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ABSTRACT

To work with categorical features, machine learning systems employ embedding
tables. These tables can become exceedingly large in modern recommendation
systems, necessitating the development of new methods for fitting them in memory,
even during training.
Some of the most successful methods for table compression are Product- and
Residual Vector Quantization (Gray & Neuhoff, 1998). These methods replace
table rows with references to k-means clustered “codewords.” Unfortunately,
this means they must first know the table before compressing it, so they can
only save memory during inference, not training. Recent work has used hashing-
based approaches to minimize memory usage during training, but the compression
obtained is inferior to that obtained by “post-training” quantization.
We show that the best of both worlds may be obtained by combining techniques
based on hashing and clustering. By first training a hashing-based “sketch”, then
clustering it, and then training the clustered quantization, our method achieves
compression ratios close to those of post-training quantization with the training
time memory reductions of hashing-based methods.
We show experimentally that our method provides better compression and/or
accuracy that previous methods, and we prove that our method always converges
to the optimal embedding table for least-squares training.

1 INTRODUCTION

Machine learning can model a variety of data types, including continuous, sparse, and sequential
features. Categorical features are especially noteworthy since they necessitate an “embedding” of
a (typically vast) vocabulary into a smaller vector space in order to facilitate further calculations.
IDs of different types, such as user IDs, post IDs on social networks, video IDs, or IP addresses in
recommendation systems, are examples of such features.

Natural Language Processing is another prominent use for embeddings (usually word embeddings
such as Mikolov et al., 2013), however in NLP the vocabulary can be significantly reduced by consid-
ering “subwords” or “byte pair encodings”. In recommendation systems like Matrix Factorization or
DLRM (see fig. 2) it is typically not possible to factorize the vocabulary this way, and embedding
tables end up very big, requiring hundreds of gigabytes of GPU memory (Naumov et al., 2019). This
in effect forces models to be split across may GPUs which is expensive and creates a communication
bottleneck during training and inference.

The traditional solution has been to hash the IDs down to a manageable universe size using the
Hashing Trick (Weinberger et al., 2009), and accepting that unrelated IDs may wind up with the
same representation. Too aggressive hashing naturally hurts the ability of the model to distinguish its
inputs by mixing up unrelated concepts and reducing model accuracy.

Another option is to quantize the embedding tables. Typically, this entails rounding each individual
parameter to 4 or 8 bits. Other quantization methods work in many dimensions at the same time,
such as Product Quantization and Residual Vector Quantization. (See Gray & Neuhoff (1998) for
a survey of quantization methods.) These multi-dimensional methods typically rely on clustering
(like k-means) to find a set of representative “code words” to which each original ID is assigned.
For example, vectors representing “red”, “orange” and “blue” may be stored as simple “dark orange”

1



Two random
hash functions

Single pointer to
Nearest cluster center

Initial random
table with
2K rows.

After training
for 1 epoch.

Expand rows
using hashing.

Cluster table
to K rows

Concatenate
with new

random table

Repeat
from

step 1...
←↩

Figure 1: Single iteration of Clustered QR. Starting from a random embedding table, each ID is
hashed to a vector in each of 2 small tables (left), and the value (shown in the middle) is taken to
be the mean of the two vectors. After training for an epoch, the large (implicit) embedding table is
(sub-sampled and) clustered. This leaves a new small table in which similar IDs are represented by
the same vector. We can choose to combine the cluster centers with a new random table (and new
hash function), after which the process can be repeated for an increasingly better understanding of
which ID should be combined.

and “blue” with the two first concepts pointing to the same average embedding. See fig. 1 for an
example. Even in the theoretical literature on optimal vector compression, such clustering plays a
crucial role (Indyk & Wagner, 2022). All these quantization methods share one obvious drawback
compared to hashing: the model is only quantized after training, thus memory utilization during
training is unaffected. (Note: While it is common to do some “finetuning” of the model after, say,
product quantization, the method remains primarily a “post-training” approach.)

Recent authors have considered more advanced ways to use hashing to overcome this problem:
Tito Svenstrup et al. (2017); Shi et al. (2020); Desai et al. (2022); Yin et al. (2021); Kang et al. (2021).
The common theme has been using multiple hash functions which allow features to take different
representations with high probability, while still mapping into a small shared table of parameters.
While these methods can work better than the hashing trick in some cases, they still fundamentally
mix up completely unrelated concepts in a way that introduces large amounts of noise into the
remaining machine learning model.

Clearly there is an essential difference between “post-training” compression methods like Product
Quantization which can utilize similarities between concepts and “during training” techniques based
on hashing, which are forced to randomly mix up concepts. This paper’s key contribution is to bridge
that gap: We present a novel compression approach we call “Clustered Compositional Embeddings”
(or CQR for short) that combines hashing and clustering while retaining the benefits of both methods.
By continuously interleaving clustering with training, we train recommendation models with accuracy
matching post-training quantization, while using a fixed parameter count and computational cost
throughout training, matching hashing based methods.

In spirit, our effort can be likened to methods like RigL (Evci et al., 2020), which discovers the wiring
of a sparse neural network during training rather than pruning a dense network post training. Our
work can also be seen as a form of “Online Product Quantization”, though prior work like Xu et al.
(2018) focused only on updating code words already assigned to concept. Our goal is more ambitious:
We want to learn which concepts to group together without ever knowing the “true” embedding for
the concepts.

