
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DETECTING POST-GENERATION EDITS TO WATER-
MARKED LLM OUTPUTS VIA COMBINATORIAL WA-
TERMARKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Watermarking has become a key technique for proprietary language models, en-
abling the distinction between AI-generated and human-written text. However, in
many real-world scenarios, LLM-generated content may undergo post-generation
edits, such as human revisions or even spoofing attacks, making it critical to detect
and localize such modifications. In this work, we introduce a new task: detect-
ing post-generation edits locally made to watermarked LLM outputs. To this end,
we propose a combinatorial pattern-based watermarking framework, which parti-
tions the vocabulary into disjoint subsets and embeds the watermark by enforcing
a deterministic combinatorial pattern over these subsets during generation. We
accompany the combinatorial watermark with a global statistic that can be used to
detect the watermark. Furthermore, we design lightweight local statistics to flag
and localize potential edits. We introduce two task-specific evaluation metrics,
Type-I error rate and detection accuracy, and evaluate our method on open-source
LLMs across a variety of editing scenarios, demonstrating strong empirical per-
formance in edit localization.

1 INTRODUCTION

The swift progress of Large Language Models (LLMs) is transforming industries ranging from soft-
ware engineering and education to customer service (Achiam et al., 2023; Touvron et al., 2023; Guo
et al., 2025; Team et al., 2023; Kasneci et al., 2023; Zhang et al., 2022; Anthropic, 2024; Cotton
et al., 2024). To enable provable identification of AI-produced content, a common practice is to em-
bed watermarks, some hidden and detectable signals, into LLM-generated text (Kamaruddin et al.,
2018; Cayre et al., 2005; Huang et al., 2023). This is usually achieved by carefully controlling the
token distribution during the generation process, ensuring that the watermark remains imperceptible
to end-users while preserving the overall text quality, as demonstrated in the recent watermarking
frameworks (Fernandez et al., 2023; Hu et al., 2023; Zhao et al., 2024b; Aaronson, 2023; Kuditipudi
et al., 2023; Kirchenbauer et al., 2023a; Dathathri et al., 2024; Zhao et al., 2024a; Giboulot & Furon,
2024; Chen et al., 2025; Christ et al., 2024).

As watermarking becomes a pivotal mechanism for tracing and attributing generated content, the
same marks create an attack surface: adversaries can deliberately manipulate them to misattribute
text, deceiving downstream users and harming the reputations of legitimate providers (Pang et al.,
2024). As has been shown in Pang et al. (2024), a robust watermarking scheme that is easier to be
detected, is also vulnerable to spoofing attacks. While existing methods focus on global watermark
detection, they offer little visibility into how or where a text may have been modified post-generation,
whether by malicious actors or through routine human revision.

In this work, we introduce the new task of local post-generation edit detection, which aims to iden-
tify and localize post-generation edits made to watermarked LLM outputs. This capability is critical
in applications that demand accountability and transparency, such as collaborative content creation,
academic writing, or high-stakes public communication. To this end, we propose a general com-
binatorial pattern-based watermarking scheme, along with corresponding edit detection statistics
designed to accurately identify modified spans. Meanwhile, we demonstrate that such combinato-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Prompt: To prepare a Cake, mix …

Edited: the butter, bleach and vinegar into one large mixing bowl; add in …
LLM: the butter, sugar and vanilla into one large mixing bowl; add in …

Prompt: In 2014, the USA president …

Edited: addressed growing concerns about government surveillance programs …
LLM: addressed growing concerns about government surveillance programs …

Prompt: Alan Turing was …

Edited: a brilliant but unsung scientist who contributed to early computer science.
LLM: a brilliant scientist who contributed to early computer science.

Models LLaMA-2-7b, OPT-1.3b

Total Number of Texts 2000

Average Text Length 64 Tokens

Edit Length 1, 2, 3, 4, 5, 6 (in Tokens)

Deletion

Edit
Type

Replacement

Deletion

Insertion

Figure 1: Overview of the constructed dataset used for evaluation. (Left) Characteristics of the gen-
erated texts. Edits are uniformly distributed across three types–replacement, deletion, and insertion–
and span lengths from one to six tokens. (Right) Examples of each edit type. For each example, we
show the prompt, the watermarked LLM output, and the edited text. Edited spans are highlighted in
yellow to illustrate the nature and location of edits.

rial pattern-based watermark remains reliably detectable, comparable to state-of-the-art schemes,
ensuring that the origin of LLM-generated content can still be verified.

Our contributions are summarized as follows:

• We formally define the task of post-generation edit detection and localization, and propose evalu-
ation metrics, including detection accuracy and false alarm rate, to assess performance.

• We introduce a general framework for combinatorial pattern-based watermarking that prioritizes
post-generation edit detection (see Figure 2 for an illustration). The framework consists of: (i) a
watermark generation mechanism based on predefined combinatorial patterns; (ii) a global statistic
for watermark detection; and (iii) specialized statistics for localizing post edits.

• We evaluate the effectiveness of our edit detection method on a simulated dataset, including both
watermarked texts and their edited versions under a range of post-generation editing scenarios
(see Figure 1 for examples of the editing scenarios).

The remainder of the paper is organized as follows. Section 2 introduces preliminary knowledge and
defines the task of post-generation edit detection. Section 3 introduces our combinatorial pattern-
based watermarking framework, including watermark generation, watermark detection, and edit de-
tection statistics. Section 4 presents numerical experiments evaluating both watermark detectability
and edit detection performance. Section 5 concludes the paper with key insights and points to future
directions toward advancing accountability and transparency in LLM-generated content through edit
detection and watermarking.

1.1 RELATED WORK

Watermarking Methods. Our work builds on and is thus mostly close to the provably robust
watermarking scheme (Kirchenbauer et al., 2023a), which perturbs the models logit vector in a
green list. Common choices of the green list include the KGW scheme (Kirchenbauer et al., 2023a)
and the Unigram scheme (Zhao et al., 2024a). Our work is also related to Chen et al. (2025), which
proposes a similar pattern-based watermarking but for order-agnostic LLMs. We mainly differ from
Chen et al. (2025) in two key aspects: (i) while our simplest combinatorial pattern can be viewed as
a special case of their Markov chain-based pattern mark, we adapt it for the task of edit detection;
and (ii) our general pattern adopts deterministic transitions, unlike the probabilistic structure used in
Chen et al. (2025), and allows duplicate tags, enabling efficient localization of edits.

Post-edit Detection. A persistent gap in the literature (see a survey in Crothers et al. (2023)) is that
post-generation edits typically surface as brief, scattered changes at unpredictable positions in the
text. Most existing detectors are calibrated to flag long content, such as AI-generated content detec-
tion (Bao et al., 2023; Chakraborty et al., 2023; Gehrmann et al., 2019; Li et al., 2024b; Mitchell
et al., 2023; Sadasivan et al., 2023), making sentence or phrase level tweaks both difficult to catch
and even harder to localize. The watermark agnostic approach of Kashtan & Kipnis (2023) seeks
finer granularity by applying the Higher Criticism (HC) metric to detect sparse anomalies without

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

leveraging any embedded watermark signal. While HC offers asymptotic optimality guarantees, its
power may converge slowly in practice, limiting its effectiveness on short or moderately sized pas-
sages. Additionally, it yields a purely global test statistic that indicates whether edits occurred but
provides no cue about where they lie. More recently, Lei et al. (2025) introduced a Bayesian detec-
tion framework that estimates the proportion of LLM-generated content and flags the corresponding
segments, using the T -score statistic (Cohen, 2022). While their objective is related to ours, they
do not consider post-generation edits made to LLM output. Methodologically, their approach is
also fundamentally different—they operate on fixed segmentations and do not leverage embedded
watermarks. In contrast, we focus on detecting token-level edits made to watermarked LLM out-
put. To this end, we propose a watermarking scheme that simultaneously supports both watermark
verification and precise localization of post-generation edits.

