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Abstract

It is imperative for Large language models001
(LLMs) to follow instructions with elaborate002
requirements (i.e. Complex Instructions Fol-003
lowing). Yet, it remains under-explored how004
to enhance the ability of LLMs to follow com-005
plex instructions with multiple constraints. To006
bridge the gap, we initially study what train-007
ing data is effective in enhancing complex con-008
straints following abilities. We found that train-009
ing LLMs with instructions containing multi-010
ple constraints enhances their understanding011
of complex instructions, especially those with012
lower complexity levels. Additionally, we fur-013
ther propose methods addressing how to obtain014
and utilize the effective training data. Finally,015
we conduct extensive experiments to prove the016
effectiveness of our methods in terms of overall017
performance and training efficiency. We also018
demonstrate that our methods improve mod-019
els’ ability to follow instructions generally and020
generalize effectively across out-of-domain, in-021
domain, and adversarial settings, while main-022
taining general capabilities.023

1 Introduction024

Large language models (LLMs) have become the025

backbone for real-world applications (Anil et al.,026

2023; Touvron et al., 2023; Achiam et al., 2023).027

Given natural language instructions, LLMs can028

solve unseen tasks with few or no examples (Brown029

et al., 2020). The capability of LLMs to accurately030

understand instructions and convey the desired out-031

put, known as Instruction Following (Lou et al.,032

2024), is crucial for the safety (Mu et al., 2023)033

and reliability (Zhou et al., 2023a) of LLMs.034

It is imperative for LLMs to follow instructions035

with elaborate requirements (Yin et al., 2023; Xu036

et al., 2023) (i.e. Complex Instructions), such as037

formatting specifications outlined in Fig. 1. On one038

hand, the ability to follow detailed instructions alle-039

viates the need for annotating samples, which can040

be costly and challenging for intricate tasks (Zeng041

GOALS: 
1. write a weather report for SF today

Requirements: 
1. ~4000 word limit for short term memory. 
2. Exclusively use the commands listed in double quotes e.g. "command 

name”
Commands: 
1. search: useful for when you need to answer questions about current 

events. You should ask targeted questions, args json schema: {"query": 
{"title": "Query", "type": "string"}} 

2. write_file: …
You should only respond in JSON format as described below Response 
Format: 
{ "thoughts": {
  "text": "thought", "reasoning": "reasoning", 
 …
} … } 

Make a short introduction and list a few popular songs from the album: Back 
To Black. There should be exactly two paragraphs in your response, separated
by the markdown divider: ***. Do not say the word "popular" in the response
and answer in lowercase letters only. The response should end with the
phrase "really love their song!".
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To study Complex Instructions Following ability

Complex Instruction

Model Outputs

: … album by the iconic British singer-songwriter Amy Winehouse … 
vocalists of her generation.\n Some standout tracks  …  love their song!

3

1

: "back to black" is …  of the 21st century.***some standout tracks 
from  …  21st century.***some standout tracks from  …  love their song!

1

3 Semantic Constraints

GPT3.5

GPT4

Figure 1: Real-world applications generally involve
instructions with multiple constraints (i.e. Complex
Instructions), posing challenges for models.

et al., 2023a). On the other hand, complex instruc- 042

tions hardly appear in the training data (Zhou et al., 043

2024). Hence, the ability to follow complex in- 044

structions demonstrates models to have better gen- 045

eralization ability to unseen tasks (Yin et al., 2023). 046

Specifically, satisfying the multiple constraints 047

in the instructions simultaneously (i.e. Constraints 048

Following) poses a significant challenge in com- 049

plex instruction following (Jiang et al., 2023b; He 050

et al., 2024). As shown in Fig. 1, whether models 051

can satisfy the multiple constraints in the instruc- 052

tions determines their ability to follow complex 053

instructions. Hence, in our work, we explore com- 054

plex instruction following by examining LLMs’ 055

ability to follow instructions with multiple con- 056



Make a short introduction 
and list a few popular songs 
from the album: Back To 
Black. There should be exactly
two paragraphs in your 
response, separated by the
markdown divider: ***. Do
not say the word "popular" in
the response and answer in
lowercase letters only. The 
response should end with the
phrase "love their song!".

… Released in 2006, ... \n\nSome tracks include …These 
songs leave an impact on listeners who love their song!

Generation

Back to Black is a … by Amy Winehouse, ... ***
Here are some popular tracks … I love their song!

back to black is a … by amy winehouse, ... *** 
here are some standout  tracks … i love their song!

back to black is a …  by amy winehouse, ... *** 
here are some popular tracks … i love their song!
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Figure 2: The framework of our study. We first study what training data is effective in enhancing complex instruction
following abilities via an empirical study. Then, we design a discrimination-based method to address how to obtain
the data. Finally, we propose a method for effectively utilizing positive and negative samples obtained.

straints (Yin et al., 2023; Lou et al., 2024). On one057

hand, human instructions are subjective and am-058

biguous, while constraints within these instructions059

facilitate the automatic evaluation of instruction060

following ability (Zhou et al., 2023a; Wang et al.,061

2024). On the other hand, the compositional na-062

ture of constraints enables the automatic creation063

of instructions with unseen compositions of con-064

straints (Zhou et al., 2023b; Yao et al., 2023). These065

instructions hardly appear in the training data, thus066

effectively assessing the model’s ability to general-067

ize to unseen tasks (Aksu et al., 2023).068

Complex constraints following is a challenging069

task for LLMs (Jiang et al., 2023b; Qin et al., 2024).070

As shown in Fig. 1, even advanced LLMs struggle071

to meet the four specified constraints in complex072

instructions. However, it remains under-explored073

how to enhance LLMs to follow multi-constraint074

complex instructions. First, the existing works on075

constraints following mainly focus on evaluation076

without proposing methods for enhancement (Chen077

et al., 2024; Xia et al., 2024). Additionally, even078

when the improvement methods are proposed, they079

mainly consider instructions with few constraints,080

thereby failing to showcase the complexity of hu-081

man instructions in practical applications (Chen082

et al., 2022; Zhang et al., 2023; Wang et al., 2024).083

Moreover, although some studies construct com-084

plex instructions with multiple constraints and fine-085

tune LLMs on them (Aksu et al., 2023; Sun et al.,086

2024), one key research question remains under-087

explored: What training data is effective in en-088

hancing complex constraint-following abilities?089

This leads to two follow-up questions: (1) How to090

obtain the effective training data? and (2) How091

to utilize the data effectively?092

In this work, we systematically study how to093

enhance the ability of LLMs to follow complex in- 094

structions, with the framework shown in Fig. 2. 095

We initially explore the effective training data 096

through an empirical study. We found that train- 097

ing LLMs on instructions containing multiple con- 098

straints (compositional data) enhances their under- 099

standing of complex instructions more effectively 100

than training on atomic constraints (atomic data). 101

Moreover, the improvement in performance is re- 102

lated to the number of constraints, the model size. 103

To obtain high-quality compositional data, we 104

generate initial output via a student model (vanilla 105

model) and then correct it via a teacher model (ad- 106

vanced model), termed the Discrimination method. 107

This approach yields higher-quality output than us- 108

ing the teacher model to generate directly. To lever- 109

age the positive and negative samples collected 110

during the Discrimination method, we introduce 111

a contrastive method with reinforcement learning 112

fine-tuning (RLFT) (Rafailov et al., 2023). Our 113

method surpasses the SFT training paradigm on 114

the instruction following benchmark (Zhou et al., 115

2023a) with fewer training tokens. Overall, our 116

methods enhance models’ ability to follow instruc- 117

tions generally. Our methods also generalize well 118

across out-of-domain, in-domain, and adversarial 119

settings while maintaining general capabilities. 120

Overall, our contributions are mainly three-fold: 121

(1) We systematically improve LLMs’ instruction- 122

following ability by exploring effective training 123

data. (2) We design a discrimination-based method 124

to obtain effective training data. We also propose a 125

method for utilizing positive and negative samples 126

obtained through this approach. (3) We conduct 127

extensive experiments to prove the effectiveness 128

and efficiency of our method. We also validate its 129

generalization ability under five settings. 130
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2 Related Work131