Why is this hard? Imagine you are training your model and at some point decide to use the same
vector for IDs i and j. For the remaining duration of the training, you can never distinguish the two
IDs again, and thus any decision you make is permanent. The more you cluster, the smaller your
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Figure 2: Typical Recommendation System Architecture: The DLRM model Naumov et al. (2019)
embeds each categorical feature separately and combines the resulting vectors with pair-wise dot
products. Other architectures use different interaction layers or a single embedding table for all
categorical features, but the central role of the embedding table is universal.

table gets. But we are interested in keeping a constant number of parameters throughout training,
while continuously improving the clustering.

In summary, our main contributions are:

• We show that it is possible to use clustering at training time, even though we don’t have
memory enough to learn or even store the concepts be clustered.

• Our method bridges the state of the art for quantizing “post-training” (clustering based
methods) and during training (hashing methods).

• We show experimentally that our technique allows training the Deep Learning Recommen-
dation System (DLRM) to baseline accuracy with less than 50% of the table parameters of
the best previously suggested methods.

• We prove theoretically that a version of our method always succeeds in finding the optimal
embedding table in the context of Least Squares learning.

2 BACKGROUND AND RELATED WORK

We show how most previous work on table compression can be seen in the theoretical framework of
linear dimensionality reduction. This allows us to generalize many techniques and guide our intuition
on how to choose the quality and number of hash functions in the system.

We omit standard common preprocessing tricks, such as weighting entities by frequency, using
separate tables and precision for common vs uncommon elements, or completely pruning rare entities.
We also don’t cover the background of “post training” quantization, but refer to the survey, Gray &
Neuhoff (1998). Finally, we keep things reasonably heuristic, but for a deep theoretical understanding
of metric compression, we recommend Indyk & Wagner (2022).

2.1 EMBEDDING TABLES AS LINEAR MAPS

An embedding table is typically expressed as a tall skinny matrix T ∈ Rd1×d2 , where each ID
i ∈ [d1] is mapped to the i-th row, T [i]. Alternatively, i can be expressed as a one-hot row-vector
ei ∈ {0, 1}d1 in which case T [i] = eiT ∈ Rd2 .

Most previous work in the area of table compression is based on the idea of sketching: We introduce
a (typically sparse) matrix H ∈ {0, 1}d1×k and a dense matrix M ∈ Rk×d2 , where k << d1, and
take T = HM . In other words, to compute T [i] we compute (eiH)M . Since H and ei are both
sparse, this requires very little memory and takes only constant time. The vector eiH ∈ Rk is called
“the sketch of i” and M is the “compressed embedding table” that is trained with gradient descent.
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(b) Hash Embeddings: Each ID is hashed to two rows,
one per each table, and its embedding vector is assigned
to be the sum of those two vectors. Here, we use two
separate tables unlike in Tito Svenstrup et al. (2017).

Figure 3: The Hashing Trick and Hash Embeddings shown side by side with an equal amount of
parameters.

In this framework we can also express most other approaches to training-time table compression:

The Hashing Trick (Weinberger et al., 2009) is normally described by a hash function h : [d1]→
[k], such that i is given the vector M [h(i)], where M is a table with just k << d1 rows.
Alternatively we can think of this trick as multiplying ei with a random matrix H ∈
{0, 1}d1×k which has exactly one 1 in each row. Then the embedding of i is M [h(i)] =
eiHM , where HM ∈ Rd1×d2 .

Hash Embeddings (Tito Svenstrup et al., 2017) map each ID i ∈ V to the sum of a few table rows.
For example, if i is mapped to two rows, then its embedding vector is v = M [h1(i)] +
M [h2(i)]. Using the notation ofH ∈ {0, 1}m×n, one can check that this corresponds to each
row having exactly two 1s. In the paper, the authors also consider weighted combinations,
which simply means that the non-zero entries of H can be some real numbers.

Compositional embeddings (or QR embeddings, Shi et al., 2020), define h1(i) = bi/pc and
h2(i) = i mod p for integer p, and then combines T [h1(i)] and T [h2(i)] in various ways.
As mentioned by the authors, this choice is, however, not of great importance, and more
general hash functions can also be used, which allows for more flexibility in the size and
number of tables. Besides using sums, like Hash Embeddings, the authors also propose
element-wise multiplication1 and concatenation. Concatenation [T [h1(i)], T [h2(i)]] can
again be described with a matrix H ∈ {0, 1}d1×k where each row has exactly one 1 in
the top half of H and one in the bottom half of H , as well as a block diagonal matrix M .
While this restricts the variations in embedding matrices T that are allowed, we usually
compensate by picking a larger m, so the difference in entropy is not much different from
Hash Embeddings, and the practical results are very similar as well.

ROBE embeddings (Desai et al., 2022) are essentially compositional embeddings with concatena-
tion as described above, but adds some more flexibility in the indexing, including the ability
for chunks to “wrap around” in the embedding table. In our experiments ROBE was near
indistinguishable from QR-concat for large models, though it did give some measurable
improvements for very small tables.

