Under review as a conference paper at ICLR 2024

MEASURING FEATURE SPARSITY IN LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works have proposed that intermediate activations in language models can
be modelled as sparse linear combinations of vectors corresponding to features of
the input text. Under this assumption, these works have aimed to reconstruct these
feature directions using sparse coding. We develop metrics which can be used to
assess the success of these sparse coding techniques and thereby implicitly test the
validity of the linearity and sparsity assumptions. We show that our metrics can
predict the level of sparsity on synthetic sparse linear activations, and that they
can distinguish between sparse linear data and several other distributions. We use
our metrics to measure the level of sparsity in several language models. We find
evidence that language model activations can be accurately modelled by sparse
linear combinations of features, significantly more so than control datasets. We
also show that model activations appear to be sparsest in the first and final layers,
and least sparse in middle layers.

1 INTRODUCTION

Over the past decade, neural networks have demonstrated remarkable performance in many domains,
including natural language processing (Brown et al.,|2020; OpenAl} |2023)), computer vision (Wang
et al., [2022), protein structure modelling (Jumper et al.l [2021)) and complex strategy games (Silver
et al., 2017} Berner et al.| 2019). However, our capacity to interpret these models lags far behind.
Being able to reliably and automatically determine the features used by such models — that is, the
properties of the model inputs that the model extracts and uses for its predictions — would be a major
step forward in our ability to interpret and safely deploy such models.

Many methods have been proposed for extracting model features, including feature visualization
(Erhan et al.} 2009; Olah et al.| 2017), saliency maps (Simonyan et al.|[2014) and feature importance
scores (Lundberg et al.,[2017)). Feature extraction for language models is less well developed, though
recent techniques can locate facts within models (Meng et al.,[2022)) and show how models perform
certain linguistic operations (Geiger et al.,|2021). Nevertheless, most approaches to language model
interpretability require human input at key stages and scale poorly to extracting many features.

One particular obstacle is the existence of polysemantic neurons in language model MLP layers —
neurons that respond to multiple seemingly unrelated features (Olah et al.|[2020; Elhage et al.|[2022).
One hypothesised explanation for this behaviour, is that in the absence of co-occuring features,
models use one neuron to represent several features without loss of accuracy. Toy models for this
phenomenon, known as superposition, have been proposed by |Elhage et al.|(2022) and |Scherlis et al.
(2022). These models make two key assumptions: the linear representation hypothesis, which states
that intermediate activation vectors in neural networks can be decomposed as a linear combination
of vectors corresponding to individual features, and the sparsity hypothesis, which states that only a
small number of features are active in any given input (Elhage et al.| 2022).

Under these assumptions, decomposing language model activations into components corresponding
to different features can be viewed as an instance of the sparse coding problem (Olshausen & Field,
1997; Elhage et al.,[2022; [Sharkey et al.,2022). Recent works have applied sparse coding techniques
to language models and succeeded in automatically decomposing them into sparse linear combina-
tions of human-interpretable feature vectors (Yun et al., 2021} |(Cunningham et al.,[2023)). However,
these methods have typically assessed their decompositions by how easy it is to find plausible or

Under review as a conference paper at ICLR 2024

predictive descriptions of the set of inputs on which a particular found feature is active. Such met-
rics can indicate how successful these methods are at finding interpretable feature directions, but say
little about the accuracy of the underlying assumptions of linearity and sparsity.

The main contribution of this work is to introduce more rigorous and quantitative ways of measuring
the success of sparse coding methods applied to language models. This allows us to properly assess
the extent to which activations can accurately be modelled as sparse linear combinations of feature
vectors, and see how the level of sparsity depends on properties of the model. In summary, we:

* Propose novel metrics for measuring the success of sparse coding on neural network acti-
vations, and demonstrate their robustness on synthetic activations;

» Use our metrics to provide quantitative evidence that neural network activations can be
accurately modelled as sparse linear combinations of feature vectors, supporting claims in
earlier works (Yun et al., [2021}; |Cunningham et al., [2023);

* Provide a more thorough analysis of the success of sparse coding as compared to previous
works, including studying the relative sparsity of various model types and across layers.

2 BACKGROUND

Formally, the linear representation hypothesis can be interpreted in the following way. At a fixed
layer of a given neural network, we assume that the activations represent m different ground-truth
features Fi, ..., Fy,, each encoded by a feature vector fi,...,f,, € R% An input containing
features F;,, ..., F;, should be represented by an activation vector which is a linear combination of
f;,,...,fi, . Conversely, any activation x € R? should be approximately decomposable as a linear
sum x =~ oy, §;, + - + o, £, where F;, ..., F;, are the features present in the input producing
activation x and «;,, ..., q;, are non-negative feature coefficients. We call m the dictionary size
and d the embedding size. For notational convenience we combine the feature vectors into a matrix
® € R?*™ whose columns are fy, ..., f,,. The linear representation hypothesis was formulated by
Arora et al.| (2018) and [Elhage et al.[(2022), motivated by observations of apparent linear structure
in the representations learned by generative models (Bojanowski et al.| [2018; [Burns et al., 2023}
[lharco et al., 2022} [Turner et al., [2023)).

