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ABSTRACT

Vision Transformers (ViTs) partition input images into uniformly sized patches
regardless of their content, resulting in long input sequence lengths for high-
resolution images. We present Adaptive Patch Transformers (APT), which ad-
dresses this by using multiple different patch sizes within the same image. APT
reduces the total number of input tokens by allocating larger patch sizes in more
homogeneous areas and smaller patches in more complex ones. APT achieves a
drastic speedup in ViT inference and training, increasing throughput by 40% on
ViT-L and 50% on ViT-H while maintaining downstream performance. It can be
applied to a previously fine-tuned ViT and converges in as little as 1 epoch. It also
significantly reduces training and inference time without loss of performance in
high-resolution dense visual tasks, achieving up to 30% faster training and infer-
ence in visual QA, object detection, and semantic segmentation. We will release
all code and trained models.

1 INTRODUCTION

Vision Transformers (ViTs) (Dosovitskiy et al., 2020) have become the dominant paradigm for vi-
sual recognition, but their scalability is limited by the quadratic cost of self-attention with respect
to sequence length. Since inputs are divided into fixed-size patches, image resolution directly de-
termines sequence length: higher resolution images yield disproportionately long token sequences
despite much higher redundancy.

Many prior works have proposed solutions to this issue, typically by merging a fixed proportion
of similar tokens (Bolya et al., 2022) or pruning uninformative ones with auxiliary predictors (Rao
et al., 2021; Yin et al., 2022). While these reduce theoretical FLOPs, they face two drawbacks.
Firstly, a fixed reduction ratio is mismatched to image complexity: merging only half the tokens
in a pure white image is insufficient, while merging half the tokens in a busy cityscape is harmful.
Secondly, pruning during the forward pass introduces padding and irregular shapes, often negating
speedups in practice (Dehghani et al., 2021). In contrast to vision transformers, language models
rely on adaptive tokenizers such as Byte-Pair Encoding (Sennrich et al., 2016) and SentencePiece
Kudo & Richardson (2018), which flexibly assign tokens of varying lengths depending on subword
frequency. This reduces input sequence size while improving performance, suggesting that variable-
granularity tokenization can be more efficient than fixed-size splits.

Our key insight is that a similar idea can be applied to vision transformers. As illustrated in Figure 1,
ViTs use the same amount of computation on a uniform green background as on the complex patches
on the head of the bird, despite the significant difference in visual complexity. We introduce the
Adaptive Patch Transformer (APT), which addresses this mismatch by varying patch sizes within a
single image. Regions that are smooth and redundant can be represented with large patches, while
regions rich in detail are allocated smaller patches. This content-aware patchification preserves
important information where it matters while reducing redundancy elsewhere. To do this, APT
computes entropy at multiple scales and assigns larger patch sizes to regions with the lowest entropy,
resulting in significantly fewer input tokens. We then down-sample the larger patches and combine
their patch embeddings with the information from the original large patch using a zero-initialized
MLP, allowing APT to converge without harming the network.

APT speeds up ViT inference and training by almost 40%, with even larger boosts for higher reso-
lution images and larger models. When initialized from a self-supervised or large-scale pretrained
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Figure 1: Adaptive Patch Sizing. We present APT, Adaptive Patch Transformers, which signif-
icantly accelerate vision transformer training and inference by patchifying images based on their
content. Complex regions receive more, smaller tokens, while simpler, homogeneous regions re-
ceive fewer.

checkpoint, APT reaches the same performance as the original ViT after fine-tuning. If applied di-
rectly to an already fine-tuned ImageNet checkpoint, APT incurs only a small accuracy drop without
additional training. With our zero-initialized MLP, this gap can be closed in as little as a single epoch
of fine-tuning. We also find that unlike most prior token reduction works, APT can successfully ac-
celerate vision transformers on a wide range of image understanding tasks, such as visual question
answering, object detection, and semantic segmentation, while matching the baseline performance.

In summary, we (1) introduce the Adaptive Patch Transformer (APT), which accelerates Vision
Transformers by up to 40% through content-aware patch sizes, with larger gains at higher resolutions
and model scales; (2) show that APT preserves the accuracy of standard pretrained models across
resolutions and scales; and (3) demonstrate that APT extends beyond ImageNet, performing well on
dense prediction and vision-language tasks.