Deep Hashing Embeddings DHE (Kang et al., 2021) picks 1024 hash functions h1, . . . , h1024 :
[d1] → [−1, 1] and feed the vector (h1(i), . . . , h1024(i)) into a multi-layer perceptron.
While the idea of using an MLP to save memory at the cost of larger compute is novel and
parts from the sketching framework, the first hashing step of DHE is just sketching with a

1While combining vectors with element-wise multiplication is not a linear operation, from personal commu-
nication with the authors, it is unfortunately hard to train such embeddings in practice. Hence we focus on the
two linear variants.
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of compositional embeddings (QR), each ID is hashed
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four vectors stored there are concatenated into the final
embedding vector. Given the large number of possible
combinations (here 10004), it is unlikely that two IDs
get assigned the exact same embedding vector, even if
they may share each part with some other IDs.
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(b) QR hybrid: We can combine the sum hashing
method of Tito Svenstrup et al. (2017) with the concate-
nation method of Shi et al. (2020). Each ID then gets
assigned a vector that is the concatenation of smaller
sums. In itself this method is not particularly interest-
ing, but it is an essential step towards the Clustered QR
method we describe in this paper.

Figure 4: Compositional Embeddings with concatenation and the Hybrid method which we will
introduce later on.

dense random matrix H ∈ [−1, 1]d1×1024. While this is less efficient than a sparse matrix,
it can still be applied efficiently to sparse inputs, ei, and stored in small amounts of memory.
Unfortunately, in our experiments, DHE did not perform as well as the other methods, unless
the MLP was taken to have just one layer, in which case it is just a linear transformation,
eiHM , and we end up with a more expensive version of Hash Embeddings. See fig. 8b for
the details.

Tensor Train (Yin et al., 2021) doesn’t use hashing, but like QR it splits the input in a deterministic
way that can be generalized to a random hash function if so inclined. Instead of adding or
concatenating chunks, Tensor Train multiplies them together as matrices, which makes it
not strictly a linear operation. However, like DHE, the first step in reducing the input size is
some kind of sketching.

See Appendix C for comparisons to a few more related methods.

Our algorithm is the first that deviates from random sketching as the main vehicle of compression.
However, as we replace it by learned sketching, we can still express the embedding process as eiHM
for a sparse matrix H and a small dense matrix M . The difference is that we learn H from the data
instead of using a random or fixed matrix. Experimentally and theoretically this allows better learning
at the memory usage.

In section 4 we give the practical description of the algorithm, and in section 3 we analyze it
mathematically in a simplified setting.

3 ANALYSIS

We consider a simplified model of the setup, where X ∈ Rn×d1 and Y ∈ Rn×d2 , and we want to
find the T ∈ Rd1×d2 that minimizes ‖XT − Y ‖2F . In our setup n > d1 >> d2. (Here ‖ · ‖F is the
Frobenius norm, defined by ‖X‖2F =

∑
i,j X

2
i,j .)

Obviously we can easily retrieve T from (X,Y ) solving the least squares problem. Let’s call this
optimal solution T ∗ ∈ Rd1×d2 . However, we want to save memory, so we instead pick a sparse
random matrix H0 ∈ Rd1×2k and solve

M0 = arg min
M∈R2k×d2

‖XH0M − Y ‖2F .
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100 101 102 103 104

Cluster + Learn iterations

300

400

500

600

700

800

900

M
S

E

n=10000, d1=1000, d2=10, k=100

K-Means on true T
K-Means top2 on true T
kmeans+hash splits=1

(b) Multi-step CQR: Repeatedly running k-means and
concatenating with a Count Sketch finds a solution, Ti,
that is as good as a k-means clustering of the optimal
T ∗ after just 100 iterations. If we continue training it
eventually finds one that is as good as “top 2” k-means,
even though it only uses normal k-means itself. We
chose X and Y the same as on the left.

Figure 5: Empirically comparing the (slower) Dense CQR analyzed in this section with the (faster)
K-Means approach in fig. 1.

Then T0 = H0M0 is an approximation to T ∗, in so far as H0 preserves the column space of T ∗.
Woodruff (2014) showed that this is indeed likely, if k > d2 even if H0 has just one non-zero per row.
For technical reasons we will let H0 be the horizontal concatenation of two Count Sketch matrices,
so it has 2k columns with 2 non-zeros per row.

The idea is to improve over Count Sketch by analyzing T0. The classical k-means algorithm can be
seen to find the optimal factorization T0 ≈ H ′M ′, where H ′ ∈ {0, 1}d1×k has just one 1 per row. So
we have saved a bit of space. We could stop here and declare victory, but we want to improve further.
To do this we take H1 = [H ′ | C ′] – the concatenation of H ′ with a new Count Sketch matrix. We
can now repeat the optimization M1 = arg minM∈R2k×d2 ‖XH1M − Y ‖2F and rinse and repeat:

Multi-step CQR: Let H0 = 0 ∈ Rd1×2k, M0 = 0 ∈ R2k×d2 ; then repeat for i ≥ 0:

Ti = HiMi

Hi+1 = [k-means(Ti) | new-count-sketch()] ∈ Rd1×2k.
Mi+1 = arg min

M
‖XHi+1M − Y ‖2F ∈ R2k×d2 .

Note that we only ever use the “assignment matrix” from k-means, not the actual cluster centers
found by Lloyd’s algorithm. One could use a different approximation to Ti’s column space instead,
trading of the sparsity for convergence in fewer steps. Indeed we will now modify the algorithm to a
dense version that is more amendable to theoretical analysis.

Instead of k-means and Count Sketch, define Hi+1 = [Ti | N(0, 1)d1×k]. That is, Hi is the previous
Ti concatenated with a random normal matrix. In appendix B we show experimentally that this
algorithm (which uses a dense Hi rather than a sparse, and thus is slower than what we propose
above) behaves nearly identically to the multi-step CQR.

We show that for this version of the algorithm:

Theorem 1.