The sparsity hypothesis says that a typical activation x only requires a small number of features to
approximately represent it as a linear combination of those features, that is, we can find v;, , . . ., 0y,
such thatx ~ «ay, f;, +- - -+, f;, and & < d (Arora et al.,[2018;|Elhage et al.,[2022). In practice, we
expect that most human-interpretable features of an input should be active on only a small number
of inputs, making sparsity a natural assumption (Arora et al.l 2018} [Elhage et al., [2022).

In our language model setting, we observe a set of intermediate activations x(*), ... x(") from a
given layer. Our task is to reconstruct the feature vectors fi, ..., f,, corresponding to the ground-
truth features. If the set of activations is fixed, we may combine them into a matrix X € R%*" with
columns x| ... x(") and formulate our problem as finding ® € R**" and ov € R™*" such that
X = ®a + ¢ where o = 0 is sparse and ¢ is small (typically in L? norm).

In practice, since we can generate intermediate activations at will by running our model on new
text, we can alternatively imagine that we have an activation distribution from which we can sample.
Then, our problem amounts to finding ® € R?*™ such that for an activation x drawn from this
distribution we can find o € R™ and ¢ such that x = P« + ¢, where « is typically sparse and ¢
is small in expectation. For convenience, in this paper we will stick to notating the case of a fixed
matrix X of activations, but all quantities discussed can be trivially extended to the case where we
draw samples x from the distribution of activations — wherever we sum over rows of X or «, this
should instead be replaced by an expectation over the activation distribution.

For a fixed matrix X of activations, the sparse coding problem is frequently solved by minimizing
the sparse coding objective

1
L(P;a) = - (HX — ®al3 +)\Hoz||1) (D

over € R™*™ and ® € R4*™ where the L' norm can be viewed as a continuous relaxation of the
LY sparsity norm and) is some hyperparameter controlling the degree of sparsity regularization. In

Under review as a conference paper at ICLR 2024

this work, we constrain the columns of ® to have L? norm 1 and minimise £(®) using an iterative
optimization procedure similar to that of (Beck & Teboullel 2009; Yun et al., | 2021), as explained in

Appendix [A]

For our metrics defined later, it will be convenient to define a(®) = arg min, cgmxn» L(P;), i.e.
the optimal choice of « for a given @, and L(®) = L(P, (D)), i.e. the value of the sparse coding
objective for a given ¥, assuming an optimal choice of «. In practice, we approximate «(®) using
the same optimization procedure described in Appendix [A]for minimizing (T).

3 METRICS FOR SUCCESS OF SPARSE DICTIONARY LEARNING

For a sparsity metric to be meaningful, it should be invariant under scaling all activations by the same
factor, continuous with respect to the activations (since we expect the activations not to be an exact
linear combination of the feature vectors, so our metric should be robust to small perturbations) and
ideally intuitive. In particular, for data which is genuinely generated using a sparse linear mechanism
with an average of k fully active features, we’d like our metric to be approximately k.

We consider four classes of metrics, the first two of which have been previously considered (Sharkey
et al.| [2022) and the second two of which are novel as far as we are aware.

Non-zero entries: The most natural metric of success is the average number of non-zero entries
in the coefficient vector o, which we denote Ny (®) = L [la(®)]o. Though No(®) is intuitive and
invariant under scaling, we find that it is not robust in practice.

Final loss value: Second, we consider using £(®) for the final value of ®, as done by [Sharkey et al.
(2022). Though this metric is continuous, it is not invariant under scaling and so does not give useful
comparisons across different models or layers within a model.

Average coefficient norm: Third, we consider S,(®) = [|a(®)|[F/[|a(®)][5, for each p > 0. This
corresponds to the average LP norm of the coefficient vector, normalized by the average maximum
coefficient. This is scale invariant and, in the case where all feature coefficients are either zero equal
to the same positive value, S, (®) corresponds to the average number of features present. In practice,
we typically use p = 1 for simplicity and robustness.

Normalized loss: We define the normalized loss as Lnom (P) = L(P)/(A||a(®P)]|o0)- This is similar
to the final loss value, but normalized by the average magnitude of the feature coefficients, restoring
invariance to scaling. Intuitively, if we perfectly reconstruct the activations so that x = ®« always,
then £(®) = Alja(®)]|1 and $0 Lyom (P) = S1(P). In practice, reconstruction is somewhat imper-
fect, in which case Loy also includes a penalty for the unreconstructed part. This makes it more
stable over a range of hyperparameters.

3.1 EXPERIMENTAL VERIFICATION OF METRICS

We now test the effectiveness of the four proposed metrics by evaluating them on various synthetic
datasets where we know the true level of sparsity. First, we test how well our metrics can predict the
true level of sparsity for sparse linear data. To do this, we generate synthetic activation distributions
that satisfy the sparsity and linearity hypotheses with varying average numbers a of active features.
Details of the generating process are given in Appendix [B We then decompose our synthetic acti-
vations using sparse coding and observe how well our metrics predict the true sparsity.

We plot the true sparsity a against each sparsity metric in Fig. [T(a). We see that for metric values
less than about 20, the normalized loss and the average coefficient norm closely approximate the true
sparsity, while plateauing for greater values. This suggests that these metrics can reliably approxi-
mate the correct sparsity level for low sparsities. Meanwhile, number of non-zero features reliably
overestimates the true level of sparsity. The final loss is not scale-invariant and so its absolute mag-
nitude cannot be meaningfully compared to the true sparsity.