Balancing Watermark Integrity and Post-edit Traceability. Existing research has mainly an-
alyzed the tradeoff between watermark detectability and robustness to removal or spoofing at-
tacks (Kirchenbauer et al., 2023a; Zhao et al., 2024a; Li et al., 2024a; Hopkins & Moitra, 2024;
Chen et al., 2024; Pang et al., 2024). To the best of our knowledge, no existing method addresses the
challenge of determining whether a watermarked LLM output has been post-edited and where those
edits occur. We take a step in this direction by proposing a unified framework for both watermark
integrity verification and edit detection.

2 PRELIMINARIES AND PROBLEM SETUP

2.1 NOTATION AND BASICS

We use V to denote the vocabulary set—the set of all tokens an LLM can generate in a single
time step. We refer to tokens s(−Np), . . . , s(0) as the prompt, and s(1), . . . , s(T) as the generated
response. For brevity, we denote any subsequence s(i), . . . , s(j) by s(i:j). In this work, we consider
an autoregressive LLM (Radford et al., 2019). Specifically, at each time step t, the model generates
the next token according to a learned distribution over V , conditioning on all preceding context. We
denote this distribution as P and it can be parametrized by a logit vector l̄(t) = (l

(t)
1 , · · · , l(t)|V|),

which is computed based on the preceding tokens. The resulting token distribution p(t) is then given
by: p(t)u , P (s(t) = u|s(−Np:t−1)) = el

(t)
u /(

∑
v∈V el

(t)
v), ∀u ∈ V .

We follow the line of work in Kirchenbauer et al. (2023a); Zhao et al. (2024a) to pseudorandomly
select a subset of the vocabulary set V and then perturb the logits therein. This subset is usually
referred to as the green list while its complement is usually called the red list. More specifically, we
may denote G(t) = H(s(−Np:t−1), k) as the green list at time t, where H is a (deterministic) hash
function, and k is a watermarking secret key. Both the secret key and the functionH are known to the
verifier in order to authenticate the watermark. The watermarking is embedded into the generated
text by increasing the logits in the green list while freezing the logits elsewhere. The modified token
distribution p̃(t) is thus given as

p̃(t)u , P̃ (s(t) = u|s(−Np:t−1); k) =
exp(l

(t)
u + 1(u ∈ G(t)) · δ)∑

v∈G(t) exp(l
(t)
v + δ) +

∑
v/∈G(t) exp(l

(t)
v)

, ∀u ∈ V, (1)

where δ ≥ 0 is a perturbation parameter reflecting watermarking strength, l(t) denotes the original
logit vector at time step t, and 1(·) is the indicator function.

2.2 PROBLEM SETUP: POST-GENERATION EDIT DETECTION

Given a text as a list of tokens, we consider the possibility that the text undergoes post-generation
modifications. In this work, post-generation edits refer to any modifications that do not adhere to the
watermarking rule—for example, human edits or edits made without knowledge of the underlying
watermarking mechanism. Let s = s(1:T) denote the watermarked text of length T generated by the
watermarked model, i.e., s ∼ P̃ (·|s(−Np:0)), we denote s̃ as the edited version of s. We focus on
three primary types of local edits: token replacement, token insertion, and token deletion. Each edit
is restricted to a contiguous span of at most S tokens, where the hyperparameter S sets the maximum
span of each local edit and reflects our assumption that edits are localized and moderate. These edit

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Ford Motor Co. flew the first commercial planeLLM Generated
with watermark

(GRGR⋯)

Edited text

Replaced

changedand aviation history

Ford Motor Co. tested the first plane changedand aviation historygreatly

Deleted Inserted

Pattern Violation Pattern Violation

Edit detected

Pattern Violation

Edit detected Edit detected

Figure 2: A proof-of-concept illustration of combinatorial pattern-based watermarking for edit de-
tection. Suppose a simple Green-Red alternating watermark pattern is embedded. We slide a window
(of size two in this example) and check whether tokens within each window align with the expected
pattern. A significant pattern violation indicates a potential post-generation edit.

types are both commonly encountered in practice and analytically tractable (Kirchenbauer et al.,
2023b; Pang et al., 2024; Zhao et al., 2024a; An et al., 2025). Multiple such edits may occur in
non-overlapping regions of the sequence, allowing for general modifications while preserving the
local nature of each edit; see Figure 2 for an example. This setting also captures realistic human
editing behaviors such as paraphrasing or minor content adjustments.

In the edit detection task, given a text s and a pre-specified watermarking scheme, the goal is to
detect: (1) whether the text s has undergone any post-generation edits; and (2) the location of such
edits, if present. This can be formalized via an algorithm A that takes text s as input and outputs a
set of suspected local edit indexes A(s) = {I1, I2, . . . , Ia}, Ij ∈ [T]. If A(s) = ∅, this indicates
that no post-generation edit has been detected. We evaluate the edit detection performance of an
algorithm A via the following two metrics: detection accuracy and Type-I error, each assessed
under a tolerance parameter L that can be flexibly chosen as needed.

Definition 1 (Detection accuracy). A true edit within text s at position t, i.e., s(t), is considered
correctly detected if there exists Ij ∈ A(s) such that |Ij − t| ≤ L, otherwise, it is counted as a
Type-II error (i.e., a miss detection). The detection accuracy is defined as the proportion of true
edits that are successfully detected.
Definition 2 (Type-I error rate). For a given text s, if a position t lies at least L + 1 tokens away
from any true edit, and the algorithm flags any position within the interval [t − L, t + L], then it is
considered as a Type-I error (i.e., a false alarm). The Type-I error rate is defined as the proportion
of such positions that are incorrectly flagged.

True Detection

False Alarm

Miss Detection

Tolerance window (± 1 token)

True edit Detected

Figure 3: Illustration of edit
detection outcomes.

The scenarios of miss detection and false alarms are illustrated in
Figure 3 with a small tolerance window of L = 1. It is worthwhile
mentioning that these metrics extend classical Type-I error rate and
power in hypothesis testing to a local detection setting. The toler-
ance parameter L allows for small positional discrepancies, which
is introduced to enable a more robust evaluation of detection ac-
curacy, when exact alignment between detected and true edit posi-
tions is not strictly required. Note that setting L = 0 enforces exact
matching between detected and true edit locations, but may make
the evaluation overly sensitive to minor misalignments, especially
in ambiguous or noisy contexts.

3 COMBINATORIAL PATTERN-BASED WATERMARKING FOR EDIT
DETECTION

3.1 WATERMARK GENERATION BASED ON COMBINATORIAL PATTERNS

We now introduce the generalized combinatorial pattern-based watermarking rule that promotes
the use of certain sub-vocabularies according to a deterministic, pre-defined pattern P . Formally,
assume we have r unique tags {T (1), T (2), . . . , T (r)}, each associated with a set VT (j) ⊂ V , for
j = 1, 2, . . . , r, and {VT (1) , . . . ,VT (r)} forms a partition of V .