E[‖XTi − Y ‖2F ] ≤ (1− ρ)ik‖XT ∗‖2F + ‖XT ∗ − Y ‖2F ,
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where ρ = ‖X‖2−2/‖X‖2F ≈ 1/d1 is the smallest singular value of X squared divided by the sum of
singular values squared.2 This means that after i = O(d1k log(‖XT ∗‖F /ε)) iterations we have an ε
approximation to the optimal solution.

Note that the standard least squares problem can be solved in O(nd1d2) time, but one iteration of
our algorithm only takes O(nkd2) time. Repeating it for d1/k iterations is thus no slower than the
default algorithm for the general least squares problem, but using less memory.

4 IMPLEMENTATION OF CLUSTERED COMPOSITIONAL EMBEDDINGS (CQR)

We now describe the CQR method as used in our experiments. The description here differs from
fig. 1 in two main aspects: 1) We build 4 separate tables, and concatenate the output. And 2) We only
do one iteration of the “learning, clustering, learning” loop.

For illustration purposes, we use the setup of one of our experiments on the Kaggle dataset, where
the embedding dimension is 16 and the number of parameters is 16 · 1000.

Step 1: We start as in QR hybrid (see fig. 4b). with 2 times 4 tables T1, . . . , T4 and T ′1, . . . , T
′
4, each

of size 500× 4. We also pick random hash functions h1, . . . , h4, h′1, . . . , h
′
4 : [n]→ [500].

Then the embedding of ID i ∈ [n] is defined to be the concatenationT1[h1(i)] T2[h2(i)] T3[h3(i)] T4[h4(i)]
+ + + +

T ′1[h′1(i)] T ′2[h′2(i)] T ′3[h′3(i)] T ′4[h′4(i)]

 .

We then train the embedding tables for either half an epoch or a full epoch.
Step 2: Following fig. 1 we now cluster the large implicit table for each column j = 1 . . . 4. We

pick a sub-sample S ⊆ [n] of |S| = 256 · k IDs, and compute the vectors for each of them
to obtain a table T cj of 1000 centroids. We define hcj : [n] → [1000] to send i ∈ [n] to the
nearest centroid of Tj [hj(i)] + T ′j [h

′
j(i)].

Step 3: We retrain the model with the new learned hash function. The embedding vector of each
i ∈ [n] is now assigned to(

T c1 [hc1(i)] , T c2 [hc2(i)] , T c3 [hc3(i)] , T c4 [hc4(i)]
)
.

Note this is similar to the QR concat method (fig. 4a) but with a learned hash function.

One may wonder about how best to store the learned hash functions hcj . We give more details on this
in appendix E.

5 EXPERIMENTS

The main experimental finding is shown in fig. 6: The CQR method allows training a model with the
baseline Binary Cross Entropy (BCE) using a third of the parameters needed with the hashing trick,
and 1.5 times less than with the QR concat method. If given the optimal amount of parameters and
trained till convergence, it can give a measurably lower BCE.

In this section we explain the experimental setup we used, and show the results of various other
experiments highlighting the strengths and weaknesses of the CQR method.

5.1 EXPERIMENTAL SETUP

We follow the setup of the open-sourced DLRM code of Naumov et al. (2019).

Dataset. We use Criteo’s Kaggle dataset and Criteo’s Terabyte dataset of click logs. Both are public
datasets and were used for benchmarking in DLRM (Naumov et al. (2019)), our backbone
recommendation model. Each dataset has 13 dense features and 26 categorical features.

2In the appendix we also show how modify the algorithm to get ρ = 1/d1 exactly.
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Figure 6: Clustered QR outperforms Hashing and Compositional methods. We trained DLRM
on the Kaggle dataset with different table compression algorithms and different table sizes for 10
epochs and picked the best validation loss. Our method was able to reach the baseline (trained for 1
epoch with 16 · 107 parameters, see section 5.2) with just over 4000 total parameters. Meanwhile, the
best previously published method (QR concat, Shi et al. (2020)) needed more than 6000. Our QR
hybrid method also slightly outperform QR concat.

• The Kaggle dataset has about 45 million samples over 7 days, where each categorical
feature has at most 10 million possible values.

• The Terabyte dataset has about 4 billion samples over 24 days. In our experiments, we
sub-sampled one-eighth of the data and pre-hashed them with a simple modulus such
that each categorical feature has at most 10 million possible values, as recommended
by the default benchmarking setting in the DLRM code.

We use data from the days prior to the last day as the training set. The data of the last data is
split into a validation set and a test set.

Evaluation Metric. We use Binary Cross-Entropy (BCE) to evaluate the performance of the recom-
mendation model. This metric is also used in Shi et al. (2020) for evaluating the performance
of the QR methods. A small BCE means the prediction probability is close to the actual
result.

Epochs. Recommendation systems are typically just trained for one epoch since they are prone to
over-fitting. It has however been observed (e.g. by Desai et al. (2022)) that compressed
embedding tables benefit from multi-epoch training. We thus give results both for 1 epoch
training, 2 epoch training and “best of 10 epochs” (in fig. 6), making sure we get the actual
best possible model performance.

Backbone Recommendation Models. We adopt the deep learning recommendation model (DLRM)
from Naumov et al. (2019) as the backbone recommendation model; see fig. 2. The DLRM
takes dense and sparse features as inputs, where a full embedding table (i.e., one with |V |
many rows) is used for each categorical feature. Since the model has an open-sourced
implementation, we only have to modify the embedding table part of the code to implement
our methods.