2.1 Instruction Following132

There are various ways to assess LLMs’ ability to133

follow instructions. Some works study whether134

models understand the instructions by perturbing135

answer spaces (Zeng et al., 2023b; Li et al., 2023a;136

Wu et al., 2023). other works incorporates veri-137

fiable constraints (such as lexical, numerical and138

format) within instructions (Sun et al., 2023; Jiang139

et al., 2023b; Aksu et al., 2023; Zhou et al., 2023b;140

Yao et al., 2023). These constraints can be composi-141

tional, allowing one instruction to contain multiple142

constraints (Aksu et al., 2023; Zhou et al., 2023b;143

Yao et al., 2023). Such complex instructions pose144

greater challenges for LLMs to follow (He et al.,145

2024; Qin et al., 2024). Our work falls into this146

latter category. The existing works on constraints147

following either focus on evaluation (Chen et al.,148

2024; Xia et al., 2024) or consider instructions with149

few constraints (Zhang et al., 2023; Chen and Wan,150

2023; Wang et al., 2024). Different from them, we151

systematically investigate how to enhance complex152

instructions with multiple constraints.153

2.2 Complex Instruction Tuning154

Complex Instructions can refer to instructions that155

involve more reasoning steps (Mukherjee et al.,156

2023), intricate input (Zhou et al., 2024), or mul-157

tiple constraints (Luo et al., 2023a). Many studies158

have demonstrated that fine-tuning with complex159

instructions can boost performance in tasks such160

as instruction following (Xu et al., 2023), reason-161

ing (Mitra et al., 2023), or code generation (Luo162

et al., 2023b). However, our work differs from163

these studies in two main aspects. First, we fo-164

cus on improving LLMs’ ability to follow complex165

constraints, which is crucial for the practicality166

and safety of LLMs (Zhou et al., 2023a; Mu et al.,167

2023). Furthermore, traditional supervised fine-168

tuning (SFT) uses only positive samples, whereas169

we use both positive and negative samples to en-170

hance the complex instruction-following ability of171

LLMs effectively and efficiently.172

3 Empirical Studies173

A common approach to improve LLMs’ ability174

to follow complex instructions is to construct cor-175

responding instances and fine-tune the LLMs on176

them (Aksu et al., 2023; Sun et al., 2024). Yet,177

one key research question remains under-explored:178

What training data is effective in enhancing com- 179

plex constraint-following abilities? 180

Two types of training data can be utilized: (1) 181

Initially train models with atomic data, enabling 182

them to handle compositional data automatically. 183

(2) Train models with compositional data, enabling 184

them to understand instructions with atomic or 185

varying compositions of constraints spontaneously. 186

Examples are shown in Fig. 2. 187

To compare these training data types, we split in- 188

structions from existing benchmarks on instruction 189

following (Zhou et al., 2023a; Jiang et al., 2023b) 190

into training and test sets. The training set includes 191

atomic data (mostly with 1 constraint) and compo- 192

sitional data (mostly with over 3 constraints). Since 193

original benchmarks lack corresponding outputs, 194

we first generate them using GPT-3.5-turbo. To 195

ensure quality, we further filter the training sets 196

and retain only outputs that satisfy all instruction 197

constraints by using GPT-3.5-turbo and predefined 198

rules. The remaining data forms the test set1. 199

We compare three methods2: (1) Backbone, the 200

backbone model without further training. (2) Atom 201

and (3) Composition, continue training the back- 202

bone model with atomic data and compositional 203

data respectively. We leverage two backbone mod- 204

els (Zheng et al., 2024; Touvron et al., 2023) and 205

adopt two accuracy metrics (Zhou et al., 2023a; 206

Jiang et al., 2023b): 207

accins =
1

m

m∑
i=1

n∏
j=1

cji , acccon =
1

mn

m∑
i=1

n∑
j=1

cji , 208

where cji equals 1 if the j-th constraint of the i-th 209

instruction is satisfied, otherwise 0. Overall, achiev- 210

ing Instruction-level accuracy (accins) is more chal- 211

lenging than Constraint-level accuracy (acccon). 212

The performance of the three methods on the test 213

sets is shown in Tab. 1 and Tab. 2. First, with regard 214

to the overall performance, training with composi- 215

tional data generally surpasses both the backbone 216

model and atomic data training. This demonstrates 217

that training with compositional data can gener- 218

ally enhance models’ ability to follow complex 219

instructions. Surprisingly, according to Tab. 1, 220

training with atomic data (mostly with 1 constraint) 221

1Detailed data construction and statistics are provided in
Appendix A.1.

2To prevent models from catastrophic forgetting (Mc-
Closkey and Cohen, 1989), we mix training data with 10k
ShareGPT data (Chiang et al., 2023) for Atom and Composi-
tion checkpoint.
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Backbone Methods Level 1 Level 2 Level 3 Level 4 Level 5 Avg.

Vicuna-7B-V1.5(Zheng et al., 2024)
Backbone 39.07 44.71 37.28 30.93 19.06 34.21
Atom 39.17 39.50 42.07 30.23 16.97 33.59
Comp 39.44 55.90 47.49 22.27 16.65 36.35

LLaMA2-13B-Chat(Touvron et al., 2023)
Backbone 33.10 41.71 42.26 23.89 22.07 32.61
Atom 38.99 39.78 36.61 20.74 14.83 30.19
Comp 37.02 44.66 42.55 21.62 22.36 33.64

Table 1: The Instruction-level accuracy of models without further training (Backbone), training with atomic data
(Atom), and compositional data (Comp) on FollowBench. Level x indicates there are x constraints in the instructions.
Avg. indicates the average performance across 5 levels. The results are evaluated by GPT-4 using the FollowBench
prompt template. The bold and underlined represent the first and second rankings.

Backbone Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

Vicuna-7B-V1.5
Backbone 27.87 15.91 74.07 44.09 48.57 80.00 30.69 10.71 40.00 26.89 37.47
Atom 29.50 31.82 48.14 63.44 36.19 25.00 31.68 16.07 40.00 27.17 37.29
Comp 37.70 50.00 40.74 55.91 36.19 25.00 32.67 14.29 50.00 28.85 38.76

LLaMA2-13B-Chat
Backbone 42.62 11.36 81.48 55.91 45.71 15.00 32.67 00.00 25.00 25.77 36.38
Atom 42.62 00.00 37.04 54.84 42.86 35.00 34.65 12.50 37.50 26.33 35.83
Comp 40.98 02.27 66.67 54.84 38.10 50.00 36.63 16.07 40.00 26.05 37.84

Table 2: The performance of models without further training (Backbone), training with atomic data (Atom), and
compositional data (Comp) on IFEval. The I-level and C-level denote the Instruction and Constraint-level accuracy.

