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Abstract
In recent years, the transformer has established itself as a workhorse in many applications

ranging from natural language processing to reinforcement learning. Similarly, Bayesian
deep learning has become the gold-standard for uncertainty estimation in safety-critical
applications, where robustness and calibration are crucial. Surprisingly, no successful
attempts to improve transformer models in terms of predictive uncertainty using Bayesian
inference exist. In this work, we study this curiously underpopulated area of Bayesian
transformers. We find that weight-space inference in transformers does not work well,
regardless of the approximate posterior. We also find that the prior is at least partially
at fault, but that it is very hard to find well-specified weight priors for these models. We
hypothesize that these problems stem from the complexity of obtaining a meaningful mapping
from weight-space to function-space distributions in the transformer. Therefore, moving
closer to function-space, we propose a novel method based on the implicit reparameterization
of the Dirichlet distribution to apply variational inference directly to the attention weights.
We find that this proposed method performs competitively with our baselines.

1. Introduction

The transformer (Vaswani et al., 2017) is a deep learning architecture commonly used to
process sequences of data, such as text. Thanks to multi-head self-attention, the transformer
builds contextual embeddings by capturing the relationships between the sequence elements.
While being most famous for their state-of-the-art performance in natural language processing
(Brown et al., 2020; Devlin et al., 2019), transformers are also used in computer vision (Chen
et al., 2020; Dosovitskiy et al., 2021; Jiang et al., 2021; Strudel et al., 2021; Wu et al., 2020),
reinforcement learning (Chen et al., 2021; Kumar et al., 2020), as well as audio (Gong et al.,
2021; Huang et al., 2018; Payne, 2019) and video (Yan et al., 2021) processing, yielding
impressive results.
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The Bayesian learning paradigm provides a theoretical framework to obtain predictive
uncertainty, select the optimal model, and improve its calibration. Furthermore, by designing
an informative prior for the parameters, Bayesian models offer a principled way to incorporate
assumptions about the inferred distribution, thus providing regularization. Finally, recent
work (Kristiadi et al., 2020; Mitros and Namee, 2019) has shown that Bayesian neural
networks (BNN) are often better calibrated than standard neural networks.

If transformers and Bayesian deep learning are both so popular, why have we not seen
any successful Bayesian transformer models? By attempting to implement such models, we
make the following contributions: (i) We find that weight space inference in transformers
does not provide any improvements over a model trained by maximum likelihood. (ii) We
show that the prior is at least partially at fault for this. (iii) We propose to perform inference
on the attention weights rather than on the parameters, and present a novel variational
method for this using the Dirichlet distribution.

2. Background
2.1. Bayesian deep learning

Bayesian inference computes the posterior distribution as

P(θ | y1:N , x1:N ) = P(y1:N | θ, x1:N )P(θ)/P(y1:N | x1:N ) (1)

with neural network parameters θ, training data {(xi, yi)}Ni=1, likelihood function P(y1:N |
θ, x1:N ), prior P(θ), and evidence P(y1:N | x1:N ). The predictive distribution of a new target
y∗ given x∗ is then obtained by

P (y∗ | x∗, y1:N , x1:N ) = Eθ∼P(θ|y1:N ,x1:N )[P(y∗ | θ, x∗)] (2)

Applied to neural networks, both Eq. (1) and Eq. (2) are intractable and need to be estimated
using approximate inference methods, such as variational inference or Monte Carlo sampling.

2.2. Bayesian neural network weight space inference
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Figure 1: Plot of MLE and VI transformer.
MLE captures the mean of the generative pro-
cess well (MSE: 0.66), but VI does not (MSE:
9.58).

The most commonly used weight space infer-
ence methods in BNNs are variational infer-
ence (VI) (Blundell et al., 2015; Dusenberry
et al., 2020; Gal et al., 2017; Louizos and
Welling, 2016, 2017; Mishkin et al., 2019),
the Laplace method (Daxberger et al., 2021;
Immer et al., 2021b; Kristiadi et al., 2020),
and Markov Chain Monte Carlo (MCMC)
(Chen et al., 2014; Neal, 2012; Welling and
Teh, 2011). While MCMC methods directly
sample from the (unnormalized) posterior,
VI and Laplace approximate the posterior by
another distribution. As MCMC methods
are expensive computationally and memory-wise, we restrict our focus to VI and Laplace.
When applying these methods to transformers, we find that weight space inference fails to
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improve data fit, calibration and predictive uncertainty compared to a model trained by
likelihood maximization (see Fig. 1).

2.3. Empirical weight study

To understand why weight space inference fails, we study the empirical weight distribution of
transformers trained with stochastic gradient descent (SGD), hoping to obtain better priors.
We follow the framework proposed by Fortuin et al. (2021b). We first examine the marginal
weight distribution where we especially study the tailedness and modality. We also identify
the best-fitting distribution and its parameters within the Gaussian, Student, Logistic,
Cauchy, and Laplace families. Furthermore, we investigate the correlation among layer
weights by comparing the empirical covariance matrix and the distribution of off-diagonal
covariance elements against samples from an isotropic Gaussian.

3. Methods
3.1. Variational attention

As as alternative to weight-space inference in transformers, we propose to treat self-attention
weights as random variables and approximate their posterior distribution using VI. Previous
attention weight inference methods focus on sampling (An et al., 2020), while others explicitly
parameterize the attention weights with a particular distribution (Bahuleyan et al., 2018;
Deng et al., 2018; Fan et al., 2020). Parameters of explicitly reparameterizable distributions
such as the Gaussian Bahuleyan et al. (2018), Weibull, and Lognormal distributions (Fan
et al., 2020) are learned via VI, while others such as the Dirichlet (Deng et al., 2018) require
using REINFORCE gradient estimators (Sutton et al., 2000).