The watermarking rule depends on a combinatorial pattern P := {T1, T2, . . . , TR}, where each
Ti ∈ {T (1), T (2), . . . , T (r)}, and R denotes the pattern period. The pattern P may contain repeated

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

tags and is intended to be repeated cyclically to span the full token sequence during generation. In the
following, we present two concrete examples, both of which we use in our numerical experiments.
Example 3.1 (Alternating Binary Pattern). With two unique tags (e.g., A and B), we define the
pattern P = {A,B}, and thus the watermark is governed by the order A,B,A,B, Here A and
B can be interpreted as the green and red lists (see Figure 2), respectively, aligning with standard
terminology in prior work.
Example 3.2 (Alternating Quaternary Pattern). With four unique tags (e.g., A,B,C,D), we define
the combinatorial pattern P = {A,C,A,D,B,C,B,D}, and the watermark is governed by the
order A,C,A,D,B,C,B,D,A,C,A,D,B,C,B,D,

At each token position t, the watermark generation process promotes the selection of tokens from
the subset VT(t mod R)+1

, corresponding to the tag T(t mod R)+1, as specified by the pattern. For a
given watermarking key k, the vocabulary is partitioned into r subsets, and the t-th token is then
generated according to the perturbed distribution (see Algorithm 1 for the full procedure):

p̃(t)u , P̃ (s(t) = u|s(−Np:t−1)) =
exp(l

(t)
u + 1(u ∈ VT(t mod R)+1

) · δ)∑
v/∈VT(t mod R)+1

exp(l
(t)
v) +

∑
v∈VT(t mod R)+1

exp(l
(t)
v + δ)

. (2)

In other words, we perturb the logits according to the pattern. We note that when δ is large enough,
the watermarking mechanism above will restrict generation to the target subset at each step.

3.2 WATERMARK DETECTION

We first give the statistics that can be used to detect the combinatorial pattern-based watermark,
since any watermarking mechanism must be accompanied by a corresponding detection procedure.
The idea is similar to Kirchenbauer et al. (2023a) by counting the proportion of tokens that align
with the pre-specified pattern. Given the text s, the objective is to determine whether the text is
human-generated or produced by an LLM. This task can be framed as a hypothesis testing problem
with the null hypothesis: H0: “the text is generated with no knowledge of the watermarking rule”.

We slide a window of size w ∈ N over the token sequence and inspect whether the w consecu-
tive tokens belong to a cyclically ordered sub-sequence of the pattern. For simplicity, we consider
window size w no larger than the pattern length R. The approach extends naturally to larger w;
See Appendix B.1 for concrete examples. Specifically, the subsequence s(t:t+w−1) is considered a
match if there exists a cyclic permutation (VTπ(1)

, . . . ,VTπ(R)
) of (VT1 , . . . ,VTR

) such that:

∃v ∈ [R] : s(t) ∈ VTπ(v)
, s(t+1) ∈ VTπ(v+1)

, . . . , s(t+w−1) ∈ VTπ(v+w−1)
. (3)

We denote
Iw(t) = 1 {∃ cyclic shift π such that equation 3 is satisfied} ,

which is a binary indicator on whether the subsequence s(t:t+w−1) aligns with the watermark pattern.

Watermark Detection Statistic. Given the pre-specified pattern P and the window size w, we
define the detection statistic |s|D as the normalized count of matching subsequences:

|s|D =
1

T − w + 1

T−w+1∑
t=1

Iw(t). (4)

The value of |s|D is then compared to a predefined threshold τd (chosen by controlling false alarm
rate); when |s|D ≥ τd, we rejectH0 and conclude the text is likely watermarked (see Algorithm 2).

3.3 POST-GENERATION EDIT DETECTION

We then present our lightweight edit detection statistics designed to identify local positions that
violate the pre-specified pattern; see a proof-of-concept illustration in Figure 2. We will again use
the binary indicator Iw(t) as the crucial element in constructing the edit detection statistics. We
define the local edit statistic at each token index t as, again, for a window of size w:

|s|E(t) =
1

w

w−1∑
i=0

Iw(t− i). (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Pattern-based Watermarking

Input: Base LLM PM, a pre-specified pattern P , the partition {VT (1) , . . . ,VT (r)}, and δ > 0.
Output: Generated text s(1:T).
1: Initialize t← 1, prompt s(−Np:0).
2: while t ≤ T do
3: Get current tag T(t mod R)+1 from pattern at step t.
4: Compute base logits l(t)u , u ∈ V .
5: Apply logit shift for u ∈ VT(t mod R)+1

and sample s(t) ∼ p̃(t) according to equation 2.
6: t← t+ 1.
7: end while
8: return {s(1:T)}.

Algorithm 2 Pattern-based Watermark Detection

Input: Text s(1:T), pattern P , detection threshold τd.
Output: Decision (watermarked or not).
1: Compute detection statistics |s|D in equation 4.
2: if |s|D ≥ τd then
3: return Watermarked.
4: else
5: return Not watermarked.
6: end if

Algorithm 3 Edit Detection for Pattern-based Watermarking

Input: Text s(1:T), watermarking pattern, detection threshold τe.
Output: Decision (edited or not) and the potential edit region.
1: Compute token-specific detection statistics |s|E(t) as in equation 5 for all t.
2: if mint=w,...,t−w+1 |s|E(t) < τe then
3: return Edit detected; and return the indexes set I = {t : |s|E(t) < τe}.
4: else
5: return Not edited.
6: end if

Intuitively, the above average computes the average alignment of these w windows, which all con-
tain the current token s(t), with the pattern P . We then compare each local statistic |s|E(t) with
a pre-specified threshold (calibrated to control the false alarm rate), and output all regions with
statistics below the threshold. See Algorithm 3 for a complete summary of the procedure. Detailed
computational complexity analysis is provided in Appendix C.

We present the following guarantee on the false alarm rate of edit detection under certain assump-
tions. The proof can be found in Appendix A.
Theorem 3.1 (Type-I error rate of edit detection). Assume that under a clean watermark, the pattern
alignment probability for each window of size w is µ(w)

1 := P[Iw(t) = 1],∀t. When µ
(w)
1 = 1 (hard

watermarking with strict pattern adherence), we have the Type-I error rate (probability of a false
alarm) Pr[|s|E(t) < τe | no edit] = 0 for any τe < 1. When µ

(w)
1 < 1 (soft watermarking), we

have for any detection threshold τe < µ
(w)
1 , the Type-I error rate at token t under a clean (unedited)

watermark is bounded by

Pr[|s|E(t) < τe | no edit] ≤ exp

(
−w2(µ

(w)
1 − τe)

2

2∆(w)

)
,

where ∆(w) :=
∑

i,j E[Iw(t− i)Iw(t− j)] is a constant that depends on w.

It can be seen that the false alarm probability generally remains small when the detection threshold
is relatively low compared to the pattern alignment probability µ

(w)
1 . Though the exact value of µ(w)

1

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

is generally intractable, its lower bound typically depends on the entropy of the LLMs next-token
distribution and increases with the watermarking strength parameter δ (Kirchenbauer et al., 2023a).
It is also worthwhile noting that the constant ∆(w) here reflects the complex dependencies among
sliding windows, which are difficult to characterize explicitly in large language models. Moreover,
establishing detection accuracy under edits is more challenging, as the edit process itself is not well
modeled by simple statistical assumptions. Further analysis is provided in Appendix A.

