the poset (B g,), <). We
import algorithmic skeleton from generic poset-sorting algorithms (Caspard et al., 2012} |[Daskalakis
et al.| 2011)), with an outer routine incrementally adding elements and querying an inner subroutine
(an oracle) for pairwise comparison. Yet, our poset is special: its elements are called tagged partitions
where a tag records the generating source(s) of its tagged partition, e.g., features and/or symmetries.
So, we have specially designed both the outer routine ADD_PARTITION and the oracle COMPARE by
leveraging (a) transitivity (valid for all posets), (b) partition size (valid for partitions), and (c) partition
tag (valid for tagged partitions) to pre-determine or filter relations. We relegate details to Appendix [E]
The data structures for posets include po_matrix and hasse_diagram, encoding the partial order <
(ancestors/descendants) and the cover relation <. (parents/children), respectively (Garg,[2015)).

(@) (5) Partition semi/sublattice. To complete (B(r,sy, =) into a lattice, we compute the sublattice
(of ‘Bx) generated by ‘B 5. We follow the idea of alternating-join-and-meet completions borrowed
from one of the two generic sublattice-completion methods (Bertet & Morvan,|1999)). A discussion
on our choice and other related methods is in Appendix [D| However, we implement join-semilattice
completion (meet-semilattice is dual) in our special context of tagged partitions, which echoes what
we did in (3) and reuses ADD_PARTITION. The adjustments are (a) changing tags from features and
symmetries to join formulae and (b) changing the inner subroutine from pairwise comparison to
computing join. We then run a sequence of alternating joins and meets to complete the lattice. For
interpretability, one may want to stop early in the completion sequence. While a single join or meet
remains simple for human interpretation—often understood as the intersection or union of concepts
(e.g., the join of colored items and sized items gives items indexed by color and size)—having
alternating joins and meets may hinder comprehension. More details on a single-step join-semilattice-
completion, the completion sequence, and tips on early stopping are relegated to Appendix

3.2 PRACTICAL LATTICE LEARNING: TO LEARN LIKE A CHILD (PHASE II)

Learning in an information lattice means solving the optimization Problem (TJ), i.e., to search for
a minimal subset of simple rules from the information lattice of a signal so as to best explain that
signal. Let 13, be the sublattice (or semilattice, poset, if early stopped) from the construction phase.
Projecting a signal £ : X — R to *B, yields the information sublattice Ro := ¢ (Bo) C Re. Itis
worth reiterating that (a) 13, is constructed first and is data-independent; (b) & (data) comes after 3,;
(©) (Ra, <) is isomorphic to (P,, <): R, retains the partial order (po_matrix and hasse_diagram)
and interpretability from P,. As such, R, is what is given at the beginning of the learning phase.

The main problem (relaxed). For practicality, we relax Problem (I): instead of the full lattice Re,
we restrict the search space to R,; instead of minimal rule sets, we consider only antichains (whose
elements are mutually incomparable), necessary for minimality. This yields:

m%lér%ize A(T(R),€) subject to R is an antichain; Ent(r) < e for any r € R. 4)

To solve Problem (@), we adopt a (greedy) idea similar to principal component analysis (PCA): we
first search for the most essential rule—which decreases A most—in explaining the signal, then the
second most essential rule in explaining the rest of the signal, and so on. Specifically, we start with an
empty rule set R(*) := (), and add rules iteratively. Let R(*) be the rule set formed by Iteration (Iter)
kand R¥) := {r € Re | r < 1’ for some 7’ € R}, Let R<, := {r € R, | Ent(r) < €}. Then,

(in Iter k& 4+ 1) minimize A(+(R™) U {r}),€) subjectto r € Rgf]z)asibze =Ree —RE. (5)

We pre-compute R <. (instead of the whole R,) before iterations, which can be done by a breadth-first
search (BFS) on 3,’s hasse_diagram, from bottom (the coarsest) up. As to the monotonicity of Ent
w.r.t. the partial order (cf. the grouping axiom of entropy (Cover & Thomas, [2012)), any BFS branch
ends once the entropy exceeds e. (For later use, we save the set R, . of ending rules in BFS, i.e., the

lower frontier of R+ ..) In contrast, Rgi) is computed per iteration (by querying B,’s po_matrix).

Under review as a conference paper at ICLR 2021

cap (A) N 2K
SIGNAL DOMAIN

°
RULE SET (R (M) I][l E
PROJECTS i i

GAP (A)IN
RULE DOMAIN

1K

A
L

Figure 3: An ILL toy example: (A.) shows the Hasse diagram of an information lattice R, demarcated
by six levels of e-frontiers. (B.) outlines the full search process along the e-solution path, where the
red highlights the activated rules and the blue background shows the marching of the BES frontier.
(C.) shows an ILL output—called a rule trace—where the up and down arrows show the alternating
min=max (lift=project) optimization and each star marks the best rule set under an ¢, i.e., a solution
to the main relaxed Problem (EI) (D.) shows a shorthand of (C.)—called a two-line notation—where
the kth signal along the signal trace (top line) is recovered by lifting up the first £ rules along the rule
trace (bottom line) then the (k + 1)th rule is extracted by projecting down the kth signal to the lattice.

Nested vs. alternating optimization. Computing 1 (R*) U {r}) requires solving a minimization, so
Problem H is a nested optimization: argmin, .z ¢ A(argmin, c o gy 1712, §). One may
de-nest the two: instead of comparing rules by lifting them up to the signal domain, we compare
them “downstairs” on their own rule domains. So, instead of minimizing (3)’s objective, we

maximiz?) A(ﬁ(R(k)) (domain(r)), | (domain(r))) = A(iT(R(k)) (domain(r)),r). (6)
r e Rgrni

sible

The idea is to find the rule domain on which the recovered 1 (R(¥)) and the target signal ¢ exhibit the
largest gap. Adding this rule to the rule set maximally closes the gap in (6], and tends to minimize the
original objective in (5. Nicely, in (€) the lifting does not involve r, so (5) is de-nested, which further

iterates into an alternating min—=max (or lift==project) optimization. Let rﬁk) be the solution and Aik)

be the optimal value in Tter k. We update R(+1) := R(®) U {rFT1 _ £ F1)g descendants}
(so always an antichain), and proceed to the next iteration. Iterations end whenever the feasible set is
empty, or may end early if the rule becomes less essential, measured by |Aik+1) — A&k)| < ~in the
nested setting, and Agk) < ~ in the alternating setting (for some).

The full learning path & complexity. We denote a solve process for Problem @ by SOLVE(e,),
or SOLVE(e) if ~ is fixed ahead. To avoid tuning e manually, we solve an e-path. Fore; < eg < - - -,
assume SOLVE(¢;) takes K; iterations, we run the following to solve the main relaxed Problem @:

P =R — SOLVE(e;) = R — SOLVE(ey) — REITHE) . (7)

So, lattice learning boils down to solving a sequence of combinatorial optimizations on the Hasse
diagram of a lattice. We walk through the full process (/) via a toy example, starting with a signal
¢:{0,...,27}% — [0, 1] denoting an image of “7” and a toy-sized information lattice of the signal
(Figure B]A). The sequence of optimizations (7) proceeds at two paces concurrently: the slower pace
is indexed by ¢;; the faster pace is indexed by iteration number k. As mentioned earlier, the sets R<.,

Under review as a conference paper at ICLR 2021

are pre-computed at the slower pace, with the (i + 1)th BFS initialized from R . . (the ending rules
in the ¢th BFS). The monotonicity of Ent w.r.t. the partial order assures that these BFSs add up to a
single (global) BFS on the entire Hasse diagram, climbing up the lattice from the bottom. This is
shown in Figure 3B as the monotonic expansion of the blue region (R <) explored by BFS. Locally
at each iteration along the slower pace, solving Problem (6)) is quadratic in the worst case when the
feasible set is an antichain (i.e., no order), and linear in the best case when the feasible set is a chain
(i.e., totally ordered). Since local BFSs add up to a single BFS with a standard linear complexity, the
entire learning phase has a total complexity between linear and quadratic in the number of vertices
and edges in the whole Hasse diagram. In general, the denser the diagram is, the lower the complexity
is. This is because R(¥) tends to be large in this case with more descendants activated (i.e., red in
Figure [3B), which in turn effectively shrinks the feasible set (i.e., the blue region minus red). For
example, unlike the first three iterations in Figure , the 4th iteration (¢ = 3) activates more than one
rules, including the one being extracted as well as all its unexplored descendants. Further, the upper
bound is rarely reached. Unlike in this toy example, BFS in practice is often early stopped when e
becomes large, i.e., when later rules become more random. Hence, targeting at more deterministic
and disentangled rules only, not all vertices and edges are traversed by BFS. In the end of the learning
process, for explanatory purposes, we store the entire e-path and the (R(k))k.zo sequence instead of
just the very last one. This yields a rule trace as the standard ILL output, which we present below.

