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ABSTRACT

Watermarking has become a key technique for proprietary language models, en-
abling the distinction between AI-generated and human-written text. However, in
many real-world scenarios, LLM-generated content may undergo post-generation
edits, such as human revisions or even spoofing attacks, making it critical to detect
and localize such modifications. In this work, we introduce a new task: detect-
ing post-generation edits locally made to watermarked LLM outputs. To this end,
we propose a combinatorial pattern-based watermarking framework, which parti-
tions the vocabulary into disjoint subsets and embeds the watermark by enforcing
a deterministic combinatorial pattern over these subsets during generation. We
accompany the combinatorial watermark with a global statistic that can be used to
detect the watermark. Furthermore, we design lightweight local statistics to flag
and localize potential edits. We introduce two task-specific evaluation metrics,
Type-I error rate and detection accuracy, and evaluate our method on open-source
LLMs across a variety of editing scenarios, demonstrating strong empirical per-
formance in edit localization.

1 INTRODUCTION

The swift progress of Large Language Models (LLMs) is transforming industries ranging from soft-
ware engineering and education to customer service (Achiam et al., 2023; Touvron et al., 2023; Guo
et al., 2025; Team et al., 2023; Kasneci et al., 2023; Zhang et al., 2022; Anthropic, 2024; Cotton
et al., 2024). To enable provable identification of AI-produced content, a common practice is to em-
bed watermarks, some hidden and detectable signals, into LLM-generated text (Kamaruddin et al.,
2018; Cayre et al., 2005; Huang et al., 2023). This is usually achieved by carefully controlling the
token distribution during the generation process, ensuring that the watermark remains imperceptible
to end-users while preserving the overall text quality, as demonstrated in the recent watermarking
frameworks (Fernandez et al., 2023; Hu et al., 2023; Zhao et al., 2024b; Aaronson, 2023; Kuditipudi
et al., 2023; Kirchenbauer et al., 2023a; Dathathri et al., 2024; Zhao et al., 2024a; Giboulot & Furon,
2024; Chen et al., 2025; Christ et al., 2024).

As watermarking becomes a pivotal mechanism for tracing and attributing generated content, the
same marks create an attack surface: adversaries can deliberately manipulate them to misattribute
text, deceiving downstream users and harming the reputations of legitimate providers (Pang et al.,
2024). As has been shown in Pang et al. (2024), a robust watermarking scheme that is easier to be
detected, is also vulnerable to spoofing attacks. While existing methods focus on global watermark
detection, they offer little visibility into how or where a text may have been modified post-generation,
whether by malicious actors or through routine human revision.

In this work, we introduce the new task of local post-generation edit detection, which aims to iden-
tify and localize post-generation edits made to watermarked LLM outputs. This capability is critical
in applications that demand accountability and transparency, such as collaborative content creation,
academic writing, or high-stakes public communication. To this end, we propose a general com-
binatorial pattern-based watermarking scheme, along with corresponding edit detection statistics
designed to accurately identify modified spans. Meanwhile, we demonstrate that such combinato-
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Prompt: To prepare a Cake, mix …

Edited: the butter, bleach and vinegar into one large mixing bowl; add in …
LLM: the butter, sugar and vanilla into one large mixing bowl; add in … 

Prompt: In 2014, the USA president …

Edited: addressed growing concerns about government surveillance programs …
LLM: addressed growing concerns about government surveillance programs …

Prompt: Alan Turing was …

Edited: a brilliant but unsung scientist who contributed to early computer science.
LLM: a brilliant scientist who contributed to early computer science.

Models LLaMA-2-7b, OPT-1.3b 

Total Number of Texts 2000

Average Text Length 64 Tokens

Edit Length 1, 2, 3, 4, 5, 6 (in Tokens)

Deletion

Edit 
Type

Replacement

Deletion

Insertion

Figure 1: Overview of the constructed dataset used for evaluation. (Left) Characteristics of the gen-
erated texts. Edits are uniformly distributed across three types–replacement, deletion, and insertion–
and span lengths from one to six tokens. (Right) Examples of each edit type. For each example, we
show the prompt, the watermarked LLM output, and the edited text. Edited spans are highlighted in
yellow to illustrate the nature and location of edits.

rial pattern-based watermark remains reliably detectable, comparable to state-of-the-art schemes,
ensuring that the origin of LLM-generated content can still be verified.

Our contributions are summarized as follows:

• We formally define the task of post-generation edit detection and localization, and propose evalu-
ation metrics, including detection accuracy and false alarm rate, to assess performance.

• We introduce a general framework for combinatorial pattern-based watermarking that prioritizes
post-generation edit detection (see Figure 2 for an illustration). The framework consists of: (i) a
watermark generation mechanism based on predefined combinatorial patterns; (ii) a global statistic
for watermark detection; and (iii) specialized statistics for localizing post edits.

• We evaluate the effectiveness of our edit detection method on a simulated dataset, including both
watermarked texts and their edited versions under a range of post-generation editing scenarios
(see Figure 1 for examples of the editing scenarios).

The remainder of the paper is organized as follows. Section 2 introduces preliminary knowledge and
defines the task of post-generation edit detection. Section 3 introduces our combinatorial pattern-
based watermarking framework, including watermark generation, watermark detection, and edit de-
tection statistics. Section 4 presents numerical experiments evaluating both watermark detectability
and edit detection performance. Section 5 concludes the paper with key insights and points to future
directions toward advancing accountability and transparency in LLM-generated content through edit
detection and watermarking.

1.1 RELATED WORK

Watermarking Methods. Our work builds on and is thus mostly close to the provably robust
watermarking scheme (Kirchenbauer et al., 2023a), which perturbs the models logit vector in a
green list. Common choices of the green list include the KGW scheme (Kirchenbauer et al., 2023a)
and the Unigram scheme (Zhao et al., 2024a). Our work is also related to Chen et al. (2025), which
proposes a similar pattern-based watermarking but for order-agnostic LLMs. We mainly differ from
Chen et al. (2025) in two key aspects: (i) while our simplest combinatorial pattern can be viewed as
a special case of their Markov chain-based pattern mark, we adapt it for the task of edit detection;
and (ii) our general pattern adopts deterministic transitions, unlike the probabilistic structure used in
Chen et al. (2025), and allows duplicate tags, enabling efficient localization of edits.