Second, we test how well our metrics can distinguish between sparse linear data and other datasets.
We construct three sparse linear datasets and three non-sparse linear datasets (details in Appendix[B)),
decompose each of the datasets using sparse coding and apply our metrics. The results for average
coefficient and normalized loss are shown in Fig.[I(b). We see that the average coefficient norm and
normalized loss perform very similarly, and both clearly distinguish between the sparse linear data

Under review as a conference paper at ICLR 2024

Average Coefficient

256

128

64

32

16

Value (log scale)

—— Average Coefficient

5 o Normalized Loss
e —— Non-zero entries
1 ---- Ground Truth
2 4 8 16 32 64 128 256 512

Number of Features (log scale)

S

P
5

o

<

&
&
&’D(’ (J’O\\'
< & 0

NS R & S

§

¢

Figure 1: (a) Metric values compared to true sparsity level for synthetic data. (b) Metric values for
sparse linear data (blue) compared to non-sparse linear data (red).

and the other datasets. The results for non-zero entries and final loss are shown in Appendix [B} both
perform less well and so we focus on average coefficient norm and normalized loss from now on.

We also consider ablations of both experiments where we vary the embedding size, the dictionary
size, the noise level and the number of ground truth features. We find that our results are robust to
changes in the noise level, dictionary size and number of ground truth features, and relatively robust
to changes in embedding size, provided the level of sparsity is not too close to the embedding size.
For details, see Appendix [C]

4 DEMONSTRATING SPARSITY IN LANGUAGE MODEL ACTIVATIONS

Now that we have demonstrated that average coefficient norm and normalized loss can reliably
distinguish between sparse linear activations and some other classes of distributions, we use them to
study sparsity in language model activations. In this section, we focus on the normalized loss, as it
is more robust in practice; we present results using average coefficient norm in the appendices.

4.1 EMBEDDING LAYERS

First, we use our metrics to assess sparsity in the embedding layers of transformer language models.
We pick three classes of models to test on: BERT (Tiny, Mini, Small and Medium) (Turc et al.,[2019;
Bhargava et al., 2021), TinyStories (1M, 3M and 33M) (Eldan & Li, [2023), and GPT-Neo/GPT-2
(Black et al 2021} [Radford et al.,[2019). We use the token embeddings as our set of activations X,
apply sparse coding, and measure the sparsity of the resulting decomposition using normalized loss.
Further experimental details and results for average coefficient are provided in Appendix

The normalized loss values we obtain are displayed in Fig.[2] where we have also plotted the sparsity
value achieved for a standard Gaussian distribution for reference. We observe that for all models
the normalized loss of the token embeddings is much lower than that for a Gaussian, as we would
expect if the linearity and sparsity hypotheses held for the embeddings.

Note also that if we compare the normalized loss values in Fig. [2]to the results in Section [3.1] and
Appendix|[C] we see they are within the range where normalized loss correctly predicts ground-truth
sparsity on synthetic sparse linear data. This suggests that the normalized loss values in Fig. [2]are a
good approximation to the true sparsity level, assuming the linearity and sparsity hypotheses.

Under review as a conference paper at ICLR 2024

160 -

e BertTiny *
e Bert Mini
e Bertsmall
@ Bert Medium *
804 v Tinystories 1M
v Tinystories 3M
» v TinyStories 33M
2 m GPT2 .
- % GPT Neo 125M v
8 4041 # Gaussian
N
©
£ ¢ .
5 H
S
S 20
. . x
v
10 b
v
64 128 256 512 768
Hidden Size

Figure 2: Embedding size versus normalized loss for token embeddings of three different classes of
language models.

Normalized Loss across layers

—e— Bert Tiny /

—e— Bert Mini . .
& —
e \ 0.99

Explained Variance across layers

—e— Bert Small
—e— Bert Medium

-
=

-

N}
o
©
3

=
5

Normalized Loss
o
©
N

Explained Variance

@

—e— Bert Tiny

—e— Bert Mini

61/ —e— Bert Small
¢ —e— Bert Medium

0.96

0.95
embedding 0 1 2 3 4 5 6 7 embedding 0 1 2 3 4 5 6 7

Layer ID Layer ID

Figure 3: (a) Sparsity of activations by layer for four BERT models. (b) Percentage of activation
variance explained by our sparse decomposition for each layer and model.

Second, we observe that the number of active features increases as the embedding size increases,
but more slowly. This matches the intuition that the model can disentangle more semantic meanings
in a higher dimensional space. We also observe that the BERT architecture leads to slightly more
sparse representations than the TinyStories architecture.

As observed in previous work, the feature decompositions produced by our sparse coding method do
frequently correspond to natural human interpretations. In Appendix[E] we provide examples where
our feature decomposition splits tokens into multiple semantically meaningful components, and
indicate that the feature directions that we find may be more interpretable than arbitrary directions
in embedding space, corroborating the findings of |Yun et al.|(2021)) and |Cunningham et al.| (2023).