How to read ILL output. ILL outputs a rule trace comprising an evolving sequence of rules, rule
sets, and recovered signals (Figure 3IC). The three sequences are indexed by iteration and by e-path, so
the rule set by the last iteration under any e (starred) is the returned solution to the main Problem).
We depict a rule by its lifting, since it sketches both the partition and the rule values. Figure 3[C gives
a full presentation of a rule trace. We also introduce a two-line shorthand (Figure[3D), keeping only
the sequence of the recovered signals and that of the rules. A rule trace answers what makes & an &,
or what are the best e-simple rules explaining £. ILL rules are more interpretable than just eyeballing
patterns. (a) The interpretability of the trace is manifest in its controllability via €, y: smaller € for
simpler rules and larger for more essential rules. (b) The interpretability of each rule is gained from
its partition tag—the criteria by which the abstraction is made. A tag may contain several generating
sources as different interpretations of the same rule abstraction. Like different proofs of a theorem, a
partition tag with multiple sources reveals equivalent characterizations of a structure and thus, more
insights of the signal. So, tags are not only computationally beneficial in constructing lattices, but
also key to interpretation. We present in-depth analyses on tags in the applications below.

4 JLL EXAMPLES

We show typical ILL examples on knowledge discovery in art and science: learning music theory
from scores and chemical laws from compounds (while relegating more analyses on handwritten
digits to Appendix [F)). For both, we fix the same priors—F, S in (Z)(3)—thus the same lattice. We fix
the same parameters: e-pathis 0.2 < 3.2 < 6.2 < --- (tip: a small offset at the beginning, e.g., 0.2,
is used to get nearly-deterministic rules) and is 20% of the initial signal gap. This fixed setting is
used to show generality and for comparison. Yet, the parameters can be fine tuned in practice.

Music illustration. Signals are probability distributions of chords encoded as vectors of MIDI keys.
Figure fh) shows such a signal—the frequency distribution of two-note chords extracted from the
soprano and bass parts of Bach’s C-score chorales (Illiac Software, Inc.| |2020)—with the learned rule
trace listed below. The first rule is tagged by argsort o wy; 5) and has probability all concentrated in
one cell whose elements have a larger y-coordinate (the black region above the diagonal). So, this is
a deterministic rule, echoing the law of “no voice crossing (N.V.C.)”, i.e., soprano higher than bass.
Checking later rule tags finds laws of voice range (V.R.), diatonic scale (D.S.), and consonant interval
(C.I.)—almost all of the main static rules on two-voice counterpoint. Notably, the third rule is tagged
by both mod; 2 o wyyj and vertical translation invariance. From both feature and symmetry views, this
tag identifies the concept of all Cs, all Ds, etc., which is the music concept of pitch class. The feature
view explicitly reveals a period of 12 in pitches—the notion of an octave (in defining pitch class); the
symmetry view reveals the topology—the manifold where the concepts lie—in this case a 2D torus.

Chemistry illustration. Signals are boolean-valued functions indicating the presence of compound
formulae encoded as vectors of atomic numbers in a molecule database. Figure [dp) shows a signal
attained by collecting two-element compounds from the Materials Project database (Jain et al.| | 2013)
of common compounds. The first rule tagged by divig o wyg) is deterministic: Element 2 can never be

Under review as a conference paper at ICLR 2021

s

= Ca
g{ [K; : I ‘
< |- ﬁ
ol g oA
O; . . ﬂ Cl
9 (- | [w S
-, = p
- .. s b Si
- Al
’4DA—|_-_| - Mg NaCl
60 [« Na
= Ne
(- E
| o
48 [N
(— - C
(— - B
— -
— Be
(— - L
36 [« e
— -
(—— G2 H
H HeLiBe B C N O FNeNaMgAISi P S Cl Ar KCa
60 72 BASS “ANION SCALE” ELEMENT 2
(a) V||(+H) W (b)
SIGNAL = |Iv..‘.12|l .][I] FIF “:. ;:. 5 4
01234567 - E | I EE:
WAWAWAWAWA‘VA TR GEN WAWAWAWAWA‘V?
s 75 i) \ WIS
T idldd "
0 [| . |
0123456789

N.V.C. V.R. D.S.

Figure 4: Music and chemical signals (top) with their rule traces learned from ILL (bottom).

Ar, K, Ca. It nicely captures the visual pattern in Figure db) (the last three vacant columns) and hints
suggestively at some chemistry rules. The second rule tagged by modg o wyo) has peaks at cells tagged
by feature values 1, 7,0, 6. These cells, for Element 2, are halogens (+H), pnictogens, chalcogens,
crystallogens. The third rule shows alkali metals, alkaline earth metals, crystallogens, icosagens are
the cells common for Element 1. Next rule shows the common combinations, e.g., alkali metals and
halogens. Note that the 2nd, 3rd, 4th rules for chemistry and the 5th, 3rd, 4th rules for music share the
same tags, except that mod;2 becomes modg—period changes from 12 (a music octave) to 8 (number
of main groups). So, when two chemical elements form a compound, they are like two music notes
forming a chord! The music concepts of pitch classes and intervals parallel the chemical concepts of
groups and their distances. Although abstractions are shared, rules differ. Instead of a diatonic scale
in Bach’s chorales, chemistry uses a “cation scale” and an “anion scale”. It is interesting that our
intention to show ILL’s generality (same lattice, parameters for different subjects) also suggests links
between art and science by interpreting phenomena (signals) in one subject from the perspective of
the other (Bodurow, 2018)). Applications that extend the experiment here beyond a clustering model
to restore the periodic table (Zhou et al., 2018) and render complex molecules in high dimensions are
ongoing, aiming to discover new laws, new interpretations of existing laws, and new materials.

Real-world deployment & evaluation. We generalized the music illustration to a real app of an
automatic music theorist (Yu et al.} 2016;|Yu & Varshney, |2017). It specially implements the alternat-
ing min=max setting into a “student=teacher” model: the student is a (music) generator and the
teacher is a discriminator. The two form a loop where the teacher guides the student towards a target
style through iterative feedback (extracting rules) and exercise (applying rules). This app extends the
above music illustration considerably. It considers more music voices, so now signals are in higher
dimensions and rules are on more complex chord structure. It considers temporal structure, so now
signals include many (un)conditional chord distributions (multi-n-grams), yielding both context-free
and context-dependent rules, but new challenges too, namely rare contexts and contradictory rules.
ILL’s core idea of abstraction makes “small data large” thus, rare contexts common (Yu & Varshney,
2017), and a redesigned lifting operator solves contradiction (Yu et al.,|2017). Further, parameters
like €,y are made into self-explanatory knobs for users to personalize their learning pace.

We conducted two studies to assess rule-learning capability and interpretability. We present the main
results here and detail the procedures in Appendix [G] In the first study, we compared ILL-discovered
rules with human-codified domain knowledge to see how much known can be reproduced and how
much new can be discovered. Trained on just 370 Bach’s chorales, our model reproduced in explicit

Under review as a conference paper at ICLR 2021

A. HOW MUCH KNOWN? B. HOW INTERPRETABLE? C. HOW MUCH NEW?

missed Score Range | #of Students figured soprano figured alto
7% 40 5%()) ; entropy = 4.76 entropy = 4.78

hizrgt(;d [30.40) 2 JIIII.- Illll-

(o} 4

covered [20.30) 4 figured bass figured tenor
66% [l[g%gg : entropy = 4.34 entropy = 4.80

0 5 nam Illl

Figure 5: ILL assessments on knowledge discovery tasks.

forms 66% of a standard music theory curriculum (Figure[5JA). In the rest, about 26% (e.g., harmonic
functions and music forms) was implicitly hinted at by the current n-gram based model, modeling
only transitions of abstractions but not explicitly abstractions of transitions—a future direction. In
the second study, we ran a human-subject experiment in the form of homework for a music class.
The homework asked 23 students to write verbal interpretations of ILL-generated rules rendered as
histograms over tagged partitions. Grading was based on a rubric of keywords generated via majority
vote in a later discussion among students and teachers. Figure [5B shows that the majority (2/3) of the
students who did the homework succeeded (w.r.t. the 30/50 passing grade) in the interpretation task,
which in turn shows the interpretability of the Al-produced knowledge itself.

In the first study, our model also discovered new rules that interested our colleagues in the music
school. (a) Tritone resolution is crucial in tonal music, yet in Bach’s chorales, tritones sometimes
do not resolve in typical ways, but consistently transition to other dissonances like a minor seventh.
(b) A new notion of “the interval of intervals” was consistently extracted in several rule traces. This
“second derivative”, like acceleration in mechanics, might suggest a new microscopic chord structure
heretofore unconsidered. (c) New symmetry patterns reveal new harmonic foundations. As a parallel
concept of harmony traditionally built on figured bass (dominant in Bach’s chorales confirmed by
ILL), ILL reveals “figured soprano” as the next alternative in explaining Bach’s music (Figure[5C).
Although not the best view for explaining Bach according to ILL and is not included in any standard
music theory class, it may be a valuable perspective for music starting deviating from classical. This
was confirmed by domain experts (Sokol, 2016)), with more details in the end of Appendix

5 DISCUSSION: LIMITATIONS AND CHALLENGES

As a first step, we devise a new representation-learning model intended to be both theoretically sound
and intrinsically interpretable. This paper shows typical setups and applications, but ILL is a general
framework that admits new designs of its components, e.g., projection-and-lifting or priors. Notably,
designing a lattice not only sets the rule-learning capacity but also the “vocabulary” for interpretation
which, like the Sapir-Whorf hypothesis for human language, limits how a lattice explains signals.
Likewise, priors have pros and cons based on what we seek to explain and to whom (e.g., not all
signals are best explained by symmetry, nor can everyone reads symmetry equally well). One solution
is to explore multiple lattices while balancing expressiveness and computation—a common practice
in picking ML models too. Further, whether a signal is indeed governed by simple rules requires
rethinking. Sometimes, no rules exist, then ILL will indicate this and a case-by-case study will be
needed. Sometimes, rules are insufficient: is music in fact governed by music theory? Theory is better
viewed as necessary but not sufficient for good music: great composers need not be great theorists.