generally performs worse than the backbone model222

for instructions with more than 1 constraint. Also,223

training with compositional data (usually 3 to 5 con-224

straints) boosts performance on instructions with225

1 to 3 constraints significantly but shows less en-226

hancement or even a decline for those with 4 to 5227

constraints. This suggests that training with com-228

positional data can better generalize to lower-level229

complex instructions (instructions with fewer con-230

straints). Moreover, this effect is more pronounced231

in smaller LLMs (7B), likely due to their weaker232

generalization ability (Fu et al., 2023).233

We have found that training with compositional234

data can better enhance LLM’s ability to follow235

complex instructions compared with atomic data. A236

follow-up research question is how to obtain high-237

quality compositional data? Existing datasets238

either only provide compositional instructions with-239

out output (Zhou et al., 2023a; Jiang et al., 2023b)240

or directly generate responses using advanced241

LLMs and refine them manually (Sun et al., 2024).242

We compare the outputs generated by three243

methods: (1) Vanilla: Output generated directly244

using backbone model. (2) Generation: Out-245

put generated directly using GPT-3.5-turbo. (3)246

Discrimination: First, we identify the constraints247

that Vanilla outputs failed to adhere to using test248

scripts (Zhou et al., 2023a). Then, we rectify the249

Vanilla outputs constraints by constraints using250

GPT-3.5-turbo (The framework is shown in Fig. 2251

and please refer to §4.2 for details). With regard to252

the complex instructions, the instructions in IFE-253

val (Zhou et al., 2023a) originally have only 1 to 254

3 constraints, which are not complex enough. We 255

construct 1467 complex instructions, each com- 256

prising 3 to 5 constraints that can be automatically 257

verified (Please refer to §4.1 for details). We lever- 258

age LLaMA2-13B-chat (Touvron et al., 2023) as 259

the backbone and assess output quality using the 260

test script from Zhou et al. (2023a). 261

As shown in Tab. 3, using the generation method, 262

outputs from advanced LLMs (Generation) are 263

of higher quality than those from weaker LLMs 264

(Vanilla). However, the outputs from weaker 265

LLMs then refined by advanced LLMs (Discrim- 266

ination) are of better quality than the outputs 267

generated by advanced LLMs directly (Genera- 268

tion). This is because slight changes in the instruc- 269

tion (i.e. constraint) can cause substantial output 270

differences, which the discrimination method cap- 271

tures better than the generation method. 272

4 Method 273

In §3, we propose a discrimination-based method 274

to obtain effective training data. A subsequent 275

question is how to effectively utilize the obtained 276

data? To address this, we introduce a method 277

that leverages both positive and negative samples 278

to improve complex instruction following. The 279

framework is shown in Fig. 2. 280

4.1 Complex Instruction Synthesis 281

According to §3, the effective training data is com- 282

plex instructions with multiple constraints (com- 283
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Methods ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

Vanilla 21.19 08.89 77.26 56.67 61.60 10.60 30.85 00.26 16.84 06.40 41.33
Generation 56.50 30.37 68.95 74.96 72.29 33.01 52.91 36.76 79.51 21.53 62.68
Discrimination 66.56 25.00 68.11 68.27 77.32 81.95 52.27 70.90 85.60 35.04 68.30

Table 3: The output quality evaluated by IFEval across different methods.

positional data). To obtain compositional data, we284

first collect seed instructions from three widely285

used instruction-tuning datasets. Then, we rewrite286

the instructions to incorporate multiple constraints.287

To ensure the coverage and diversity of the seed288

instructions, we consider three sources: (1) Open289

Assistant (Köpf et al., 2024): human-written in-290

structions when interacting with chatbots. We only291

consider rank 0 instructions (annotated by humans292

as the highest quality) and the first turn of the con-293

versation (Li et al., 2023b). (2) Self-Instruct (Wang294

et al., 2022a): 175 manually crafted instructions295

covering various topics to aid instruction genera-296

tion for new tasks. (3) Super-Natural (Wang et al.,297

2022b): NLP tasks formatted with human instruc-298

tions. Tasks with simple outputs (e.g., classifica-299

tion, tagging) are excluded, leaving 318 tasks. One300

instruction is randomly selected from each remain-301

ing task. From these sources, we gather a total of302

1467 seed instructions.303

Subsequently, we integrate constraints into these304

seed instructions. Initially, we randomly sample305

3 to 5 constraints and use provided scripts to re-306

move any conflicting constraints among those pro-307

vided by Zhou et al. (2023a). Next, semantically308

equivalent but textually distinct instructions can309

substantially affect model outcomes (Yan et al.,310

2024; Chen et al., 2024). Hence, we employ eight311

diverse expressions to describe each type of con-312

straint. Specifically, we manually select three com-313

mon descriptions from the test set as seed descrip-314

tions, generate five similar descriptions using GPT-315

3.5-turbo, and refine them manually. For each sam-316

pled constraint c, we randomly select one descrip-317

tion di from the description pool and append it to318

the instructions, formulated as:319

Ic = LLM(Is ⊕ di ⊕ ...⊕ dn),320

where Is, Ic and di denote the seed instruction,321

its corresponding synthesized complex instruction,322

and appended constraint using a specific descrip-323

tion. The number of constraints n ranges from 1 to324

5, with a majority falling between 3 to 53.325

3The detailed statistics are shown in Tab. 11.

4.2 Teacher Correction 326

In §3, we propose a discrimination-based approach 327

for obtaining the output, shown to be more effec- 328

tive than directly generating output with advanced 329

LLMs. The details of this approach are as follows. 330

Initially, we utilize LLaMA2-13B-Chat (Tou- 331

vron et al., 2023) (student model) to generate 332

results for our synthesized complex instructions. 333

Then, we utilize the test scripts from Zhou et al. 334

(2023a) to identify the constraints the model failed 335

to follow since the constraints are objective and au- 336

tomatically verifiable. Finally, we adopt advanced 337

LLMs (teacher model) GPT-3.5-turbo to correct 338

the failed constraints one by one. 339

Specifically, each complex instruction Ic con- 340

tains multiple constraints. In §4.2, we utilize 341

the test script to pinpoint the f constraints C = 342

{c1, c2, ..., cf} that the student model’s vanilla out- 343

put ov fails to follow. The teacher model sequen- 344

tially corrects these failed constraints, yielding an 345

output set O = {ov, o1, o2, ..., of}: 346

o1 = LLM(ov, c1), . . . , of = LLM(of−1, cf ), 347

where GPT-3.5-turbo is employed as the teacher 348

model with prompts sourced from Tab. 16. 349

4.3 Contrastive Method 350

During §4.2, for each instruction Ic, we can 351

gather positive sample set {of} and negative sam- 352

ples set {ov, o1, ..., of−1}. Supervised fine-tuning 353

(SFT) solely utilizes positive samples successfully 354

meeting constraints specified in complex instruc- 355

tions (Radford et al., 2019; Howard and Ruder, 356

2018). However, negative samples from §4.2, fail- 357

ing to meet certain constraints, also offer valuable 358

supervision signals. Hence, we leverage the pos- 359

itive and negative samples through reinforcement 360

learning fine-tuning (Rafailov et al., 2023). 361

Specifically, given the output set 362

O = {ov, o1, o2, ..., of} for each com- 363

plex instruction Ic, we form a training 364

dataset D consisting of f contrastive triplets: 365

D = {(Ic, ov, of ), (Ic, o1, of ), ..., (Ic, of−1, of )}. 366

In each triplet, the final corrected output of 367

(positive sample) is preferred over oi (negative 368
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sample) as of satisfies more constraints specified369

in the complex instruction Ic. To model this370

preference information, we apply Direct Preference371

Optimization (DPO) (Rafailov et al., 2023). The372

loss function involves a maximum likelihood373

objective for the language model parameters πθ:374

LDPO(πθ;πref) = −E(Ic,of ,oi)∼D[logσ(βlog
πθ(of |Ic)
πref(of |Ic)

375

−βlog
πθ(oi|Ic)
πref(oi|Ic)

)],376

where the model parameter πref starts as πθ and re-377

mains fixed during training. β is a hyperparameter,378

and σ denotes the sigmoid function. LDPO maxi-379

mizes the log probability of the preferred output of380

relative to the dispreferred output oi.381

However, solely relying on LDPO may lead to382

low probabilities for both chosen and rejected out-383

puts, yet with a significant disparity between them4.384

Therefore, we integrate the SFT loss LSFT to con-385

strain πθ from deviating from the preferred data386

distribution (Xu et al., 2024; Hejna et al., 2023):387

LSFT(πθ) = −E(Ic,of )∼D[log πθ(of |Ic)].388

Finally, our training procedure is to optimize LDPO389

and LSFT jointly:390

LOurs = LDPO + LSFT.391

5 Experiments392

We conduct experiments to verify the effectiveness393

of our method, focusing on overall performance,394

training efficiency, and generalization ability.395

5.1 Experiment Setup396

Models. Our baselines include popular open and397

closed-source LLMs. We especially select models398

that excel in complex instruction following (Xu399

et al., 2023) and those that perform well on cur-400

rent instruction following benchmarks (Wang et al.,401

2023). Within our framework (§4.1), we com-402

pare three methods: (1) OursGeneration directly403

generates output with GPT-3.5-turbo and trains404

the backbone model via supervised fine-tuning405

(SFT). (2) OursDiscrimination generates output via406

the backbone model then refines with GPT-3.5-407

turbo (§4.2), and trains the backbone model via408

SFT. (3) OursContrastive utilizes our advanced DPO409

4We provide some cases in Appx. A.6.
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Figure 3: The performance of training efficiency
(left) and each constraint type across different
training tokens and training steps (right). D
and C denote Ours-LLaMA2-13BDiscrimination and
Ours-LLaMA2-13BContrastive respectively.