4 NUMERICAL EXPERIMENTS

Experimental Setup. We simulate texts using two large language models: LLaMA-2-7B and
OPT-1.3b, both accessed via Hugging Face Transformers with deterministic decoding with 4-beam
search. In all experiments, prompts are a sample of WikiText texts (Merity et al., 2017). The
generated texts are all embedded with the combinatorial pattern-based watermarks with varying wa-
termarking strength δ. The edited texts are then generated by specifying three types of edits: token
replacement, insertion, and deletion, and the length of each consecutive edit, ranging from 1 token
to 6 tokens long. Random edits are injected in randomly selected contiguous spans. See Figure 1
for an overview of the simulated data we used in our numerical experiments.

Evaluation. We conduct two sets of evaluations. First, we evaluate the edit detection performance.
For each edited text, we compute token-level edit detection statistics and compare them against
a pre-selected threshold. The thresholds are calibrated to control the Type-I error rate (i.e., false
alarm rate) at 0.1 across all experiments. We set the window size as w = 8 for the longer pattern
in Example 3.2 and w = 2 for all other cases including the baselines. We report both illustrative
examples of the edit detection statistics (in Figure 4) and the average detection accuracy across
different edit types and lengths (in Figure 5). Second, we evaluate watermark detectability to ensure
that the pattern-based watermark remains identifiable. We also illustrate the fundamental trade-off
between detection effectiveness and the perplexity (i.e., text quality) of the watermarked outputs.

Runtime Performance. All experiments were conducted on an RTX 6000Ada GPU with 48GB of
VRAM. The detection process is relatively efficient, taking less than one second to perform both
watermark and edit detection on a batch of 64-token texts generated from 32 prompts. Watermarked
text generation takes approximately seven seconds per batch under the same settings. Note that the
generation time is only incurred during dataset construction for evaluation purposes.

4.1 RESULTS ON POST-GENERATION EDIT DETECTION

We first evaluate the performance of our detection method across three canonical types of post-
generation edits: replacement, insertion, and deletion. We demonstrate that the pattern-based water-
mark allows accurate localization of the edited spans. For each type of edit, Figure 4 shows the edit
detection statistics across token positions. It can be seen that the edit detection statistics fall below
the threshold in almost all edited tokens, indicating efficient detection of local edits. In contrast,
the edit detection statistics lie above the threshold during most non-edit regions, as the threshold
is calibrated to achieve a small Type-I error rate. Furthermore, comparing Figure 4 (b) and (d), we
observe that the longer combinatorial pattern in (d) is more effective at detecting certain edit lengths,
particularly in the case of deletions.

Furthermore, we compute the average edit detection accuracy over 1,000 samples of 64 tokens long,
using a fixed Type-I error rate of 0.1 and a tolerance parameter L = 3. Results for both LLaMA-2-
7b and OPT-1.3b are shown in Figure 5, evaluated under various combinatorial patterns with a fixed
watermark strength. We also compare against baseline watermarking methods, including KGW
(Kirchenbauer et al., 2023a) and Unigram (Zhao et al., 2024a), both perturb logits over a selected
green list. For a fair comparison, we adapt our local edit detection statistic to these settings by
treating them as having a degenerate pattern of the form AA · · · , where A refers to the green list.

As shown in Figure 5, the proposed method can detect various post-generation edits with high ac-
curacy, especially when using the longer combinatorial pattern. The detection accuracy generally
increases quickly with the edit span, indicating that consecutive edits are easier to detect. Combina-
torial patterns significantly outperform baseline KGW and Unigram watermarking methods, espe-
cially for detecting deletion-type edits and short-span edits (a particularly challenging case). This is
very promising given the simplicity of the proposed edit detection scheme. For a simple pattern with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Prompt

Food and cuisine in Ireland takes its. . .
LLM

inspiration from centuries of Gaelic culture. . .
Edited

insp
0

iration
1

from
2

years
3

of
4

G
5

ael
6

ic
7

culture
8

. . .

(a) 1-token REPLACE on AB (Combinatorial
Pattern)

Prompt

Djedkare built his pyramid. . .
LLM

at Saqqâra in the 5th or 6th century. . .
Edited

at
0

Sa
1

qq
2

â
3

ra
4

in
5

the
6 7

6
8

th
9

century
10

B
11

CE
12

,
13

and
14

. . .

(b) 4-token DELETE on AB (Combinatorial Pattern)

Prompt

During his first season in the NBA , Jordan. . .
LLM

helped lead the Chicago Bulls to their first. . .
Edited

helped
0

lead
1

the
2

Chicago
3

Bull
4

s
5

to
6

lose
7

their
8

. . .

(c) 1-token INSERT on AB (Combinatorial Pattern)

Prompt

Djedkare built his pyramid. . .
LLM

in the north of Abusir, not too far from that. . .
Edited

in
0

the
1

north
2

of
3

Ab
4

us
5

ir
6

,
7

that
8

of
9

Kh
10

ak
11

he
12

. . .

(d) 4-token DELETE on ACADBCBD

Figure 4: Four examples of edit detection statistics under the two combinatorial patterns. Each
example shows the prompt text, the watermarked LLM-generated text, and the edited text. The
detection threshold is marked in red, and detected edit spans are represented by red bars that fall
below the threshold. We mark the true detection and missed detection in the plot, under a tolerance
of L = 3. The examples are generated using LLaMA-2-7b with watermarking strength δ = 5.8.

Figure 5: Edit detection accuracy under different edit lengths (1 to 6 tokens) and three edit types
(insertion, replacement, and deletion) on OPT-1.3b (left) and Llama-2-7b (right). The watermarking
strength parameter is δ = 5.8. In all cases we allow an evaluation tolerance of L = 3 tokens.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

a period of two (the AB pattern used here), it is hard to detect deletions that align exactly with the
pattern (e.g., removals of length two, four, and six in Figure 5). However, the longer combinatorial
pattern can achieve high detection accuracy for such token deletion edits. See Appendix B.2 for
additional results under varying watermarking strengths, patterns, and sampling mechanisms.

4.2 RESULTS ON WATERMARK DETECTION

To evaluate watermark detectability, we generate both unwatermarked and watermarked texts of
64 tokens long, on LLaMA-2-7b and OPT-1.3b. We then apply the watermark detection statistics
equation 4 to distinguish between watermarked and unwatermarked texts. The detection threshold
is selected to control the Type-I error rate at 0.1, and we report the corresponding Type-II error rate
to assess detection effectiveness. Meanwhile, to assess the impact of watermarking on text quality,
we compute the perplexity (PPL) of the generated text.

Figure 6: Tradeoff curve between the Type-II error rate of watermark detection and the perplexity
(PPL) of generated text. The red dashed line indicates the perplexity of unwatermarked text.

In Figure 6, we plot both the Type-II error rate and PPL across varying watermarking strength δ and
different combinatorial patterns. We also include the perplexity of the unwatermarked model for
comparison. As the watermark strength δ increases, we observe a general decrease in the Type-II
error rate and an increase in PPL, indicating that the combinatorial watermark becomes more de-
tectable but the generated text is of lower quality. This highlights the fundamental trade-off between
watermark detectability and generation quality. Furthermore, the longer combinatorial pattern—
with four unique tags (A,B,C,D)—exhibits the weakest trade-off between detectability and text
quality. A possible explanation is that increasing the number of unique tags reduces the size of each
sub-vocabulary. This, in turn, degrades text quality and thus increases PPL.