Following studies comparing human-codified knowledge and using human-subject experiments for
interpretability, more systematic ILL benchmarking and assessment remain challenging and need
long-term efforts. Benchmarking is not as easy as for task-specific settings (Chollet, [2019), requiring
better comparison schemes or a downstream task. Effective ILL assessments must focus on new
discoveries and the ability to assist people. Instead of a Turing test for machine-generated music, one
may (at a meta-level) consider tests between independent and machine-aided compositions, but both
are done by humans. Further, ILL may be incorporated with other models, having an ILL version of
deep learning or vice versa. For example, using ILL as a pre-processing or post-interpretation module
in other models to achieve superior task performance as well as controllability and interpretability.
One other possibility may use ILL to analyze attention matrices (as signals) learned from BERT or
GPT (Rogers et al.| 2020). More future visions are in Appendix@

Under review as a conference paper at ICLR 2021

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access, 6:52138-52160, 2018.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798-1828, 2013.

Karell Bertet and Michel Morvan. Computing the sublattice of a lattice generated by a set of elements.
In Proc. 3rd Int. Conf. Orders, Algorithms Appl., 1999.

Karell Bertet, Michel Morvan, and Lhouari Nourine. Lazy completion of a partial order to the
smallest lattice. In Proc. 2nd Int. Symp. Knowl. Retr., Use and Storage for Effic. (KRUSE 1997),
pp. 72-81, 1997.

Christina Bodurow. Music and chemistry—what’s the connection? Chem. Eng. News, 96(36):39-39,
2018.

Nathalie Caspard, Bruno Leclerc, and Bernard Monjardet. Finite Ordered Sets: Concepts, Results and
Uses. Number 144 in Encyclopedia of Mathematics and its Applications. Cambridge University
Press, 2012.

Gregory J Chaitin. Algorithmic Information Theory. Cambridge University Press, 1987.

Nick Chater and Paul Vitanyi. Simplicity: A unifying principle in cognitive science? Trends Cogn.
Sci., 7(1):19-22, 2003.

Francois Chollet. On the measure of intelligence. arXiv:1911.01547v2 [cs.Al], 2019.
Erhan Cnlar. Probability and Stochastics, volume 261. Springer Science & Business Media, 2011.
Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons, 2012.

Constantinos Daskalakis, Richard M Karp, Elchanan Mossel, Samantha J Riesenfeld, and Elad Verbin.
Sorting and selection in posets. SIAM J. Comput., 40(3):597-622, 2011.

Brian A Davey and Hilary A Priestley. Introduction to Lattices and Order. Cambridge University
Press, 2002.

Benjamin Eva. Principles of indifference. J. Philos., 116(7):390-411, 2019.

Ruma Falk and Clifford Konold. Making sense of randomness: Implicit encoding as a basis for
judgment. Psychol. Rev., 104(2):301, 1997.

Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations. Springer
Science & Business Media, 2012.

Bernhard Ganter, Sergei Obiedkov, Sebastian Rudolph, and Gerd Stumme. Conceptual Exploration.
Springer, 2016.

Vijay K Garg. Introduction to Lattice Theory with Computer Science Applications. Wiley Online
Library, 2015.

Ben Goertzel and Cassio Pennachin. Artificial General Intelligence, volume 2. Springer, 2007.

Lejaren Hiller and Leonard Maxwell Isaacson. Illliac Suite, for String Quartet. New Music Edition,
1957.

Steven Holtzen, Todd Millstein, and Guy Van den Broeck. Generating and sampling orbits for lifted
probabilistic inference. arXiv:1903.04672v3 [cs.Al], 2019.

Matthew Hutson. How researchers are teaching Al to learn like
a child. http://www.sciencemag.org/news/2018/05/
how-researchers—are—-teaching—ai-learn—child, 2018.

Illiac Software, Inc. Harmonia. https://harmonia.illiacsoftware.com/, 2020.

10

http://www.sciencemag.org/news/2018/05/how-researchers-are-teaching-ai-learn-child
http://www.sciencemag.org/news/2018/05/how-researchers-are-teaching-ai-learn-child
https://harmonia.illiacsoftware.com/

Under review as a conference paper at ICLR 2021

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
The Materials Project: A materials genome approach to accelerating materials innovation. APL
Materials, 1(1):011002, 2013.

Michael I Jordan. Artificial intelligence—the revolution hasn’t happened yet. Harvard Data Science
Review, 2019.

David Kaiser and Jonathan Moreno. Self-censorship is not enough. Nature, 492(7429):345-347,
2012.

Martin Kauer and Michal Krupka. Subset-generated complete sublattices as concept lattices. In Proc.
12th Int. Conf. Concept Lattices Appl., pp. 11-21, 2015.

Kristian Kersting. Lifted probabilistic inference. In Proc. 20th European Conf. Artif. Intell. (ECAI
2012), pp. 33-38, 2012.

Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. arXiv:1802.03690v3 [stat.ML], 2018.

Holbrook Mann MacNeille. Partially ordered sets. Trans. Am. Math. Soc., 42(3):416—460, 1937.
Gary Marcus. Innateness, AlphaZero, and artificial intelligence. arXiv:1801.05667 [cs.Al], 2018.
Christoph Molnar. Interpretable Machine Learning. Lulu.com, 2019.

Andreas D Pape, Kenneth J Kurtz, and Hiroki Sayama. Complexity measures and concept learning.
J. Math. Psychol., 64:66-75, 2015.

Uta Priss. Formal concept analysis in information science. Ann. Rev. Inform. Sci. Tech., 40(1):
521-543, 2006.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. A primer in BERTology: What we know about
how BERT works. arXiv:2002.12327 [cs.CL], 2020.

Andrew D Selbst, Danah Boyd, Sorelle A Friedler, Suresh Venkatasubramanian, and Janet Vertesi.
Fairness and abstraction in sociotechnical systems. In Proc. Conf. Fairness, Account., and Transpar.,
pp. 59-68, 2019.

Claude Shannon. The lattice theory of information. Trans. IRE Prof. Group Inf. Theory, 1(1):105-107,
1953.

Charles Percy Snow. The Two Cultures. Cambridge University Press, 1959.
Casey Sokol. Figured soprano. https://caseysokol.com/?page_id=1067, 2016.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental Sci., 10(1):89-96,
2007.

Harini Suresh and John V Guttag. A framework for understanding unintended consequences of
machine learning. arXiv:1901.10002 [cs.LG], 2019.

Dmitri Tymoczko. A Geometry of Music: Harmony and Counterpoint in the Extended Common
Practice. Oxford University Press, 2010.

Haizi Yu and Lav R. Varshney. Towards deep interpretability (MUS-ROVER II): Learning hierarchical
representations of tonal music. In Proc. 5th Int. Conf. Learn. Represent. (ICLR 2017), 2017.

Haizi Yu, Lav R Varshney, Guy E Garnett, and Ranjitha Kumar. MUS-ROVER: A self-learning
system for musical compositional rules. In Proc. 4th Int. Workshop Music. Metacreation (MUME
2016), 2016.

Haizi Yu, Tianxi Li, and Lav R Varshney. Probabilistic rule realization and selection. In Proc. 31th
Annu. Conf. Neural Inf. Process. Syst. (NeurIPS 2017), pp. 1561-1571, 2017.

11

https://caseysokol.com/?page_id=1067

Under review as a conference paper at ICLR 2021

Haizi Yu, Lav R. Varshney, and Genevieve L. Stein-O’Brien. Towards learning human-interpretable
laws of neurogenesis from single-cell RNA-seq data via information lattices. In Proc. 33th Annu.
Conf. Neural Inf. Process. Syst. (NeurIPS 2019): Workshop Learn. Meaningful Represent. Life,
2019.

Quan Zhou, Peizhe Tang, Shenxiu Liu, Jinbo Pan, Qimin Yan, and Shou-Cheng Zhang. Learning
atoms for materials discovery. Proc. Natl. Acad. Sci. U.S.A., 115(28):E6411-E6417, 2018.

A CONNECTION TO CONCEPT LATTICE

Per our definition, a concept refers to a component of an abstraction, or more precisely, is a cell in a
partition or an equivalence class under an equivalence relation. This definition is consistent with a
formal concept defined in formal concept analysis (FCA) (Ganter & Wille, 2012} |Ganter et al., 2016}
Priss| 20006)) as a set of objects (extent) sharing a set of attributes (intent), which can be also treated as
objects that are equivalent under the attributes. However, our definition of a concept generalizes that
of a formal concept in two ways. First, in our case, a partition or an equivalence relation is not induced
from domain-specific attributes through formal logic and formal ontology, but from universal priors
drawn from the Core Knowledge (detailed in Section 3.1 in the main paper). Second, specifying a
partition considers all of its concepts, whereas specifying a set of formal concepts only considers
those with respect to a given formal context. As a result, partition lattices in our case generalize
concept lattices in FCA, and are not generated, hence not constrained, by domain knowledge such as
those encoded in formal ontologies.