We implement two baselines for our comparison: 1. Gaussian attention where the
attention logits are parameterized with a Gaussian distribution and parameters are inferred
via VI and 2. DD, a data dependent configuration where the variational variances of the
Gaussian distribution are amortized in order to support input-dependent (i.e., heteroscedastic)
uncertainties.

3.2. Implicitly reparameterized Dirichlet attention

Alternatively, we propose to directly parameterize the attention weights of each position i by
a Dirichlet distribution with parameter α = aAi, where a is the sharpness parameter and Ai

the ith row of the scaled dot-product attention weights. We then infer a using VI. Samples
are obtained by drawing from independent Gamma distributions Xk ∼ Gamma(αk, 1) and
normalizing (

∑K
k=1Xk)

−1X ∼ Dirichlet(α). We further use contextual Gamma priors such
that α̂ ∝ Ai, yielding an analytical KL divergence as done by Joo et al. (2019). To obtain
gradients of a Gamma random variable with respect to α, we use the implicit gradient
reparametrization (Figurnov et al., 2019):

∇αz = −(qα(z))
−1∇αF (z|α) (3)

where qα(z) is the Gamma density function and F (z|α) its CDF. Like Gaussian attention,
we consider a variation where the sharpness parameter depends on the input, referred to as
data dependent.
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Table 1: VI and Laplace inference in weight-space compared to maximum likelihood models
and concrete dropout. We see that the Bayesian transformers do not outperform the baselines.

Dataset Metric MLE Ensemble Gaussian VI Laplace Final Laplace Concrete DP Gauss. Attention Dir. Attention

M
1

Log-like. -26.206 ± 0.000 -26.011 ± 0.007 -27.23 ± 0.01 -26.282 ± 0.014 -26.219 ± 0.003 -25.767 ± 0.008 -26.1623 ± 0.0006 -22.04 ± 0.01
Var. MSE 0.014 ± 0.000 0.0081 ± 0.0002 0.082 ± 0.004 0.021 ± 0.002 0.020 ± 0.003 0.007 ± 0.000 0.029 ± 0.000 0.430 ± 0.002
MSE 0.996 ± 0.000 1.0143 ± 0.0002 1.078 ± 0.001 1.0432 ± 0.0009 1.043 ± 0.002 1.0175 ± 0.0001 1.007 ± 0.000 1.0263 ± 0.0002

M
2

Log-like. -26.5670 ± 0.000 -28.592 ± 0.009 -35.43 ± 0.03 -32.92 ± 0.05 -32.469 ± 0.01 -27.11 ± 0.04 -26.374 ± 0.002 -24.841 ± 0.007
Var. MSE 16.943 ± 0.000 23.45 ± 0.09 110.57 ± 3.25 47.56 ± 0.06 47.07 ± 0.04 21.85 ± 0.08 20.9010 ± 0.0007 17.93 ± 0.03
MSE 1.170 ± 0.000 1.3552 ± 0.0003 2.95 ± 0.02 1.9943 ± 0.0008 1.972 ± 0.002 1.192 ± 0.001 1.2015 ± 0.0002 1.1928 ± 0.0006

P
O

S

Log-like. -3.707 ± 0.000 -4.240 ± 0.006 -17.86 ± 0.03 -4.539 ± 0.000 -4.539 ± 0.000 -8.2004 ± 0.0001 -3.9692 ± 0.0008 -3.9682 ± 0.0003
Acc. 0.9706 ± 0.0000 0.9708 ± 0.0001 0.871 ± 0.002 0.959 ± 0.000 0.958 ± 0.000 0.964 ± 0.000 0.969 ± 0.000 0.968 ± 0.000
F1 0.971 ± 0.000 0.971 ± 0.000 0.852 ± 0.000 0.959 ± 0.000 0.959 ± 0.000 0.964 ± 0.000 0.969 ± 0.000 0.968 ± 0.000
ECE 0.03 ± 0.00 0.0261 ± 0.0001 0.052 ± 0.001 0.048 ± 0.000 0.048 ± 0.000 0.031 ± 0.000 0.0271 ± 0.0000 0.0287 ± 0.0000

M
N

IS
T

Log-like. -0.074 ± 0.000 -0.1133 ± 0.0008 -3.18 ± 0.04 -0.088 ± 0.000 -0.09 ± 0.00 -0.064 ± 0.000 -0.0720 ± 0.0001 -0.1045 ± 0.0005
Acc. 0.979 ± 0.000 0.9825 ± 0.0003 0.101 ± 0.002 0.972 ± 0.000 0.972 ± 0.000 0.981 ± 0.000 0.9790 ± 0.0002 0.9738 ± 0.0003
F1 0.979 ± 0.000 0.982 ± 0.000 0.092 ± 0.000 0.972 ± 0.000 0.972 ± 0.000 0.981 ± 0.000 0.9786 ± 0.0000 0.9736 ± 0.0000
ECE 0.022 ± 0.000 0.0326 ± 0.0004 0.097 ± 0.009 0.035 ± 0.000 0.038 ± 0.000 0.020 ± 0.000 0.0227 ± 0.0002 0.0305 ± 0.0003

4. Experiments
We run experiments using the transformer Vaswani et al. (2017) and vision transformer
Dosovitskiy et al. (2021) on MNIST image classification (LeCun et al., 2010), Universal
Dependencies part-of-speech (POS) tagging (Nivre et al., 2015) and on synthetic datasets
(M1, M2). We evaluate our models using test log-likelihood, predicted variance mean squared
error and the expected mean square error on the synthetic dataset. The test log-likelihood,
accuracy, F1-score, and expected calibration error (ECE) (Guo et al., 2017) are used for
experiments on the POS tagging and MNIST datasets. We compare the results obtained by
our methods with a transformer (MLE) and an ensemble of 30 transformers both trained by
maximum likelihood. Further details are given in Appendix A.2.