Post-edit Detection. A persistent gap in the literature (see a survey in Crothers et al. (2023)) is that
post-generation edits typically surface as brief, scattered changes at unpredictable positions in the
text. Most existing detectors are calibrated to flag long content, such as AI-generated content detec-
tion (Bao et al., 2023; Chakraborty et al., 2023; Gehrmann et al., 2019; Li et al., 2024b; Mitchell
et al., 2023; Sadasivan et al., 2023), making sentence or phrase level tweaks both difficult to catch
and even harder to localize. The watermark agnostic approach of Kashtan & Kipnis (2023) seeks
finer granularity by applying the Higher Criticism (HC) metric to detect sparse anomalies without
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leveraging any embedded watermark signal. While HC offers asymptotic optimality guarantees, its
power may converge slowly in practice, limiting its effectiveness on short or moderately sized pas-
sages. Additionally, it yields a purely global test statistic that indicates whether edits occurred but
provides no cue about where they lie. More recently, Lei et al. (2025) introduced a Bayesian detec-
tion framework that estimates the proportion of LLM-generated content and flags the corresponding
segments, using the T -score statistic (Cohen, 2022). While their objective is related to ours, they
do not consider post-generation edits made to LLM output. Methodologically, their approach is
also fundamentally different—they operate on fixed segmentations and do not leverage embedded
watermarks. In contrast, we focus on detecting token-level edits made to watermarked LLM out-
put. To this end, we propose a watermarking scheme that simultaneously supports both watermark
verification and precise localization of post-generation edits.

Balancing Watermark Integrity and Post-edit Traceability. Existing research has mainly an-
alyzed the tradeoff between watermark detectability and robustness to removal or spoofing at-
tacks (Kirchenbauer et al., 2023a; Zhao et al., 2024a; Li et al., 2024a; Hopkins & Moitra, 2024;
Chen et al., 2024; Pang et al., 2024). To the best of our knowledge, no existing method addresses the
challenge of determining whether a watermarked LLM output has been post-edited and where those
edits occur. We take a step in this direction by proposing a unified framework for both watermark
integrity verification and edit detection.

2 PRELIMINARIES AND PROBLEM SETUP

2.1 NOTATION AND BASICS

We use V to denote the vocabulary set—the set of all tokens an LLM can generate in a single
time step. We refer to tokens s(−Np), . . . , s(0) as the prompt, and s(1), . . . , s(T ) as the generated
response. For brevity, we denote any subsequence s(i), . . . , s(j) by s(i:j). In this work, we consider
an autoregressive LLM (Radford et al., 2019). Specifically, at each time step t, the model generates
the next token according to a learned distribution over V , conditioning on all preceding context. We
denote this distribution as P and it can be parametrized by a logit vector l̄(t) = (l

(t)
1 , · · · , l(t)|V|),

which is computed based on the preceding tokens. The resulting token distribution p(t) is then given
by: p(t)u , P (s(t) = u|s(−Np:t−1)) = el

(t)
u /(

∑
v∈V el

(t)
v ), ∀u ∈ V .

We follow the line of work in Kirchenbauer et al. (2023a); Zhao et al. (2024a) to pseudorandomly
select a subset of the vocabulary set V and then perturb the logits therein. This subset is usually
referred to as the green list while its complement is usually called the red list. More specifically, we
may denote G(t) = H(s(−Np:t−1), k) as the green list at time t, where H is a (deterministic) hash
function, and k is a watermarking secret key. Both the secret key and the functionH are known to the
verifier in order to authenticate the watermark. The watermarking is embedded into the generated
text by increasing the logits in the green list while freezing the logits elsewhere. The modified token
distribution p̃(t) is thus given as

p̃(t)u , P̃ (s(t) = u|s(−Np:t−1); k) =
exp(l

(t)
u + 1(u ∈ G(t)) · δ)∑

v∈G(t) exp(l
(t)
v + δ) +

∑
v/∈G(t) exp(l

(t)
v )

, ∀u ∈ V, (1)

where δ ≥ 0 is a perturbation parameter reflecting watermarking strength, l(t) denotes the original
logit vector at time step t, and 1(·) is the indicator function.

2.2 PROBLEM SETUP: POST-GENERATION EDIT DETECTION

Given a text as a list of tokens, we consider the possibility that the text undergoes post-generation
modifications. In this work, post-generation edits refer to any modifications that do not adhere to the
watermarking rule—for example, human edits or edits made without knowledge of the underlying
watermarking mechanism. Let s = s(1:T ) denote the watermarked text of length T generated by the
watermarked model, i.e., s ∼ P̃ ( ·|s(−Np:0)), we denote s̃ as the edited version of s. We focus on
three primary types of local edits: token replacement, token insertion, and token deletion. Each edit
is restricted to a contiguous span of at most S tokens, where the hyperparameter S sets the maximum
span of each local edit and reflects our assumption that edits are localized and moderate. These edit
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Ford Motor Co. flew the first commercial planeLLM Generated 
with watermark

(GRGR⋯)

Edited text 

Replaced

changedand aviation history

Ford Motor Co. tested the first plane changedand aviation historygreatly

Deleted Inserted

Pattern Violation Pattern Violation

Edit detected

Pattern Violation

Edit detected Edit detected

Figure 2: A proof-of-concept illustration of combinatorial pattern-based watermarking for edit de-
tection. Suppose a simple Green-Red alternating watermark pattern is embedded. We slide a window
(of size two in this example) and check whether tokens within each window align with the expected
pattern. A significant pattern violation indicates a potential post-generation edit.

types are both commonly encountered in practice and analytically tractable (Kirchenbauer et al.,
2023b; Pang et al., 2024; Zhao et al., 2024a; An et al., 2025). Multiple such edits may occur in
non-overlapping regions of the sequence, allowing for general modifications while preserving the
local nature of each edit; see Figure 2 for an example. This setting also captures realistic human
editing behaviors such as paraphrasing or minor content adjustments.

In the edit detection task, given a text s and a pre-specified watermarking scheme, the goal is to
detect: (1) whether the text s has undergone any post-generation edits; and (2) the location of such
edits, if present. This can be formalized via an algorithm A that takes text s as input and outputs a
set of suspected local edit indexes A(s) = {I1, I2, . . . , Ia}, Ij ∈ [T ]. If A(s) = ∅, this indicates
that no post-generation edit has been detected. We evaluate the edit detection performance of an
algorithm A via the following two metrics: detection accuracy and Type-I error, each assessed
under a tolerance parameter L that can be flexibly chosen as needed.

Definition 1 (Detection accuracy). A true edit within text s at position t, i.e., s(t), is considered
correctly detected if there exists Ij ∈ A(s) such that |Ij − t| ≤ L, otherwise, it is counted as a
Type-II error (i.e., a miss detection). The detection accuracy is defined as the proportion of true
edits that are successfully detected.
Definition 2 (Type-I error rate). For a given text s, if a position t lies at least L + 1 tokens away
from any true edit, and the algorithm flags any position within the interval [t − L, t + L], then it is
considered as a Type-I error (i.e., a false alarm). The Type-I error rate is defined as the proportion
of such positions that are incorrectly flagged.