Mathematically, let (Fx, <) be the partition lattice comprising all partitions of X and (2%, C) be
the subset lattice comprising all subsets of X. Clearly, the power set 2% is the same as {C' € P |
P € PBx}. That is, the subset lattice is also the lattice comprising all concepts from all partitions of
X, which can be then called the full concept lattice. So, one can define any concept lattice in FCA as
a sublattice of the full concept lattice (cf. Definition 3 in (Ganter et al.l 2016))). Yet, such a concept
sublattice does not have to include all concepts from a partition, and in many cases, it tends to miss
many concepts if they are not known in the existing ontology. We give two examples below to further

illustrate the connection between a partition lattice and a concept lattice.

First, consider biological taxonomy. Dogs and cats are two concepts in species which is an abstraction
containing other concepts such as eagles. Likewise, mammals and birds are two concepts in class
which is an abstraction containing other concepts such as reptiles and insects; further, animals and
plants are two concepts in kingdom. In light of hierarchy, as abstractions, species >~ class > kingdom
(in a partition lattice); as concepts, dogs C mammals C animals (in a concept lattice). Note that when
forming a concept lattice, one may not need to include say, all species. Yet when having species as an
abstraction in a partition lattice, this abstraction must contain all species including known species and
unknowns, where the latter is usually of more interest for knowledge discovery.

Second, consider music theory. C major triads, C minor triads, and B diminished triads are concepts
in an abstraction induced by music octave-shift and permutation invariance. Further, major triads,
minor triads, and diminished triads are concepts in another abstraction induced by music octave-shift,
permutation, and further transposition invariance. Clearly, for abstractions, the former abstraction is
finer than the latter; for concepts, the set of C major triads is a subset (or a special case) of the set
of major triads. However, chords that are not defined in traditional music theory but appear as new
concepts in a known abstraction (e.g., the two above) may be more interesting, since they may suggest
new composition possibilities while still obeying the same music abstraction, in this case the same
music symmetry. New concepts from new abstractions may push the composition boundary even
further, suggesting new types of chords discovered from e.g., new symmetry (but possibly within a
known symmetry family). See the end of Appendix for more examples from new discoveries.

B MORE GENERALIZED FORMALISM FOR INFORMATION LATTICE

The mathematical setting in the main paper is for a non-negative signal on a finite domain. However,
this is not a limitation, but purely for notational brevity and computational reasons. First, regarding
non-negativity, in many real scenarios, the signal is bounded and its value is only relative. In these
cases, one can simply add an offset to the signal to make it non-negative. More generally, we can

12

Under review as a conference paper at ICLR 2021

consider a signal to be any measurable function £ : X — R"™. Then the notions of an abstraction, a
concept, a rule, as well as the partial order can be generalized as in Table[I} Hence, the notion of an
information lattice is still well-defined in the generalized setting. The essence of the two settings lies
in how we formalize an abstraction, whether using a partition or a o-algebra. However, the two are
not very different from each other: any partition of X generates a o-algebra on X, and any o-algebra
on a countable X is uniquely generated by a partition of X (Cinlar, [2011).

Table 1: Formulations in the main paper and their generalizations.

| in the main paper generalized
signal £: X = R, X finite £ : X — R"™ measurable
abstraction a partition P of X a o-algebra ¥ on X
concept acellC eP asubsetC' € ¥
rule r:P—=R,r(C):=3,40C) r:X =R r(C):= [&du
partial order P <P »Cy

Further, the main paper uses the summation functional in defining a rule of a signal, or the projection
operator. However, other options are possible, e.g., mean, max, min, or a specially designed functional.
The lifting operator can then be redesigned accordingly. In particular, besides always favoring the
most uniform signal, the design of the special lifting can have extra freedom in considering other
criteria for picking a signal from the general lifting.

C MORE INSIGHTS ON THE SPECIAL LIFTING

Consider the special lifting 1 (R) for any rule set R = |¢ (B) of a given signal £. Computing 1 (R)
is simple if R = {r} contains only a single rule. In this case, 1 (R)(z) = 1 (r)(z) := r(C)/|C| for
any x € C' € domain(r), which requires simply averaging within each cell. However, computing
1 (R) becomes much less trivial when |R| > 1. By definition, we need to solve the minimization
problem:

T(R):= argminreﬂ(R)Hng. (8)

Instead of directly throwing the above problem () into a generic optimization solver, there is a more
efficient approach which also reveals more insights on the special lifting. More specifically, one can
check that any multi-rule lifting 1 (R) can be computed as a single-rule lifting 1 (r*) where the single
rule r* is defined on the join VB and is computed as follows:

r(C)?
-

*

r* i= argmin, ¢ qvpyR) [|Fll2, with the weighted norm ||7(|2 := Z
c

(€))

So, instead of lifting R directly to the signal domain X, we lift R to the join V3 first and then to X.
Since | V | < | X]|, the minimization problem @) is in a smaller dimension compared to the original
problem @]), and thus, can be solved more efficiently. In the minimization problem @]), by definition,
AP (R) := {r: VP — R | }" (R) = R}. Hence, every rule r € H(V¥) (R) can be treated as a
single-rule summary of the rule set R, and r* is one of them—the one that yields the most uniform
signal. Realizing the special lifting R — 1 (R) as the two-step lifting R — r* — 1 (r*) = T(R)
reveals the following insight: given rules abstracting £ at different levels (coarser or finer), the best
one can hope to faithfully explain £ is at the level of the join. Determining & at any level finer than the
join would then require additional assumptions other than the rule set itself, such as the preference of
uniformity used here. This further explains the two sources of information loss (join and uniformity)
discussed in the recovery process of a signal (cf. Section 3 in the main paper). Notably, to determine
a signal even at the level of join may be ambigious, since the general lifting (V%) (R) to the join is
not necessarily a singleton. This particularly implies that 7* as one of the single-rule summaries of R
of ¢ is not necessarily a rule of £, i.e., there is no guarantee that 7* = |¢ (V}3). To make it so, we
need more rules.

13

Under review as a conference paper at ICLR 2021

D EXISTING WORK ON SUBLATTICE GENERATION

General methods for computing the sublattice Lz of a full lattice L generated by a subset B C L fall
into two basic families, depending on whether the full lattice needs to be computed. The first uses
alternating join- and meet-completions, with worse-case complexity O(2!Z!); the second characterizes
the elements of L that belong to the sublattice, with complexity O(min(|.J(L)|, |M(L)|)?|L|) where
J(L) and M (L) denote the number of join-irreducibles and meet-irreducibles, respectively (Bertet
& Morvan, [1999)). The latter requires computing the full lattice, which is intractable in our case of
partition lattices, as |L| = [P x| grows faster than exponentially in | X | whereas | (5, gy | is usually
smaller than | X|. So, we use the first approach and compute alternating join- and meet-completions.
The same principle of avoiding computing the full lattice has been applied to the special context of
concept lattices (Kauer & Krupkal |2015)), yet the technique there still requires the full formal context
corresponding to the full concept lattice. Note that sublattice completion is, by definition, computing
the smallest sublattice L (in a full lattice L) containing the input subset B C L, where Lz must
inherit the meet and join operations from L. It generalizes but is not the same as Dedekind-MacNeille
completion (Bertet & Morvan, 1999; MacNeille, |1937; Bertet et al.,|1997).

E MORE DETAILS ON THE CONSTRUCTION PHASE

This section elaborates on the second half of Section 3.1 in the main paper, presenting more algo-
rithmic details on poset construction and sublattice completion. The core data structures for posets
are the so-called adjacency matrix and Hasse diagram, encoding the partial order < and the cover
relation <, respectively (Garg, |2015). The former is best for querying ancestors and descendants
of a partition within the lattice; the latter is best for querying parents and children of a partition.
(A more advanced technique includes chain-decomposition, but the two here are sufficient for this
paper.) More specifically,

P’ is an ancestor of P <= P < P’
P'isaparentof P <= P <. P’ (i.e.,P <P butno P satisfies P < P < P’).

We introduce a few algorithmic notations. Given a partition poset (3, <), we use B.po_matrix and
B.hasse_diagram to denote the adjacency matrix and Hasse diagram of 3, respectively. For any
partition P € 3, we use P.ancestors, P.descendants, P.parents, and P.children to denote
the sets of ancestors, descendants, parents, and children of P, respectively. Notably, the two data
structures are not only important for the construction phase but for the subsequent learning phase as
well. The core subroutine in the construction phase is ADD_PARTITION sketched as Algorithm I] It
is the key unit step in both poset construction and (join-)semilattice completion.