4.2 LATER LAYERS

Next, we explore how the level of sparsity changes across layers of a language model. We apply
our sparse coding method to all layers of four BERT models (Tiny, Mini, Small and Medium),
with activations generated by running the models on Wikipedia abstracts, and plot the resulting
normalized loss metric. Full experimental details, along with equivalent results using the average
coefficient metric are provided in Appendix [F|

The results are plotted in Fig.|3] We find that all layers are sparse according to the normalized loss.
In addition, there is a general trend that the embedding layer is the most sparse, with sparsity first
decreasing as layer depth increases, before becoming more sparse again in the latest layers. This is
consistent with the intuition that the model may initially be detecting a larger number of higher-level
features in deeper layers, leading to a reduction in sparsity as layer index increases, before having
to extract just the key features for the next token prediction, leading to a subsequent decrease in
features stored in the final layers and corresponding increase in the sparsity level.

Under review as a conference paper at ICLR 2024

5 RELATED WORKS

Linear representations There is considerable evidence that neural networks learn representations
with linear structure: for example, linear operations on Word2Vec embeddings capture semantic
meaning (Mikolov et al., 2013} Pham Van et al.|[2020), and linear interpolation in the latent space of
GANSs and VAEs can combine the features of multiple datapoints (Bojanowski et al.,2018};|Berthelot;
et al.l 2019). In language models, several works have demonstrated success using linear techniques
for locating locating information within models (Meng et al., 2022} |Burns et al.,|2023) and editing
model behaviors (Ilharco et al., 2022} Ravfogel et al., [2022; Turner et al., 2023), as well as ob-
serving linear representations in reverse-engineered circuits (Nanda et al.,|2023)). Such observations
motivated the introduction of the linear representation hypothesis in|Elhage et al.[(2022).

Feature extraction Methods proposed for discovering the features used by neural networks in-
clude feature visualization (Erhan et al.| [2009; [Olah et al.| [2017;2020), saliency maps (Simonyan
et al.,[2014), feature importance scores (Lundberg et al.||[2017), and layer-wise relevance propaga-
tion (Bach et al., 2015). For transformer language models, common techniques include visualizing
attention patterns (Wang et al.| 2023} Bills et al.,[2023)), gradient-based contrastive explanations (Yin
& Neubig, [2022), and more recently methods based on sparse coding (see below).

Superposition and polysemanticity The idea that text embeddings can be modelled as a linear
superposition of sparse feature vectors was developed by [Faruqui et al.| (2015) and |Arora et al.
(2018)). Olah et al.| (2020) introduced the notion of polysemanticity in the context of vision models,
and hypothesised that polysemantic neurons arise to allow networks to represent more features with
a fixed number of neurons. The first theoretical models for polysemanticity and superposition were
presented by |[Elhage et al.|(2022) and [Scherlis et al.[(2022).

Sparse coding The sparse coding problem was introduced by |Olshausen & Field (1996;1997). A
variety of methods for learning the sparse dictionary have been proposed, including the method of
optimal directions (MOD) (Engan et al., [1999), k-SVD (Aharon et al., [2006), and methods using
Lagrange duality (Lee et al., [2006). Several works have applied sparse coding to language models
using techniques based on autoencoders (Sharkey et al.||2022; |(Cunningham et al.| 2023)), or FISTA
(Beck & Teboullel 2009; [Yun et al., [2021). The method we use in this paper is a variant of the
iterative optimization method used by [Yun et al.|(2021)).

Automated interpretability Recently proposed methods for automating the interpretation of neu-
ral networks include using multimodal models to automatically propose interpretations for neurons
based on activation patters (Oikarinen & Weng| 2023} Bills et al., |2023)), using causal scrubbing to
automatically detect circuits within language models (Chan et al., 2022; [Conmy et al., 2023), and
using singular value decompositions of weight matrices (Millidge & Blackl, 2022)). The previous
works most closely related to our current contributions are |Yun et al.|(2021)) and |Cunningham et al.
(2023)), who both use sparse coding to automatically identify a set of feature directions in activation
space. They both measure the success of their methods by inspecting sets of examples where a
particular feature is active and aiming to identify the common feature between the examples, using
either a human labeller or a language model.

6 CONCLUSION

In this work, we have developed novel metrics for measuring the success of sparse coding. We
have demonstrated that our models can accurately predict the level of sparsity for synthetic mod-
els of sparse linear activations introduced by previous works on polysemanticity and superposition.
We applied these metrics to measure sparsity in language model activations, finding that activations
across various model architectures and all layers were more sparse than several control datasets,
providing evidence for the linearity and sparsity hypotheses. Our metrics also allowed us to give
quantitative estimates for the number of underlying features, assuming linearity and sparsity, and
to show that language model activation sparsity is greatest in the first and final layers of a model,
while intermediate layers are relatively less sparse. We hope that through having better quantitative
ways to assess feature sparsity and superposition within language models, we can encourage further
more detailed and precise studies of this phenomenon, including more rigorous tests of the linear-
ity and sparsity hypotheses, further investigations into the factors that affect the degree of feature
superposition within models, and improved methods to disentangle superposed features.

Under review as a conference paper at ICLR 2024

REFERENCES

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-SVD: An algorithm for designing over-
complete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):
4311-4322, 2006.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear Algebraic
Structure of Word Senses, with Applications to Polysemy. Transactions of the Association for
Computational Linguistics, 6:483-495, 2018.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus Robert Miiller,
and Wojciech Samek. On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-
Wise Relevance Propagation. PLOS ONE, 10, 2015.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Jézefowicz, Scott
Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, et al. Dota 2 with Large Scale Deep
Reinforcement Learning. arXiv preprint arXiv:1912.06680, 2019.