5 CONCLUDING REMARKS

We formulate and study the problem of local edit detection in watermarked LLM outputs. We intro-
duce a combinatorial pattern-based watermark that embeds rich local structure into the watermarked
text. Leveraging this structure, we derived lightweight statistics that can flag and localize suspect
spans containing edits. We evaluate the edit detection performance via experiments across various
editing scenarios. There are still several limitations of our work. For example, the pattern design
space explored is relatively narrow with at most four unique tags, and the method remains less ef-
fective for very short edits (one or two tokens), which are challenging to detect. Moreover, we focus
on lightweight detection statistics such as equation 4, which makes minimal assumptions about the
underlying pattern. However, the trade-off between watermark detectability, edit detection accuracy,
and perplexity could potentially be improved by adopting a more sophisticated detection method. To
tackle these challenges, future work includes exploring longer or adaptive pattern designs, further
improving the detection accuracy, and extending edit detection to other watermarking frameworks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research does not involve human subjects,
sensitive personal data, or experiments that may pose harm to individuals or communities.

REPRODUCIBILITY STATEMENT

All theoretical assumptions and complete proofs of the main results are provided in the appendix A.
Detailed descriptions of the experimental settings, including data generation, preprocessing, param-
eter choices, and evaluation metrics, can be found in Section 4, and the source code can be found in
the supplementary materials.

REFERENCES

Scott Aaronson. Watermarking of large language models. In Workshop on Large Language Models
and Transformers, Simons Institute, UC Berkeley, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Li An, Yujian Liu, Yepeng Liu, Yang Zhang, Yuheng Bu, and Shiyu Chang. Defending LLM
watermarking against spoofing attacks with contrastive representation learning. arXiv preprint
arXiv:2504.06575, 2025.

Anthropic. Claude 3.5. https://www.anthropic.com/, 2024.

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi Yang, and Yue Zhang. Fast-DetectGPT: Effi-
cient zero-shot detection of machine-generated text via conditional probability curvature. arXiv
preprint arXiv:2310.05130, 2023.

François Cayre, Caroline Fontaine, and Teddy Furon. Watermarking security: theory and practice.
IEEE Transactions on Signal Processing, 53(10):3976–3987, 2005.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu, Bang An, Dinesh Manocha, and Furong
Huang. On the possibilities of AI-generated text detection. arXiv preprint arXiv:2304.04736,
2023.

Jiahui Chen, Qingyu Zhou, and Minlie Huang. Topic-based watermarks for large language models.
In Findings of the Association for Computational Linguistics, 2024.

Ruibo Chen, Yihan Wu, Yanshuo Chen, Chenxi Liu, Junfeng Guo, and Heng Huang. A watermark
for order-agnostic language models. In Proceedings of the Thirteenth International Conference
on Learning Representations, 2025.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In
Proceedings of the Thirty Seventh Annual Conference on Learning Theory, pp. 1125–1139, 2024.

Shay Cohen. Bayesian analysis in natural language processing. Springer Nature, 2022.

Debby RE Cotton, Peter A Cotton, and J Reuben Shipway. Chatting and Cheating: Ensuring aca-
demic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 61
(2):228–239, 2024.

Evan N Crothers, Nathalie Japkowicz, and Herna L Viktor. Machine-generated Text: A Compre-
hensive Survey of Threat Models and Detection Methods. IEEE Access, 11:70977–71002, 2023.

Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable water-
marking for identifying large language model outputs. Nature, 634(8035):818–823, 2024.

10

https://www.anthropic.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pierre Fernandez, Antoine Chaffin, Karim Tit, Vivien Chappelier, and Teddy Furon. Three bricks
to consolidate watermarks for large language models. In Proceedings of the IEEE International
Workshop on Information Forensics and Security, pp. 1–6, 2023.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M Rush. GLTR: Statistical detection and
visualization of generated text. arXiv preprint arXiv:1906.04043, 2019.

Eva Giboulot and Teddy Furon. Watermax: breaking the LLM watermark detectability-robustness-
quality trade-off. In Proceedings of the Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Sam Hopkins and Ankur Moitra. Edit-distance robust watermarks for language models. In Proceed-
ings of the International Conference on Machine Learning, 2024.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.

Baihe Huang, Hanlin Zhu, Banghua Zhu, Kannan Ramchandran, Michael I Jordan, Jason D Lee,
and Jiantao Jiao. Towards optimal statistical watermarking. arXiv preprint arXiv:2312.07930,
2023.

Svante Janson. Poisson approximation for large deviations. Random Structures & Algorithms, 1(2):
221–229, 1990.

Svante Janson and Andrzej Ruciński. The infamous upper tail. Random Structures & Algorithms,
20(3):317–342, 2002.

Nurul Shamimi Kamaruddin, Amirrudin Kamsin, Lip Yee Por, and Hameedur Rahman. A review
of text watermarking: theory, methods, and applications. IEEE Access, 6:8011–8028, 2018.

Idan Kashtan and Alon Kipnis. An information-theoretic approach for detecting edits in AI-
generated text. arXiv preprint arXiv:2308.12747, 2023.

Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna Dementieva, Frank
Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke Hüllermeier, et al. Chatgpt for
good? on opportunities and challenges of large language models for education. Learning and
Individual Differences, 103:102274, 2023.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In Proceedings of the International Conference on Machine
Learning, pp. 17061–17084, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Rohith Kuditipudi, John Thickstun, Tatsunori Hashimoto, and Percy Liang. Robust distortion-free
watermarks for language models. arXiv preprint arXiv:2307.15593, 2023.

Eric Lei, Hsiang Hsu, and Chun-Fu Chen. Pald: Detection of text partially written by large language
models. In Proceedings of the Thirteenth International Conference on Learning Representations,
2025.

Ting Li, Xinlei Pan, and Zhendong Zhang. Semantic-invariant watermarking for large language
models. In Proceeding of the International Conference on Learning Representations, 2024a.

Xiang Li, Feng Ruan, Huiyuan Wang, Qi Long, and Weijie J Su. Robust detection of watermarks
for large language models under human edits. arXiv preprint arXiv:2411.13868, 2024b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In Proceeding of the International Conference on Learning Representations, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn. De-
tectGPT: Zero-shot machine-generated text detection using probability curvature. In Proceedings
of the International Conference on Machine Learning, pp. 24950–24962, 2023.

Qi Pang, Shengyuan Hu, Wenting Zheng, and Virginia Smith. No free lunch in LLM watermarking:
Trade-offs in watermarking design choices. In Proceedings of the Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
Can AI-generated text be reliably detected? arXiv preprint arXiv:2303.11156, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. OPT: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li, and Yu-Xiang Wang. Provable robust water-
marking for ai-generated text. In Proceedings of the Twelfth International Conference on Learning
Representations, 2024a.

Xuandong Zhao, Lei Li, and Yu-Xiang Wang. Permute-and-Flip: An optimally robust and water-
markable decoder for LLMs. arXiv preprint arXiv:2402.05864, 2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOFS FOR SECTION 3 AND MORE THEORETICAL ANALYSIS

Proof to Theorem 3.1. Recall that the edit detection statistic

|s|E(t) =
1

w

w−1∑
i=0

Iw(t− i),

is the normalized count of sliding windows of length w that perfectly match the known tag pattern
P . Here each indicator Iw(t− i) takes value 1 if and only if

(s(t−i), . . . , s(t−i+w−1)) ∈ VT1 × · · · × VTw ,

i.e., the generated tokens in the window fall entirely in the corresponding subset prescribed by P .
Here, with a slight abuse of notation but for simplicity, we just use {VT1

· · · VTw
} to denote the

pattern enforced to tokens within the current sliding window.