4.1. Result 1: Weight-space inference does not improve over MLE

Different posteriors do not help. We find that all weight-space VI methods are out-
performed by both maximum-likelihood baselines with respect to all metrics and on all
datasets (see Table 1). Interestingly, changing the posterior distribution does not significantly
influence the performance, considering the large gap between the scores of the VI methods
and baselines (see also Table 3 in the appendix). Furthermore, no variational posterior
systematically outperforms the others.
Linearized Laplace inference (either on all parameters or just the final layer) shows much
better results than VI. However, it still underperforms our baselines. Finally, even concrete
dropout improves over VI and Laplace inference and is more competitive with our baselines.

The prior is (at least partially) at fault. In our attempt to understand the poor
performance of weight-space VI in transformers, we conduct an empirical weight distribution
study. We find that the marginal weight distributions are essentially uni-modal, except for
some embedding and projection layers which tend to have two or three less significant modes.

Table 2: Improvement of VI with improved
priors relative to Gaussian priors.

Dataset Gauss. VI Laplace VI Logistic VI Cauchy VI Student VI
M1 1.40% 3.80% 4.12% 1.85% 2.79%
M2 2.85% 3.06% 2.76% 4.36% 2.70%
POS 0.12% 2.05% 2.16% 0.87% -0.32%
MNIST 26.95% 33.31% 31.36% 5.66% 26.94%

Furthermore, other than a decrease in tailed-
ness (high degree of freedom) of the last
layer, no recurrent pattern in the tailedness
of the weight distribution appears across the
considered datasets (Fig. 4 in the appendix).
Likewise, no single distribution seems to uni-
versally fit the empirical distributions of the
weights across all datasets (see Fig. 5 and
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Fig. 6 in the appendix). This suggests that the shape of the weight distribution strongly
depends on the considered dataset. Using the observations from this weight distribution
study, we choose more appropriate ("improved") priors. Table 2 shows systematic likelihood
improvements. Moreover, we find that the performance of VI critically depends on the prior
parameters (see Fig. 3 in the appendix).

4.2. Results 2: Variational attention is better than weight-space inference

Dirichlet attention works well. Unlike weight-space inference, we find that inference on
the attention weights works competitively. Indeed, Dirichlet attention strongly outperforms
our baselines in terms of likelihood on the synthetic data and lies between both baselines on
the POS tagging and MNIST (Table 1). However, the data dependent configuration does not
systematically outperform its standard counterpart (see Table 5 in the appendix). Moreover,
Dirichlet attention outperforms Gaussian attention in terms of log-likelihood on the toy data
and POS tagging, but not on MNIST.

Variational attention leads to more consistent prior entropies. While investigating
the entropy of the predictive distribution when sampling weights from the priors, we find
that non-improved priors yield highly variable entropy distributions, ranging from low values
around 1 to higher values around 2.3 bits. However, when sampling from improved priors
selected by our weight distribution analysis, the entropy distribution concentrates very
strongly around a high value of 2.3 bits. This same behavior is observed when sampling from
the Gaussian and our proposed Dirichlet attention. This is desirable as the prior predictive
should show high uncertainty in function space.
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Figure 2: Prior predictive entropy distributions on MNIST train data. Improving the
weight-space priors and using variational attention both lead to more consistently high
entropies.

5. Related work

Bayesian Transformers. Previous attempts to make the transformer Bayesian have used
VI to perform inference on a subset of layers (Tran et al., 2019; Xue et al., 2021). While
both methods claim state-of-the-art performance on their respective benchmarks, Tran et al.
(2019) do not provide any quantitative results and Xue et al. (2021) initialize their priors
to a maximum estimate of the weights which is not strictly Bayesian. Alternatively, Fan
et al. (2020) parameterize the attention logits of a transformer by a Gaussian distribution
and finetune the deterministic self-attention of language models pretrained on large corpora.
They however only consider finetuning and not full training using variational attention.
Orthogonally, Martin et al. (2020) consider attention keys, queries, values, and weights as
unobserved random variables and use sequential Monte Carlo methods to sample them.
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Bayesian neural network inference. BNN inference has recently advanced in terms of
VI methods with more expressive posteriors (Dusenberry et al., 2020; Louizos and Welling,
2016, 2017; Mishkin et al., 2019; Tomczak et al., 2020), more efficient inference (Gal and
Ghahramani, 2016; Gal et al., 2017; Swiatkowski et al., 2020), and greater stability (Kingma
et al., 2015; Wen et al., 2018). Likewise, the Laplace inference for BBNs has improved in
scalability using further GGN approximations (Immer et al., 2021a,b; Kristiadi et al., 2020;
Ritter et al., 2018a,b) and sub-network inference (Daxberger et al., 2021; Kristiadi et al.,
2020). Orthogonally, MCMC methods for BNNs have been improved (Fortuin et al., 2021a;
Garriga-Alonso and Fortuin, 2021; Wenzel et al., 2020; Zhang et al., 2019), better BNN
priors have been studied (Fortuin, 2021; Fortuin et al., 2021b), and even deep ensembles
Lakshminarayanan et al. (2017) have been cast as approximate inference (Ciosek et al., 2019;
D’Angelo and Fortuin, 2021; D’Angelo et al., 2021; Izmailov et al., 2021; Pearce et al., 2018,
2020; Wilson and Izmailov, 2020).