Number of runs of each model. On the Kaggle dataset, PQ inference is run once, while all other
models are run 3 times. On the Terabyte dataset, each model is run once.

5.2 BASELINE: FULL EMBEDDING TABLE

Full embedding table means that for each categorical feature, we train an embedding table of the size
of the number of categorical values. Then a categorical value is mapped uniquely to a row in the
table. For example, if a feature has 10 million possible values, then its embedding table would have
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10 million row of embedding vectors. The embedding table is then trained for one epoch. However,
using a full embedding table is usually not practical.
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(a) Kaggle dataset, 1 epoch: Since CQR, as defined,
clusters the table after the first epoch, we here suggest
“CQR half” which clusters after only half an epoch.
While this outperformed the previous methods (Hash-
ing and QR concat) it was slightly worse than just
keeping our own sketching method (QR hybrid) for the
entire epoch.
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(b) Kaggle dataset, 2 epochs: Training for two epochs
is enough for CQR to outperform QR hybrid as well
as the methods from previous papers, though not by as
much as in fig. 6 where we trained till convergence.

Figure 7: All methods trained for 1 or 2 epochs on Kaggle

5.3 PQ INFERENCE

As described in the introduction, the CQR method mimics Product Quantization (PQ) on the full
embedding table. For that reason, PQ is a strong baseline which we compare with in fig. 7a and
fig. 8a. As it turns out we are mostly able to outperform this baseline, which while surprising may
be explained by our PQ not being “finetuned” after clustering. We tried training a full table, PQ
clustering it and training this clustering for an epoch, but this approach immediately overfit and gave
terrible results. Interestingly this suggests CQR works as a regularization method for PQ.
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(a) Terabyte dataset, 1 epoch: Like on the Kaggle
dataset, running for just 1 epoch was not enough to
show an improvement over our sketching method, QR
hybrid, but enough to beat QR concat and the Hashing
method.
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(b) DHE, Kaggle dataset, 1 epoch: Using the sug-
gested MLP setup from Kang et al. (2021) we were
not able to get competitive performance when fixing
the number of layers to match the desired number of
parameters. This is surprising, so we have opted to not
include DHE on the other plots.

Figure 8: Experiments on Terabyte dataset and with Deep Hashing Embeddings.
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6 CONCLUSION

We have shown the feasibility of compressing embedding tables at training time using clustering.
While there is still work to be done in expanding our theoretical understanding and testing the method
in more situations, we believe this shows an exciting new paradigm for dynamic sparsity in neural
networks and recommender systems in particular.

Some previous papers have made wildly different claims in terms of the possibility of compressing
embedding tables. We believe fig. 7a, fig. 7b and fig. 6 help explain some of that confusion: With
standard learning rates, it is not possible to improve over the DLRM baseline much, if at all, at
1 epoch of training. This matches the results of Naumov et al. (2019). However, if you train till
convergence, you can match the baseline with 1000x times fewer parameters than the default. Even if
you just use the simple hashing trick. This matches the results of Desai et al. (2022).

In all experiments, except fig. 8a on the Terabyte dataset, our method, CQR, outperforms all other
methods we tried. We believe it likely would be better on the Terabyte dataset as well, if given time
to train until convergence.

Training to convergence is however not very common in practical recommendation systems. Our
experiment in fig. 6 may offer an explanation why: Most methods overfit if given too large embedding
tables(!) This is quite shocking, since the common knowledge is that bigger is always better and
concepts should ideally have their own private embedding vectors. We believe these experiments call
for more investigation into overfitting in DLRM style models.

REPRODUCIBILITY STATEMENT

The backbone recommendation model, DLRM by Naumov et al. (2019), has an open-sourced
PyTorch implementation of the model available on github, with instructions on how to use them in
the benchmarking folder. It also has instructions on how to download the public datasets. We follow
very closely to their instructions, so reproducing the baseline result should be straightforward.

For the QR methods, we only need to change two functions in the code: create emb and
apply emb. We suggest using a class for each QR method; see fig. 4. For the random hash
function, one could use a universal hash function or numpy.random.randint.

For the CQR method, apart from using the classes for the QR concat method and the QR hybrid
method, we also need to add a section in the code for k-means clustering after some training. We
recommend using the open-sourced k-means clustering algorithm by Johnson et al. (2019), since it is
much faster than Scikit-learn’s k-means clustering algorithm (Pedregosa et al., 2011).
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A WHAT DIDN’T WORK

Here are the ideas we tried but didn’t work at the end.

Using multiple helper tables It is a natural idea use more than one helper table. However, in our
experiments, the effect of having more helper tables is not apparent.

Circular clustering Based on the QR concat method, the circular clustering method would use
information from other columns to do clustering. However, the resulting index pointer
functions are too similar to each other, meaning that this method is essentially the hashing
trick. We further discuss this issue in appendix G.

Continuous clustering We originally envisioned our methods in a tight loop between training and
(re)clustering. It turned out that reducing the number of clusterings didn’t impact perfor-
mance, so we eventually reduced it all the way down to just one. In practical applications,
with distribution shift over time, doing more clusterings may still be useful, as we discuss in
section 3.
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Changing the number of columns In general, increasing the number of columns leads to better
results. However the marginal benefits quickly decrease, and as the number of hash functions
grow, so does the training and inference time. We found that 4 columns / hash-functions
was a good spot.