Under a clean watermark, by our assumption and the construction of the watermarking scheme, for
each window indicator we have E[Iw(t− i)] = µ

(w)
1 and hence E[|s|E(t)] = µ

(w)
1 .

We consider two cases separately. First, if µ(w)
1 = 1, i.e., the so-called hard watermarking regime

(Kirchenbauer et al., 2023a) where the token is strictly required to be drawn from the corresponding
list. For example, this can happen when we set the watermarking strength parameter δ to be large.
Under this case, we have |s|E(t) ≡ 1 and thus Pr[|s|E(t) < τe | no edit] = 0, which implies no
false alarm.

For the soft watermarking regime with µ
(w)
1 < 1, in such cases, the token is more likely to be drawn

from the corresponding list but is not guaranteed. Note that the list of indicators {Iw(t− i)}w−1
i=0 is

not independent, thus the indicators can be represented by a dependency graph: two indicators are
adjacent if their corresponding windows overlap. For windows with offset |i − j| = k < w, the
overlap size is w − k, we have the joint probability is

E[Iw(t− i)Iw(t− j)] = µ
(w+k)
1 .

Define the w-dependent constant ∆(w) :=
∑

i,j E[Iw(t − i)Iw(t − j)] = wµ
(w)
1 + 2

∑w−1
k=1 (w −

k)µ
(w+k)
1 . Janson’s inequality (Janson, 1990) states that for z < E[

∑w−1
i=0 Iw(t− i)] = wµ

(w)
1 ,

P(
w−1∑
i=0

Iw(t− i) < z) ≤ exp

(
−
(E[
∑w−1

i=0 Iw(t− i)]− z)2

2∆(w)

)
.

For the false alarm event {|s|E(t) < τe} we have
∑w−1

i=0 Iw(t− i) < wτe, and thus we have

P[|s|E(t) < τe | no edit] ≤ exp

(
−w2(µ

(w)
1 − τe)

2

2∆(w)

)
.

Discussion. In practice, the pattern alignment probability µ
(w)
1 is generally tractable and there is

no closed-form expression. However, the probability for token-level adherence is given in Lemma
E.1 in Kirchenbauer et al. (2023a). For example, under watermarking parameter δ, assuming the
two sub-vocabulary sets are of equal size, the probability of drawing a token from the current target

subset is lower bounded by µ̃1 :=
1
2α

1+
1
2 (α−1)

S

(
p,

1
2 (α−1)

1+
1
2 (α−1)

)
, where α = eδ and S(p, z) :=∑

k
pk

1+zpk
, where p represent the next-token probability (Kirchenbauer et al., 2023a).

It should be noted that the w-dependent constant ∆(w) can scale as O(w2) in the worst case under
strong positive correlations among overlapping windows, leading to a relatively loose upper bound
on the false alarm rate. On the other hand, if overlapping windows are independent—so that pat-
tern alignment in one window does not affect another—Hoeffdings inequality yields a much tighter

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

bound that can decay exponentially with w. In practice, however, the exact dependence structure
among sliding windows in large language models is intricate and difficult to characterize.

We also note that the analysis on the edit detection accuracy would be much more complicated due
to the complication of all possible edits. As an example, in the following, we provide an analysis by
assuming that the edit happens in such a way that reduces the pattern alignment probability for each
sliding window to µ

(w)
0 := P[Iw(t) = 1],∀t and µ

(w)
0 is much smaller than the pattern alignment

probability µ
(w)
1 when there is no edits (clean watermark). We can apply Theorem 5 in Janson

& Ruciński (2002) to obtain an upper bound for the miss detection probability. Specifically, by
Theorem 5 in Janson & Ruciński (2002) and under our assumption, we have

P[|s|E(t) ≥ τe | edit] ≤ w exp

(
− w2(τe − µ

(w)
0)2

4w(wµ
(w)
0 − w(τe − µ

(w)
0)/3

)
= w exp

(
−3(τe − µ

(w)
0)2

4(2µ
(w)
0 + τe)

)
.

It should be mentioned that the upper bound may not be very informative due to two reasons. First,
it is generally much larger than the lower tail probability, as capturing upper-tail probabilities with
overlapping time windows is intrinsically difficult (Janson & Ruciński, 2002). Second, here we are
assuming that the edits reduce the pattern alignment probability uniformly for each window to µ

(w)
0 ,

which could be unrealistic in practice. For example, in many cases, a local token insertion may force
µ
(w)
0 = 0 for windows containing the edit, resulting in 100% detection accuracy. Therefore, we rely

primarily on the empirical results in Section 4 to demonstrate the effectiveness of edit detection
across scenarios.

Analysis on watermark detectability. We also provide a watermark detectability error analysis
for completeness and to support the design of our combinatorial watermarking. The results show
that the detection accuracy converges to 1 as T → ∞, ensuring reliable detection with sufficiently
long watermarked text. Likewise, the Type-I error rate converges to 0 as T → ∞, implying that
sufficiently long unwatermarked text yields a vanishing false alarm rate.
Theorem A.1 (Watermark detection error rates). Assume that under a clean watermark, the pattern
alignment probability for each window of size w is µ

(w)
1 := P[Iw(t) = 1],∀t. When there is

no watermarking, assume this probability is reduced to µ
(w)
0 < µ

(w)
1 . Assume the observed data

contains T tokens in total, and the window size is w in the detection statistics.

• The probability of detecting the watermark, for a given detection threshold τD, is at least

P(|s|D ≥ τd) ≥ 1− exp

(
−(T − w + 1)

(µ
(w)
1 − τd)

2

2wµ
(w)
1

)
.

• The Type-I error rate (probability of false alarm) when there is no watermarking is

P[|s|D ≥ τd] ≤ w · exp

(
−(T − w + 1)

3(τd − µ
(w)
0)2

4w · (2µ(w)
0 + τd)

)
.

Proof. Recall that the global watermark detection statistic

|s|D =
1

T − w + 1

T−w+1∑
t=1

Iw(t),

is the normalized count of sliding windows of length w that perfectly match the known tag pattern.

Under the watermarking regime, similar to the proof of Theorem 3.1, by our assumption and the
construction of the watermarking scheme, for each window indicator we have E[Iw(t− i)] = µ

(w)
1

and hence E[|s|D(t)] = µ
(w)
1 . Again we define the (T,w)-dependent constant

∆(T,w) :=
∑
(i,j):

|i−j|<w

E[Iw(i)Iw(j)] ≤ (T−w+1)µ
(w)
1 +(T−w+1)(w−1)µ(w)

1 = (T−w+1)wµ
(w)
1 .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Then we can apply Jansons inequality (Janson, 1990), which guarantees for τd < µ
(w)
1 ,

P(|s|D ≤ τd) = P(
T−w+1∑

t=1

Iw(t) < (T − w + 1)τd) ≤ exp

(
−(T − w + 1)2

(µ
(w)
1 − τd)

2

2∆(T,w)

)
.

By substituting the upper bound to ∆(T,w), we can further simplify the above inequality as

P(|s|D ≤ τd) ≤ exp

(
−(T − w + 1)

(µ
(w)
1 − τd)

2

2wµ
(w)
1

)
.

For the false alarm event {|s|D ≥ τd} when there is no watermarking, we have

P[|s|D ≥ τd] ≤ w · exp

(
−(T − w + 1)2

(τd − µ
(w)
0)2

4w · ((T − w + 1)µ
(w)
0 + (T − w + 1)(τd − µ

(w)
0)/3)

)

≤ w · exp

(
−(T − w + 1)

3(τd − µ
(w)
0)2

4w · (2µ(w)
0 + τd)

)
.