2 RELATED WORK

Vision Transformers and Patchification. Vision Transformers (ViTs) (Dosovitskiy et al., 2020)
are currently the de facto standard architecture for computer vision backbones (Xu et al., 2022;
Kirillov et al., 2023; Peebles & Xie, 2022). In contrast to language models, which typically use
subword tokenizers (Sennrich et al., 2016; Kudo & Richardson, 2018) with varying numbers of bits
per token, ViTs patchify images into equally sized patches, each becoming a token. This can re-
sult in an enormous number of tokens, especially at high resolution. Transformer-based generative
models (Peebles & Xie, 2022; Esser et al., 2020) use visual tokenizers, typically using a variational
auto-encoder (Kingma et al., 2013; Van Den Oord et al., 2017), to project images into a compressed
latent space, reducing the input size significantly. Some recent works explore adaptive visual to-
kenizers (Yan et al., 2024; Duggal et al., 2024), which dynamically allocate more tokens to more
complex visual inputs, but do not meaningfully speed up training or generation. As a result, image
understanding tasks are typically limited to lower resolution.

Reducing ViT Tokens. Accelerating ViTs by removing tokens is a rich area of research. Methods
such as pruning (Yu & Xiang, 2023; Yang et al., 2023; Zheng et al., 2022), compressed representa-
tions (Wu et al., 2018; Park & Johnson, 2023), or quantization (Liu et al., 2021b; Li et al., 2022c;
Moon et al., 2024) remove redundancies or compactly encode parameters, reducing inference time
and memory usage. Alternative attention mechanisms, such as linearized (Katharopoulos et al.,
2020; Lu et al., 2021) or local window attention (Liu et al., 2021a; Wei et al., 2023; Chen et al.,
2023b), improve efficiency by limiting token interactions. More related to our work are methods
that exploit the inherent redundancy of images (Meng et al., 2022; Yin et al., 2022; Kong et al.,
2022; Rao et al., 2021) and videos (Choudhury et al., 2025; Ding et al., 2023) by pruning unin-
formative tokens. While these works are content-aware, most require learning which tokens are
unhelpful, negating any training speedup and preventing inference on batch sizes greater than 1.
Several methods instead merge tokens based on similarity (Bolya et al., 2022; Bolya & Hoffman,
2023; Liang et al., 2022b; Shang et al., 2024; Cao et al., 2023; Liang et al., 2022a; Tran et al., 2024;
Kallini et al., 2024; Lee & Hong, 2024), which does accelerate training. However, merging methods
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Figure 2: APT overview. APT works by measuring the entropy at multiple scales and assigning
large patch sizes to low entropy patches. All patches are projected to the same size token embedding,
and the reduced size input sequence is passed to the transformer.

typically combine a constant number of tokens for each input, which can be suboptimal for inputs
with varying complexities. APT strikes a balance between these two lines of work by providing
significant acceleration to training and inference while maintaining content-awareness.

Adaptive Patch Sizing for Efficient ViTs. Our work is not the first to propose using multiple patch
sizes for faster ViTs. Early attempts in this direction (Chen et al., 2021; Beyer et al., 2023; Wang
et al., 2024; 2021; Zhou & Zhu, 2023; Hu et al., 2024) train models that are capable of using different
patch sizes, but still require a single patch size for each image. Closer to APT are works that allow
for varying patch sizes within a single image (An et al., 2024; Ronen et al., 2023; Chen et al., 2023a;
Bai et al., 2024). However, CF-ViT (Chen et al., 2023a) and Quadformer (Ronen et al., 2023) rely on
a fixed number of patches, neglecting the variability of semantic information across images, which
can lead to suboptimal performance. Closest to our work is MS-ViT (Havtorn et al., 2023), which,
like DynamicViT (Rao et al., 2021) learns a gating network to determine patch sizes and defines
separate patch embedding networks for each size. However, it requires significant fine-tuning on
pre-trained networks and does not speed up training. APT resolves this issue while demonstrating
dramatically larger speedups at higher resolutions and on larger models.

3 METHOD

Our goal is to achieve a significant wall-clock speedup during both training and inference by using
different-sized patches in different regions of the image. We first describe how we allocate different
patch sizes within an image (Section 3.1) and then how we process different-sized regions into the
same embedding space (Section 3.2). We then explain how we efficiently handle different input
sizes and how we can adapt APT to work on dense visual prediction tasks like object detection.