for training (§4.3). Across all methods, the instruc- 410

tions in the training data are identical, differing 411

only in output and training paradigms5. 412

Evaluation. We evaluate all models on IFE- 413

val (Zhou et al., 2023a), a widely-used instruction- 414

following benchmark. The test set consists of 541 415

samples, each containing 1 to 3 constraints. The 416

metrics are the same as §3. 417

5.2 Results 418

Overall Performance. As shown in Tab. 4, for 419

the same backbone, OursDiscrimination consistently 420

outperforms OursGeneration, and OursContrastive out- 421

performs OursDiscrimination, which proves the 422

effectiveness of our methods. Next, us- 423

ing the same backbone model (LLaMA2), 424

Ours-LLaMA2-13BGeneration performs worse than 425

many open-source models, even when the con- 426

straints in the test set have been seen during train- 427

ing. This highlights the importance in obtaining 428

high-quality output for complex instructions. 429

430

Training Efficiency. To ensure fairness, we 431

convert the checkpoints with the same num- 432

ber of training steps into the number of 433

training tokens for the x-axis. As shown 434

in Fig. 3 (left), Ours-LLaMA2-13BContrastive 435

achieves better performance with the same 436

training tokens and ultimately outperforms 437

Ours-LLaMA2-13BDiscrimination. 438

5.3 Analysis 439

5.3.1 Data Quality 440

Many studies have shown that data quality out- 441

weighs data quantity (Zhou et al., 2024). As shown 442

5Continuous training may lead to catastrophic forgetting
(McCloskey and Cohen, 1989). Hence, we employ a replay
strategy mixing training data with 10k ShareGPT data (Chiang
et al., 2023) to maintain general abilities during training.
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Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

PaLM2-S* (Anil et al., 2023) PaLM N/A N/A N/A N/A N/A N/A N/A N/A N/A 43.07 55.76
GPT3.5-turbo GPT 58.43 70.77 88.68 88.54 71.17 98.35 53.85 18.18 76.12 58.96 68.47
GPT4 (Achiam et al., 2023) GPT 75.28 70.77 96.23 94.27 84.05 96.77 73.43 66.67 95.52 76.16 82.97

ChatGLM3-6B (Du et al., 2021) ChatGLM 14.61 16.92 67.92 42.68 50.92 51.61 34.97 28.79 49.25 27.36 39.33
Qwen-14B-Chat (Bai et al., 2023) Qwen 57.30 23.08 75.47 57.96 58.28 83.87 33.57 21.21 68.66 37.89 51.08
LLaMA2-7B-Chat (Touvron et al., 2023) LLaMA2 35.96 06.15 79.25 57.96 53.37 19.35 36.36 07.58 41.79 28.84 41.61
LLaMA2-13B-Chat (Touvron et al., 2023) LLaMA2 37.08 07.69 83.02 60.51 57.06 25.81 37.76 00.00 29.85 29.94 42.21
LLaMA2-70B-Chat (Touvron et al., 2023) LLaMA2 42.70 24.62 79.25 63.69 68.71 16.13 39.86 12.12 62.69 38.45 50.36
Vicuna-13B-V1.5 (Zheng et al., 2024) LLaMA2 56.18 32.31 75.47 62.42 57.06 93.55 42.66 16.67 64.18 42.33 53.48
WizardLM-13B-V1.2 (Xu et al., 2023) LLaMA2 49.44 16.92 75.47 67.52 66.26 83.87 46.85 15.15 64.18 43.07 54.56
OpenChat-13B-V3.2 (Wang et al., 2023) LLaMA2 49.44 26.15 88.68 68.15 66.26 87.10 47.55 19.70 71.64 46.03 57.43
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023a) Mistral 61.80 21.54 88.68 75.16 76.07 58.06 50.35 16.67 74.63 51.02 61.03

Ours-LLaMA2-7BGeneration LLaMA2 41.57 15.38 71.70 70.70 53.37 58.06 27.97 9.09 56.72 34.01 46.16
Ours-LLaMA2-7BDiscrimination LLaMA2 49.44 06.15 77.36 64.97 53.99 74.19 34.27 07.58 73.13 38.82 48.56
Ours-LLaMA2-13BGeneration LLaMA2 64.04 20.00 66.04 70.06 53.99 35.48 44.06 21.21 74.63 41.22 52.88
Ours-LLaMA2-7BContrastive LLaMA2 76.40 13.85 75.47 70.06 50.92 67.74 37.76 24.24 82.09 42.88 54.68
Ours-LLaMA2-13BDiscrimination LLaMA2 60.67 06.15 79.25 64.97 60.12 96.77 43.36 51.52 79.10 46.21 57.43
Ours-LLaMA2-13BContrastive LLaMA2 65.17 10.77 84.91 66.88 60.74 93.55 47.55 43.94 86.57 48.24 59.71

Ours-Mistral-7BGeneration Mistral 73.03 47.69 66.04 78.34 57.06 58.06 51.05 39.39 89.55 52.13 62.83
Ours-Mistral-7BDiscrimination Mistral 79.78 16.92 71.70 80.89 61.35 93.55 44.76 59.09 85.07 53.79 64.27
Ours-Mistral-7BContrastive Mistral 68.54 30.77 84.91 85.35 68.71 80.65 46.15 30.30 88.06 53.97 64.99

Table 4: The overall performance on IFEval (each with 1 to 3 constraints). The asterisk (*) indicates that the results
are directly sourced from IFEval. N/A denotes that IFEval does not provide the results for specific constraints.

Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

Ours-LLaMA2-13BDiscrimination-Random LLaMA2 58.43 06.15 73.58 63.69 50.92 87.10 33.57 10.61 77.61 39.00 49.40
Ours-LLaMA2-13BDiscrimination-Selected LLaMA2 71.91 15.38 75.47 75.16 61.96 83.87 37.06 16.67 74.63 44.55 56.71
Ours-LLaMA2-13BDiscrimination-All LLaMA2 60.67 06.15 79.25 64.97 60.12 96.77 43.36 51.52 79.10 46.21 57.43

Ours-LLaMA2-13BContrastive-Random LLaMA2 46.07 10.77 81.13 68.79 64.42 83.87 39.86 50.00 79.10 44.55 56.71
Ours-LLaMA2-13BContrastive-All LLaMA2 65.17 10.77 84.91 66.88 60.74 93.55 47.55 43.94 86.57 48.24 59.71
Ours-LLaMA2-13BContrastive-Selected LLaMA2 75.28 15.38 79.25 77.71 58.90 74.19 37.76 45.45 85.07 48.61 60.07

Table 5: The performance using the full set of noisy data samples (All), a subset of high-quality data samples
(Selected), and a randomly sampled subset of the same size as the selected high-quality data subset (Random).

in Tab. 3, our training data contains noise. Hence,443

we explore the performance using a subset of train-444

ing data that has higher quality but lower quan-445

tity. Specifically, we first filter the full set of noisy446

training data (containing 1467 samples) to retain447

only those samples whose output satisfies all the448

constraints in the instructions and finally obtain449

515 high-quality data samples. We also set a con-450

trol group by randomly sampling a subset contain-451

ing the same number of data samples as the se-452

lected high-quality data subset6. We finally train453

the LLaMA2-13B-Chat with these sampled data.454

As shown in Tab. 5, training with full set of noisy455

data performs better than training with the subset456

of noisy data. Also, the selected high-quality data457

achieves comparable performance to training with458

the full set of noisy data. This underscores the459

importance of selecting high-quality training data.460

5.3.2 Constraints Type461

We study the influence of constraint types on the462

effectiveness of the proposed methods. First, to463

ensure the consistency of the model’s output, we464

report the performance across different constraint465

6The statistics of the sampled data are shown in Tab. 11.