6. Conclusion

We have shown that weight space inference in Bayesian transformers does not work well,
regardless of the choice of posterior. We also found that choosing priors according to an
empirical weight distribution analysis improved the performance, suggesting that priors are
at least partially at fault. However, we have not found the right priors to make the method
competitive. Moreover, we found evidence that naïve weight-space priors lead to low prior
predictive entropy, and therefore do not reflect our true beliefs about the output distribution.
In order to move closer to the function-space distribution, we suggested to perform inference
on the attention weights rather than on parameters. We proposed a novel method based on
the implicit reparameterization of the Dirichlet distribution to apply variational inference on
the attention weights, which performed competitively with respect to our baselines.

6



Pathologies in Priors and Inference for Bayesian Transformers

References

Bang An, Jie Lyu, Zhenyi Wang, Chunyuan Li, Changwei Hu, Fei Tan, Ruiyi Zhang, Yifan
Hu, and Changyou Chen. Repulsive attention: Rethinking multi-head attention as bayesian
inference, 2020.

Hareesh Bahuleyan, Lili Mou, Olga Vechtomova, and Pascal Poupart. Variational attention
for sequence-to-sequence models, 2018.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncer-
tainty in neural networks, 2015.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin,
Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement
learning via sequence modeling, 2021.

Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya
Sutskever. Generative pretraining from pixels. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 1691–1703. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/chen20s.html.

Tianqi Chen, Emily B. Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte
carlo, 2014.

Kamil Ciosek, Vincent Fortuin, Ryota Tomioka, Katja Hofmann, and Richard Turner.
Conservative uncertainty estimation by fitting prior networks. In International Conference
on Learning Representations, 2019.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. arXiv
preprint arXiv:2106.11642, 2021.

Francesco D’Angelo, Vincent Fortuin, and Florian Wenzel. On stein variational neural
network ensembles. arXiv preprint arXiv:2106.10760, 2021.

Erik Daxberger, Eric Nalisnick, James Urquhart Allingham, Javier Antorán, and José Miguel
Hernández-Lobato. Bayesian deep learning via subnetwork inference, 2021.

7

http://github.com/google/jax
https://proceedings.mlr.press/v119/chen20s.html


Cinquin Immer Horn Fortuin

Yuntian Deng, Yoon Kim, Justin Chiu, Demi Guo, and Alexander M. Rush. Latent alignment
and variational attention, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale, 2021.

Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Yi-An Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural
nets with rank-1 factors, 2020.

Xinjie Fan, Shujian Zhang, Bo Chen, and Mingyuan Zhou. Bayesian attention modules,
2020.

Michael Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients,
2019.

Vincent Fortuin. Priors in bayesian deep learning: A review. arXiv preprint arXiv:2105.06868,
2021.

Vincent Fortuin, Adrià Garriga-Alonso, Mark van der Wilk, and Laurence Aitchison. Bn-
npriors: A library for bayesian neural network inference with different prior distributions.
Software Impacts, 9:100079, 2021a.

Vincent Fortuin, Adrià Garriga-Alonso, Florian Wenzel, Gunnar Rätsch, Richard Turner,
Mark van der Wilk, and Laurence Aitchison. Bayesian neural network priors revisited.
arXiv preprint arXiv:2102.06571, 2021b.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning, 2016.

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout, 2017.

Adrià Garriga-Alonso and Vincent Fortuin. Exact langevin dynamics with stochastic gradients.
arXiv preprint arXiv:2102.01691, 2021.

Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer, 2021.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern
neural networks, 2017.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2020.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX,
2020. URL http://github.com/deepmind/dm-haiku.

8

http://github.com/deepmind/dm-haiku


Pathologies in Priors and Inference for Bayesian Transformers

Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis
Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, and Douglas Eck.
Music transformer, 2018.

Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, and Moham-
mad Emtiyaz Khan. Scalable marginal likelihood estimation for model selection in deep
learning. arXiv preprint arXiv:2104.04975, 2021a.

Alexander Immer, Maciej Korzepa, and Matthias Bauer. Improving predictions of bayesian
neural nets via local linearization, 2021b.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What
are bayesian neural network posteriors really like? arXiv preprint arXiv:2104.14421, 2021.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can
make one strong gan, and that can scale up, 2021.

Weonyoung Joo, Wonsung Lee, Sungrae Park, and Il-Chul Moon. Dirichlet variational
autoencoder, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Diederik P. Kingma, Tim Salimans, and Max Welling. Variational dropout and the local
reparameterization trick, 2015.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit,
fixes overconfidence in relu networks, 2020.

Shakti Kumar, Jerrod Parker, and Panteha Naderian. Adaptive transformers in rl, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles, 2017.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with
matrix gaussian posteriors, 2016.

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian
neural networks, 2017.

Alice Martin, Charles Ollion, Florian Strub, Sylvain Le Corff, and Olivier Pietquin. The
monte carlo transformer: a stochastic self-attention model for sequence prediction, 2020.

Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, and Mohammad Emtiyaz
Khan. Slang: Fast structured covariance approximations for bayesian deep learning with
natural gradient, 2019.

John Mitros and Brian Mac Namee. On the validity of bayesian neural networks for
uncertainty estimation, 2019.