True Detection

False Alarm

Miss Detection

Tolerance window (± 1 token)

True edit Detected

Figure 3: Illustration of edit
detection outcomes.

The scenarios of miss detection and false alarms are illustrated in
Figure 3 with a small tolerance window of L = 1. It is worthwhile
mentioning that these metrics extend classical Type-I error rate and
power in hypothesis testing to a local detection setting. The toler-
ance parameter L allows for small positional discrepancies, which
is introduced to enable a more robust evaluation of detection ac-
curacy, when exact alignment between detected and true edit posi-
tions is not strictly required. Note that setting L = 0 enforces exact
matching between detected and true edit locations, but may make
the evaluation overly sensitive to minor misalignments, especially
in ambiguous or noisy contexts.

3 COMBINATORIAL PATTERN-BASED WATERMARKING FOR EDIT
DETECTION

3.1 WATERMARK GENERATION BASED ON COMBINATORIAL PATTERNS

We now introduce the generalized combinatorial pattern-based watermarking rule that promotes
the use of certain sub-vocabularies according to a deterministic, pre-defined pattern P . Formally,
assume we have r unique tags {T (1), T (2), . . . , T (r)}, each associated with a set VT (j) ⊂ V , for
j = 1, 2, . . . , r, and {VT (1) , . . . ,VT (r)} forms a partition of V .

The watermarking rule depends on a combinatorial pattern P := {T1, T2, . . . , TR}, where each
Ti ∈ {T (1), T (2), . . . , T (r)}, and R denotes the pattern period. The pattern P may contain repeated
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tags and is intended to be repeated cyclically to span the full token sequence during generation. In the
following, we present two concrete examples, both of which we use in our numerical experiments.
Example 3.1 (Alternating Binary Pattern). With two unique tags (e.g., A and B), we define the
pattern P = {A,B}, and thus the watermark is governed by the order A,B,A,B, . . .. Here A and
B can be interpreted as the green and red lists (see Figure 2), respectively, aligning with standard
terminology in prior work.
Example 3.2 (Alternating Quaternary Pattern). With four unique tags (e.g., A,B,C,D), we define
the combinatorial pattern P = {A,C,A,D,B,C,B,D}, and the watermark is governed by the
order A,C,A,D,B,C,B,D,A,C,A,D,B,C,B,D, . . ..

At each token position t, the watermark generation process promotes the selection of tokens from
the subset VT(t mod R)+1

, corresponding to the tag T(t mod R)+1, as specified by the pattern. For a
given watermarking key k, the vocabulary is partitioned into r subsets, and the t-th token is then
generated according to the perturbed distribution (see Algorithm 1 for the full procedure):

p̃(t)u , P̃ (s(t) = u|s(−Np:t−1)) =
exp(l

(t)
u + 1(u ∈ VT(t mod R)+1

) · δ)∑
v/∈VT(t mod R)+1

exp(l
(t)
v ) +

∑
v∈VT(t mod R)+1

exp(l
(t)
v + δ)

. (2)

In other words, we perturb the logits according to the pattern. We note that when δ is large enough,
the watermarking mechanism above will restrict generation to the target subset at each step.

3.2 WATERMARK DETECTION

We first give the statistics that can be used to detect the combinatorial pattern-based watermark,
since any watermarking mechanism must be accompanied by a corresponding detection procedure.
The idea is similar to Kirchenbauer et al. (2023a) by counting the proportion of tokens that align
with the pre-specified pattern. Given the text s, the objective is to determine whether the text is
human-generated or produced by an LLM. This task can be framed as a hypothesis testing problem
with the null hypothesis: H0: “the text is generated with no knowledge of the watermarking rule”.

We slide a window of size w ∈ N over the token sequence and inspect whether the w consecu-
tive tokens belong to a cyclically ordered sub-sequence of the pattern. For simplicity, we consider
window size w no larger than the pattern length R. The approach extends naturally to larger w;
See Appendix B.1 for concrete examples. Specifically, the subsequence s(t:t+w−1) is considered a
match if there exists a cyclic permutation (VTπ(1)

, . . . ,VTπ(R)
) of (VT1 , . . . ,VTR

) such that:

∃v ∈ [R] : s(t) ∈ VTπ(v)
, s(t+1) ∈ VTπ(v+1)

, . . . , s(t+w−1) ∈ VTπ(v+w−1)
. (3)

We denote
Iw(t) = 1 {∃ cyclic shift π such that equation 3 is satisfied} ,

which is a binary indicator on whether the subsequence s(t:t+w−1) aligns with the watermark pattern.

Watermark Detection Statistic. Given the pre-specified pattern P and the window size w, we
define the detection statistic |s|D as the normalized count of matching subsequences:

|s|D =
1

T − w + 1

T−w+1∑
t=1

Iw(t). (4)

The value of |s|D is then compared to a predefined threshold τd (chosen by controlling false alarm
rate); when |s|D ≥ τd, we rejectH0 and conclude the text is likely watermarked (see Algorithm 2).

3.3 POST-GENERATION EDIT DETECTION

We then present our lightweight edit detection statistics designed to identify local positions that
violate the pre-specified pattern; see a proof-of-concept illustration in Figure 2. We will again use
the binary indicator Iw(t) as the crucial element in constructing the edit detection statistics. We
define the local edit statistic at each token index t as, again, for a window of size w:

|s|E(t) =
1

w

w−1∑
i=0

Iw(t− i). (5)
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Algorithm 1 Pattern-based Watermarking

Input: Base LLM PM, a pre-specified pattern P , the partition {VT (1) , . . . ,VT (r)}, and δ > 0.
Output: Generated text s(1:T ).
1: Initialize t← 1, prompt s(−Np:0).
2: while t ≤ T do
3: Get current tag T(t mod R)+1 from pattern at step t.
4: Compute base logits l(t)u , u ∈ V .
5: Apply logit shift for u ∈ VT(t mod R)+1

and sample s(t) ∼ p̃(t) according to equation 2.
6: t← t+ 1.
7: end while
8: return {s(1:T )}.