3.1 DECIDING PATCH SIZES

Consider a vision transformer that takes an H→W →C image as input. The standard ViT partitions
the image into a set of p → p patches. A linear layer E is applied to each patch to convert it into a
token, with size dembed, yielding a sequence of N = (HW/p

2) tokens.

In contrast, our goal is to decide patch size based on the image content, instead of using a constant
number of patches. Concretely, we define a fixed number of patch scales S, where the set of patches
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Figure 3: Embedding Different Patch Sizes. The smallest size patches are projected with the patch
embedding. Larger patches are both split into their sub-patches and resized; the sub-patches are
embedded, aggregated with a convolution layer. These are combined with the resized embedding
with a zero-initialized MLP (Zhang et al., 2023).

consists of P = P1 ↑ P2 ↑ . . . PS , with each patch in Pi having size 2ip → 2ip. For example, if
S = 3, p = 16, we are trying to find a smaller set of 16 → 16, 32 → 32 and 64 → 64 patches while
maximizing ‘information’ conveyed. For simplicity, we also impose the constraint that all patches
follow a quadtree-like structure, following a regular grid.

We use entropy H as a measure of a patch’s compressibility, given by:

H(P ) = ↓
L→1∑

i=0

pi log2 pi, (1)

where pi is the probability of pixel intensity i. Since patches contain discrete pixel values, we
approximate this by binning pixel intensities and computing entropy from the resulting distribution.
Entropy quantifies the unpredictability and thus information content of a patch, making it a useful
predictor of compressibility—lower entropy indicates higher redundancy. A large patch with low
entropy should therefore be efficiently representable by a dembed-dimensional vector. We discuss
alternative measures further in the Appendix.

We obtain the patchification of the image hierarchically, as illustrated in Figure 3. We first divide
the image into patches at the coarsest scale 2Sp→ 2Sp and compute their entropies. We then retain
all such patches with entropy below a fixed threshold ωi, which is a tunable hyperparameter for each
level. We repeat this process until we reach the smallest possible patch size p → p, to which we
assign all remaining patches.

3.2 PATCH AGGREGATION

After dividing the image into different patch sizes, we need to convert these patches into embeddings
with dimension dembed; in standard ViTs, this is done with a single linear layer E . Prior work on
vision transformers with varying patch sizes either resize every patch to p→ p (Ronen et al., 2023),
resize E for each size (Beyer et al., 2023), or train S separate patch embedding layers Ei for each
possible patch size (Havtorn et al., 2023), adding overhead. Resizing allows reasonable performance
with no training but can be improved upon—it uses strictly less information than if we applied E to
the higher-resolution sub-patches.

We combine these strategies, as shown in Figure 3. We resize patches to a uniform size p → p

but retain copies of larger original patches. For a given patch Pi of size 2ip → 2ip, we define its
constituent p → p sub-patches as the set {Pj}. Each sub-patch Pj is embedded using the standard
embedding layer E . The final embedding for patch Pi is then computed as:

E(Pi) =ZeroMLP
(

Conv2d(i)({E(Pj) | Pj ↔ Pi})
)
+ E(Resizep(Pi)), (2)
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where Conv2d(i) indicates applying a convolutional downsampling layer i times, aggregating em-
beddings from sub-patches back to size p → p. The ZeroMLP, a single linear layer initialized with
zero weights inspired by ControlNet (Zhang et al., 2023), allows the model to gradually incorporate
high-resolution details without initially degrading performance, facilitating faster convergence dur-
ing fine-tuning. In particular, this enables APT to be applied to any pre-trained ViT and matches the
performance of the initial model with a single epoch of accelerated fine-tuning.

3.3 DYNAMIC INPUT SIZES

Since APT is content-aware, the number of tokens for each image can vary widely. However, in
contrast to token pruning works (Rao et al., 2021; Liang et al., 2022b), we do not reduce the size of
the input at each layer, but before running the model. While most vision works use a fixed resolution,
our setting is closer to that of language modeling, and in vision to RLT (Choudhury et al., 2025) and
NaViT (Dehghani et al., 2023), where the number of tokens varies, but is predictably dictated by the
input data. We follow these methods and employ sequence packing. For a batch of input images
with sequence lengths {N1, N2, . . . NB}, we concatenate the tokens into a single sequence with
length

∑B
i=1 Ni and construct a block-diagonal mask that ensures tokens only attend to tokens from

the same example. This is natively implemented in commonly available attention backends such
as FlashAttention (Dao et al., 2022; Dao, 2024) or xFormers (Lefaudeux et al., 2022), and adds no
overhead to the network itself as the mask does not change. After running the network, we split the
resulting sequence into its constituent subsequences and either extract the class token or compute a
pooled representation for each subsequence.