9



Cinquin Immer Horn Fortuin

Radford Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,
06 2012. doi: 10.1201/b10905-6.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat, Cristina Bosco,
Sam Bowman, Giuseppe G. A. Celano, Miriam Connor, Marie-Catherine de Marneffe,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Tomaž Erjavec, Richárd Farkas,
Jennifer Foster, Daniel Galbraith, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Yoav
Goldberg, Berta Gonzales, Bruno Guillaume, Jan Hajič, Dag Haug, Radu Ion, Elena Irimia,
Anders Johannsen, Hiroshi Kanayama, Jenna Kanerva, Simon Krek, Veronika Laippala,
Alessandro Lenci, Nikola Ljubešić, Teresa Lynn, Christopher Manning, Cătălina Mărănduc,
David Mareček, Héctor Martínez Alonso, Jan Mašek, Yuji Matsumoto, Ryan McDonald,
Anna Missilä, Verginica Mititelu, Yusuke Miyao, Simonetta Montemagni, Shunsuke Mori,
Hanna Nurmi, Petya Osenova, Lilja Øvrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Slav Petrov, Jussi Piitulainen, Barbara Plank, Martin Popel, Prokopis
Prokopidis, Sampo Pyysalo, Loganathan Ramasamy, Rudolf Rosa, Shadi Saleh, Sebastian
Schuster, Wolfgang Seeker, Mojgan Seraji, Natalia Silveira, Maria Simi, Radu Simionescu,
Katalin Simkó, Kiril Simov, Aaron Smith, Jan Štěpánek, Alane Suhr, Zsolt Szántó, Takaaki
Tanaka, Reut Tsarfaty, Sumire Uematsu, Larraitz Uria, Viktor Varga, Veronika Vincze,
Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi Zhu. Universal dependencies 1.2, 2015.
URL http://hdl.handle.net/11234/1-1548. LINDAT/CLARIAH-CZ digital library at
the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

OpenAI Payne, Christine. "musenet.", 2019. URL openai.com/blog/musenet.

Tim Pearce, Nicolas Anastassacos, Mohamed Zaki, and Andy Neely. Bayesian inference with
anchored ensembles of neural networks, and application to exploration in reinforcement
learning, 2018.

Tim Pearce, Felix Leibfried, Alexandra Brintrup, Mohamed Zaki, and Andy Neely. Uncer-
tainty in neural networks: Approximately bayesian ensembling, 2020.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation
for neural networks. In 6th International Conference on Learning Representations, ICLR
2018-Conference Track Proceedings, volume 6. International Conference on Representation
Learning, 2018a.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable laplace approximation for
neural networks. In International Conference on Learning Representations, 2018b. URL
https://openreview.net/forum?id=Skdvd2xAZ.

Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia Schmid. Segmenter: Transformer
for semantic segmentation, 2021.

Richard Sutton, David Mcallester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Adv. Neural Inf. Process.
Syst, 12, 02 2000.

10

http://hdl.handle.net/11234/1-1548
openai.com/blog/musenet
https://openreview.net/forum?id=Skdvd2xAZ


Pathologies in Priors and Inference for Bayesian Transformers

Jakub Swiatkowski, Kevin Roth, Bastiaan S. Veeling, Linh Tran, Joshua V. Dillon, Jasper
Snoek, Stephan Mandt, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. The
k-tied normal distribution: A compact parameterization of gaussian mean field posteriors
in bayesian neural networks, 2020.

Marcin Tomczak, Siddharth Swaroop, and Richard Turner. Efficient low rank gaussian
variational inference for neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 4610–4622. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf.

Dustin Tran, Michael W. Dusenberry, Mark van der Wilk, and Danijar Hafner. Bayesian
layers: A module for neural network uncertainty, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynam-
ics. In Proceedings of the 28th International Conference on International Conference on
Machine Learning, ICML’11, page 681–688, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

Yeming Wen, Paul Vicol, Jimmy Ba, Dustin Tran, and Roger Grosse. Flipout: Efficient
pseudo-independent weight perturbations on mini-batches, 2018.

Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan
Mandt, Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How
good is the bayes posterior in deep neural networks really? arXiv preprint arXiv:2002.02405,
2020.

Andrew Gordon Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic
perspective of generalization. arXiv preprint arXiv:2002.08791, 2020.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan,
Masayoshi Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transform-
ers: Token-based image representation and processing for computer vision, 2020.

Boyang Xue, Jianwei Yu, Junhao Xu, Shansong Liu, Shoukang Hu, Zi Ye, Mengzhe Geng,
Xunying Liu, and Helen Meng. Bayesian transformer language models for speech recognition,
2021.

Wilson Yan, Yunzhi Zhang, Pieter Abbeel, and Aravind Srinivas. Videogpt: Video generation
using vq-vae and transformers, 2021.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson. Cycli-
cal stochastic gradient mcmc for bayesian deep learning. arXiv preprint arXiv:1902.03932,
2019.

11

https://proceedings.neurips.cc/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf


Cinquin Immer Horn Fortuin

Appendix A. Appendix

A.1. Additional experimental results

A.1.1. Weight space inference

We report in Table 3 the full weight space inference results table discussed in Section 4.1.