Algorithm 2 Pattern-based Watermark Detection

Input: Text s(1:T ), pattern P , detection threshold τd.
Output: Decision (watermarked or not).
1: Compute detection statistics |s|D in equation 4.
2: if |s|D ≥ τd then
3: return Watermarked.
4: else
5: return Not watermarked.
6: end if

Algorithm 3 Edit Detection for Pattern-based Watermarking

Input: Text s(1:T ), watermarking pattern, detection threshold τe.
Output: Decision (edited or not) and the potential edit region.
1: Compute token-specific detection statistics |s|E(t) as in equation 5 for all t.
2: if mint=w,...,t−w+1 |s|E(t) < τe then
3: return Edit detected; and return the indexes set I = {t : |s|E(t) < τe}.
4: else
5: return Not edited.
6: end if

Intuitively, the above average computes the average alignment of these w windows, which all con-
tain the current token s(t), with the pattern P . We then compare each local statistic |s|E(t) with
a pre-specified threshold (calibrated to control the false alarm rate), and output all regions with
statistics below the threshold. See Algorithm 3 for a complete summary of the procedure. Detailed
computational complexity analysis is provided in Appendix C.

We present the following guarantee on the false alarm rate of edit detection under certain assump-
tions. The proof can be found in Appendix A.
Theorem 3.1 (Type-I error rate of edit detection). Assume that under a clean watermark, the pattern
alignment probability for each window of size w is µ(w)

1 := P[Iw(t) = 1],∀t. When µ
(w)
1 = 1 (hard

watermarking with strict pattern adherence), we have the Type-I error rate (probability of a false
alarm) Pr[|s|E(t) < τe | no edit] = 0 for any τe < 1. When µ

(w)
1 < 1 (soft watermarking), we

have for any detection threshold τe < µ
(w)
1 , the Type-I error rate at token t under a clean (unedited)

watermark is bounded by

Pr[|s|E(t) < τe | no edit] ≤ exp

(
−w2(µ

(w)
1 − τe)

2

2∆(w)

)
,

where ∆(w) :=
∑

i,j E[Iw(t− i)Iw(t− j)] is a constant that depends on w.

It can be seen that the false alarm probability generally remains small when the detection threshold
is relatively low compared to the pattern alignment probability µ

(w)
1 . Though the exact value of µ(w)

1
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is generally intractable, its lower bound typically depends on the entropy of the LLMs next-token
distribution and increases with the watermarking strength parameter δ (Kirchenbauer et al., 2023a).
It is also worthwhile noting that the constant ∆(w) here reflects the complex dependencies among
sliding windows, which are difficult to characterize explicitly in large language models. Moreover,
establishing detection accuracy under edits is more challenging, as the edit process itself is not well
modeled by simple statistical assumptions. Further analysis is provided in Appendix A.

4 NUMERICAL EXPERIMENTS

Experimental Setup. We simulate texts using two large language models: LLaMA-2-7B and
OPT-1.3b, both accessed via Hugging Face Transformers with deterministic decoding with 4-beam
search. In all experiments, prompts are a sample of WikiText texts (Merity et al., 2017). The
generated texts are all embedded with the combinatorial pattern-based watermarks with varying wa-
termarking strength δ. The edited texts are then generated by specifying three types of edits: token
replacement, insertion, and deletion, and the length of each consecutive edit, ranging from 1 token
to 6 tokens long. Random edits are injected in randomly selected contiguous spans. See Figure 1
for an overview of the simulated data we used in our numerical experiments.

Evaluation. We conduct two sets of evaluations. First, we evaluate the edit detection performance.
For each edited text, we compute token-level edit detection statistics and compare them against
a pre-selected threshold. The thresholds are calibrated to control the Type-I error rate (i.e., false
alarm rate) at 0.1 across all experiments. We set the window size as w = 8 for the longer pattern
in Example 3.2 and w = 2 for all other cases including the baselines. We report both illustrative
examples of the edit detection statistics (in Figure 4) and the average detection accuracy across
different edit types and lengths (in Figure 5). Second, we evaluate watermark detectability to ensure
that the pattern-based watermark remains identifiable. We also illustrate the fundamental trade-off
between detection effectiveness and the perplexity (i.e., text quality) of the watermarked outputs.

Runtime Performance. All experiments were conducted on an RTX 6000Ada GPU with 48GB of
VRAM. The detection process is relatively efficient, taking less than one second to perform both
watermark and edit detection on a batch of 64-token texts generated from 32 prompts. Watermarked
text generation takes approximately seven seconds per batch under the same settings. Note that the
generation time is only incurred during dataset construction for evaluation purposes.

4.1 RESULTS ON POST-GENERATION EDIT DETECTION

We first evaluate the performance of our detection method across three canonical types of post-
generation edits: replacement, insertion, and deletion. We demonstrate that the pattern-based water-
mark allows accurate localization of the edited spans. For each type of edit, Figure 4 shows the edit
detection statistics across token positions. It can be seen that the edit detection statistics fall below
the threshold in almost all edited tokens, indicating efficient detection of local edits. In contrast,
the edit detection statistics lie above the threshold during most non-edit regions, as the threshold
is calibrated to achieve a small Type-I error rate. Furthermore, comparing Figure 4 (b) and (d), we
observe that the longer combinatorial pattern in (d) is more effective at detecting certain edit lengths,
particularly in the case of deletions.

Furthermore, we compute the average edit detection accuracy over 1,000 samples of 64 tokens long,
using a fixed Type-I error rate of 0.1 and a tolerance parameter L = 3. Results for both LLaMA-2-
7b and OPT-1.3b are shown in Figure 5, evaluated under various combinatorial patterns with a fixed
watermark strength. We also compare against baseline watermarking methods, including KGW
(Kirchenbauer et al., 2023a) and Unigram (Zhao et al., 2024a), both perturb logits over a selected
green list. For a fair comparison, we adapt our local edit detection statistic to these settings by
treating them as having a degenerate pattern of the form AA · · · , where A refers to the green list.

As shown in Figure 5, the proposed method can detect various post-generation edits with high ac-
curacy, especially when using the longer combinatorial pattern. The detection accuracy generally
increases quickly with the edit span, indicating that consecutive edits are easier to detect. Combina-
torial patterns significantly outperform baseline KGW and Unigram watermarking methods, espe-
cially for detecting deletion-type edits and short-span edits (a particularly challenging case). This is
very promising given the simplicity of the proposed edit detection scheme. For a simple pattern with
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Prompt

Food and cuisine in Ireland takes its. . .
LLM

inspiration from centuries of Gaelic culture. . .
Edited

insp
0

iration
1

from
2

years
3

of
4

G
5

ael
6

ic
7

culture
8

. . .

(a) 1-token REPLACE on AB (Combinatorial
Pattern)

Prompt

Djedkare built his pyramid. . .
LLM

at Saqqâra in the 5th or 6th century. . .
Edited

at
0

Sa
1

qq
2

â
3

ra
4

in
5

the
6 7

6
8

th
9

century
10

B
11

CE
12

,
13

and
14

. . .