B ADDITIONAL ALGORITHMIC DETAILS AND EXPERIMENTAL RESULTS

B.1 CONCRETE EXAMPLES OF DETECTION STATISTICS

To better illustrate the detection algorithms, we give concrete examples of the constructed watermark
detection and edit detection statistics for the two exemplary combinatorial patterns in Example 3.1
and Example 3.2.

Example 3.1. With two unique tags (e.g., A and B), we define the pattern P = {A,B}, and thus
the watermark is governed by the order A,B,A,B, Here A and B can be interpreted as the
green and red lists (see Figure 2), respectively, aligning with standard terminology in prior work. In
the following, with a slight abuse of notation, we use A and B to also denote their corresponding
subset of vocabulary, when not causing confusion.

Based on the definition in equation 3, we have the following concrete formulations for Iw(t), which
is the core component in our watermark detection and edit detection statistics.

• For window size w = 2, we have

Iw(t) = 1
{
s(t) and s(t+1) belongs to different sets (A,B or B,A)

}
.

• For window size w = 4, we have

Iw(t) = 1
{
s(t), s(t+1), s(t+2), s(t+3) are in sets A,B,A,B or B,A,B,A

}
.

This also illustrates the case when the window size w exceeds the pattern period.

Example 3.2. With four unique tags (e.g., A,B,C,D), we define the combinatorial
pattern P = {A,C,A,D,B,C,B,D}, and the watermark is governed by the order
A,C,A,D,B,C,B,D,A,C,A,D,B,C,B,D,

Similarly, we have the following concrete formulation of Iw(t) that can be efficiently computed for
performing watermark detection and edit detection:

• For window size w = 2, we have

Iw(t) = 1
{
s(t) and s(t+1) are in AC, CA, AD, DB, BC, CB, BD, or DA

}
.

• For window size w = 4, we have
Iw(t) = 1

{
s(t:t+3) are in ACAD, CADB, ADBC, DBCB,

BCBD, CBDA, BDAC, or DACA
}
.

The statistics for larger window sizes are similarly constructed based on the same principle.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Insights for combinatorial pattern design. Motivated by the detection statistics for watermark-
ing, we list some insights for designing the combinatorial pattern to enable simple watermark detec-
tion. For ease of watermark detection, we may impose the following structural restriction on our pat-
terns: we let both pattern length R and number of unique tags r to be even numbers, and the tag as-
signment alternates between even and odd indices—meaning Ti = T (j) only if i and j are both even
or both odd. Both examples 3.1 and 3.2 satisfy such a property. This design enables simple and ef-
fective detection using the smallest window size w = 2. Specifically, we define the window indicator
for positions t as Iw(t) = 1

{
s(t) ∈ Vodd and s(t+1) ∈ Veven, or s(t) ∈ Veven and s(t+1) ∈ Vodd

}
,

where Vodd = ∪1≤i≤r, i is oddVT (i) and Veven = ∪1≤i≤r, i is evenVT (i) . In other words, detection could
rely only on whether the observed token sequence follows the expected even-odd alternation. This
simple test does not rely on the full pattern structure. In contrast, the full pattern sequence provides
richer information that can be leveraged to localize specific edit positions.

Remark B.1. We also note that the above watermark detection is performed for black-box LLMs.
In practice, when we do have access to the logits information (such as in white-box LLMs), we can
instead use the log-likelihood ratio as our edit detection statistics and watermark detection statistics,
which will yield more accurate detection results due to the utilization of more information. And this
can potentially improve both the edit detection accuracy and the watermark detection accuracy.

B.2 MORE NUMERICAL RESULTS

Results With Varying Watermarking Strength δ, Combinatorial Pattern, and Multinomial
Sampling. We present more results on the average edit detection accuracy under a variety of wa-
termarking strengths in Figure 7. We also included a new pattern with r = 3 unique tags. We note
that higher watermarking strength increases accuracy in general. We also note that for the longer
ACADBCBD combinatorial pattern, it becomes more effective only beyond a certain watermarking
strength threshold. This is likely because, under lower watermarking strengths, the generated water-
marked text does not reliably adhere to the pattern, thus the edit detection is less effective. As the
watermarking strength increases, the watermarked text has better adherence to the pattern, leading
to better edit detection performance.

0.0

0.5

1.0

E
d

it
D

et
ec

ti
on

A
cc

u
ra

cy

INSERT REPLACE

δ=4.5

DELETE

1 2 3 4 5

INSERT length

0.0

0.5

1.0

E
d

it
D

et
ec

ti
on

A
cc

u
ra

cy

1 2 3 4 5

REPLACE length

1 2 3 4 5

DELETE length

δ=5.0

AA (Unigram baseline)

AA (KGW baseline)

AB (Combinatorial Pattern)

ACBC (Combinatorial Pattern)

ACADBCBD (Combinatorial Pattern)

Figure 7: Detection accuracy vs edit type and length under different watermarking strengths δ. This
was generated in a similar fashion to Figure 5 using Llama-2-7b, with 200 samples of 100-token
long generated text for each combination of edit type, length, watermarking strength, and pattern.
The texts in this case are generated using multinomial sampling where (temperature=1.0,
top_p=0.8).

Influence of Post Edits on Watermark Detection. While our primary goal is to design combi-
natorial patterns that enable more effective edit localization, it is also important to ensure that the
underlying watermark remains reliably detectable. We have demonstrated the watermark detectabil-
ity in Figure 6 using fully watermarked texts. In Figure 8 below, we present some empirical evidence
on the influence of post-generation edits on the magnitude of watermark detection statistics, under
varying watermarking strengths.

As expected, the watermark detection statistics decrease after post-generation edits, with larger
decreases observed for longer edit lengths and more complex patterns. Moreover, for the sim-
plest combinatorial pattern AB, the degradation in detection statistics is comparable to—or slightly

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

smaller than—that of the two baseline watermarking approaches. This indicates that the combina-
torial pattern-based watermarking maintains at least the same level of robustness to post-generation
edits, and may even offer improved resilience in certain scenarios. A more comprehensive analysis
of robustness, including theoretical aspects such as detection threshold and sensitivity to different
edit types, is left for future work. In the following subsection B.3, we present preliminary theoretical
insights to illustrate general trends and motivate further study.

0 1 2 3 4 5

−0.1

0.0

W
at

er
m

ar
k

S
co

re

INSERT

0 1 2 3 4 5

REPLACE

0 1 2 3 4 5

δ=4.5

DELETE

0 1 2 3 4 5

−0.1

0.0

W
at

er
m

a
rk

S
co

re

0 1 2 3 4 5 0 1 2 3 4 5

δ=5.0

AA (Unigram baseline)

AA (KGW baseline)

AB (Combinatorial Pattern)

ACBC (Combinatorial Pattern)

ACADBCBD (Combinatorial Pattern)

Figure 8: Watermark score impact vs edit type and length under different watermarking strengths
δ. The y-axis shows the watermark score difference |s̃|D - |s|D, where s and s̃ denote the original
watermarked text and the edited text, respectively. The negative values on the y-axis indicate the
watermark detection statistics decrease after edits

Meaningful Edit Detection / Misinformation Spoofing Attack. To test the robustness of our
watermark against realistic threats, we simulated a targeted misinformation attack. We began by
generating 139 texts, each 100 tokens long, using OPT-2.7b, embedded with the AB combinatorial
pattern watermark with δ=4.5. We then tasked the Gemini API to introduce small but harmful edits
to the texts one by one using the following prompt:

Gemini-2.5-Flash Prompt

You are an expert on history, facts, and journalism.
I will give you a text, and your task is to modify part of it so it gives clear misinformation.
- Your change MUST significantly alter the meaning of the text.
- Only change 6 words or less, and leave the rest of the text intact.
- DO NOT ADD extra formatting, emphasis, punctuation, bolds, or italics.
- Only respond with the modified text. Nothing else.