David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and Improving
Interpolation in Autoencoders via an Adversarial Regularizer. In International Conference on
Learning Representations, 2019.

Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers. Generalization in NLI: Ways (Not) To Go
Beyond Simple Heuristics. In EMNLP 2021 Workshop on Insights from Negative Results, 2021.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in language
models. OpenAl Blog, 2023. URL https://openaipublic.blob.core.windows.
net/neuron—-explainer/paper/index.html.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, 2021.

Piotr Bojanowski, Armand Joulin, David Lopez Paz, and Arthur Szlam. Optimizing the Latent
Space of Generative Networks. In International Conference on Machine Learning, 2018.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, et al. Language
Models are Few-Shot Learners. In Advances in Neural Information Processing Systems, 2020.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering Latent Knowledge in Lan-
guage Models Without Supervision. In International Conference on Learning Representations,
2023.

Lawrence Chan, Adria Garriga-Alonso, Nicholas Goldowsky-Dill, Ryan Greenblatt, Jenny
Nitishinskaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrub-
bing: A method for rigorously testing interpretability hypotheses. Al Alignment Forum,
2022. URL https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/
causal-scrubbing-a-method-for-rigorously—-testing.

Arthur Conmy, Augustine N Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. Towards Automated Circuit Discovery for Mechanistic Interpretability. arXiv preprint
arXiv:2304.14997, 2023.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse Autoen-
coders Find Highly Interpretable Features in Language Models. arXiv preprint arXiv:2309.08600,
2023.

https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing
https://www.alignmentforum.org/posts/JvZhhzycHu2Yd57RN/causal-scrubbing-a-method-for-rigorously-testing

Under review as a conference paper at ICLR 2024

Ronen Eldan and Yuanzhi Li. TinyStories: How Small Can Language Models Be and Still Speak
Coherent English? arXiv preprint arXiv:2305.07759, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy Models of Super-
position. Transformer Circuits Thread, 2022.

Kjersti Engan, Sven Ole Aase, and John Hakon Husoy. Method of optimal directions for frame
design. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999.

Dumitrusof Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing higher-layer
features of a deep network. University of Montreal, 1341(3):1, 2009.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and Noah A Smith. Sparse Overcom-
plete Word Vector Representations. Proceedings of Association for Computational Linguistics,
pp. 1491-1500, 2015.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal Abstractions of Neural
Networks. In Advances in Neural Information Processing Systems, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing Models with Task Arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon A.A. Kohl, Andrew J. Ballard, Andrew Cowie, et al. Highly accurate
protein structure prediction with AlphaFold. Nature, 596(7873):583-589, 2021.

Honglak Lee, Alexis Battle Rajat, Raina Andrew, and Y Ng. Efficient sparse coding algorithms. In
Advances in Neural Information Processing Systems, 20006.

Scott M Lundberg, Paul G Allen, and Su-In Lee. A Unified Approach to Interpreting Model Predic-
tions. In Advances in Neural Information Processing Systems, 2017.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and Editing Factual
Associations in GPT. In Advances in Neural Information Processing Systems, 2022.

Tomas Mikolov, Wen Tau Yih, and Geoffrey Zweig. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, 2013.

Beren Millidge and Sid Black. The Singular Value Decompositions of Trans-
former Weight Matrices are Highly Interpretable. Al Alignment Forum, 2022.
URL https://www.alignment forum.org/posts/mkbGjzxD8d8XgKHzA/
the-singular-value-decompositions—-of-transformer-weight.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
for grokking via mechanistic interpretability. In International Conference on Learning Represen-
tations, 2023.

Tuomas Oikarinen and Tsui-Wei Weng. CLIP-Dissect: Automatic Description of Neuron Repre-
sentations in Deep Vision Networks. In International Conference on Learning Representations,
2023.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature Visualization. Distill, 2017.
URLhttps://distill.pub/2017/feature-visualization/.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom In: An Introduction to Circuits. Distill, 2020. URL https://distill.pub/2020/
circuits/zoom—-1in/!\

https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://www.alignmentforum.org/posts/mkbGjzxD8d8XqKHzA/the-singular-value-decompositions-of-transformer-weight
https://distill.pub/2017/feature-visualization/
https://distill.pub/2020/circuits/zoom-in/
https://distill.pub/2020/circuits/zoom-in/

Under review as a conference paper at ICLR 2024

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by V1? Vision Research, 37(23):3311-3325, 1997.

OpenAl. GPT-4 Technical Report. arxiv preprint arXiv:2303.08774, 2023.

Toan Pham Van, Tam Minh Nguyen, Ngoc N Tran, Hoai Viet Nguyen, Linh Bao Doan, Huy Quang
Dao, Thanh Ta Minh, Hoang Quoc Viet, Tu Liem, and Ha Noi. Interpreting the Latent Space
of Generative Adversarial Networks using Supervised Learning. In International Conference on
Advanced Computing and Applications, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners, 2019.

Shauli Ravfogel, Michael Twiton, Yoav Goldberg, and Ryan Cotterell. Linear Adversarial Concept
Erasure. In International Conference on Machine Learning, 2022.

Adam Scherlis, Kshitij Sachan, Adam S Jermyn, Joe Benton, Jacob Steinhardt, and Buck Shlegeris.
Polysemanticity and Capacity in Neural Networks. arXiv preprint arXiv:2210.01892, 2022.