(b) 4-token DELETE on AB (Combinatorial Pattern)

Prompt

During his first season in the NBA , Jordan. . .
LLM

helped lead the Chicago Bulls to their first. . .
Edited

helped
0

lead
1

the
2

Chicago
3

Bull
4

s
5

to
6

lose
7

their
8

. . .

(c) 1-token INSERT on AB (Combinatorial Pattern)

Prompt

Djedkare built his pyramid. . .
LLM

in the north of Abusir, not too far from that. . .
Edited

in
0

the
1

north
2

of
3

Ab
4

us
5

ir
6

,
7

that
8

of
9

Kh
10

ak
11

he
12

. . .

(d) 4-token DELETE on ACADBCBD

Figure 4: Four examples of edit detection statistics under the two combinatorial patterns. Each
example shows the prompt text, the watermarked LLM-generated text, and the edited text. The
detection threshold is marked in red, and detected edit spans are represented by red bars that fall
below the threshold. We mark the true detection and missed detection in the plot, under a tolerance
of L = 3. The examples are generated using LLaMA-2-7b with watermarking strength δ = 5.8.

Figure 5: Edit detection accuracy under different edit lengths (1 to 6 tokens) and three edit types
(insertion, replacement, and deletion) on OPT-1.3b (left) and Llama-2-7b (right). The watermarking
strength parameter is δ = 5.8. In all cases we allow an evaluation tolerance of L = 3 tokens.
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a period of two (the AB pattern used here), it is hard to detect deletions that align exactly with the
pattern (e.g., removals of length two, four, and six in Figure 5). However, the longer combinatorial
pattern can achieve high detection accuracy for such token deletion edits. See Appendix B.2 for
additional results under varying watermarking strengths, patterns, and sampling mechanisms.

4.2 RESULTS ON WATERMARK DETECTION

To evaluate watermark detectability, we generate both unwatermarked and watermarked texts of
64 tokens long, on LLaMA-2-7b and OPT-1.3b. We then apply the watermark detection statistics
equation 4 to distinguish between watermarked and unwatermarked texts. The detection threshold
is selected to control the Type-I error rate at 0.1, and we report the corresponding Type-II error rate
to assess detection effectiveness. Meanwhile, to assess the impact of watermarking on text quality,
we compute the perplexity (PPL) of the generated text.

Figure 6: Tradeoff curve between the Type-II error rate of watermark detection and the perplexity
(PPL) of generated text. The red dashed line indicates the perplexity of unwatermarked text.

In Figure 6, we plot both the Type-II error rate and PPL across varying watermarking strength δ and
different combinatorial patterns. We also include the perplexity of the unwatermarked model for
comparison. As the watermark strength δ increases, we observe a general decrease in the Type-II
error rate and an increase in PPL, indicating that the combinatorial watermark becomes more de-
tectable but the generated text is of lower quality. This highlights the fundamental trade-off between
watermark detectability and generation quality. Furthermore, the longer combinatorial pattern—
with four unique tags (A,B,C,D)—exhibits the weakest trade-off between detectability and text
quality. A possible explanation is that increasing the number of unique tags reduces the size of each
sub-vocabulary. This, in turn, degrades text quality and thus increases PPL.

5 CONCLUDING REMARKS

We formulate and study the problem of local edit detection in watermarked LLM outputs. We intro-
duce a combinatorial pattern-based watermark that embeds rich local structure into the watermarked
text. Leveraging this structure, we derived lightweight statistics that can flag and localize suspect
spans containing edits. We evaluate the edit detection performance via experiments across various
editing scenarios. There are still several limitations of our work. For example, the pattern design
space explored is relatively narrow with at most four unique tags, and the method remains less ef-
fective for very short edits (one or two tokens), which are challenging to detect. Moreover, we focus
on lightweight detection statistics such as equation 4, which makes minimal assumptions about the
underlying pattern. However, the trade-off between watermark detectability, edit detection accuracy,
and perplexity could potentially be improved by adopting a more sophisticated detection method. To
tackle these challenges, future work includes exploring longer or adaptive pattern designs, further
improving the detection accuracy, and extending edit detection to other watermarking frameworks.
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REPRODUCIBILITY STATEMENT

All theoretical assumptions and complete proofs of the main results are provided in the appendix A.
Detailed descriptions of the experimental settings, including data generation, preprocessing, param-
eter choices, and evaluation metrics, can be found in Section 4, and the source code can be found in
the supplementary materials.
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A PROOFS FOR SECTION 3 AND MORE THEORETICAL ANALYSIS

Proof to Theorem 3.1. Recall that the edit detection statistic

|s|E(t) =
1

w

w−1∑
i=0

Iw(t− i),

is the normalized count of sliding windows of length w that perfectly match the known tag pattern
P . Here each indicator Iw(t− i) takes value 1 if and only if

(s(t−i), . . . , s(t−i+w−1)) ∈ VT1 × · · · × VTw ,

i.e., the generated tokens in the window fall entirely in the corresponding subset prescribed by P .
Here, with a slight abuse of notation but for simplicity, we just use {VT1

· · · VTw
} to denote the

pattern enforced to tokens within the current sliding window.

Under a clean watermark, by our assumption and the construction of the watermarking scheme, for
each window indicator we have E[Iw(t− i)] = µ

(w)
1 and hence E[|s|E(t)] = µ

(w)
1 .

We consider two cases separately. First, if µ(w)
1 = 1, i.e., the so-called hard watermarking regime

(Kirchenbauer et al., 2023a) where the token is strictly required to be drawn from the corresponding
list. For example, this can happen when we set the watermarking strength parameter δ to be large.
Under this case, we have |s|E(t) ≡ 1 and thus Pr[|s|E(t) < τe | no edit] = 0, which implies no
false alarm.

For the soft watermarking regime with µ
(w)
1 < 1, in such cases, the token is more likely to be drawn

from the corresponding list but is not guaranteed. Note that the list of indicators {Iw(t− i)}w−1
i=0 is

not independent, thus the indicators can be represented by a dependency graph: two indicators are
adjacent if their corresponding windows overlap. For windows with offset |i − j| = k < w, the
overlap size is w − k, we have the joint probability is

E[Iw(t− i)Iw(t− j)] = µ
(w+k)
1 .

Define the w-dependent constant ∆(w) :=
∑

i,j E[Iw(t − i)Iw(t − j)] = wµ
(w)
1 + 2

∑w−1
k=1 (w −

k)µ
(w+k)
1 . Janson’s inequality (Janson, 1990) states that for z < E[

∑w−1
i=0 Iw(t− i)] = wµ

(w)
1 ,

P(
w−1∑
i=0

Iw(t− i) < z) ≤ exp

(
−
(E[
∑w−1

i=0 Iw(t− i)]− z)2

2∆(w)

)
.