Adaptation to Downstream Tasks. Standard methods for dense visual tasks like object detection
or semantic segmentation often rely on a feature map that has the same aspect ratio as the image.
This is required for methods that rely on transposed convolutions to upsample an input feature
map for per-pixel predictions (Li et al., 2022a). In contrast, APT produces a different number of
tokens per image, which cannot be simply reshaped into a rectangular feature map. To handle this,
we rely on the assumption that the tokens representing larger patches encode simpler features and
simply repeat them 22i times, as in (Havtorn et al., 2023; Bolya & Hoffman, 2023). This yields a
fully differentiable feature map that can be upsampled by transposed convolutions and seamlessly
applied to downstream tasks. Furthermore, tasks requiring high-resolution dense predictions such
as object detection often rely on window attention (Liu et al., 2021a; Yuan et al., 2021; Fang et al.,
2024), where the image is subdivided into multiple window regions to localize attention and increase
efficiency. APT can still be applied even with window-attention; we simply divide the image into
windows that are multiples of the largest patch-size, and use variable numbers of tokens within each
window; this can again be straightforwardly implemented using sequence packing and attention
masks with light overhead.

4 EXPERIMENTS

4.1 BASELINES

We categorize token merging approaches into two groups: input-level and layer-level. Input-level
merging reduces tokens directly from image patches before entering the model, which is the category
our method belongs to. In contrast, layer-level merging performs reduction within the network dur-
ing feature propagation. We adopt input-level merging as our main baseline for fairest comparison,
but compare to layer-level methods as well.

Input-level Merging Baselines. We use three main baselines: random-masking, resizing-only (He
et al., 2021; Li et al., 2023) and the original optimized Vanilla implementation from timm. Resizing
refers to disabling the zero initialized layer; this represents a stronger version of Quadformer (Ronen
et al., 2023), which used a constant, nonadaptive number of patches per image. Random is a stronger
version of FLIP (Li et al., 2023); we compute the token reduction obtained from APT and set it as
the random patch dropping rate.

Layer-level Merging Baselines. We benchmark against three baselines: EViT (Liang et al., 2022a),
ToMe (Bolya et al., 2022), and DTEM (Lee & Hong, 2024). All three baselines perform token
merging across the ViT layers, removing a constant number of tokens regardless of image content.
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Model Res/Patch Acc ↗ Img/s ↗ GFLOPS ↘ WC Time ↘ Speedup ↗
ViT-BMAE 384/16 84.2 1151 49.4 11.6h -
Random 384/16 83.4 1401 21.5 8.8h +32%
Resizing 384/16 83.9 1390 21.5 9.0h +29%
APT (Ours) 384/16 84.2 1390 21.9 9.0h +29%

ViT-LMAE 336/14 86.1 395 174.7 15.9h -
Random 336/14 85.5 550 76.2 9.6h +66%
Resizing 336/14 85.9 527 76.2 9.9h +61%
APT (Ours) 336/14 86.1 527 76.8 9.9h +61%

ViT-LMAE 448/14 86.4 190 645 31.4h -
Random 448/14 85.8 314 267 16.2h +94%
Resizing 448/14 86.0 302 267 16.9h +86%
APT (Ours) 448/14 86.3 302 268 16.9h +86%

Table 1: Full Fine-Tuning on ImageNet. APT significantly reduces the wall-clock time to fine-tune
a pre-trained backbone on ImageNet with no degradation in accuracy. We use the MAE (He et al.,
2021) training recipe for all cases. Note that ViT-B is trained for 2→ more epochs than ViT-L.