Lee Sharkey, Dan Braun, and Beren Millidge. Taking features out of su-
perposition with sparse autoencoders. Al Alignment Forum, 2022. URL
https://www.alignmentforum.org/posts/z60QJbtpkEAX3A0T]]/
interim-research-report-taking-features—-out—-of-superpositionl

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering Chess and Shogi by Self-Play with a General Rein-
forcement Learning Algorithm. arXiv preprint arXiv:1712.01815, 2017.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps. In International Conference on
Learning Representations, 2014.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-Read Students Learn Better:
The Impact of Student Initialization on Knowledge Distillation. CoRR, 2019.

Alexander Matt Turner, Lisa Thiergart, David Udell, Gavin Leech, Ulisse Mini, and Monte Mac-
Diarmid. Activation Addition: Steering Language Models Without Optimization. arXiv preprint
arXiv:2308.10248, 2023.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 small. In International
Conference on Learning Representations, 2023.

Kayo Yin and Graham Neubig. Interpreting Language Models with Contrastive Explanations. In
Conference on Empirical Methods in Natural Language Processing, 2022.

Zeyu Yun, Yubei Chen, Bruno A Olshausen, and Yann Lecun. Transformer visualization via dic-
tionary learning: contextualized embedding as a linear superposition of transformer factors. In
DeeLlO 2021 Workshop on Knowledge Extraction and Integration for Deep Learning Architec-
tures, 2021.

https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition
https://www.alignmentforum.org/posts/z6QQJbtpkEAX3Aojj/interim-research-report-taking-features-out-of-superposition

Under review as a conference paper at ICLR 2024

A DETAILS OF SPARSE CODING ALGORITHM

The algorithm used in this paper for minimizing the sparse coding objective £(®; «) from (I) over
a € R™*™ and @ € R¥*™ is as follows. It is inspired by the iterative optimization procedure used
by Yun et al.|(2021).

We alternate between the following two steps. First, we minimize the objective £(®; «) over all
® € RY™ ysing several steps of stochastic gradient descent. Second, we update o using a greedy
procedure. For each column x) of X, we find the current feature vector f; that has the largest dot
product with x, say f; , and set o, ; = x - f;, — %)\ (this choice corresponds to projection under

the L' norm). If a;, ; > 0, then we subtract o;, ;f;, from x7), find the feature vector with the next
largest dot product and repeat. We do this until oy, ; < 0 at some step, at which point we set all
remaining o ; = 0. We repeat this for each column of X to find the new matrix o € R™*".

We alternate these two steps, updating ¢ and « sequentially until the process converges. In the
case where the activations are drawn from a distribution rather than given by a fixed matrix X, we
resample the activations at each iteration.

We find empirically that the best choice of \ is approximately 10% of the maximum activation,
ie. A = 0.1||aloo- Where it is computationally feasible, we use an adaptive scheme to set \, first
guessing a reasonable choice of A, then running our sparse coding procedure once to get a feature
coefficient matrix «, then updating A = 0.1||ar|| and iterating until convergence. In practice, we
find that we typically only need a couple of steps to converge.

B FURTHER DETAILS ON METRIC VERIFICATION EXPERIMENTS

To generate synthetic sparse linear data with a features active on average, we do the following. First,
we generate m = 4d feature vectors f1, . . ., f,, € R? sampled uniformly from the unit sphere. Then,
to generate each activation we sample a vector « of feature coefficients by taking each coefficient
to be uniform between 0 and 1 with probability a/4d and zero otherwise. We define the proto-
activation to be X =) . «;f;, so that on average each proto-activation is the sum of a activated
vectors. We center the set of proto-activations and finally add Gaussian noise of variance ac?/d to
each proto-activation to get our synthetic activations.

Note that since each active feature is weighted by a factor distributed uniformly between 0 and 1, the
expected weighted number of active features will be a/2. Hence, we consider the “correct” value of
our metric on this dataset to be a/2 (rather than a).

In our initial experiments in Section [3.1] we take d = 256, 0 = 0.1 and use 16384 datapoints and a
dictionary size of 8d. We consider the effects of varying the embedding size, noise level, number of
ground-truth features and dictionary size in Appendix [C]

For our three non-sparse linear datasets, we use (i) a Gaussian distribution with identity covariance
(not sparse), (ii) an heavy-tailed isotropic distribution constructed by sampling from an isotropic
Gaussian and then scaling ||x||2 to be Cauchy distributed (heavy-tailed but not sparse), and (iii) a
d-dimensional Rademacher distribution (sparse but not well-represented by a sparse linear combi-
nation of features). Each distribution is scaled to have identity covariance.

Fig. @] shows the results of attempting to use non-zero entries and final loss to distinguish between
sparse linear data and other datasets. We see that non-zero entries fails to reliably distinguish the
heavy-tailed but non-sparse data, while the final loss fails to reliably distinguish the Gaussian data
from the sparse linear data. In order to make the final loss values comparable across datasets, we
scale all datasets to have mean 0 and the average Ly norm equal 1.

10

Under review as a conference paper at ICLR 2024

Non-zero entries Final Loss

Value

Figure 4: Metric values for sparse linear data (blue) compared to non-sparse linear data (red), with
non-zero entries and final loss metrics.