For the false alarm event {|s|E(t) < τe} we have
∑w−1

i=0 Iw(t− i) < wτe, and thus we have

P[|s|E(t) < τe | no edit] ≤ exp

(
−w2(µ

(w)
1 − τe)

2

2∆(w)

)
.

Discussion. In practice, the pattern alignment probability µ
(w)
1 is generally tractable and there is

no closed-form expression. However, the probability for token-level adherence is given in Lemma
E.1 in Kirchenbauer et al. (2023a). For example, under watermarking parameter δ, assuming the
two sub-vocabulary sets are of equal size, the probability of drawing a token from the current target

subset is lower bounded by µ̃1 :=
1
2α

1+
1
2 (α−1)

S

(
p,

1
2 (α−1)

1+
1
2 (α−1)

)
, where α = eδ and S(p, z) :=∑

k
pk

1+zpk
, where p represent the next-token probability (Kirchenbauer et al., 2023a).

It should be noted that the w-dependent constant ∆(w) can scale as O(w2) in the worst case under
strong positive correlations among overlapping windows, leading to a relatively loose upper bound
on the false alarm rate. On the other hand, if overlapping windows are independent—so that pat-
tern alignment in one window does not affect another—Hoeffdings inequality yields a much tighter
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bound that can decay exponentially with w. In practice, however, the exact dependence structure
among sliding windows in large language models is intricate and difficult to characterize.

We also note that the analysis on the edit detection accuracy would be much more complicated due
to the complication of all possible edits. As an example, in the following, we provide an analysis by
assuming that the edit happens in such a way that reduces the pattern alignment probability for each
sliding window to µ

(w)
0 := P[Iw(t) = 1],∀t and µ

(w)
0 is much smaller than the pattern alignment

probability µ
(w)
1 when there is no edits (clean watermark). We can apply Theorem 5 in Janson

& Ruciński (2002) to obtain an upper bound for the miss detection probability. Specifically, by
Theorem 5 in Janson & Ruciński (2002) and under our assumption, we have

P[|s|E(t) ≥ τe | edit] ≤ w exp

(
− w2(τe − µ

(w)
0 )2

4w(wµ
(w)
0 − w(τe − µ

(w)
0 )/3

)
= w exp

(
−3(τe − µ

(w)
0 )2

4(2µ
(w)
0 + τe)

)
.

It should be mentioned that the upper bound may not be very informative due to two reasons. First,
it is generally much larger than the lower tail probability, as capturing upper-tail probabilities with
overlapping time windows is intrinsically difficult (Janson & Ruciński, 2002). Second, here we are
assuming that the edits reduce the pattern alignment probability uniformly for each window to µ

(w)
0 ,

which could be unrealistic in practice. For example, in many cases, a local token insertion may force
µ
(w)
0 = 0 for windows containing the edit, resulting in 100% detection accuracy. Therefore, we rely

primarily on the empirical results in Section 4 to demonstrate the effectiveness of edit detection
across scenarios.

Analysis on watermark detectability. We also provide a watermark detectability error analysis
for completeness and to support the design of our combinatorial watermarking. The results show
that the detection accuracy converges to 1 as T → ∞, ensuring reliable detection with sufficiently
long watermarked text. Likewise, the Type-I error rate converges to 0 as T → ∞, implying that
sufficiently long unwatermarked text yields a vanishing false alarm rate.
Theorem A.1 (Watermark detection error rates). Assume that under a clean watermark, the pattern
alignment probability for each window of size w is µ

(w)
1 := P[Iw(t) = 1],∀t. When there is

no watermarking, assume this probability is reduced to µ
(w)
0 < µ

(w)
1 . Assume the observed data

contains T tokens in total, and the window size is w in the detection statistics.

• The probability of detecting the watermark, for a given detection threshold τD, is at least

P(|s|D ≥ τd) ≥ 1− exp

(
−(T − w + 1)

(µ
(w)
1 − τd)

2

2wµ
(w)
1

)
.

• The Type-I error rate (probability of false alarm) when there is no watermarking is

P[|s|D ≥ τd] ≤ w · exp

(
−(T − w + 1)

3(τd − µ
(w)
0 )2

4w · (2µ(w)
0 + τd)

)
.

Proof. Recall that the global watermark detection statistic

|s|D =
1

T − w + 1

T−w+1∑
t=1

Iw(t),

is the normalized count of sliding windows of length w that perfectly match the known tag pattern.

Under the watermarking regime, similar to the proof of Theorem 3.1, by our assumption and the
construction of the watermarking scheme, for each window indicator we have E[Iw(t− i)] = µ

(w)
1

and hence E[|s|D(t)] = µ
(w)
1 . Again we define the (T,w)-dependent constant

∆(T,w) :=
∑
(i,j):

|i−j|<w

E[Iw(i)Iw(j)] ≤ (T−w+1)µ
(w)
1 +(T−w+1)(w−1)µ(w)

1 = (T−w+1)wµ
(w)
1 .
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Then we can apply Jansons inequality (Janson, 1990), which guarantees for τd < µ
(w)
1 ,

P(|s|D ≤ τd) = P(
T−w+1∑

t=1

Iw(t) < (T − w + 1)τd) ≤ exp

(
−(T − w + 1)2

(µ
(w)
1 − τd)

2

2∆(T,w)

)
.

By substituting the upper bound to ∆(T,w), we can further simplify the above inequality as

P(|s|D ≤ τd) ≤ exp

(
−(T − w + 1)

(µ
(w)
1 − τd)

2

2wµ
(w)
1

)
.

For the false alarm event {|s|D ≥ τd} when there is no watermarking, we have

P[|s|D ≥ τd] ≤ w · exp

(
−(T − w + 1)2

(τd − µ
(w)
0 )2

4w · ((T − w + 1)µ
(w)
0 + (T − w + 1)(τd − µ

(w)
0 )/3)

)

≤ w · exp

(
−(T − w + 1)

3(τd − µ
(w)
0 )2

4w · (2µ(w)
0 + τd)

)
.

B ADDITIONAL ALGORITHMIC DETAILS AND EXPERIMENTAL RESULTS

B.1 CONCRETE EXAMPLES OF DETECTION STATISTICS

To better illustrate the detection algorithms, we give concrete examples of the constructed watermark
detection and edit detection statistics for the two exemplary combinatorial patterns in Example 3.1
and Example 3.2.