Residual vector quantization The CQR method combines Product Quantization (PQ) with the QR
concat method. We tried combining Residual vector quantization (RVQ) with the Hash
Embeddings method from Tito Svenstrup et al. (2017). This method does not perform
significantly better than the Hash Embeddings method.

Seeding with PQ We first train a full embedding table for one epoch, and then do Product Quantiza-
tion (PQ) on the table to obtain the index pointer functions.
We then use the index pointer functions instead of random hash functions in the QR concat
method. This method turned out performing badly: The training loss quickly diverges from
the test loss after training on just a few batches of data.

Here are some variations of the CQR method:

Earlier clustering We currently have two versions of the CQR method: CQR half, where clustering
happens at the middle of the first epoch, and CQR, where clustering happens at the end of
the first epoch. We observe that when we cluster earlier, the result is slightly worse. Though
in our case the CQR half method still outperforms the QR concat method.

More parameters before clustering The CQR method allows using two number of parameters, one
in Step 1 where we follow the QR hybrid method to get a sketch, and one in Step 3 where we
follow the QR concat method. We thought that by using more parameters at the beginning,
we would be able to get a better set of index pointer tables. However, the experiment
suggested that the training is faster but the terminal performance is not significantly better.

B PROOF OF THE MAIN THEOREM

Let’s remind ourselves of the “Dense CQR algorithm” from section 3: Given X ∈ Rn×d1 and
Y ∈ Rn×d2 , pick k such that n > d1 > k > d2. We want to solve find a matrix T ∗ of size d1 × d2
such that ‖XT ∗ − Y ‖F is minimized – the classical Least Squares problem. However, we want to
use memory less than the typical nd21. We thus use this algorithm:

Dense CQR Algorithm: Let T0 = 0 ∈ Rd1×d2 . For i = 1 to m:

Sample Gi ∼ N(0, 1)d1×(k−d2);

Compute Hi = [Ti−1 | Gi] ∈ Rd1×k

Mi = arg inf
M
‖XHiM − Y ‖2F ∈ Rk×d2 .

Ti = HiMi

We will now argue that Tm is a good approximation to T ∗ in the sense that ‖XTm − Y ‖2F is not
much bigger than ‖XT ∗ − Y ‖2F .

Let’s consider a non-optimal choice of Mi first. Suppose we set Mi =
[
Id2
M ′i

]
where M ′i is chosen

such that ‖HiMi − T ∗‖F is minimized. By direct multiplication, we have HiMi = Ti−1 +GiM
′
i .

Hence in this case minimizing ‖HiMi − T ∗‖F is equivalent to finding M ′i at each step such that
‖GiM ′i − (T ∗ − Ti−1)‖F is minimized.

In other words, we are trying to estimate T ∗ with
∑
iGiM

′
i , where each Gi is random and each M ′i

is greedily chosen at each step. This is similar to, for example, the approaches in Barron et al. (2008),
though they use a concrete list of Gi’s. In their case, by the time we have d1/k such Gi’s, we are just
multiplying X with a d1 × d1 random Gaussian matrix, which of course will have full rank, and so
the concatenated M matrix can basically ignore it. However, in our case we do a local, not global
optimization over the Mi.

Recall the theorem:
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(a) Multi-step CQR with 10 steps: All methods,
dense as sparse, get nearly the same error after the
zero steps. This means we haven’t done any clustering,
but simply run a more or less sparse Count Sketch. At
1 step all sparsities still do quite well, which is why
the real CQR method proposed in this paper uses just 2
hash functions per column.
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(b) Multi-step CQR with 200 steps: All sparse meth-
ods converge before reaching zero loss. This is ex-
pected, since the k-means baseline run on the true, op-
timal T ∗ matrix also doesn’t achieve zero loss. Mean-
while, the dense method analyzed in this section does
eventually achieve zero loss as predicted by the theo-
rem.
Interestingly k-means stopped being an effective CQR
sparsification algorithm at higher number of steps, and
we here instead assign each ID to the nearest codewords
from a random Gaussian codebook.

Figure 9: Multi-step CQR on Least Squares: We compare the Multi-step CQR method with sparse
H (n hashes per row) with the dense model analyzed in theorem 1. We also show a baseline of first
solving for the optimal T ∗ and then running k-means to reduce the space usage. As hoped, and
expected, they all quickly improve with more iterations, though the more sparse version eventually
converge.

Theorem 1. Given X ∈ Rn×d1 and Y ∈ Rn×d2 . Let T ∗ = arg minT∈Rd1×d2‖XT − Y ‖2F be an
optimal solution to the least squares problem. Then

E
[
‖XTi − Y ‖2F

]
≤ (1− ρ)i(k−d2)‖XT ∗‖2F + ‖XT ∗ − Y ‖2F ,

where ρ = ‖X‖2−2/‖X‖2F .

Here we use the notation that ‖X‖−2 is the smallest singular value of X .

Corollary 1. In the setting of the theorem, if all singular values of X are equal, then

E
[
‖XTi − Y ‖2F

]
≤ e−i

k−d2
d1 ‖XT ∗‖2F + ‖XT ∗ − Y ‖2F .

Proof of Corollary 1. Note that ‖X‖2F is the sum of the d1 singular values squared: ‖X‖2F =
∑
i σ

2
i .

Since all singular values are equal, say to σ ∈ R, then ‖X‖2F = d1σ
2. Similarly in this setting,

‖X‖2−2 = σ2 so ρ = 1/d1. Using the inequality 1− 1/d1 ≤ e−1/d1 gives the corollary.