Model Res/Patch Acc ↗ GFLOPS ↘ Img/s ↗ Speedup ↗ Res/Patch Acc ↗ GFLOPS ↘ Img/s ↗ Speedup ↗
ViT-B 224/16 85.1 16.9 3310 - 384/16 86.1 49.4 1151 -
Random 224/16 83.7 12.5 3751 +13% 384/16 85.0 21.5 1401 +22%
Resizing 224/16 84.6 12.5 3540 +7% 384/16 85.7 21.5 1390 +21%
APT-B (Ours) 224/16 85.1 12.7 3540 +7% 384/16 86.1 21.9 1390 +21%

ViT-L 224/14 87.9 59.7 883 - 336/14 88.2 174.7 395 -
Random 224/14 86.9 44.3 1049 +19% 336/14 87.3 76.2 550 +39%
Resizing 224/14 87.4 44.3 993 +12% 336/14 87.9 76.2 527 +33%
APT-L (Ours) 224/14 87.8 44.5 993 +12% 336/14 88.1 76.8 527 +33%

ViT-H 224/14 88.3 162.0 441 - 336/14 88.5 363.7 175 -
Random 224/14 87.4 92.1 568 +29% 336/14 87.0 158.3 272 +55%
Resizing 224/14 88.0 92.1 542 +23% 336/14 88.0 158.3 263 +50%
APT-H (Ours) 224/14 88.3 92.3 542 +23% 336/14 88.4 158.9 263 +50%

Table 2: 1-epoch Fine-Tuning on ImageNet. APT consistently achieves large speedups while
matching or sometimes exceeding the original network’s performance after fine-tuning for 1 more
epoch. Compared to only random masking or only resizing, APT offers the best tradeoff between
speed and accuracy.

However, they share key limitations: none of them is implemented with FlashAttention, which
makes them even slower than the Vanilla ViT equipped with FlashAttention. To provide a fairer and
stronger comparison, we re-implement advanced versions of these baselines with FlashAttention.
When weighted attention is involved, we disable it to enable FlashAttention.

4.2 IMAGE CLASSIFICATION

Full Fine-Tuning. We provide the results of fine-tuning a vision transformer with APT on two
different model scales and resolutions in Table 1. In all experiments, we use the official MAE (He
et al., 2021) pre-trained checkpoint, interpolated to match the target resolution. At lower resolution,
APT provides a ↑10% speedup over the baseline with a ↑14% token reduction. On the other hand,
the speedup dramatically increases for higher resolutions—on 336→336, the speedup doubles. APT
also reduces training time more at larger model scales, likely due to the fact that the attention com-
putation dominates much more of the training time per iteration. Across all cases, APT matches the
baseline while using the exact same training recipe—it can be considered an absolute improvement
over standard patchification.

Short Fine-Tuning. We next present results from training with APT for 1 epoch from a fully fine-
tuned ImageNet (Deng et al., 2009) model. Compared to other methods like DynamicVIT (Rao
et al., 2021) or MS-VIT (Havtorn et al., 2023) which require 50 or more epochs of fine-tuning to
learn a scoring function, thanks to our use of a zero-initialized layer, APT models make high-quality
predictions from initialization. With no training, APT only resizes the larger patches to the base
size, which is a stronger version of Quadformer (Ronen et al., 2023). However, we observe that just
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(a) Trade-off comparison on ViT-L (b) Trade-off comparison on ViT-H

Figure 4: Accuracy vs. Throughput under different compute budgets. Comparison between
APT and layer-level merging methods on ViT-L and ViT-H. For a fairer evaluation, we also include
their re-implemented Advanced (Adv) versions with FlashAttention, shown with a dashed line. APT
consistently outperforms the baselines in both throughput and accuracy across all compute budgets.

one epoch is sufficient to “heal” the degradation from the new patchification scheme and match the
original performance of the model, as shown in Table 2.

We provide a comparison with representative baselines in Figure 4. We compare throughput and
ImageNet accuracy to our short fine-tuning results on ViT-L/14 with a resolution of 224 and ViT-
H/14 with a resolution of 336. APT consistently outperforms all baselines, including their original
versions as well as our improved reproductions using FlashAttention. The results confirm that input-
level merging is inherently more efficient and reliable than layer-level merging.

4.3 VQA AND DENSE VISUAL TASKS

Vision transformers are used for a wide range of tasks beyond image classification; we evaluate
how APT affects downstream performance in vision-language understanding tasks as well as dense
prediction. Building on our short fine-tuning experiment for image classification, we start with a
fully fine-tuned model, freeze its parameters, and train only the newly added components for 5% of
the total iterations used in each model’s fine-tuning scheme.