Models LIMA Koala AlpacaEval Avg.

LLaMA2-13B-Chat 7.781 7.619 7.542 7.647
Ours-LLaMA2-13BGeneration 8.475 8.000 8.138 8.204
Ours-LLaMA2-13BContrastive 8.434 8.091 8.110 8.212
Ours-LLaMA2-13BDiscrimination 8.552 8.097 8.204 8.284

Table 6: The performance of models on general instruc-
tion following datasets.

types at the checkpoints taking different training 466

steps. As shown in Fig. 3 (right), certain constraints 467

(e.g., Combination) are consistently more challeng- 468

ing to follow, while others (e.g., Startend) are eas- 469

ier. Hence, when synthesizing training data, certain 470

challenging constraint types introduce more noise 471

to our training data. As shown in Tab. 3, the quality 472

of training data differs across various constraints, 473

leading to variations in the effectiveness of our 474

methods across different types of constraints. 475

5.4 Generalization Experiments 476

We investigate the generalizability of our frame- 477

work from five perspectives. 478

5.4.1 General Instruction Following Ability 479

We evaluate models on three general instruction- 480

following benchmarks, LIMA (Zhou et al., 2024), 481
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Models Followbench CELLO
Mixed Total Total

LLaMA2-13B-Chat 25.88 42.04 40.20
Ours-LLaMA2-13BContrastive 36.47 42.77 44.20
Ours-LLaMA2-13BDiscrimination 38.82 42.43 56.10

Table 7: The performance of models on Followbench
and CELLO.

Models In-Domain Adversarial
I-level C-level I-level C-level

LLaMA2-13B-Chat 09.50 42.27 01.00 40.15
WizardLM-13B-V1.2 14.00 47.20 07.00 46.60
OpenChat-13B-V3.2 16.50 49.07 07.30 47.64

Ours-LLaMA2-13BGeneration 14.00 52.27 05.00 49.36
Ours-LLaMA2-13BDiscrimination 15.00 53.33 05.00 49.53
Ours-LLaMA2-13BContrastive 19.00 55.73 07.50 53.05

Table 8: The performance of models on instructions
with varying phrasing (In-Domain) and on more chal-
lenging complex instructions (Adversarial).

Koala (Geng et al., 2023) and AlpacaEval (Taori482

et al., 2023)7. They contain more general and di-483

verse instructions than our training data. As shown484

in Tab. 6, compared to the backbone model, train-485

ing with complex instructions improve models’486

ability to follow instructions generally.487

5.4.2 Out-of-Domain Generalization488

We evaluate models on another two com-489

plex instruction-following benchmarks Follow-490

Bench (Jiang et al., 2023b) and CELLO (He et al.,491

2024). They have the following features to out-492

line: (1) They contain almost entirely different con-493

straints from IFEval8. (2) To mirror real-world494

scenarios, FollowBench specifically introduces a495

Mixed Category. Instructions within this category496

encompass multiple constraints of different types.497

(3) CELLO is a Chinese complex instruction fol-498

lowing benchmark mirroring real-world scenarios.499

The instructions are in a different language from500

our training data. As shown in Tab. 7, our methods501

significantly enhance the ability of LLMs to follow502

different types of constraints, even when applied to503

different languages. Interestingly, OursContrastive un-504

derperforms OursDiscrimination in some cases when505

applied to out-of-domain constraints, possibly due506

to DPO exhibiting lower generalization ability to507

out-of-preference data (Li et al., 2023c).508

7The design of the scoring prompt is in Appx. A.3.1
8The examples from these benchmarks are in Appx. A.3.2

Models ARC
(25-shot)

HellaSwag
(10-shot)

MMLU
(5-shot)

TruthfulQA
(0-shot) Avg.

LLaMA2-13B-Chat 59.04 81.94 54.64 44.12 59.94
WizardLM-13B-V1.2 59.04 82.21 54.64 47.27 60.79
OpenChat-13B-V3.2 59.64 82.68 56.68 44.49 60.87

Ours-LLaMA2-13BDiscrimination 56.74 78.39 53.01 48.17 59.08
Ours-LLaMA2-13BContrastive 57.76 79.95 53.79 48.15 59.91

Table 9: The performance of models on general tasks.

5.4.3 In-Domain Generalization 509

We evaluate models on 200 new instructions, the 510

constraints of which fall into the same categories 511

as the training data but have different wording and 512

specific requirements9. As shown in Tab. 8 (In- 513

Domain), OursContrastive remains the top performer. 514

Also, the performance gap between OursContrastive 515

and the best open-source model (OpenChat-13B- 516

V3.2) has increased. 517

5.4.4 Adversarial Setting 518

We stress test the models on 200 more challeng- 519

ing complex instructions with increased constraints. 520

The instructions in the test set contain 6 to 7 con- 521

straints while our training data contains 3 to 5 522

constraints10. As shown in Tab. 8 (Adversarial), 523

OursContrastive outperforms all other models and sig- 524

nificantly performs better than OursDiscrimination. 525

5.4.5 General Ability 526

We evaluate models on four widely-used 527

benchmarks, reflecting knowledge capability 528

(MMLU (Hendrycks et al., 2020), Truth- 529

fulQA (Lin et al., 2021), ARC (Clark et al., 2018)), 530

complex reasoning (HellaSwag (Zellers et al., 531

2019)). As shown in Tab. 9, our methods perform 532

on par with open-source LLMs, validating that our 533

methods maintain the models’ general ability. 534

6 Conclusion 535

In this paper, we systematically study how to 536

enhance the ability of LLMs to follow complex 537

instructions. Initially, we study effective train- 538

ing data and methods for obtaining high-quality 539

data through empirical studies. Based on our 540

findings, we introduce a method utilizing posi- 541

tive and negative samples to enhance LLMs’ com- 542

plex instruction-following ability. Our experiments 543

show that our methods enhance models’ ability to 544

follow complex instructions more effectively and 545

efficiently. Finally, extensive experiments demon- 546

strate the generalization abilities of our framework. 547

9The construction process is detailed in the Appx. A.3.3
10The construction process is detailed in the Appx. A.3.4
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7 Limitations548

We analyze the limitations of our work as follows.549

First, we investigate complex instruction-following550

by testing LLMs’ ability to adhere to instructions551

with multiple constraints. Even if the model meets552

all the constraints simultaneously, it may not fully553

follow complex instructions due to reasoning or554

knowledge limitations. However, we see com-555

plex constraint-following as a significant challenge556

worth studying. In constructing the training data,557

we primarily use hard constraints from IFEval, al-558

though real-world scenarios often include soft con-559

straints like semantic constraints. We focus on hard560

constraints because they can be objectively and au-561

tomatically evaluated, and we believe that exper-562

iments based on them can yield valuable insights563

into complex instruction-following.564
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Benchmark Type Training Set Test Set

L1 L2 L3 L4 L5 Avg. L1 L2 L3 L4 L5 Avg.

FollowBench

Example 31 20 17 16 16 100 9 20 23 24 24 100
Content 16 15 17 15 12 75 9 10 8 10 13 50
Situation 14 13 13 13 13 66 8 9 9 9 9 44
Style 19 19 18 18 16 90 11 11 12 12 14 60
Format 20 19 17 18 16 90 10 11 13 12 14 60
Mixed 14 10 11 7 6 48 3 7 6 10 11 37
Total 114 96 93 87 79 469 50 68 71 77 85 351

IFEval One-cons - - - - - 92 - - - - - 213
Multi-cons - - - - - 92 - - - - - 144

Table 10: The statistic of the datasets constructed in the
empirical study.