Poset construction. This corresponds to Step (3) in the flowchart in Section 3.1 of the main paper.
Recall that poset construction refers to the process of sorting a multiset P) of tagged partitions
into a poset (B (r,sy, =), where the partition tags are features and symmetries. Naively, if we write

an inner subroutine COMPARE(P, P’)—called an oracle in the related literature—to compare two

partitions, sorting a multiset into a poset amounts to (1;[) calls of this pairwise comparison where N is

the size of the input multiset. So, the common idea shared in almost all poset sorting algorithms is to
reduce the number of oracle calls as much as possible. As mentioned in the main paper, considering
the additional properties in our case, we leverage (a) transitivity (valid for all posets), (b) partition size
(valid for partitions), and (c) partition tag (valid for tagged partitions) to pre-determine or pre-filter
relations. In other words, we want to infer from the context as many pairwise relations as possible, so
that the number of actual pairwise comparisons can be minimized.

More specifically, we start from an empty poset, and call ADD_PARTITION to incrementally add
partitions from the input multiset to the poset. As the outer subroutine, ADD_PARTITION lever-
ages transitivity and partition size by maintaining three live data structures, namely size2partns,
po-matrix, and hasse_diagram, so as to avoid calling COMPARE whenever possible. Conse-
quently, COMPARE is called only at two places (underlined in Algorithm [I)): one for = and one
for <. When called as the inner subroutine, COMPARE(P, P’) does not always perform an actual
computation for pairwise comparison. Instead, it first checks if the tags are informative (e.g., com-
positions/supergroups imply coarser partitions) and only if not, makes an actual comparison. With
the additional information from partition size, an actual comparison can be done in O(]X|) time

14

Under review as a conference paper at ICLR 2021

Algorithm 1: ADD_PARTITION (P,,B): adds a tagged partition P to a partition poset (3, <)

Input: a tagged partition P, where the tag 7 can be a feature/symmetry or a join/meet formula;
a partition poset (3, <), with the following members and hash tables:

- every P € ‘B is a unique partition (indexed by a unique identifier)

- P.partn2tags [P] := {7 | P, = P} denotes the set of all tags inducing P

- P.size2partns [k] := {P | |P| = k} denotes the set of all P € P with size k

- B.po_matrix encodes the partial order <, best for getting P.ancestors/descendants

- B.hasse_diagram encodes the cover relation <., best for getting P.parents/children
Step 1: determine if P, is new by COMPARE(P, P,) (for =) for every
P € PB.size2partns [|P,|]
if P, € P.size2partns[|P;|]: update RB.partn2tags [P,] by adding 7; return
else: create a new hash entry 9.partn2tags [P,] = {7}; proceed to Step 2
Step 2: add the new partition P, to *J
(2a) update P3.size2partns [|P,|] by adding P,
(2b) update P.po_matrix and B.hasse_diagram
— for every existing size k < |P.| sorted in a descending order:
for every P € P.size2partns [k]:
if P.parents N P,.descendants # {): update B.po_matrix by adding P < P,

else: COMPARE(P, P,); update PB.po_matrix and B.hasse diagramif P < P,
(here one can check: it is necessarily the case that P <. P,)

do the above symmetrically for every existing size k > |P;| sorted in an ascending order
(note: every P € B.size2partns [k] for k = |P;| is incomparable with P,.)
clean cover relation: remove any P, <. P* from ‘.hasse_diagram if P, <. P, <. P*

via a mapping process. More specifically, given two partitions P, P’, without loss of generality, we
assume |P| < |P’]. An actual comparison is made by tentatively creating a mapping v : P’ — P.
One can check that such a v exists if and only if P < P’. Hence, if |P| = |P’| (resp. |P| < |P’]),
one can determine = (resp. <) if v is created successfully or incomparability otherwise. The mapping
complexity is linear in | X|, with linear coefficient 1 if mapping succeeds and with linear coefficient
< 1 if mapping fails. In the worst case (e.g., if all partitions are incomparable), all (J;[) pairwise
comparisons are required. Our algorithm works best when partitions are richly related (i.e., the Hasse
diagram is dense), which is indeed the case for our tagged partitions induced from systematically
formed features and symmetries.

Semilattice completion. This corresponds to Step (4) in the flowchart in Section 3.1 of the main
paper. Recall that join-semilattice completion refers to the process of completing a partition poset
into a semilattice. We only detail join-semilattice completion, since meet-semilattice completion can
be done symmetrically. Formally, we want to compute the join-semilattice of ¥ x generated by the
input poset (P (g 5), =). We denote the resulting join-semilattice by (B, sy)". By definition,

PBrsy) ={VBIP S PBrs)}-
Naively, if computing (B, S>>V literally from the above definition, one has to iterate over all subsets

of B r,s) and compute their joins. This amounts to 2™ join computations where N = 1B (F,5y] is the
size of the input poset, and moreover, many of the joins are not pairwise. Yet, similar to our earlier
poset construction, we may reduce the computations of joins by an incremental method, which also
embeds ADD_PARTITION as a subroutine and utilizes partition sizes and tags, but now the tags are
join formulae instead of features or symmetries.

More specifically, we start with an empty semilattice ‘B, and add partitions in P gy to 33 one by one
from smaller-sized to larger-sized (note: the size information is maintained in 3 5).size2partns).
When a partition P € ‘B r gy is to be added, we make a tag named by itself, i.e., let P, := P with
7 := {P}, and then call ADD_PARTITION(P,,‘B). There are two possibilities here: P, already exists
in B (call ends by Step 1) or P, is new (call ends by Step 2). In the former, we are done with P;.

15

Under review as a conference paper at ICLR 2021

In the latter, for every P’ € B\{P;}, compute the pairwise join J(P’) := V{P,, P’} and its tags
T(P'):={ruUr’ |7 € P.partn2tags [P’'] }, and call ADD_PARTITION(T (P’)r(p),). Like
COMPARE, computing join can be optimized by leveraging previously computed tags and partial
order in the input poset B (r 5y, s0 as to avoid an actual join computation whenever possible. When
inferring from the context is not possible, one can perform an actual join computation V (P, P’) in
O(|X) time. This is done by collecting the unique pairs of cell IDs (C(x), C’(z)) for every z € X,
where C'(z) and C’(x) denote the cell IDs of « in P and P’, respectively. In the worst case (e.g., if
all partitions are incomparable and join-irreducible), the complexity is inevitably O(2"). However,
like in poset construction, our algorithm works best when the partial order structure is rich.

Practical tips for sublattice completion. This corresponds to Step (5) in the flowchart in Section 3.1
of the main paper. Recall that constructing the sublattice of By generated by ‘B g,) follows the
alternating process: Lo := PBg gy, L1 := (Lo)", Lo := (L1)", L3 := (L2)", and so forth, which
terminates as soon as Ly_; = L. We denote the end result by <$(S,F) yVA which is the desired
sublattice. However, we may want to stop early in the completion sequence, due to concerns from
computation, interpretability, expressiveness, as well as their tradeoffs. We suggest a practical tip on
deciding where to stop. If the input poset ‘B 5y is small, run alternating joins and meets, or even
complete it to the sublattice if affordable. If 3 gy is moderate, complete the joins only (as join is
closely related to rule lifting, see Appdenix [C|for more details). If Py sy is large, just use it.

F MORE ANALYSES IN THE LEARNING PHASE

This section elaborates on the last paragraph of Section 3.2 in the main paper, presenting more
analyses and interpretations on the rule traces elicited from the toy handwritten-digit examples. Yet,
as mentioned in the main paper, computer vision is currently not among the typical use cases of ILL.
Learning rules of handwritten digits may not be of much independent interest unless for calligraphy.
So, the analyses and interpretations here are for illustration purposes only. We refer readers to the
Broader Impact section in the main paper for possible future directions on how ILL may be used,
together with other ML models, to solve computer vision tasks.

Recall that the main use case of ILL is to explain a signal £, answering what makes £ an £. The same
toy example illustrating an ILL process is replayed here in Figure The signal ¢ : {0,...,27}% —
[0,1] is a grayscale image of a handwritten “7”. In this case, a rule of &, or the projection of £ to a
partition of {0, ...,27}2, can be viewed as gathering “ink” within each partition cell. Accordingly,
the (special) lifting can be viewed as redistributing the gathered “ink” (evenly) in each cell. Hence,
we term this view the ink model. For visual convenience, we depict a rule of a 2D signal by its lifting
(i.e., another grayscale image), since with pixels in the same cell colored the same, we can use the
lifting to sketch both the partition and the rule values. More precisely, when a lifting represents a
rule, it must be viewed in terms of blocks or superpixels; whereas a real lifting (i.e., a signal or a real
image) is viewed normally by the regular pixels. To better clarify, all rules in Figure [3|are displayed
in red boxes, whereas all liftings are in green ones.

For a simple illustration, we draw a small number of features and symmetries to generate a poset
(B,) of 21 partitions. The corresponding part of the information lattice (R,) is shown by its Hasse
diagram in Figure 3] Further, on top of the Hasse diagram, we demarcate the frontiers of the sublevel
sets (R<.) by six blue dashed curves. Note that in this tiny diagram, we have sketched a full range
of sublevel sets, yet for large diagrams, sublevel sets are constructed for small e-values only in a
single-pass BFS. The right part of Figure [3]illustrates a complete ILL process in the alternating
setting, with lift=project signified by the green up-arrows and red down-arrows, respectively. During
the learning process, ILL tries to minimize the gap in the signal domain (upstairs) through iterative
eliminations of the largest gap in the rule domain (downstairs). Eliminating a larger rule gap tends to
imply a larger drop in the signal gap, but not necessarily in every iteration, since the special lifting
may accidentally recover a better signal if the assumed uniformity is, by chance, present in the signal.
The rule set R(*) formed per iteration is presented in the middle of the right part of Figure 3| which
joinly shows the complete rule trace continuously progressing along the e-path.