Table 3: Weight space inference results in the transformer vs baselines

Dataset Metric MLE Ensemble Gaussian VI Laplace VI Logistic VI Cauchy VI Student VI Concrete Dropout Laplace Final Laplace

M
1

Log-likelihood -26.2075 ± 0.0000 -26.011 ± 0.007 -27.23 ± 0.01 -28.01 ± 0.16 -28.08 ± 0.11 -27.61 ± 0.02 -27.68 ± 0.10 -25.767 ± 0.008 -26.282 ± 0.014 -26.219 ± 0.003
Variance MSE 0.0137 ± 0.0000 0.0081 ± 0.0002 0.082 ± 0.004 0.24 ± 0.05 0.226 ± 0.066 0.225 ± 0.009 0.161 ± 0.046 0.0066 ± 0.0000 0.021 ± 0.002 0.020 ± 0.003
MSE 0.9963 ± 0.0000 1.0143 ± 0.0002 1.078 ± 0.001 1.174 ± 0.016 1.181 ± 0.014 1.133 ± 0.001 1.128 ± 0.015 1.0175 ± 0.0001 1.0432 ± 0.0009 1.043 ± 0.002

M
2

Log-likelihood -26.5670 ± 0.0000 -28.592 ± 0.009 -35.427 ± 0.034 -35.86 ± 0.11 -35.72 ± 0.08 -37.15 ± 0.03 -35.43 ± 0.61 -27.11 ± 0.04 -32.92 ± 0.05 -32.469 ± 0.01
Variance MSE 16.9430 ± 0.0000 23.45 ± 0.09 110.57 ± 3.25 125.08 ± 14.73 121.90 ± 16.25 130.11 ± 1.89 82.47 ± 15.27 21.85 ± 0.08 47.56 ± 0.06 47.07 ± 0.04
MSE 1.1700 ± 0.0000 1.3552 ± 0.0003 2.95 ± 0.02 3.10 ± 0.07 3.03 ± 0.09 3.45 ± 0.01 2.82 ± 0.09 1.192 ± 0.001 1.9943 ± 0.0008 1.972 ± 0.002

P
O

S

Log-likelihood -3.7066 ± 0.0000 -4.240 ± 0.006 -17.86 ± 0.03 -17.69 ± 0.01 -18.02 ± 0.04 -17.07 ± 0.10 -22.91 ± 0.05 -8.2004 ± 0.0001 -4.5388 ± 0.0000 -4.5391 ± 0.0000
Accuracy 0.9706 ± 0.0000 0.9708 ± 0.0001 0.871 ± 0.002 0.8694 ± 0.0003 0.8689 ± 0.0004 0.878 ± 0.002 0.824 ± 0.001 0.9636 ± 0.0000 0.9585 ± 0.0000 0.9584 ± 0.0000
F1 0.9707 ± 0.0000 0.9706 ± 0.0000 0.8524 ± 0.0000 0.8531 ± 0.0000 0.8535 ± 0.0000 0.8594 ± 0.0000 0.7980 ± 0.0000 0.9637 ± 0.0000 0.9585 ± 0.0000 0.9585 ± 0.0000
ECE 0.0302 ± 0.0000 0.0261 ± 0.0001 0.052 ± 0.001 0.0477 ± 0.0007 0.0498 ± 0.0007 0.0543 ± 0.0007 0.050 ± 0.001 0.0314 ± 0.0000 0.0481 ± 0.0000 0.0481 ± 0.0000

M
N

IS
T

Log-likelihood -0.0739 ± 0.0000 -0.1133 ± 0.0008 -3.179 ± 0.038 -3.490 ± 0.125 -3.385 ± 0.126 -2.636 ± 0.016 -3.183 ± 0.009 -0.0642 ± 0.0000 -0.0879 ± 0.0000 -0.0903 ± 0.0000
Accuracy 0.9786 ± 0.0000 0.9825 ± 0.0003 0.101 ± 0.002 0.099 ± 0.003 0.099 ± 0.003 0.1024 ± 0.0002 0.099 ± 0.002 0.9807 ± 0.0000 0.9720 ± 0.0000 0.9720 ± 0.0000
F1 0.9786 ± 0.0000 0.9820 ± 0.0000 0.0923 ± 0.0000 0.0173 ± 0.0000 0.0173 ± 0.0000 0.0961 ± 0.0000 0.0173 ± 0.0000 0.9807 ± 0.0000 0.9719 ± 0.0000 0.9720 ± 0.0000
ECE 0.0218 ± 0.0000 0.0326 ± 0.0004 0.097 ± 0.009 0.108 ± 0.010 0.117 ± 0.012 0.064 ± 0.001 0.110 ± 0.034 0.0200 ± 0.0000 0.0354 ± 0.0000 0.0377 ± 0.0000

A.1.2. Sub-network variational inference

In addition to performing inference on the entire set of model parameters presented in
Section 4.1, we experiment sub-network variational inference. We find that this method
performs better than full inference while still under-performing our baselines. Interestingly,
we observe the same behavior as in full network VI, where the posterior distribution does
not significantly change the result.

Table 4: VI on first attention layer with Gaussian priors vs baselines

Dataset Metric MLE Ensemble Gaussian VI Laplace VI Logistic VI Cauchy VI Student VI

M
1

Log-likelihood -26.2075 ± 0.0000 -26.0107 ± 0.0067 -26.1726 ± 0.0013 -26.1723 ± 0.0002 -26.1724 ± 0.0001 -26.1802 ± 0.0055 -26.1844 ± 0.0007
Variance MSE 0.0137 ± 0.0000 0.0081 ± 0.0002 0.0083 ± 0.0000 0.0081 ± 0.0003 0.0082 ± 0.0003 0.0067 ± 0.0000 0.0081 ± 0.0001
MSE 0.9963 ± 0.0000 1.0143 ± 0.0002 1.0006 ± 0.0000 1.0006 ± 0.0007 1.0006 ± 0.0006 1.0026 ± 0.0001 1.0017 ± 0.0003