Visual QA. We first apply APT to the vision backbone of LLaVA (Liu et al., 2023; 2024a). LLaVA
is a vision language model (VLM) that combines a vision transformer backbone with a language
backbone via a projection layer. In the original paper (Liu et al., 2023), the vision encoder was
completely frozen, and only the projection layer was updated. APT matches the original model per-
formance while reducing image tokens and increasing throughput by 23%. Note that APT provides
no speedup to the language component, but by reducing the number of visual tokens, it accelerates
both the vision backbone and cross attention layers. We find that APT exceeds the original perfor-
mance of the LLaVA model on a range of vision-language benchmarks (Goyal et al., 2017; Hudson
& Manning, 2019; Lu et al., 2022; Singh et al., 2019; Schwenk et al., 2022; Fu et al., 2024; Liu
et al., 2024b; Yu et al., 2023).

Object Detection. One might expect APT to degrade performance for tasks that require pixel-level
understanding, such as object detection. To investigate this, we trained an object detector using
the EVA-02 (Fang et al., 2024) backbone with window attention, with a ViTDet (Li et al., 2022b)
style detection head. We conduct experiments on the COCO (Lin et al., 2014) dataset at 1536 →
1536 resolution. APT is able to reduce an impressive 30% of input tokens, drastically speeding up
training and inference, while matching the final performance on mAP and AP50. Furthermore, these
results demonstrate that APT remains effective under window attention beyond naive full attention,
broadening the scope of its application.

Semantic Segmentation. We conduct another experiment on semantic segmentation, which re-
quires fine-grained understanding of object boundaries. We again use the protocol of EVA-02 (Fang
et al., 2024), using it as a backbone with a UperNet (Xiao et al., 2018) segmentation model on top.
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Model Img/s Speedup VQAv2 GQA SQAI VQAT POPE MME MMB MMBC MMV

LLaVA-1.5-7B 3.70 - 78.5 61.0 67.8 58.2 86.9 1510.1 64.6 58.1 30.7
Random 4.58 +24% 76.9 60.9 67.2 54.1 86.1 1460.5 62.7 57.6 30.5
Resizing 4.51 +22% 77.5 61.1 66.8 56.5 86.6 1473.8 63.2 58.1 30.2
APT (Ours) 4.51 +22% 77.9 61.4 67.5 56.9 86.4 1474.0 63.8 58.2 30.8

LLaVA-1.5-13B 2.22 - 80.0 63.2 72.7 61.2 87.1 1530.6 68.5 63.4 35.4
Random 2.79 +26% 78.0 60.7 72.0 55.7 86.5 1484.0 64.7 60.8 32.0
Resizing 2.72 +23% 78.9 61.1 72.0 59.1 86.8 1496.9 65.8 62.5 33.9
APT (Ours) 2.72 +23% 79.4 63.0 72.4 59.5 87.2 1511.2 66.5 63.7 34.7

Table 3: Transfer to VQA. APT enables significant throughput increase while matching or exceed-
ing performance to the baseline.

Model Res Img/s Speedup mAP AP50

EVA-02-B 1536 3.86 - 58.93 77.85
Resizing 1536 4.41 +14% 58.43 77.22
APT (Ours) 1536 4.41 +14% 58.79 77.65

EVA-02-L 1536 1.62 - 62.28 80.80
Resizing 1536 2.17 +30% 61.75 80.27
APT (Ours) 1536 2.17 +30% 62.07 80.64

Table 4: Transfer to Object Detection. APT
can be scaled to high-resolution dense image
tasks supporting window attention.

Model Res Img/s Speedup aAcc mIoU

EVA-02-L 512 4.40 - 86.67 59.77
Resizing 512 4.87 +11% 86.09 58.81
APT (Ours) 512 4.87 +11% 86.68 59.70

EVA-02-L 640 2.55 - 86.83 60.05
Resizing 640 2.83 +11% 86.06 58.83
APT (Ours) 640 2.83 +11% 86.82 60.01

Table 5: Transfer to Semantic Segmentation.
APT can handle pixel-level fine-grained tasks
without compromising visual acuity.