Data Selection Method C1 C2 C3 C4 C5 Total

All 61 54 431 493 428 1467
Select 60 48 192 136 79 515
Random 19 19 143 178 156 515

Table 11: The statistic of the data used in §5.3.1. Ci

indicates that there are i constraints in the instruction.

A Appendix861

A.1 Details of Empirical Studies862

In §3, we first investigate what training data is ef-863

fective in enhancing complex constraints following864

ability. To achieve this, we split the instructions in865

the existing instruction following benchmarks, i.e.,866

Followbench (Jiang et al., 2023b) and IFEval (Zhou867

et al., 2023a) into the training and test sets. The868

training sets consist of two types of data: (1) Com-869

positional data: From IFEval, we utilize all the870

instructions with more than one constraint and all871

level-4 and level-5 instructions from Followbench.872

(2) Atomic data: From IFEval, we use only one-873

constraint instructions. From Followbench, we use874

all level-1 and part of level-2 instructions to ensure875

an equal number of compositional and atomic data876

for fair comparison.877

After collecting the instructions, we first employ878

GPT3.5-turbo to generate the answers to the cor-879

responding instructions. To improve the quality880

of the training data, we filter the samples from881

Followbench by prompting GPT3.5-turbo (We use882

the evaluation prompt from the original paper) and883

those from IFEval via its provided test scripts.884

The statistics of our training set and test set are885

provided in Tab. 10. It can be seen that there is a886

distribution shift between the training set and test887

set from FollowBench. This may be because we use888

outputs satisfying all instruction constraints judged889

by GPT-3.5-turbo for training, with the rest as the890

test set. Consequently, the test set can be more891

challenging than the training data, especially for892

Models Format Input Task Count Average

LLaMA2-13B-Chat 64.00 34.20 28.00 67.40 40.20
Ours-LLaMA2-13BContrastive 54.90 44.00 41.30 60.70 44.20
Ours-LLaMA2-13BDiscrimination 62.70 49.00 55.00 71.30 56.10

GPT3.5-turbo 89.90 76.00 79.90 70.00 79.40
GPT-4 91.10 79.60 79.20 72.40 82.20

Table 12: The overall performance of models on
CELLO. Format, Task, Input, Count denote the cri-
teria Answer format, Task-prescribed phrases, Input-
dependent query, and Count limit respectively.

Models Content Example Format Situation Style Mixed Total

LLaMA2-13B-Chat 41.60 00.00 58.00 42.73 84.00 25.88 42.04
Ours-LLaMA2-13BDiscrimination 40.80 05.00 58.67 37.27 74.00 38.82 42.43
Ours-LLaMA2-13BContrastive 43.20 05.00 57.33 37.27 77.33 36.47 42.77

Table 13: Overall performance of models across differ-
ent constraint categories on Followbench.

instructions with more constraints (level 4, level 5). 893

This can partially explain the results that training 894

with compositional data boosts performance on 895

instructions with 1 to 3 constraints but lowers it on 896

those with 4 to 5 constraints. 897

A.2 Complex Structure Synthesis 898

As stated in §4.1, we employ GPT-3.5-turbo to 899

diversify the description for the same constraint. 900

The corresponding prompt is shown in Tab. 14. It 901

is worth noting that, for the keyword constraint, 902

we prompt GPT3.5-turbo to brainstorm some key- 903

words related to the instruction, shown in Tab. 15. 904

Then, we randomly select one of them and incor- 905

porate it into the diversified description to form 906

the final instruciton, e.g., your response should not 907

include the word “architecture”. 908

A.3 Generalization Experiments 909

A.3.1 General Instruction Following Ability 910

We adopt GPT-4 to compare and score the four 911

candidates outputs given by LLaMA2-13B-Chat, 912

OursGeneration, OursDiscrimination and OursContrastive 913

respectively. The score ranges from 1 to 10. To 914

mitigate potential position bias in candidate out- 915

puts, we randomly shuffle the positions of the four 916

candidate answers for each sample. The evaluation 917

prompt is detailed in Tab. 17. Finally, we average 918

the scores across all data samples. 919

A.3.2 Out-of-Domain Generalization 920

We provide detailed performance metrics and data 921

examples for two out-of-domain complex instruc- 922

tion following benchmarks: FollowBench and 923

CELLO. The detailed performance of FollowBench 924
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/* Task prompt */
You are provided with a <constraint> in an instruction. As a prompt engineer, your task is to rephrase the provided <constraint>
to make it more diverse. You ought to provide five more variants of the <constraint>. Make sure your revision does not change
the meaning of the original <constraint>.

/* Example */
—INPUT—
<constraint>:
Your response should contain at least 3 sentences.
—OUTPUT—
variants:
1. Respond with at least three sentences
2. Use at least 3 sentences in your reply
3. Your entire response should include at least three sentences
4. Organize your entire response in at least 3 sentences
5. Please make sure the response is at least 3 sentences long

/* Input */
—INPUT—
<constraint>:
{Given_constraint}
—OUTPUT—
variants:

Table 14: The prompts for diversifying the descriptions of a given constraint. We utilize one-shot in-context learning
to enhance the performance. The information that requires manual input is highlighted in bold.

is shown in Tab. 13. Except for mixed categories,925

our methods typically exhibit decreased perfor-926

mance compared to the backbone model when eval-927

uated against individual, unseen constraints. The928

declined performance in specific categories is rea-929

sonable. The complex instructions in specific cat-930

egories (e.g., Style) from FollowBench (each has931

constraints from the same category) differ signif-932

icantly from those in our training dataset (each933

contains constraints from multiple categories). We934

show some cases in the Tab. 21, with the constraints935

highlighted in bold. This suggests that models936

training with certain constraints can hardly gener-937

alize to unseen constraints directly. The detailed938

performance of CELLO is shown in Tab. 12. As939

demonstrated in Tab. 21, CELLO’s constraints and940

language significantly differ from our training data.941

A.3.3 In-Domain Generalization942

We detail the test set construction process below.943

First, we select 200 instructions from the Open944

Assistant dataset (introduced in §4.1) not in our945

training set. Next, we randomly choose 3 to 5946

constraints from IFEval, pair them with descrip-947

tions from our description pool (§4.1), and utilize948

GPT-3.5-turbo to paraphrase them, ensuring dis-949

tinct descriptions from the training data. Addition-950

ally, we manually adjust specific requirements in951

the instructions, changing symbols (e.g., “separated952

by 6 asterisk symbols ******” to “separate the re-953

sponses with 6 hash signs: ######”) and formats 954

(e.g., “wrap the entire output in JSON format” to 955

“I want the entire output in XML format”). 956

A.3.4 Adversarial Setting 957

We detail the test set construction process below. 958

Specifically, we utilize the same 200 seed instruc- 959

tions from §5.4.3 and the method introduced in §4.1 960

to append 6 to 7 constraints to the seed instructions. 961

These new instructions are challenging since our 962

training data contains 3 to 5 constraints. 963

A.4 Case Study 964

We present some examples of various models 965

following complex instructions in Tab. 18 and 966

Tab. 19. Given the complex instructions with multi- 967

ple constraints, we present the outputs generated by 968

GPT3.5-turbo and LLaMA2-13B-Chat and the list 969

indicating whether they have followed the specific 970

constraint or not. Constraints in the instruction are 971

underlined sequentially. 972

A.5 Implementation Details 973

We utilize 2 NVIDIA A800 80GB GPUs to con- 974

duct all the experiments. DeepSpeed ZeRO stage 1 975

is adopted for both SFT and DPO training. We use 976

LORA(Hu et al., 2021) adaptor for effective train- 977

ing. We set the batch size to 4 for each GPU. All 978

the methods utilizing SFT are trained for 2 epochs 979

with the initial learning rate set to 3e-5 and the 980

gradient accumulation step set to 4. The warm-up 981
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/* Task prompt */
You are provided with an <instruction>. Your object is to come up some keywords that may be used to answer the <instruction>.
They are usually related to the task described in the <instruction>. you should output your thinking process and the keywords
you come up with.