M
2

Log-likelihood -26.5670 ± 0.0000 -28.5916 ± 0.0085 -30.5040 ± 0.0039 -30.5249 ± 0.0059 -30.5258 ± 0.0069 -30.7045 ± 0.0080 -30.6088 ± 0.0055
Variance MSE 16.9430 ± 0.0000 23.4497 ± 0.0921 61.2115 ± 0.1124 61.4751 ± 0.5851 61.4699 ± 0.5920 61.3169 ± 0.1897 58.3248 ± 0.2691
MSE 1.1700 ± 0.0000 1.3552 ± 0.0003 1.8599 ± 0.0005 1.8637 ± 0.0054 1.8636 ± 0.0051 1.8992 ± 0.0012 1.8695 ± 0.0005

P
O

S Log-likelihood -3.7066 ± 0.0000 -4.2401 ± 0.0059 -4.3838 ± 0.0003 -4.3836 ± 0.0017 -4.3835 ± 0.0016 -4.3857 ± 0.0002 -4.4075 ± 0.0013
Accuracy 0.9706 ± 0.0000 0.9708 ± 0.0001 0.9589 ± 0.0000 0.9589 ± 0.0000 0.9589 ± 0.0000 0.9588 ± 0.0001 0.9581 ± 0.0000
F1 0.9707 ± 0.0000 0.9706 ± 0.0000 0.9588 ± 0.0000 0.9589 ± 0.0000 0.9589 ± 0.0000 0.9588 ± 0.0000 0.9579 ± 0.0000
ECE 0.0302 ± 0.0000 0.0261 ± 0.0001 0.0336 ± 0.0000 0.0335 ± 0.0001 0.0335 ± 0.0001 0.0415 ± 0.0000 0.0333 ± 0.0000

M
N

IS
T Log-likelihood -0.0739 ± 0.0000 -0.1133 ± 0.0008 -0.1352 ± 0.0001 -0.1298 ± 0.0001 -0.1333 ± 0.0003 -0.1313 ± 0.0002 -0.1370 ± 0.0004

Accuracy 0.9786 ± 0.0000 0.9825 ± 0.0003 0.9592 ± 0.0001 0.9615 ± 0.0002 0.9614 ± 0.0001 0.9594 ± 0.0002 0.9583 ± 0.0000
F1 0.9786 ± 0.0000 0.9820 ± 0.0000 0.9595 ± 0.0000 0.9616 ± 0.0000 0.9615 ± 0.0000 0.9592 ± 0.0000 0.9584 ± 0.0000
ECE 0.0218 ± 0.0000 0.0326 ± 0.0004 0.0411 ± 0.0003 0.0395 ± 0.0002 0.0404 ± 0.0001 0.0276 ± 0.0003 0.0424 ± 0.0001

A.1.3. Variational attention

We report in Table 5 the full variational attention results table discussed in Section 4.2
including the data dependent configurations.
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Table 5: Variational attention methods vs baselines

Dataset Metric MLE Ensemble Gauss. Attention Gauss. DD Attention Dir. Attention Dir. DD Attention

M1
Log-likelihood -26.208 ± 0.000 -26.011 ± 0.007 -26.1623 ± 0.0006 -26.1799 ± 0.0001 -22.04 ± 0.01 -25.242 ± 0.006
Variance MSE 0.014 ± 0.000 0.0081 ± 0.0002 0.029 ± 0.000 0.045 ± 0.000 0.430 ± 0.002 0.1012 ± 0.0004
MSE 0.996 ± 0.000 1.0143 ± 0.0002 1.007 ± 0.000 1.007 ± 0.000 1.0263 ± 0.0002 1.0417 ± 0.0003

M2
Log-likelihood -26.567 ± 0.000 -28.592 ± 0.009 -26.374 ± 0.002 -25.3282 ± 0.0003 -24.841 ± 0.007 -26.263 ± 0.004
Variance MSE 16.943 ± 0.000 23.45 ± 0.09 20.9010 ± 0.0007 18.528 ± 0.002 17.93 ± 0.03 20.17 ± 0.02
MSE 1.17 ± 0.00 1.3552 ± 0.0003 1.2015 ± 0.0002 1.089 ± 0.000 1.1928 ± 0.0006 1.3018 ± 0.0001

POS

Log-likelihood -3.707 ± 0.000 -4.240 ± 0.006 -3.9692 ± 0.0008 -4.0934 ± 0.0005 -3.9682 ± 0.0003 -3.859 ± 0.002
Accuracy 0.9706 ± 0.0000 0.9708 ± 0.0001 0.969 ± 0.000 0.969 ± 0.000 0.968 ± 0.000 0.969 ± 0.000
F1 0.9707 ± 0.0000 0.9706 ± 0.0000 0.969 ± 0.000 0.969 ± 0.000 0.968 ± 0.000 0.969 ± 0.000
ECE 0.0302 ± 0.0000 0.0261 ± 0.0001 0.0271 ± 0.0000 0.0270 ± 0.0000 0.0287 ± 0.0000 0.0278 ± 0.0001

MNIST

Log-likelihood -0.0739 ± 0.0000 -0.1133 ± 0.0008 -0.0720 ± 0.0001 -0.0838 ± 0.0001 -0.1045 ± 0.0005 -0.0955 ± 0.0009
Accuracy 0.9786 ± 0.0000 0.9825 ± 0.0003 0.9790 ± 0.0002 0.9769 ± 0.0001 0.9738 ± 0.0003 0.9766 ± 0.0002
F1 0.9786 ± 0.0000 0.9820 ± 0.0000 0.9786 ± 0.0000 0.9769 ± 0.0000 0.9736 ± 0.0000 0.9764 ± 0.0000
ECE 0.0218 ± 0.0000 0.0326 ± 0.0004 0.0227 ± 0.0002 0.0252 ± 0.0001 0.0305 ± 0.0003 0.0281 ± 0.0000

A.1.4. Likelihood sensitivity to the prior

As discussed in Section 4.1, we find that the model test likelihood is very sensitive to the
choice of prior (see Figure 3).