The rule set in the last iteration under any e (marked by % in Figure [3) is the returned solution to the
main relaxed Problem (4) in the main paper. This rule set is used to answer what makes £ an £. For
example, let r; denote the rule with ID j (here a rule ID is the same as the partition ID, the unique
identifier used in Algorithm [T]during the construction phase). Then, among all rules whose entropies

16

Under review as a conference paper at ICLR 2021

are no larger than e = 2, the third rule set in the trace RB) = {rg,r1, 718} best explains what makes

& an &. However, if more complex rules are allowed, say if all rule entropies are now capped by € = 6,
R(7) = {7‘13, 15, 7“19} is the best.

Recall that we do not just eyeball the rules to get intuitive understandings. Every rule is the projection
of the signal to a tagged partition, where the tag, generated in a prior-driven way, explicitly explains the
underlying abstraction criteria. For example, 19 in Figure[§|comes from a symmetry tag representing
a permutation invariance, which visually renders as a reflection invariance. Rules rg and r9 come
from two feature tags divy o wyy) and divy o wig), respectively. These two feature tags represent the
continuous and even collapsing in the first and the second coordinate, respectively, which visually
render as horizontal and vertical strips in either case. Both rules are later absorbed into 73 tagged by
divy owry g, since its rule domain is strictly finer. These rules (rs, r9, r13) apparently summarize the
horizontal and vertical parts of the handwritten “7”. Further, the vertical part of the “7” is longer and
slants more, so we see more vertically-patterned rules in the rule trace (rg, 11, 715). These rules are
obtained from finer and finer abstractions along the horizontal direction, so as to capture more details
on the vertical part of that “7” such as its slope. Notably, among these vertically-patterned rules, 711 is
induced from the symmetry representing a horizontal translation invariance, but it is quickly absorbed
into r15 whose entropy is not much higher. This transient appearance of ;; implies that it plays a
less important role in explaining this handwritten “7”. In fact, from more experiments, symmetries
in general play a less important role in explaining many “7”’s. This is, however, not the case in
explaining many “8”s, where symmetries occur much more often. For example, consider a symmetry
fused from translation and permutation invariances whose fundamental domain is homeomorphic to a
Mobius strip. We hypothesize that this topological property might be related to the twisted nature of
an “8”. For a visual comparison, we present the rule traces learned from a “7”” and an “8” below in
Figure[6] as well as the visual similarity between a Mobius strip and an “8”.

MREREET
= q/

N EEe - (2 3

vAVAY PV AVAYV LAY A

| V0 3B HE

Figure 6: A rule trace of a “7” and that of an “8”, together with a 2D Mobius strip.

G STUDIES ON ILL-BASED MUSIC APPLICATION

We introduce two tests associated with a real-world application. The first is to assess rule-learning
efficacy, where we compare machine-discovered rules to human-codified domain knowledge. The
second is to assess human-interpretability, where we use human subject experiments on interpreting
machine-generated rules.

The application here is our first step towards building an automatic music theorist and pedagogue,
which is to be deployed as an assistant in music research and education. The two tests are our
initial effort towards a systematic benchmarking and assessment platform. In the continuing effort of
bridging human and machine intelligence, new standards are to be set and commonly agreed upon, so
as to reasonably compare machine-codified discoveries with human-codified knowledge, as well as to
use human-subject experiments for assessing interpretability. Fully developing assessment protocols
is a challenging, long-term endeavor. Here, we use the two tests as starting points, and present results
from each. Respectively, the first experiment tests music rule discovery, a basic requirement to be a
theorist; the second tests interpretability, a basic requirement to be a pedagogue.

17

Under review as a conference paper at ICLR 2021

HOME ALEXv HOME ALEXv

,,,,,

Contents Feature: mod12 o w1 I« ¢ Rule: 8/8 ~ > »l n-gram: 6 Contents Feature: modi2 o w2 14 ¢ Rule: 8/8 ~ > »l n-gram: 6
HIRGE T Rule
Chord Chord) . o
Rule-Learning Setting Composition
Analytics Analytics Music style 77 SATB
Bach Brain Creativity type “ =
Gaps I Student solver I * * l
Contrasts — — - - — - Satisfactory =~ —e—— v

0 1 2 3 4 5 6 7 8 9 1011 R
Comments: Soprano is largely diatonic.

Deviation B — . rROODOO

Difficulty

Control

[Proceed |

Revoke

(@) (b)

Control
Proceed
Revoke

Figure 7: ILL-based music web interface: (a) rule histogram; (b) user control panel.

ALMOST NO BASS IS FROM A DOMINANT 7TH RESOLVES TO TONIC
VOICE CROSSING DIATONIC SCALE TRIAD (ROOT DOUBLING PREFERRED)
PARTITION ID: 63 PARTITION ID: 19 PARTITION ID: 85
N-GRAM: 1 N-GRAM: 1 N-GRAM: 2
FEATURE: argsort o W1,2,3,4] FEATURE: modjg © Wiy CONDITIONAL: 2,5,7,11

FEATURE: sort omodjz © W[y 23 4]

4<3<2<1 4=3<2<1 097425168101 R3 0,0,4,7 0,4,4,7

Figure 8: Examples of ILL-generated music rule histograms: first two are context-free rules, the last
one is a context-dependent rule.

To conduct the two tests, we first build a user-friendly web application, which is used to better see and
control the ILL learning process and results. Figure[/|illustrates the web interface. Users learn music
rules—each as a histogram over a tagged partition (i.e., machine-codified music concepts)—and
control their learning pace via self-explanatory knobs whose set values are automatically converted
to internal parameters (e.g., €,). One critical music-specific extension to the vanilla ILL presented
in the main paper is adding a temporal component, since music is highly contextual. This amounts
to considering more than one signal simultaneously, which include various (un)conditional chord
distributions (multiple n-grams with varying n’s and varying conditionals) encoding information of
individual chords as well as melodic and harmonic progressions. Accordingly, ILL produces both
context-free and context-dependent rules, each of which is indexed by a partition and a conditional
under that partition. For example, given the partition that is equivalent to classifying music chords
into roman numerals and conditioned on the previous two chords being a Ig followed by a V, a rule
specifies the probability distribution of the next roman numeral, and in this case reproduces the music
rule on Cadential-64. Note that in a context-dependent rule, not only is the query chord abstracted,
but also the conditional. This is in contrast with many classical n-gram models where no abstraction
is present and thus may suffer from the problem of rare contexts, where a conditional occurs very few
or even zero times in the training set. However here, the core idea of abstraction makes “small data”
large and thus rare contexts common. More examples of context-free and context-dependent rules are
illustrated as histograms in Figure[8] These rule histograms are generated from ILL based on 370 of
Bach’s four-part chorales (in the format of digital sheet music), and are used in the two experiments
detailed below.

G.1 COMPARISON TO HUMAN-CODIFIED KNOWLEDGE

We compare rules learned from ILL to a standard undergraduate music theory curriculum. We want
to use known laws from music theory as a benchmark to see how ILL-generated rules correspond to
human-codified music knowledge. In particular, we want to see what is covered, what is new, and
what is different. Yet, the ultimate goal is not just to use known music theory as a ground truth for
the purpose of driving ILL to fully reconstruct what we know, but eventually to discover new rules,

18

Under review as a conference paper at ICLR 2021

to gain new understandings of existing rules, to suggest new composition possibilities, as well as to
teach rules in a personalized way.

A priori we are aware of three major differences between human-codified music theory and ILL-
generated rules. (a) In light of music raw representations (input), laws of music theory are derived
from all aspects in sheet music whereas ILL-generated rules are currently derived from only MIDI
pitches and their durations. This is because we currently study ILL as a general framework. When a
music-specific application is to be developed later, one can include more music raw representations
such as letter pitches, meter, measure, beaming, and articulations. (b) In light of rule format (output),
laws of music theory and ILL-generated rules have two different styles, with the former being more
descriptive and absolute (hard), whereas the latter being more numerical and probabilistic (soft). For
instance, a music rule that completely forbids consecutive fifths is reproduced by an ILL-generated
rule that assigns a small non-zero probability to the event. Therefore, while it is possible to “translate”,
with information loss, a (precise) ILL-generated rule to a (verbal) rule in known theory, it may not
make sense to “translate” in the opposite direction. Also, it is not a good idea to hardcode known
rules as categorical labels in a supervised setting, since music rules are inherently flexible and
hardcoding may lead to a rule-based Al that generates somewhat “mechanical” music such as the
lliac Suite (Hiller & Isaacson, |1957)). (c) In light of purposes, laws of music theory are more intended
for general pedagogical purposes, rather than to reflect the style of a particular data set. For instance,
while consecutive fifths are banned in homework and exams, they may be widely used in many
pop songs. Even in our data set of Bach’s chorales (which are supposed to follow the known rules
quite well), we see Bach himself wrote a handful of consecutive perfect intervals. On the contrary,
ILL-generated rules are specific to the input data set. We may certainly find some data sets that follow
the known rules quite well (e.g., Bach’s chorales), but also others that break many known rules and
even set their own rules.