/* Example */
—INPUT—
<instruction>:
Explain Generative Adversarial Networks (GANs) to me using bullet points. Do not contain any commas in your response.
—OUTPUT—
Thinking process:
The <instruction> asks to explain GANs, hence, “architecture”, “training” and “generator” may be appropriate keywords to use
in the answer.
Keywords:
[“architecture”, “training”, “generator” ]

/* Input */
—INPUT—
<instruction>:
{Given_instruction}
—OUTPUT—

Table 15: The prompts for brainstorming some related keywords of a given instruction. The information that
requires manual input is highlighted in bold.

steps are set to 300. As for the training of methods982

utilizing DPO, the beta value is set to 0.1. DPO is983

trained for 2 epochs with the initial learning rate984

set to 5e-4 and the gradient accumulation step also985

set to 4. We apply cosine learning rate scheduler986

and Adam optimizer to both models, and their max-987

imum sequence length is set to 2048.988

A.6 Ablation Study on the Contrastive989

Method990

To prove the effectiveness of the proposed objec-991

tive function in §4.3, we train LLaMA2-13B-Chat992

only utilizing naive DPO loss LDPO. As shown in993

Tab. 22, using only naive DPO loss causes mod-994

els to output repeated constraints meaninglessly.995

This is probably because DPO Loss tend to over-996

fit to the training data (Li et al., 2023c; Xu et al.,997

2024; Hejna et al., 2023). After incorporating the998

LSFT loss into our objective function, the model999

can effectively follow complex instructions.1000
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/* Task prompt */
You are provided with a response which is generated by a LLM and a constraint that the response is asked to follow. Now, you
have known that the response does not follow the constraint. You are designated as a corrector to correct the response. You
should make as minimal revisions as possible so that it follows the constraint. For example, you should not change the case of
the word if you are not asked. To fulfil this task, you are expected to provide your analysis and a revised response which has
followed the constraint.

/* Example */
—INPUT—
Response:
«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code: 012».
Andorra is a small, independent principality located in the Pyrenees mountains. The ISO code is a three-digit number that
represents countries. I hope this information is helpful! Do you agree?
Constraint:
The very last sentence of your response should be “Hope you agree with me.”
—OUTPUT—
Analysis:
The last sentence of the response is “Do you agree?”. I need to change it to “Hope you agree with me.” to follow the constraint.
Revised response:
«Title»: ISO Code for Andorra. The International Organization for Standardization (ISO) code for Andorra is «ISO Code:
012». Andorra is a small, independent principality located in the Pyrenees mountain. The ISO code is a three-digit number that
represents countries. I hope this information is helpful! Hope you agree with me.

/* Input */
—INPUT—
Response:
{Given_response}
Constraint:
{Given_constraint}
—OUTPUT—

Table 16: The prompts for correcting the response generated by the model to follow a specific constraint. The
information that requires manual input is highlighted in bold.

/* Prompt */
You are a helpful assistant who reviews a debate among four other assistants in evaluating the quality of the outputs for
a given instruction. The four assistants, Assistant (LLaMA2-13B-Chat), Assistant (Ours-LLaMA2-13BGeneration), Assistant
(Ours-LLaMA2-13BDiscrimination ), and Assistant (Ours-LLaMA2-13BContrastive), are given an instruction. Output (LLaMA2-13B-
Chat), Output (Ours-LLaMA2-13BGeneration), Output (Ours-LLaMA2-13BDiscrimination ), and Output (Ours-LLaMA2-13BContrastive)
are generated by four different AI chatbots respectively. Assistants have conflicting evaluations. Your goal is to rate each output,
assigning higher scores to the assistants whose responses better fulfill the given instruction.
Here are some rules of the evaluation:
1) You should prioritize evaluating whether the output honestly, precisely, and closely executes the instruction, then consider its
helpfulness, accuracy, level of detail, harmlessness, etc.
2) Outputs should NOT contain more or less than what the instruction asks for; as such outputs do NOT precisely execute the
instruction.
Rate each output from 1 to 10, then output your final verdict using this format: [[LLaMA2-13B-Chat-x]],
[[Ours-LLaMA2-13BGeneration-x]], [[(Ours-LLaMA2-13BDiscrimination)-x]], [[(Ours-LLaMA2-13BContrastive)-x]], where x is the
score you assigned to each assistant.

/* Instruction */
{Given_instruction}

/* Random order of four model outputs */
<The Start of Assistant’s Answer>
{Model_output}
<The End of Assistant’s Answer>

Table 17: The prompts for scoring the outputs generated by different models to a general instruction. The information
that requires manual input is highlighted in bold.

15



Instruction
Describe the content of the article in a brief manner. A study published earlier this year by Zee and her team exam-
ined the role of light in sleep for healthy adults in their 20s. Sleeping for only one night with a dim light, such as
a TV set with the sound off, raised the blood sugar and heart rate of the young people during the sleep lab experi-
ment. An elevated heart rate at night has been shown in prior studies to be a risk factor for future heart disease and
early death, while higher blood sugar levels are a sign of insulin resistance, which can ultimately lead to type 2 dia-
betes. (1) The answer should be in at least 4 sections with each section starting with section X (where X is 1, 2, 3,...). The an-
swer should be (2) written in English, with all letters lowercased. Respond with (3) less than 73 words.

GPT3.5-turbo

/* Output */
section 1: study by zee and team on light’s impact on sleep for young adults
section 2: sleeping with dim light raised blood sugar and heart rate
section 3: higher blood sugar levels indicate insulin resistance and risk of type 2 diabetes.

/* Followed list */
[False, True, True]

LLaMA2-13B-Chat

/* Output */
section 1: Introduction
the article discusses the impact of light on sleep and its effects on healthy adults in their 20s.
section 2: Experiment Findings
the study found that sleeping with a dim light, such as a TV with the sound off, raised blood sugar and heart rate levels during
the sleep lab experiment.
section 3: Risk Factors
elevated heart rate at night has been linked to future heart disease and early death, while higher blood sugar levels can lead to
insulin resistance and type 2 diabetes.
section 4: Conclusion
the study highlights the importance of a dark, quiet sleep environment for optimal sleep and overall health.

/* Followed list */
[True, False, False]

Table 18: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 1).

16



Instruction
Summarize a meeting from the given list of bullet points. Be sure to convert shorthand into a first-hand account. Rose: Analyze
data and presents findings
John: propose new idea
Jane: appointed to head project
Tom: need more time to fix a software bug.
(1) End it with a postscript starting with P.S.. (2) The very end of your entire response should be like: That is all you need!.
Your answer must also (3) contain at least 2 placeholders (an example of a placeholder is [address]).

GPT3.5-turbo

/* Output */
During the meeting, Rose analyzed data and presented her findings. John proposed a new idea for the project, while Jane was
appointed to head the project. Tom mentioned that he needed more time to fix a software bug.
P.S. [Address] That is all you need!

/* Followed list */
[True, True, False]

LLaMA2-13B-Chat

/* Output */
Sure, I’d be happy to help! Here’s a summary of the meeting based on the provided bullet points:
The meeting began with Rose presenting her findings after analyzing the data. She shared some insightful observations and
conclusions, which were well-received by the team.
Next, John proposed a new idea that he believed would benefit the project. He explained his reasoning and provided some
supporting evidence for his proposal.
After John’s proposal, Jane was appointed as the head of the project. She expressed her gratitude for the opportunity and outlined
her vision for the project’s success.
Tom then reported that he needed more time to fix a software bug. He explained that the bug was more complex than initially
thought and required additional time to resolve.
In conclusion, the meeting was productive and successful. The team made progress on several fronts, including data analysis,
proposal development, and project leadership.
P.S. That is all you need!
[Address] - the physical location of the meeting [Data] - the specific data that Rose analyzed
[Software bug] - the technical issue that Tom is working to resolve

/* Followed list */
[True, False, True]

Table 19: The complex instructions and corresponding results of GPT3.5-turbo and LLaMA2-13B-Chat (Case 2).