Average Coefficient

256 2
128
64

32

16

Normalized Loss

Value (log scale)

—— Average Coefficient
— —— Normalized Loss
e —— Non-zero entries

1 ---- Ground Truth

2 4 8 16 32 64 128 256 512
Number of Features (log scale)

Figure 5: Results of experiment from Section with dictionary size of 16d. (a) Metric values
compared to true sparsity level for synthetic data. (b) Metric values for sparse linear data (blue)
compared to non-sparse linear data (red).

C ABLATIONS FOR METRIC VERIFICATION EXPERIMENTS

In this section we assess the robustness of the results from Section[3.1]to changes in the parameters of
the problem definition. We consider changing the level of noise in the construction of our synthetic
dataset o, the size of the embedding dimension d, the dictionary size, and the number of ground-truth
features.

First, we assess the effect of changing the dictionary size. We keep the same embedding dimension
d = 256, the same number of ground-truth features 4d and the same noise level ¢ = 0.1 as in the
main text, but consider increasing the dictionary size to 16d. We plot the results of this experiment in
Fig.[5] We see that the results are very similar to Fig.[T} the average coefficient and normalized loss
metrics continue to distinguish well between the sparse linear data and the other datasets, and both
metrics track the ground-truth sparsity well for metric values below approximately 16. We conclude
that our methods are relatively robust to dictionary sizes that are misspecified up to a factor of at
least 4.

Second, we assess the effect that changing the noise level o has. We keep the same embedding
dimension d = 256, the same dictionary size of 8d and the same number of ground-truth features
at 4d as in the main text, but consider decreasing ¢ to 0.05 or increasing it to 0.2. The results are
plotted in Fig.[6] We see that both the average coefficient and the normalized loss metric continue

11

Under review as a conference paper at ICLR 2024

Average Coefficient

256
128
64
)
T 32
n
8 16
5
5 8 Normalized Loss
>
4 .
—— Average Coefficient
2 e —— Normalized Loss
L —— Non-zero entries
1 ---- Ground Truth
2 4 8 16 32 64 128 256 512
Number of Features (log scale)
Average Coefficient
256
128
64
)
T 32
n
o
o 16
S
5 8 Normalized Loss
>
4 .
—— Average Coefficient
2 e —— Normalized Loss
L —— Non-zero entries
1 ---- Ground Truth
2 4 8 16 32 64 128 256 512

Number of Features (log scale)

Figure 6: Results of experiment from Section with different noise levels: ¢ = 0.05 (top) and
o = 0.2 (bottom). (Left) Metric values compared to true sparsity level for synthetic data. (Right)
Metric values for sparse linear data (blue) compared to non-sparse linear data (red).

to distinguish well between sparse linear and other data, and both metrics track the ground-truth
sparsity well up to a metric value of about 20.

Third, we assess the effect of changing the embedding size. We fix the dictionary size, number
of ground-truth features and noise level as in Section but consider taking the embedding size
to be either 64 or 512. The results are shown in Fig. [/l We continue to achieve good results for
larger embedding sizes. For smaller embedding sizes, our metrics are less able to separate data with
a = 20 and non-sparse data; this is likely because 20 features is a considerable fraction of the total
embedding size when d = 64, and so data with @ = 20 is approaching no longer being appreciably
sparse. We see that our metrics still separate linear sparse data with a = 5, 10 and the other data sets
reasonable well.

Finally, we consider changing the number of ground-truth features from 4d to 8d (while keeping all
other parameters of the synthetic data the same). The results of the experiments from Section [3.1]

12

Under review as a conference paper at ICLR 2024

Value (log scale)

Value (log scale)

256

128

64

32

16

256

128

64

32

16

—— Average Coefficient
—— Normalized Loss
—— Non-zero entries
---- Ground Truth

8 16 32 64 128 256 512
Number of Features (log scale)

—— Average Coefficient
—— Normalized Loss
—— Non-zero entries
--=-- Ground Truth

8 16 32 64 128 256 512
Number of Features (log scale)

Average Coefficient

Normalized Loss

Average Coefficient

Normalized Loss

Figure 7: Results of experiment from Section |3.1{ with different embedding sizes: 64 (top) and 512
(bottom). (Left) Metric values compared to true sparsity level for synthetic data. (Right) Metric
values for sparse linear data (blue) compared to non-sparse linear data (red).

are displayed in Fig.[8] We find that our metrics still accurately track the ground-truth sparsity for
metric values up to about 32, and can distinguish between the sparse linear and other datasets.

13

Under review as a conference paper at ICLR 2024

Average Coefficient

256

128

64

32

16

Value (log scale)

—— Average Coefficient
—— Normalized Loss
e —— Non-zero entries

1 ---- Ground Truth

2 4 8 16 32 64 128 256 512
Number of Features (log scale)

Figure 8: Results of experiment from Sectionwith 8d ground-truth features. (a) Metric values
compared to true sparsity level for synthetic data. (b) Metric values for sparse linear data (blue)
compared to non-sparse linear data (red).

160

® Bert Tiny

® Bert Mini *

e BertSmall

@ Bert Medium .

801 TinyStories 1M
- v TinyStories 3M
5 v TinyStories 33M
S m GPT2 .
¥ 40] * GPTNeol125M v
|5} # Gaussian
Q
@]
[} *
o
© 201
g : -
< .
v °
104
L]
v
x
64 128 256 512 768
Hidden Size

Figure 9: Embedding size versus average coefficient for token embeddings of three different classes
of language models.