Proof of Theorem 1. First split Y into the part that’s in the column space of X and the part that’s not,
Z. We have Y = XT ∗ + Z, where T ∗ = arg minT ‖XT − Y ‖F is the solution to the least squares
problem. By Pythagoras theorem we then have

E
[
‖XTi − Y ‖2F

]
= E

[
‖XTi − (XT ∗ + Z)‖2F

]
= E

[
‖X(Ti − T ∗)‖2F

]
+ ‖Z‖2F ,

so it suffices to show

E
[
‖X(Ti − T ∗)‖2F

]
≤ (1− ρ)i(k−d2)‖XT ∗‖2F .
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We will prove the theorem by induction over i. In the case i = 0 we have Ti = 0, so E[‖X(T0 −
T ∗‖2F ] = E[‖XT ∗‖2F ] trivially. For i ≥ 1 we insert Ti = HiMi and optimize over M ′i :

E[‖X(Ti − T ∗)‖2F ] = E[‖X(HiMi − T ∗)‖2F ]

≤ E[‖X(Hi[I |M ′i ]− T ∗)‖2F ]

= E[‖X((Ti−1 +GiM
′
i)− T ∗)‖2F ]

= E[‖X(GiM
′
i − (T ∗ − Ti−1))‖2F ].

= E[E[‖X(GiM
′
i − (T ∗ − Ti−1))‖2F | Ti−1]]

≤ (1− ρ)k−d2 E[‖X(T ∗ − Ti−1)‖2F ]

≤ (1− ρ)i(k−d2)‖XT ∗‖2F ,

where the last step followed by induction. The critical step here was bounding

EG[inf
M
‖X(GM − T )‖2F ] ≤ (1− ρ)k−d2‖XT‖2F ,

for a fixed T . We will do this in a series of lemmas below.

We show the lemma first in the “vector case”, corresponding to k = 2, d2 = 1. The general matrix
case follow below, and is mostly a case of induction on the vector case.

Lemma 1. Let X ∈ Rn×d be a matrix with singular values σ1 ≥ · · · ≥ σd ≥ 0. Define ρ =
σ2
d/
∑
i σ

2
i , then for any t ∈ Rd,

Eg∼N(0,1)d

[
inf
m∈R
‖X(gm− t)‖22

]
≤ (1− ρ)‖Xt‖22.

Proof. Setting m = 〈Xt,Xg〉/‖Xg‖22 we get

‖X(gm− t)‖22 = m2‖Xg‖22 + ‖Xt‖22 − 2m〈Xg,Xt〉 (1)

=

(
1− 〈Xt,Xg〉2

‖Xt‖22‖Xg‖22

)
‖Xt‖22. (2)

We use the singular value decomposition of X = UΣV T . Since g ∼ N(0, 1)d and V T is unitary, we
have V T g ∼ N(0, 1)d and hence we can assume V = I . Then

〈Xt,Xg〉2

‖Xt‖22‖Xg‖22
=

(tTΣUTUΣg)2

‖UΣt‖22‖UΣg‖22
(3)

=
(tTΣ2g)2

‖Σt‖22‖Σg‖22
(4)

=
(
∑
i tiσ

2
i gi)

2

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )
, (5)

where eq. (4) follows from UTU = I in the SVD. We expand the upper sum to get

Eg

[
(
∑
i tiσ

2
i gi)

2

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )

]
= Eg

[ ∑
i,j titjσ

2
i σ

2
j gigj

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )

]
(6)

= Eg

[ ∑
i t

2
iσ

4
i g

2
i

(
∑
i σ

2
i t

2
i )(
∑
i σ

2
i g

2
i )

]
. (7)

Here we use the fact that the gi’s are symmetric, so the cross terms of the sum have mean 0. By scaling,
we can assume

∑
i σ

2
i t

2
i = 1 and define pi = σ2

i t
2
i . Then the sum is just a convex combination:

(7) =
∑
i

pi Eg

[
σ2
i g

2
i∑

i σ
2
i g

2
i

]
. (8)
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Since σi ≥ σd and gi’s are IID, by direct comparison we have

Eg

[
σ2
i g

2
i∑

i σ
2
i g

2
i

]
≥ Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
Hence

(7) ≥ Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]∑
i

pi = Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
.

It remains to bound

Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
≥ σ2

d∑
i σ

2
i

= ρ, (9)

but this follows from a cute, but rather technical lemma, which we will postpone to the end of this
section. (lemma 3.)

It is interesting to notice how the improvement we make each step (that is 1− ρ) could be increased
to 1− 1/d by picking G from a distribution other than IID normal.

If X = UΣV T , we can also take g = V Σ−1g′, where g′ ∼ N(0, 1)d1×(k−d2). In that case we get

E

(
〈Xt,Xg〉
‖Xg‖2‖Xt‖22

)2

= E

(
tTV Σ2V T g

‖Ug′‖2‖Xt‖22

)2

= E

(
tTV Σg′

‖g′‖2‖Xt‖22

)2

=
1

d1

‖tTV Σ‖22
‖Xt‖22

=
1

d1
.

So this way we recreate the ideal bound from corollary 1. Note that ‖X‖
2
−2

‖X‖2F
≤ 1/d1. Of course it

comes with the negative side of having to compute the SVD of X . But since this is just a theoretical
algorithm, it’s still interesting and shows how we would ideally update Ti. See fig. 10 for the effect
of this change experimentally.

It’s an interesting problem how it might inspire a better CQR algorithm. Somehow we’d have to get
information about the the SVD of X into our sparse super-space approximations.