Models BaseModel ChangeCase Combination Content Format Keywords Language Length Punctuation Startend I-level C-level

PaLM2-S PaLM N/A N/A N/A N/A N/A N/A N/A N/A N/A 46.95 59.11
GPT3.5-turbo GPT 66.29 75.38 88.68 89.17 74.23 100.00 65.03 24.24 86.57 63.96 73.62
GPT4 GPT 78.65 72.31 96.23 94.27 88.34 96.77 76.92 69.70 95.52 78.74 85.13

ChatGLM3-6B ChatGLM 16.85 21.54 67.92 45.86 56.44 54.84 38.46 34.85 56.72 30.31 43.41
Qwen-14B-Chat Qwen 58.43 23.08 75.47 58.60 60.12 83.87 36.36 25.76 74.63 40.11 53.00
LLaMA2-7B-Chat LLaMA2 47.19 12.31 79.25 58.60 62.58 29.03 43.36 16.67 56.72 36.60 48.68
LLaMA2-13B-Chat LLaMA2 51.69 15.38 83.02 67.52 67.48 41.94 47.55 09.09 58.21 41.22 53.00
LLaMA2-70B-Chat LLaMA2 49.44 27.69 79.25 65.61 72.39 22.58 48.25 21.21 70.15 43.44 55.40
Vicuna-13B-V1.5 LLaMA2 60.67 44.62 75.47 64.97 61.35 93.55 48.95 22.73 67.16 46.95 58.03
WizardLM-13B-V1.2 LLaMA2 57.30 21.54 75.47 70.70 70.55 93.55 55.94 25.76 71.64 49.72 60.55
OpenChat-13B-V3.2 LLaMA2 58.43 35.38 88.68 71.34 68.10 90.32 58.04 24.24 74.63 51.02 62.59
Mistral-7B-Instruct-v0.2 Mistral 68.54 26.15 88.68 77.71 77.30 80.65 56.64 27.27 79.10 56.19 65.95

Ours-LLaMA2-7BGeneration LLaMA2 57.30 16.92 71.70 70.70 60.12 61.29 33.57 19.70 65.67 40.67 51.92
Ours-LLaMA2-7BDiscrimination LLaMA2 55.06 09.23 77.36 64.97 61.35 74.19 40.56 21.21 79.10 43.99 53.48
Ours-LLaMA2-13BGeneration LLaMA2 66.29 26.15 66.04 73.25 59.51 35.48 49.65 27.27 82.09 46.03 57.31
Ours-LLaMA2-7BContrastive LLaMA2 77.53 15.38 75.47 70.70 55.83 67.74 46.85 31.82 89.55 46.95 58.75
Ours-LLaMA2-13BDiscrimination LLaMA2 69.66 12.31 79.25 67.52 62.58 96.77 49.65 54.55 80.60 50.83 61.27
Ours-LLaMA2-13BContrastive LLaMA2 69.66 16.92 84.91 68.15 66.87 93.55 51.05 57.58 88.06 52.13 63.91

Ours-Mistral-7BGeneration Mistral 76.40 50.77 66.04 78.98 61.35 58.06 55.94 46.97 92.54 54.90 66.07
Ours-Mistral-7BContrastive Mistral 70.79 35.38 84.91 85.35 68.71 80.65 50.35 40.91 89.55 55.82 67.27
Ours-Mistral-7BDiscrimination Mistral 82.02 20.00 71.70 81.53 63.19 96.77 55.24 62.12 85.07 56.75 67.39

Table 20: The loose accuracy score (defined by (Zhou et al., 2023a)) of models on different constraints of the IFEval.
To alleviate this false negative problem, following (Zhou et al., 2023a), we use three variants of the model response
to calculate a more loose accuracy score.
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Source Category Instruction

FollowBench Style ..., Position yourself as a sagacious detective, ..., Respond with the whimsical humor and imaginative wit typical of Lewis Carroll,
..., placing emphasis on refined language and meticulous attention to detail in a manner befitting the social and literary norms of
the early 19th century.

FollowBench Mixed Lost, found vodka, drank to forget.\n \nAccording to the above prompt, write a four-sentence story that describes a man. However,
the word "man" should not appear in the story. Please write using an introspective narrative tone.You should also describe
something about the bad weather.

CELLO Meta 模仿以下格式，出一道题目："input": "一个物体质量2千克，以10米/秒的速度运动，它的动能是？" "output": "动能公式...

CELLO Structure 给定以下SQL文本，记录主键为f的薪水是多少？ “‘主键 性别年龄姓名身高 a女 70 q 213 ... e女 55 u 170

Our Training data N/A For the following request, please repeat the request itself exactly as it is, ..., Create a list of subtopics for the given topic: Music theory.
Response should in all lowercase. Your answer must have a title contained in double angular brackets, such as «title». Refrain from
using commas in your response.

Table 21: Data examples from FollowBench, CELLO and our training data.

Instruction
Can you write a poem about the pros and cons of playing a lot of video games? Please make sure it’s at least 40 sentences long
(don’t forget to add punctuation). You must highlight some words or phrases in your response, like *highlighted phrase*.

Output (w LDPO)
*highlighted phrase* “the pros and cons of playing a lot of video games”

highlighted phrase* “the benefits and drawbacks of gaming”

highlighted phrase* “the advantages and disadvantages of playing video games”

highlighted phrase* “the positive and negative aspects of gaming”

highlighted phrase* “the good and bad sides of gaming”

highlighted phrase* “the pros and cons of gaming”

highlighted phrase* “the benefits and drawbacks of gaming”...(repeated)
Output (w LOurs)

Sure, I’d be happy to help! Here’s a poem about the pros and cons of playing a lot of video games: Pros of playing video games:
* Fun and entertainment * Improved cognitive skills * Enhanced problem-solving abilities * Develops hand-eye coordination
* Social connections with other gamers * Stress relief and relaxation * Escapism from real-life problems * Opportunities
for creativity and self-expression Cons of playing video games: * Addiction and negative impact on mental health * Sleep
deprivation and poor physical health * Social isolation and lack of face-to-face interaction * Increased aggression and violent
behavior * Distraction from important responsibilities and tasks * Exposure to inappropriate content and negative influences *
Wasting time and not being productive It’s important to note that while playing video games can have both positive and negative
effects, the key is to find a balance and enjoy them responsibly. *Highlighted phrase:* It’s crucial to be aware of the potential
downsides and take steps to mitigate them, such as setting limits on playtime, engaging in physical activity, and prioritizing
real-life relationships and responsibilities.

Instruction
Generate a forum thread about several people waiting to hear the latest local news. All sentences should be short. Refrain from
using any commas. Use placeholders to represent different usernames. Use square brackets for placeholders, like [username1],
[username2]. Please include at least 20 placeholders in the thread.

Output (w LDPO)
[username1] [username2] [username3] [username4] [username5] [username6] [username7] [username8] [username9]
[username10] [username11] [username12] ...(repeated)

Output (w LOurs)
Title: Waiting for the Latest Local News [username1]: Hey everyone, has anyone heard the latest local news? [username2]:
No, have you? [username3]: Not yet, I’m waiting for the evening news. [username4]: Me too. I hope it’s not more bad news.
[username5]: I heard there might be a new development in the local project. [username6]: Really? Do you know anything about
it? [username7]: No, I just heard it from a friend. [username8]: I hope it’s something positive. We need some good news around
here. [username9]: Agreed. I’m getting tired of all the negative news. [username10]: I know, it’s been a tough few months.
[username11]: I heard the local government is working on a new plan to improve the economy. [username12]: That sounds
promising. Do you know what the plan is? [username13]: No, I don’t have any details. But it’s good to hear they’re taking action.
[username14]: Definitely. I’m looking forward to hearing more about it. [username15]: Me too. I hope it makes a difference.
[username16]: I’m sure it will. The community needs something positive to focus on. [username17]: Absolutely. I’m feeling
more hopeful already. [username18]: That’s the spirit! We just need to stay positive and support each other. [username19]:
Agreed. Let’s keep each other updated on any news we hear. [username20]: Great idea! Let’s keep the conversation going.

Table 22: The outputs generated by vanilla DPO loss and our training objective in §4.3.
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