When tested on ADE20K (Zhou et al., 2019; 2017), APT attains baseline performance while reduc-
ing 28≃32% of the input tokens depending on image resolution, thereby substantially accelerating
inference. APT’s success at semantic segmentation is particularly encouraging, since it implies that
it reduces compute while not sacrificing visual acuity at the pixel level.

4.4 ABLATIONS

We ablate components of APT to evaluate their effect on speed and accuracy.

Measuring APT overhead. Next, we measure the computational overhead introduced by APT.
Re-arranging the input patches and using masks does not have zero computational cost, and given
that GPUs are highly optimized for constant input shapes, understanding the cost of adding APT is
important. The results of this analysis are in Table 6.

Zero-initialization. Finally, we ablate the use of our zero-initialized connection for incorporating
higher-resolution details in larger patches. In Table 7, we compare with a simple residual connection,
a non-zero initialized connection, and resizing. We find that initializing to zero offers the best off-
the-shelf accuracy as well as the strongest performance after an epoch of training. This matches
the finding of ControlNet (Zhang et al., 2023), which showed that zero-initialization works well for
adding new capabilities without adding harmful noise to the original model.

Thresholds. The main tunable parameter in APT is the entropy threshold, which can differ per
scale and controls how compressible a region must be in order to be retained. The speed–accuracy
trade-off resulting from threshold adjustment is shown in Figure 4, and additional analysis and
visualizations are provided in Appendix.

4.5 EXAMPLE VISUALIZATIONS

We provide qualitative visualizations of the patchification produced by APT with 3 patch scales
in Figure 5. As desired, APT consistently assigned larger patches to more homogeneous regions
of the image. Dark backgrounds, blue sky, and blurry backdrops are all covered by the largest
(64→64) patches, while smaller regions that are still simple are given the second largest (32→32).
Regions with more detail or high frequency receive smaller patches: people’s faces or objects in
focus are allocated the most. Each image has a different number of patches, depending on its inherent
complexity—the cityscape in the bottom right has significantly more than the simpler cartoon image
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Figure 5: Visualized Examples. APT consistently places large patches on more homogenous re-
gions and smaller patches on more complex ones. We use conservative thresholds to limit informa-
tion loss. Images are best viewed zoomed in. More visualizations are in Appendix.

Res/Patch Base (Img/s) APTω=→1

ViT-B 224/16 3310 3090
ViT-B 384/16 1151 1030
ViT-L 224/16 883 811
ViT-L 336/14 395 360
ViT-H 224/14 441 418
ViT-H 336/14 190 180

Table 6: APT overhead with no reduction.
With no token reduction, APT incurs nontriv-
ial overhead. However, token reduction gives
20%+ speedups relative to the standard imple-
mentation, more than covering the discrepancy.

Model w/o training w/ training

Base 88.15 88.15
Residual 87.40 87.52
NonZero 87.50 87.81
Zero (Ours) 87.98 88.13

Table 7: Ablating Zero-initialization. Using
a zero-initialized connection works the best for
training APT networks to properly incorporate
higher resolution details from the original image,
while preserving good-quality predictions before
training.

in the top left. By design, the patches produced by APT are agnostic to downstream goals and
unaware of what a user might desire from an image. If the top right image were input to a VLM
along with the question “What color is the background?”, APT would still assign extremely coarse
patches to the pink wall due to its textural simplicity. Additional visualizations are provided in
Appendix.

5 CONCLUSION

We presented Adaptive Patch Transformer (APT), a method to accelerate ViTs that uses larger
patches in simpler areas and smaller patches in more complex ones. It significantly improves train-
ing and inference speeds, especially for larger models and higher resolutions. APT can be applied to
any pretrained ViT backbone and converges in 1 epoch or less, enabling users to quickly train their
models to be faster on a wide range of vision tasks. Our results suggest that APT will benefit the
broader vision community by reducing the compute budget required to train state-of-the-art models.

Limitations. Although APT provides significant speedups, it still relies on a hand-crafted heuristic
to determine patch sizes, which may not always align with downstream users’ preferences and could
likely be improved. Furthermore, while APT works for image understanding tasks, it does not
currently support image generation. It also requires extremely high-resolution images and large
models, making it an ideal application for our work. Future work will be required to overcome these
limitations, and we hope that APT can inspire further research on efficient ViTs.
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