D FURTHER DETAILS ON LANGUAGE MODEL EMBEDDING EXPERIMENTS

For the experiments in Section [d] we use a dictionary size of 8d. We also center the embedding
vectors before applying our sparse coding algorithm. After applying our sparse coding algorithm,
the decomposition that we find is able to explain over 90% of the variance in the activations across
all models.

In Fig. [9] we show the results of the experiment of Section [4.1] but using the average coefficient
metric rather than normalized loss. We find very similar results.

E EXAMPLES OF INTERPRETABLE FEATURES IN EMBEDDING SPACE

We provide some initial evidence that the feature directions we find via sparse coding do correspond
to human-interpretable features, corroborating the findings of [Yun et al (2021)); Cunningham et al.|
(2023)). Given the feature vectors we found in our sparse decomposition of the embeddings of GPT-

14

Under review as a conference paper at ICLR 2024

Feature

Max Activating examples Interpretation

Feature 1

Feature 2

Feature 3

episode, Episode, episode, Episode, episodes, | TV/Radio shows
Season, isode, isodes, Season, podcast, odcast,
podcast, Podcast, season, flashbacks, Seasons,
Ep, Ep, epis, season

Winter, winter, Summer, summer, winter, Winter, Yearly seasons
Summer, autumn, Autumn, Spring, Spring, summers,
winters, spring, Fall, spring, Fall, offseason,
seasonal, Halloween

year, Year, YEAR, year, Year, decade, month, years, | Lengths of time
Years, Month, Years, month, years, yr, Month,
Months, months, week, season, months

Table 1: Max activating examples for top 3 features in the sparse decomposition of season.

Feature

Max Activating examples Interpretation

Feature 1

Feature 2

Feature 3

Physics, physics, ysics, physic, Math, Math, | Physical sciences
Chem, math, Chem, particle, chem, chemistry, asm,
physicists, math, particles, asms, Chemistry,
maths, Phys

biology, psychology, economics, anthropology, Fields of study
neuroscience, sociology, physiology, biology,
astronomy, Biology, chemistry, theology,
physics, iology, Economics, Chemistry,
Anthropology, ecology, mathematics, ochemistry

interstellar,galactic,galaxies, Interstellar, Astronomy
galaxy,asteroid, Centauri, asteroids, Galactic,
astroph, Planetary, Astron, planetary,
astronomers, planets, cosmic, spaceship,
stellar,Nebula, astronomer

Table 2: Max activating examples for top 3 features in the sparse decomposition of physics.

Token Closest embeddings

season | season, Season, season, Season, seasons, offseason,
preseason, summer, episode, postseason, episodes,
Episode, winter, autumn, playoff, Summer, seasonal,
podcast, Winter, Y, Year, subur, Nitrome, StreamerBot,
AhAAANAAARAAARARARAAARAAARABARAAAR. . ., AhABARAAARAAARALR,

externalTo, decade, episode, Seasons

Table 3: Closest 30 words to season in embedding space

2, we pick a couple of tokens with clear meanings — season and physics — decompose them into
their constituent features, pick the top three features for each with the maximum feature coefficient,
and then plot the 20 tokens that maximally activate that feature.

The results are shown in Table|l|and Table[2| We see that for each feature in the decomposition, the
maximally activating examples suggest a natural interpretation of that feature, as listed in the third
column. For comparison, we also display the 30 words in embedding space which are closest to the
embedding direction of season in Table[3] We note that this direction is much more polysemantic

15

Under review as a conference paper at ICLR 2024

Average Coefficient across layers

16 { —e— Bert Tiny
—e— Bert Mini
—e— Bert Small
—e— Bert Medium

A
TN
- ~-

Average Coefficient

embedding 0 1 2 3 4 5 6 7
Layer ID

Figure 10: Sparsity of activations by layer for four BERT models, measured using average coeffi-
cient norm.

than the rows in Table [T} suggesting that our sparse coding method is succeeding at disentangling
superposed meanings.

F FURTHER DETAILS OF EXPERIMENTS ON LATER LAYERS IN LANGUAGE
MODELS

To form our activation distribution, we sampled model inputs from a dataset of 800k sentences from
Wikipedia abstracts. For each model and layer, we use a dictionary size of 16d. We fix A = 0.1 dur-
ing training, and then for decomposing into sparse features we use A = 0.0027,0.0037, 0.0047, 0.01
for BERT Tiny, Mini, Small and Medium respectively. This allows us to ensure that we explain at
least 98% of the variance for all models and layers, while avoiding needing an adaptive choice of
A (for which we did not have sufficient computational resources). We used a batch size of 512
sentences, and we centered the activations for each batch.

In Fig. [I0] we show the results of the experiment of Section 4.2] but using the average coefficient
metric rather than the normalized loss. The results are qualitatively similar.

16

	Introduction
	Background
	Metrics for Success of Sparse Dictionary Learning
	Experimental Verification of Metrics

	Demonstrating Sparsity in Language Model Activations
	Embedding Layers
	Later Layers

	Related Works
	Conclusion
	Details of Sparse Coding Algorithm
	Further Details on Metric Verification Experiments
	Ablations for Metric Verification Experiments
	Further Details on Language Model Embedding Experiments
	Examples of Interpretable Features in Embedding Space
	Further Details of Experiments on Later Layers in Language Models