10 5 10 4 10 3 10 2 10 1 1 10
Prior scale

30.5

30.0

29.5

29.0

28.5

28.0

27.5

27.0

Lo
g-

lik
el

ih
oo

d

gaussian
cauchy
student
laplace
logistic

(a) M1

10 5 10 4 10 3 10 2 10 1 1 10
Prior scale

160

140

120

100

80

60

40

Lo
g-

lik
el

ih
oo

d

gaussian
cauchy
student
laplace
logistic

(b) M2

Figure 3: Log-likelihood sensitivity to the choice of prior scale

A.1.5. Weight distribution tailedness

We here present more detailed results regarding the tailedness of the weight distribution. We
find that no obvious patterns in the thickness of tails exist across the considered dataset
(Figure 4). Q-Q plots of the empirical weight distribution against light-tailed Gaussian and
heavier tailed Laplace distribution provide more evidence of this phenomenon. Indeed, the
weight distributions of transformers trained on MNIST and POS tagging are well fitted
by a Gaussian, while transformers trained on M1 and M2 toy datasets are well fitted by a
Laplace (Figure 5 and 6). This suggest that not one universal distribution fits the empirical
distribution of the weights across all datasets.
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Figure 4: Marginal weight distribution tailedness. No patterns in the thickness of the tails,
except for a decrease at the last layer, appears across the considered tasks.
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Figure 5: Attention queries matrix weight distribution Q-Q plot.
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Figure 6: Attention MLP hidden layer empirical weight distribution Q-Q plot.
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A.1.6. Off-diagonal covariance value distributions

We here present histograms of the off-diagonal empirical covariance elements. Covariance
values have small magnitude and concentrate strongly in distribution around 0. Depending
on the dataset, off-diagonal covariance elements are slightly larger than samples from an
isotropic Gaussian as shown in Figure 7 and 10.
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Figure 7: M1 off-diagonal covariance matrix value histograms
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Figure 8: M2 off-diagonal covariance matrix value histograms
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Figure 9: POS tagging off-diagonal covariance matrix value histograms
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Figure 10: MNIST off-diagonal covariance matrix value histograms

A.1.7. Concrete dropout high/low entropy samples

Here we present samples from the MNIST test set which have high (respectively low)
predictive distribution entropy. By visual inspection, we find that high predictive entropy
samples have an ambiguous labeling while low entropy predictive sample labels are much
easier to identify.
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(e) Highest entropy

1st 2nd 3rd 4th

(j) Lowest entropy

Figure 11: Concrete Dropout : highest/lowest entropy MNIST test samples
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A.2. Implementation details

In the following section, we present more detailed implementation specifications.

A.2.1. Architecture & Datasets

Toy Data We generate synthetic data from the two following models:

• Model M1: Xt+1 =
∑4

i=0 0.2 cos(0.4πiXt + 1/(i+ 1)) +
√
0.5ϵt+1

• Model M2: Xt+1 =
∑4

i=0

∑4
j=0 0.5 cos(0.8πjXt−i) +

√
0.1ϵt+1

where (Xi)
4
i=0 and (ϵt)

T
t=1 are i.i.d standard Gaussian random variables. We use 800 training,

80 validation and 80 testing sequences of length 24. For experiments with Toy Data, we use
the transformer from (Vaswani et al., 2017) with GeLU activation (Hendrycks and Gimpel,
2020), a unique attention block, one attention head and a hidden size of 64. We train
until convergence for 100 epochs. We draw 30 posterior samples to compute the predictive
distribution and KL divergence. We evaluate our model with the test data log-likelihood,
mean squared error of the predicted variance and the expected mean square error given the
previous value Xt.

Part of Speech Tagging We use the English split of the Part of Speech tagging dataset
from the Universal Dependencies v1.2 corpus (Nivre et al., 2015). This dataset contains
204’586 train, 25’148 validation and 25’096 test tokens. We use a maximum length of 40
tokens, pad the shorter sequences and split the sentences which exceed the text length. For
experiments with this dataset, we use a transformer from (Vaswani et al., 2017) with GeLU
activation, a unique attention block, one attention head and a hidden size of 32. We train
until convergence for 100 epochs. We draw 10 posterior samples to compute the predictive
distribution and KL divergence. We evaluate our model with the token level test data
log-likelihood, token level accuracy, token level F1-score and expected calibration error (ECE)
(Guo et al., 2017).

MNIST We experiment with the MNIST image classification dataset (LeCun et al., 2010).
We split the original dataset into 48’000 training, 12’000 validation and 9’984 testing samples.
For experiments with this dataset, we use a Vision transformer from (Dosovitskiy et al.,
2021) with GeLU activation, two attention block, one attention head, a hidden size of 32 and
a patch size of 4. We train until convergence for 150 epochs. We draw 10 posterior samples
to compute the predictive distribution and KL divergence. We evaluate our model with the
test data log-likelihood, accuracy, F1-score and ECE.

A.2.2. Training setup

Our models are trained using the Adam optimizer (Kingma and Ba, 2017) with the triangular
learning rate schedule from (Vaswani et al., 2017). Our weight distribution experiments are
conducted using 900 transformers trained by likelihood maximization with SGD as done in
(Fortuin et al., 2021b).
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A.2.3. Software packages

We implement and train our models using the JAX (Bradbury et al., 2018) and Haiku
(Hennigan et al., 2020) Python libraries.
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