Keeping these three differences in mind and by further isolating them from the comparison results,
we can reveal the remaining differences that are due to the rule-learning process itself. To come up
with the benchmark, we compiled a comprehensive syllabus of laws from music theory taught in our
music school’s theory review course, which runs through the full series of theory classes at a fast
pace. This human-codified music knowledge is organized as a running list of 75 topics and subtopics
indexed by lecture number. On the other hand, ILL-generated rules are indexed by partition (ID)
and n-gram (n). The results are summarized below in Table[2} where the colored crosses in the last
column indicate topics that are missed by ILL due to different reasons.

Among the total 75 topics in Table 2] we first ignore 7 of them (red crosses) which require music raw
representations beyond MIDI pitches and durations (e.g., accents and enharmonic respellings of some
augmented sixth chords). ILL covered 45 out of the remaining 68 topics, yielding a coverage of 66%.
Among the 23 missed topics, 18 (blue crosses) are related to deeper-level temporal abstractions such
as harmonic functions, key areas, and forms. These temporal abstractions may be better modeled as
abstractions of transitions, which are implicitly captured but not explicitly recovered from our current
multi-abstraction multi-n-gram language model, modeling only transitions of abstractions. The other
5 missed topics (black crosses) are tricky and require ad-hoc encodings, which are not explicitly
learnable (but may be implicitly captured to some extent) from our current ILL implementation.
Accordingly, the composition of the 30 = 7+ 18 4 5 uncovered topics suggest three future directions
to possibly raise the rule-learning capacity of the current implementation: (a) include more music
raw representations; (b) model abstractions of transitions; (c) either make music-specific adjustments
when developing music apps or figure out a more expressive and more general framework in the long
run. However, remember that the goal here is not to reproduce what we know but to augment it. So,
we may certainly stop after enabling abstractions of transitions, which in the best case can yield an
improved coverage of 84% (i.e., 93% of the topics from MIDI notes only) which is good enough.

Lecture Music Theory ‘ Fartition IDs n-gram
1 music accents X
2 pitch 1-4 |
2 pitch class 16-19 1 v
2 interval 31-36 1 v
Table 2| (cont.)

19

Under review as a conference paper at ICLR 2021

Lecture Music Theory ‘ Fartition IDs n-gram
2 interval class 97-102 |
3 stepwise melodic motion (counterpoint) 1-4 2 v
3 consonant harmonic intervals (counterpoint) 97-102 1 v
3 beginning scale degree (counterpoint) 16-19 2/
3 ending scale degree (counterpoint) 16-19 2 v
3 beginning interval class (counterpoint) 97-102 2/
3 ending interval class (counterpoint) 97-102 2/
3 parallel perfect intervals (counterpoint) 97-102 2 v
3 directed perfect intervals (counterpoint) X
3 law of recovery (counterpoint) 1-4 >3 7/
3 contrapuntal cadence (counterpoint) 1-4,97-102 23 V/
3 melodic minor ascending line (counterpoint) X
4 triads and seventh chords 26-30 1 v
4 triads and seventh chords: quality 140-144 1 v
4 triads and seventh chords: inversion 113-117 1 v
5 figured bass 113-117 12 vV
5 roman numerals 81-85,129-133 1 v
6 melodic reduction (Schenkerian analysis) X
7 passing tone (tones of figuration) 1-4, 134-144 3 7
7 neighbor tone (tones of figuration) 1-4, 134-144 3 v
7 changing tone (tones of figuration) 1-4, 134-144 4 v
7 appoggiatura (tones of figuration) 1-4, 134-144 3 7
7 escape tone (tones of figuration) 1-4, 134-144 3 v
7 suspension (tones of figuration) 1-4, 134-144 3 v
7 anticipation (tones of figuration) 1-4, 134-144 3 7
7 pedal point (tones of figuration) 1-4 >3 Vv
7 (un)accented (tones of figuration) X
7 chromaticism (tones of figuration) X
8 tonic (function) X
8 dominant (function) X
8 authentic cadence | 1,4,81-85,129-133 23
8 half cadence 81-85,129-133 23 /
9 voice range (four-part texture) 1-4 |
9 voice spacing (four-part texture) 31-41 1 v
9 voice exchange (four-part texture) 20-25 2 v
9 voice crossing (four-part texture) 53-63 1 v
9 voice overlapping (four-part texture) X
9 tendency tone (four-part texture) 16-19 12 v
9 doubling (four-part texture) 86-91 1 v
10 harmonic reduction (second-level analysis) X
11 expansion chord X
12 predominant (function) X
13 phrase model X
14 pedal or neighbor (six-four chord) 4,113-117 3 7
14 passing (six-four chord) 4,113-117 3 7
14 arpeggiated (six-four chord) X
14 cadential (six-four chord) 85,113-117,133 34
15 embedded phrase model X
16 non-dominant seventh chord (function) X
17 tonic substitute (submediant chord) X
17 deceptive cadence (submediant chord) 81-85,129-133 23 /
18 functional substitute (mediant chord) X
19 back-relating dominant 81-85,129-133 23
20 period (I) X
21 period (IT) X
22 period (III) X
Table |2|(cont.)

20

Under review as a conference paper at ICLR 2021

Lecture

Music Theory ‘ Fartition IDs n-gram
23 applied chords (I) 81-85,129-133 23 /
24 applied chords (II) 81-85,129-133 23 V/
25 applied chords (III) 81-85,129-133 23 V/
26 modulation (I) X
27 modulation (IT) X
28 binary form (I) X
29 binary form (II) X
30 modal mixture X
31 Neapolitan 81-85,129-133 1 v
32 Italian sixth chord 140-144 1 v
32 French sixth chord 144 1 v
32 German sixth chord X
32 Swiss sixth chord X
33 ternary form X
34 sonata form X

Table 2: Comparison of ILL-generated rules to human-codified laws of music theory taught in
standard undergraduate music theory courses. Checks (45) in the last column denote topics recovered
by ILL. Red crosses (7) denote topics not recoverable from our music raw representations; blue
crosses (18) denote topics not recoverable from our n-gram transitions of abstractions (partitions);
black crosses (5) denote topics not recoverable from the constructed lattice of abstractions.

From another source of music theory considering music symmetries (Tymoczkol 2010), we compare
ILL-generated rules with a set of commonly used music operations, known as the OPTIC operations,
namely octave shifts (O), permutations (P), transpositions (T), inversions (I), and cardinality changes
(C). The results are summarized in Table |3} which shows that ILL covers the major four types of
operations (OPTI). The music C operation is not recovered since it is not a transformation in the
mathematical sense. Notations: ¢,, denotes a translation by the translation vector v, i.e., £, (z) := z+v;
r 4 denotes a rotation (can be proper or improper) by the rotation matrix A, i.e., 74 (z) := Az. Asa
special type of rotation matrices, P("") denotes a permutation matrix where the superscript is the
cycle notation of a permutation. Note that ILL, as a general framework, considers a much larger
universe of generic symmetries (from Core Knowledge) beyond those already considered in music.
Therefore, ILL can not only study existing music symmetries, but also suggest new symmetries to be
exploited in new music styles as well as possible music interpretations of symmetries discovered in
other fields like chemistry as described in the main paper.

Table 3: Comparison of ILL’s symmetry-induced rule abstractions to the music OPTIC operations.

Operation ~ Music Description Subgroup
Octave shift “Move any note into a new octave.” ({t12eqst12e0, t12e55 t12e4 }) v
Permutation “Reorder the object, changing which {rpa2,rpes,rpeay}) v

voice is assigned to which note.”
Transposition “Transpose the object, moving all of its {t1})
notes in the same direction by the same
amount.”
Inversion “Invert the object by turning it ‘upside {r_1}) v
down’.”
Cardinality Change “Add a new voice duplicating one of the X
notes in the object.”

21

Under review as a conference paper at ICLR 2021

figured soprano figured alto figured tenor figured bass
(entropy = 4.76) (entropy = 4.78) (entropy = 4.80) (entropy = 4.34)

0.3 0.3 0.3 0.3

0 most probable figures 0 most probable figures 0 most probable figures 0 most probable figures
(show top 20 only) (show top 20 only) (show top 20 only) (show top 20 only)

Figure 9: Rules on figured soprano, figured alto, figured tenor, and figured bass. Each histogram
shows only the top 20 most probable figures (for brevity), while the entropy is computed from the
entire rule. Among the four cases, ILL shows that figured bass (with the smallest entropy) is most
effective in explaining Bach’s chorales, echoing its importance as a main topic in any standard music
theory curriculum. ILL further reveals figured soprano as the next most effective.