Example 3.1. With two unique tags (e.g., A and B), we define the pattern P = {A,B}, and thus
the watermark is governed by the order A,B,A,B, . . .. Here A and B can be interpreted as the
green and red lists (see Figure 2), respectively, aligning with standard terminology in prior work. In
the following, with a slight abuse of notation, we use A and B to also denote their corresponding
subset of vocabulary, when not causing confusion.

Based on the definition in equation 3, we have the following concrete formulations for Iw(t), which
is the core component in our watermark detection and edit detection statistics.

• For window size w = 2, we have

Iw(t) = 1
{
s(t) and s(t+1) belongs to different sets (A,B or B,A)

}
.

• For window size w = 4, we have

Iw(t) = 1
{
s(t), s(t+1), s(t+2), s(t+3) are in sets A,B,A,B or B,A,B,A

}
.

This also illustrates the case when the window size w exceeds the pattern period.

Example 3.2. With four unique tags (e.g., A,B,C,D), we define the combinatorial
pattern P = {A,C,A,D,B,C,B,D}, and the watermark is governed by the order
A,C,A,D,B,C,B,D,A,C,A,D,B,C,B,D, . . ..

Similarly, we have the following concrete formulation of Iw(t) that can be efficiently computed for
performing watermark detection and edit detection:

• For window size w = 2, we have

Iw(t) = 1
{
s(t) and s(t+1) are in AC, CA, AD, DB, BC, CB, BD, or DA

}
.

• For window size w = 4, we have
Iw(t) = 1

{
s(t:t+3) are in ACAD, CADB, ADBC, DBCB,

BCBD, CBDA, BDAC, or DACA
}
.

The statistics for larger window sizes are similarly constructed based on the same principle.
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Insights for combinatorial pattern design. Motivated by the detection statistics for watermark-
ing, we list some insights for designing the combinatorial pattern to enable simple watermark detec-
tion. For ease of watermark detection, we may impose the following structural restriction on our pat-
terns: we let both pattern length R and number of unique tags r to be even numbers, and the tag as-
signment alternates between even and odd indices—meaning Ti = T (j) only if i and j are both even
or both odd. Both examples 3.1 and 3.2 satisfy such a property. This design enables simple and ef-
fective detection using the smallest window size w = 2. Specifically, we define the window indicator
for positions t as Iw(t) = 1

{
s(t) ∈ Vodd and s(t+1) ∈ Veven, or s(t) ∈ Veven and s(t+1) ∈ Vodd

}
,

where Vodd = ∪1≤i≤r, i is oddVT (i) and Veven = ∪1≤i≤r, i is evenVT (i) . In other words, detection could
rely only on whether the observed token sequence follows the expected even-odd alternation. This
simple test does not rely on the full pattern structure. In contrast, the full pattern sequence provides
richer information that can be leveraged to localize specific edit positions.

Remark B.1. We also note that the above watermark detection is performed for black-box LLMs.
In practice, when we do have access to the logits information (such as in white-box LLMs), we can
instead use the log-likelihood ratio as our edit detection statistics and watermark detection statistics,
which will yield more accurate detection results due to the utilization of more information. And this
can potentially improve both the edit detection accuracy and the watermark detection accuracy.

B.2 MORE NUMERICAL RESULTS

Results With Varying Watermarking Strength δ, Combinatorial Pattern, and Multinomial
Sampling. We present more results on the average edit detection accuracy under a variety of wa-
termarking strengths in Figure 7. We also included a new pattern with r = 3 unique tags. We note
that higher watermarking strength increases accuracy in general. We also note that for the longer
ACADBCBD combinatorial pattern, it becomes more effective only beyond a certain watermarking
strength threshold. This is likely because, under lower watermarking strengths, the generated water-
marked text does not reliably adhere to the pattern, thus the edit detection is less effective. As the
watermarking strength increases, the watermarked text has better adherence to the pattern, leading
to better edit detection performance.
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Figure 7: Detection accuracy vs edit type and length under different watermarking strengths δ. This
was generated in a similar fashion to Figure 5 using Llama-2-7b, with 200 samples of 100-token
long generated text for each combination of edit type, length, watermarking strength, and pattern.
The texts in this case are generated using multinomial sampling where (temperature=1.0,
top_p=0.8).

Influence of Post Edits on Watermark Detection. While our primary goal is to design combi-
natorial patterns that enable more effective edit localization, it is also important to ensure that the
underlying watermark remains reliably detectable. We have demonstrated the watermark detectabil-
ity in Figure 6 using fully watermarked texts. In Figure 8 below, we present some empirical evidence
on the influence of post-generation edits on the magnitude of watermark detection statistics, under
varying watermarking strengths.

As expected, the watermark detection statistics decrease after post-generation edits, with larger
decreases observed for longer edit lengths and more complex patterns. Moreover, for the sim-
plest combinatorial pattern AB, the degradation in detection statistics is comparable to—or slightly
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smaller than—that of the two baseline watermarking approaches. This indicates that the combina-
torial pattern-based watermarking maintains at least the same level of robustness to post-generation
edits, and may even offer improved resilience in certain scenarios. A more comprehensive analysis
of robustness, including theoretical aspects such as detection threshold and sensitivity to different
edit types, is left for future work. In the following subsection B.3, we present preliminary theoretical
insights to illustrate general trends and motivate further study.
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Figure 8: Watermark score impact vs edit type and length under different watermarking strengths
δ. The y-axis shows the watermark score difference |s̃|D - |s|D, where s and s̃ denote the original
watermarked text and the edited text, respectively. The negative values on the y-axis indicate the
watermark detection statistics decrease after edits

Meaningful Edit Detection / Misinformation Spoofing Attack. To test the robustness of our
watermark against realistic threats, we simulated a targeted misinformation attack. We began by
generating 139 texts, each 100 tokens long, using OPT-2.7b, embedded with the AB combinatorial
pattern watermark with δ=4.5. We then tasked the Gemini API to introduce small but harmful edits
to the texts one by one using the following prompt:

Gemini-2.5-Flash Prompt

You are an expert on history, facts, and journalism.
I will give you a text, and your task is to modify part of it so it gives clear misinformation.
- Your change MUST significantly alter the meaning of the text.
- Only change 6 words or less, and leave the rest of the text intact.
- DO NOT ADD extra formatting, emphasis, punctuation, bolds, or italics.
- Only respond with the modified text. Nothing else.

A human evaluation of a sample of 50 modified texts found that 90% indeed did contain clear mis-
information. Finally, we applied our edit detection algorithm to these adversarially modified texts,
and evaluated the edit detection accuracy. Table 1 shows the detection accuracy results, grouped by
the number of tokens edited.