A human evaluation of a sample of 50 modified texts found that 90% indeed did contain clear mis-
information. Finally, we applied our edit detection algorithm to these adversarially modified texts,
and evaluated the edit detection accuracy. Table 1 shows the detection accuracy results, grouped by
the number of tokens edited.

Tokens Edited Edit Detection Accuracy (%) Texts
1 81.4% 59
2 90.9% 44

3-9 91.7% 36

Table 1: AB (Combinatorial Pattern): Edit detection accuracy under a misinformation attack. The
table buckets texts by the number of "Tokens Edited", reports how many "Texts" fall under each
bucket, and the corresponding "Edit Detection Accuracy".

This trend is consistent with our random edit simulations: our algorithm is able to detect and localize
edits, and its accuracy increases when more consecutive tokens are modified.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 A SENSITIVITY ANALYSIS ON THE WATERMARK DETECTABILITY AND ROBUSTNESS

We provide some analysis on the impact of post-generation edits on the watermark detection statistic.
In general, the added edits will decrease the watermark detection statistics, as demonstrated in Figure
8, thus decreasing the watermark detectability.

Recall the watermark detector

|s|D =
1

N

N∑
t=1

Iw(t), N = T − w + 1,

where w is the sliding-window length, Iw(t) ∈ {0, 1} indicates whether the window s(t:t+w−1)

matches the watermark pattern, T is the text length, and let M =
∑

t Iw(t) = N · |s|D be the total
number of windows that match the pattern.

Note that a token at absolute position u ∈ {1, . . . , T} belongs to the w windows whose starting
indices lie in {

u− w + 1, u− w + 2, . . . , u
}
∩ [N].

Hence any single-token perturbation can flip at most w indicators Iw(t).

In the following, we use Sins, Sdel, Srep to denote the token numbers in insertions, deletions, re-
placements. And let Ĩw(t) denote the indicator after editing. Meanwhile, we use ∆• to denote the
worst-case loss of the number of matched windows attributable to the corresponding edit type •. We
first consider three cases separately.

• Replacements. Replacements alter content but keep length fixed, so N remains unchanged.
Moreover, each new token can break at most w windows. Therefore for Srep replacements, the
worst-case loss of matched windows is ∆rep = min{wSrep,M}. For the resulted edited text s̃,
the watermark detection statistics after edits thus become

|s̃|D ≥
M −∆rep

N
.

• Insertions. Adding Sins tokens grows length to T + Sins, so the window count increases from
N to N + Sins. For Sins insertions, we have the worst-case loss of matched windows is ∆ins =
min{wSins, M}. For the resulted edited text s̃, this yields

|s̃|D ≥
M −∆ins

N + Sins
.

Since Sins appears in the denominator, the worst-case statistics after insertions degrade faster than
replacements (which leave N unchanged).

• Deletions. Removing Sdel tokens shortens the text, so the window count decreases from N to
N − Sdel. Again at most w of the indicators Iw(t) can flip, giving ∆del = min{wSdel,M}. The
watermark detection statistics after edits thus satisfy

|s̃|D ≥
M −∆del

N − Sdel
.

To summarize, each single-token edit can disrupt at most w windows as shown in the following
table.

Edit type Lost matches Window count change
Insertion ≤ w +1
Deletion ≤ w −1
Replacement ≤ w 0

Collecting the individual effects and clipping at zero yields the deterministic worst-case bound

|sedited|D ≥
M − w

(
Sins + Sdel + Srep

)
N + Sins − Sdel

, (6)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

here sedited denotes the resulting text after all edits. The numerator loses up to w matches per cor-
rupted token; the denominator is stretched by insertions and contracted by deletions, remaining
unchanged for replacements.

Interpreting the bound. From the worst-case lower bound in equation 6, it can be seen that if one
wishes to tolerate at most

(
Sins, Sdel, Srep

)
benign edits, we can plug those values into equation 6

and set the decision threshold τd no greater than the resulting lower bound. This guarantees that
if the watermark is detectable before the edit, then it can also be detected after

(
Sins, Sdel, Srep

)
edits. Moreover, since a single insertion, deletion, or replacement can disrupt at most w matching
windows, the worst-case degradation (|s|D − |sedited|D) grows linearly with w, and thus a smaller
window size yields smaller worst-case degradation. However, a smaller window size might be less
effective in detecting edits, so there exists some tradeoff in window size selection, and we generally
use a larger window for longer patterns in this work.

C COMPLEXITY ANALYSIS

Let T be the length of the text in tokens and w be the length of the sliding window for detection.
The complexity of our detection metrics, defined in equation 4, is as follows. First, we analyze the
complexity of the naive implementation.

• Single Window Score Complexity f(Iw(t)): To calculate the score for a single window at
position t, we compare the token window of length w against all w possible cyclic shifts of
the watermark pattern. Each comparison involves w token-wise operations, taking O(w)
time. Therefore, the total time complexity for one window is O(w2).

• Detection Score Complexity f(|S|D): This score requires computing Iw(t) for every
possible window in the text. There are T − w + 1 such windows. The total complexity is
thus O(T) ·O(w2) = O(Tw2).

• Edit Score Complexity f(|S|E(t)): The edit score at a position t requires w evaluations
of the Iw function. The complexity is therefore w · O(w2) = O(w3). To compute this for
all T positions in the text, the total complexity becomes O(Tw3).

The naive approach can be optimized using techniques such as rolling hashes. A rolling hash allows
the hash of a new window (e.g., from token t to token t + 1) to be calculated in O(1) time from
the previous window’s hash. This would reduce the amortized complexity of computing a window’s
hash to O(1). Then using a hash-table, we can look up if there are any matching shifts in O(1).
Consequently, the complexities would become:

f(Iw(t)) = O(1), f(|S|D) = O(T), and f({|S|E(t)}Tt=1) = O(Tw).

In this work, we use the naive implementation, as the window size w is small and fixed in all our
experiments.

LLM USAGE

We utilize open-source LLMs to generate watermarked and edited texts, on which we evaluate wa-
termark detection and edit detection tasks. LLMs are also used for polishing the writing slightly. No
ideas, analyses, or discoveries are contributed by LLMs.

19

	Introduction
	Related Work

	Preliminaries and Problem Setup
	Notation and Basics
	Problem Setup: Post-generation Edit Detection

	Combinatorial Pattern-based Watermarking for Edit Detection
	Watermark Generation based on Combinatorial Patterns
	Watermark Detection
	Post-Generation Edit Detection

	Numerical Experiments
	Results on Post-Generation Edit Detection
	Results on Watermark Detection

	Concluding Remarks
	Proofs for Section 3 and More Theoretical Analysis
	Additional Algorithmic Details and Experimental Results
	Concrete Examples of Detection Statistics
	More Numerical Results
	A Sensitivity Analysis on the Watermark Detectability and Robustness

	Complexity Analysis