Lastly, we mention a few new rules discovered by ILL that are interesting to our colleagues in the
School of Music. First, tritone resolution plays an important role in tonal music and appears as an
epitome in many more general harmonic resolutions. Yet, in Bach’s chorales, tritones are sometimes
not resolved in a typical way but consistently transition to another dissonance like the minor seventh,
which behaves like a harmonic version of an escape tone or changing tone. Second, a new notion of
“the interval of intervals” has been consistently extracted in several ILL-generated rule traces. Such a
“second derivative”, like acceleration in mechanics, might suggest a new microscopic chord structure
to consider. Third, new symmetry patterns reveal new possible foundations for building chords, and
thus new composition possibilities. For example, as a parallel concept of harmony traditionally built
on figured bass (which is indeed the dominant pattern in Bach’s chorales confirmed by ILL), ILL
reveals “figured soprano” as the next alternative in explaining Bach’s music (Figure[J). Clearly,
figured soprano is not the best view for explaining Bach according to ILL and is indeed not included
in any standard music theory class, yet it may be a more efficient perspective to view other types
of music (e.g., in some Jazz improvisations). This vision coincides with comments made by Casey
Sokol (Sokol, |2016)), a music professor at York University, which we quote below: “The idea of
Figured Soprano is simply a way of taking this thinking from the top-down and bringing it into
greater prominence as a creative gesture. So these exercises are not anything new in their ideation,
but they can bring many new ideas, chord progressions and much else. It’s a somewhat neglected
area of harmonic study and it’s a lot of fun to play with.”

G.2 HUMAN SUBJECT EXPERIMENT FOR ASSESSING INTERPRETABILITY

Our second experiment is a human subject experiment, where we collect and assess human-generated
verbal interpretations of ILL-generated music rules rendered as sophisticated symbolic and numeric
objects. Our goal is to use the results here to reveal both the possibilities and challenges in such a
process of decoding expressive messages from Al sources. We treat this as a first step towards (a) a
better design of Al representations that are human-interpretable and (b) a general methodology to
evaluate interpretability of Al-discovered knowledge representations. In this experiment, we want to
test to what degree our ILL-generated rules are interpretable. Our subject pool includes people who
have entry-level math and music theory knowledge. So, by interpretability, we mean interpretable to
them. The whole experimental procedure divides into two stages. At the first stage, we collect human
interpretations of ILL-generated rules. At the second stage, we assess the collected interpretations to
further evaluate the interpretability of Al-produced knowledge.

Collect Human Interpretations. The experiment was conducted in the form of a two-week written
homework assignment for 23 students. Students came from the CS+Music degree program recently
launched in our university. Entry-level knowledge of computer science, related math, and music
theory is assumed from every student. However, all students are new to our Al system, and none have
read any ILL-generated rules before. The homework contained three parts. Part I provided detailed
instructions on the format of the rules as exemplified in Figure[§] including both feature-related and
probability-related instructions (symmetries were excluded from the tags since group theory is an
unfamiliar subject to these students). More specifically, we provided verbal definition, mathematical
representation, and typical examples for each of the following terms: chord, window (for coordinate
selection), seed feature, feature, rule, n-gram, histogram, data set. A faithful understanding of these
eight terms was the only prerequisite to complete the homework. The estimated reading time of the

22

Under review as a conference paper at ICLR 2021

instructions was about an hour. Once this self-training part was completed, the students were ready to
go to the second and third parts—the main body of the homework. Part II contained eleven 1-gram
rules—a histogram specified by window and seed feature(s); Part III contained fourteen 2-gram
rules—a histogram now specified by window, seed feature(s), and a conditional. The students were
asked to freely write what they saw in each of the histograms guided by the following two questions.
(a) Does the histogram agree or disagree with any of the music concepts/rules you know (write down
the music concepts/rules in music-theoretic terms)? (b) Does the histogram suggest something new
(i.e., neither an agreement nor a disagreement, with no clear connection to any known knowledge)?
Answers to each of the 25 rules came in the form of text, containing word descriptions that “decode”
the histogram—a symbolic and pictorial encoding. Students were explicitly instructed that writing
out a description that was basically a literal repetition of the histogram (e.g., taking a modulo 12 of
a chord results in a 91.2% chance of being 0, 0, 4, 7) is not acceptable: they must reveal the music
behind the math. In fact, we made it clear to the students that we only want qualitative descriptions.
Students were specifically told (in the instructions) to only pay attention to the relative values of the
probabilities whose exact numbers are unimportant (e.g., what are most likely, what are more likely,
what are almost impossible). This homework was due in two weeks. During the two-week period, we
asked the students to complete it independently, with no group work or office hours.

Assess Human Interpretations. The homework was designed in a way such that every rule histor-
gram encoded at least one music concept/rule consistent with standard music theory. In addition,
every histogram contained either one additional known music rule or something strange that either
conflicted with a known rule or represented something new. We assigned two points per rule. Further,
we made an initial rubric containing the (authoritative) music keywords used to describe every rule
histogram. Because students’ answers arrived in the form of qualitative text, to ensure credibility and
fairness of the initial rubric, we held a discussion session at a regular lecture time (80 minutes) with
all students as well as the teaching staff. During the discussion session, we went over all 25 rules one
by one. For each, we first announced the keywords in the initial rubric and explained to the students
that these keywords would later be used to grade their homework. However, in the discussion session,
every student was encouraged to object to any of our announced keywords and/or to propose new
keywords accompanied with a convincing explanation. New/modified keywords that were commonly
agreed upon were added/updated to the initial rubric. By the end of discussion session, we compiled
a more inclusive rubric containing broadly accepted keywords. This rubric-generating process was
transparent to all the students. In the final step, we manually graded every student’s answer sheet
against keywords in the rubric and computed their scores. A summary of the students’ performances
is presented in Table] Except for cases where the student did not do the homework, a major source
of score deduction was from misunderstanding the n-gram (e.g., the probability of the current chord
conditioned on the previous chord was mistakenly interpreted as the probability of the previous chord
conditioned on the current one). This may be largely due to unfamiliarity with the n-gram models
for new CS+Music students. Nevertheless, the majority of the students who did the homework (2/3)
succeeded (with respect to the 30/50 passing grade) in interpreting the rules generated from ILL,
which in turn provides evidence on the interpretability of the Al-produced knowledge itself.

Table 4: Students’ final scores.

Score Range | # of Students

N == oW

H CONCLUSION AND BROADER IMPACTS

Model transparency and interpretability are important for trustworthy Al, especially when interacting
directly with people such as scientists, artists, and even multidisciplinary researchers bridging the Two

23

Under review as a conference paper at ICLR 2021

Cultures (Snow,, |1959) (e.g., like music and chemistry). The core philosophy underlying ILL arises
from a human-centered standpoint and our long-term pursuit of “getting humanity back into artificial
intelligence”. We strive to develop human-like artificial intelligence, which in turn may help advance
human intelligence—a goal at the intersection of AGI (artificial general intelligence (Goertzel &
Pennachin, |2007)), XAI (explainable artificial intelligence (Adadi & Berrada, 2018)), and “Al as
augmented intelligence” (Jordan, [2019).

As such, the focus of interpretability in this line of research is not just the end result of the model,
but the entire learning process. This emphasis on process is not only manifest in this paper (e.g.,
two-phase learning that “starts like a baby and learns like a child” with a full rule trace as output), but
also in ongoing ILL-driven real-world projects aimed for beneficent societal impact. To name a few:
(a) ILL-aided scientific research to accelerate new discoveries, as in biology (Yu et al.[[2019); (b) ILL-
aided artistic creation to enable new ways and new dimensions in one’s creative and/or collaborative
experience (art as a process is about more than the work itself); (c) ILL-aided personalized education.
Discovered scientific knowledge, artistic expression, and educational curricula, may have a dual use
character (Kaiser & Morenol [2012). Nevertheless, making the discovery of abstract knowledge easier
may lead to abstraction traps (Selbst et al.,2019) in deploying such learned knowledge in engineering
design or policy making.

Evaluation for ILL and similar technologies should have a humanist perspective, whether comparing
to human-codified knowledge or with human subject experiments to assess interpretability. Moreover,
evaluations for scientific discovery, artistic creativity, and personalized education should not only
focus on model performance, but also on the human-centered criteria of how effectively they aid
people in achieving their goals. Illuminating rules associated with practice not only helps human
students be better rule-followers, but more creative rule-breakers and rule-makers. Instead of a
Turing test for machine-generated music, one might more productively conduct artistic evaluation at
a meta-level between human-written music constructed with and without assistance from ILL.

Regarding biases in data, because ILL works in the “small data” regime makes it easier to curate data
to avoid representation biases (Suresh & Guttag,2019). Manually curating 370 music compositions
is possible, but manually curating a billion is not.

ILL can be treated as a complement to many existing Al models, with a special focus on model
transparency and explainability. Extensions to ILL could enable it to better cooperate with other
models, e.g., as a pre-processing or a post-interpretation tool to achieve superior task performance
as well as controllability and interpretability. One such possibility could leverage ILL to analyze
the attention matrices (as signals) learned from a Transformer-based NLP model like BERT or
GPT (Rogers et al., [2020).

24

	Introduction
	Information Lattice: Abstractions and Rules of a Signal
	Information Lattice Learning (ILL)
	Practical Lattice Construction: To Start Like a Baby (Phase i)
	Practical Lattice Learning: To Learn Like a Child (Phase ii)

	ILL Examples
	Discussion: Limitations and Challenges
	Connection to Concept Lattice
	More Generalized Formalism for Information Lattice
	More Insights on the Special Lifting
	Existing Work on Sublattice Generation
	More Details on the Construction Phase
	More Analyses in the Learning Phase
	Studies on ILL-based Music Application
	Comparison to Human-Codified Knowledge
	Human Subject Experiment for Assessing Interpretability

	Conclusion and Broader Impacts