Tokens Edited Edit Detection Accuracy (%) Texts
1 81.4% 59
2 90.9% 44

3-9 91.7% 36

Table 1: AB (Combinatorial Pattern): Edit detection accuracy under a misinformation attack. The
table buckets texts by the number of "Tokens Edited", reports how many "Texts" fall under each
bucket, and the corresponding "Edit Detection Accuracy".

This trend is consistent with our random edit simulations: our algorithm is able to detect and localize
edits, and its accuracy increases when more consecutive tokens are modified.
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B.3 A SENSITIVITY ANALYSIS ON THE WATERMARK DETECTABILITY AND ROBUSTNESS

We provide some analysis on the impact of post-generation edits on the watermark detection statistic.
In general, the added edits will decrease the watermark detection statistics, as demonstrated in Figure
8, thus decreasing the watermark detectability.

Recall the watermark detector

|s|D =
1

N

N∑
t=1

Iw(t), N = T − w + 1,

where w is the sliding-window length, Iw(t) ∈ {0, 1} indicates whether the window s(t:t+w−1)

matches the watermark pattern, T is the text length, and let M =
∑

t Iw(t) = N · |s|D be the total
number of windows that match the pattern.

Note that a token at absolute position u ∈ {1, . . . , T} belongs to the w windows whose starting
indices lie in {

u− w + 1, u− w + 2, . . . , u
}
∩ [N ].

Hence any single-token perturbation can flip at most w indicators Iw(t).

In the following, we use Sins, Sdel, Srep to denote the token numbers in insertions, deletions, re-
placements. And let Ĩw(t) denote the indicator after editing. Meanwhile, we use ∆• to denote the
worst-case loss of the number of matched windows attributable to the corresponding edit type •. We
first consider three cases separately.

• Replacements. Replacements alter content but keep length fixed, so N remains unchanged.
Moreover, each new token can break at most w windows. Therefore for Srep replacements, the
worst-case loss of matched windows is ∆rep = min{wSrep,M}. For the resulted edited text s̃,
the watermark detection statistics after edits thus become

|s̃|D ≥
M −∆rep

N
.

• Insertions. Adding Sins tokens grows length to T + Sins, so the window count increases from
N to N + Sins. For Sins insertions, we have the worst-case loss of matched windows is ∆ins =
min{wSins, M}. For the resulted edited text s̃, this yields

|s̃|D ≥
M −∆ins

N + Sins
.

Since Sins appears in the denominator, the worst-case statistics after insertions degrade faster than
replacements (which leave N unchanged).

• Deletions. Removing Sdel tokens shortens the text, so the window count decreases from N to
N − Sdel. Again at most w of the indicators Iw(t) can flip, giving ∆del = min{wSdel,M}. The
watermark detection statistics after edits thus satisfy

|s̃|D ≥
M −∆del

N − Sdel
.

To summarize, each single-token edit can disrupt at most w windows as shown in the following
table.

Edit type Lost matches Window count change
Insertion ≤ w +1
Deletion ≤ w −1
Replacement ≤ w 0

Collecting the individual effects and clipping at zero yields the deterministic worst-case bound

|sedited|D ≥
M − w

(
Sins + Sdel + Srep

)
N + Sins − Sdel

, (6)
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here sedited denotes the resulting text after all edits. The numerator loses up to w matches per cor-
rupted token; the denominator is stretched by insertions and contracted by deletions, remaining
unchanged for replacements.

Interpreting the bound. From the worst-case lower bound in equation 6, it can be seen that if one
wishes to tolerate at most

(
Sins, Sdel, Srep

)
benign edits, we can plug those values into equation 6

and set the decision threshold τd no greater than the resulting lower bound. This guarantees that
if the watermark is detectable before the edit, then it can also be detected after

(
Sins, Sdel, Srep

)
edits. Moreover, since a single insertion, deletion, or replacement can disrupt at most w matching
windows, the worst-case degradation (|s|D − |sedited|D) grows linearly with w, and thus a smaller
window size yields smaller worst-case degradation. However, a smaller window size might be less
effective in detecting edits, so there exists some tradeoff in window size selection, and we generally
use a larger window for longer patterns in this work.

C COMPLEXITY ANALYSIS

Let T be the length of the text in tokens and w be the length of the sliding window for detection.
The complexity of our detection metrics, defined in equation 4, is as follows. First, we analyze the
complexity of the naive implementation.

• Single Window Score Complexity f(Iw(t)): To calculate the score for a single window at
position t, we compare the token window of length w against all w possible cyclic shifts of
the watermark pattern. Each comparison involves w token-wise operations, taking O(w)
time. Therefore, the total time complexity for one window is O(w2).

• Detection Score Complexity f(|S|D): This score requires computing Iw(t) for every
possible window in the text. There are T − w + 1 such windows. The total complexity is
thus O(T ) ·O(w2) = O(Tw2).

• Edit Score Complexity f(|S|E(t)): The edit score at a position t requires w evaluations
of the Iw function. The complexity is therefore w · O(w2) = O(w3). To compute this for
all T positions in the text, the total complexity becomes O(Tw3).

The naive approach can be optimized using techniques such as rolling hashes. A rolling hash allows
the hash of a new window (e.g., from token t to token t + 1) to be calculated in O(1) time from
the previous window’s hash. This would reduce the amortized complexity of computing a window’s
hash to O(1). Then using a hash-table, we can look up if there are any matching shifts in O(1).
Consequently, the complexities would become:

f(Iw(t)) = O(1), f(|S|D) = O(T ), and f({|S|E(t)}Tt=1) = O(Tw).

In this work, we use the naive implementation, as the window size w is small and fixed in all our
experiments.

LLM USAGE

We utilize open-source LLMs to generate watermarked and edited texts, on which we evaluate wa-
termark detection and edit detection tasks. LLMs are also used for polishing the writing slightly. No
ideas, analyses, or discoveries are contributed by LLMs.

19


	Introduction
	Related Work

	Preliminaries and Problem Setup
	Notation and Basics
	Problem Setup: Post-generation Edit Detection

	Combinatorial Pattern-based Watermarking for Edit Detection
	Watermark Generation based on Combinatorial Patterns
	Watermark Detection
	Post-Generation Edit Detection

	Numerical Experiments
	Results on Post-Generation Edit Detection
	Results on Watermark Detection

	Concluding Remarks
	Proofs for Section 3 and More Theoretical Analysis
	Additional Algorithmic Details and Experimental Results
	Concrete Examples of Detection Statistics
	More Numerical Results
	A Sensitivity Analysis on the Watermark Detectability and Robustness

	Complexity Analysis