We now show how to extend the vector case to general matrices.
Lemma 2. Let X ∈ Rn×d1 be a matrix with singular values σ1 ≥ · · · ≥ σd1 ≥ 0. Define
ρ = σ2

d1
/
∑
i σ

2
i , then for any T ∈ Rn×d2 ,

EG∼N(0,1)d1×k

[
inf

M∈Rk×d2

‖X(GM − T )‖2F
]
≤ (1− ρ)k‖XT‖2F .

Proof. The case k = 1, d2 = 1 is proven above in lemma 1.

Case k = 1: We first consider the case where k = 1, but d2 can be any positive integer (at most
k). Let T = [t1|t2| . . . |td2 ] be the columns of T and M = [m1|m2| . . . |md2 ] be the columns of M .
Then the ith column of X(GM − T ) is X(Gmi − ti), and since the squared Frobenius norm of a
matrix is simply the sum of the squared column l2 norms, we have

E[‖X(GM − T )‖2F ] = E

[
d2∑
i=1

‖X(Gmi − ti)‖22

]

=

d2∑
i=1

E
[
‖X(Gmi − ti)‖22

]
≤

d2∑
i=1

(1− ρ) E[‖Xti‖22] (10)

= (1− ρ) E

[
d2∑
i=1

‖Xti‖22

]
= (1− ρ) E[‖XT‖2F ].

where in (10) we applied the single vector case.
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Figure 10: SVD aligned noise converges faster. In the discussion we mention that picking the
random noise in Hi as g = V Σ−1g′, where g′ ∼ N(0, 1)d1×(k−d2), can improve the convergence
rate from (1− ρ)ik to (1− 1/d)ik, which is always better. In this graph we experimentally compare
this approach (labeled “smart noise”) against the IID gaussian noise (labeled “noise”), and find that
the smart noise indeed converges faster – at least once we get close to zero noise. The graph is over
40 repetitions where X is a random rank-10 matrix plus some low magnitude noise.
We also investigate how much we lose in the theorem by only considering M on the form [I|M ′],
rather than a general M that could take advantage of last rounds Ti. The plots labeled “half noise”
and “half smart noise” are limited in this way, while the two others are not. We observe that the effect
of this is much larger in the “non-smart” case, which indicates that the optimal noise distribution we
found might accidentally be tailored to our analysis.
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when x, y are IID with Exponential (blue) or Chi Square

distribution (Orange). In both cases the expectation is ≥ 1 when p ≤ 1/2, just as lemma 3 predicts.

Case k > 1: This time, let g1, g2, . . . , gk be the columns of G and let mT
1 ,m

T
2 , . . . ,m

T
k be the

rows of M .

We prove the lemma by induction over k. We already proved the base-case k = 1, so all we need
is the induction step. We use the expansion of the matrix product GM as a sum of outer products
GM =

∑k
i=1 gim

T
i :

E[‖X(GM − T )‖2F ] = E

∥∥∥∥∥X
(

k∑
i=1

gim
T
i − T

)∥∥∥∥∥
2

F


= E

∥∥∥∥∥X
(
g1m

T
1 +

(
k∑
i=2

gim
T
i − T

))∥∥∥∥∥
2

F


≤ (1− ρ) E

X (∥∥∥∥∥
k∑
i=2

gim
T
i − T

)∥∥∥∥∥
2

F

 (11)

≤ (1− ρ)k E
[
‖XT‖2F

]
.

where (11) used the k = 1 case shown above, and (12) used the inductive hypothesis. This completes
the proof for general k and d2 that we needed for the full theorem.

B.1 TECHNICAL LEMMAS

It remains to show an interesting lemma used for proving the vector case in lemma 1.

Lemma 3. Let a1 . . . , an ≥ 0 be IID random variables and assume some values pi ≥ 0 st.
∑
i pi = 1

and pn ≤ 1/n. Then

E

[
an∑
i piai

]
≥ 1.

This completes the original proof with pi =
σ2
i∑

j σ
2
j

and ai = g2i .
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Proof. Since the ai are IID, it doesn’t matter if we permute them. In particular, if π is a random
permutation of {1, . . . , n− 1},

E

[
an∑
i piai

]
= Ea

[
Eπ

[
an

pnan +
∑
i piaπi

]]
(12)

≥ Ea

[
an

Eπ
[
pnan +

∑
i<n piaπi

]] (13)

= Ea

[
an

pnan +
∑
i<n pi(

1
n−1

∑
j<n aj)

]
(14)

= Ea

[
an

pnan + (1− pn)
∑
i<n

ai
n−1

]
, (15)

where eq. (13) uses Jensen’s inequality on the convex function 1/x.

Now define a =
∑n
i=1 ai. By permuting an with the other variables, we get:

Ea

[
an

pnan + (1− pn)
∑
i<n

ai
n−1

]
= Ea

[
an

pnan + 1−pn
n−1 (a− an)

]
(16)

= Ea

[
1

n

n∑
i=1

ai

pnai + 1−pn
n−1 (a− ai)

]
(17)

= Ea

[
1

n

n∑
i=1

ai/a
1−pn
n−1 − ( 1−pn

n−1 − pn)ai/a

]
(18)

= Ea

[
1

n

n∑
i=1

φ(ai/a)

]
, (19)

where

φ(qi) =
qi

1−pn
n−1 − ( 1−pn

n−1 − pn)qi

is convex whenever 1−pn
n−1

/
( 1−pn
n−1 − pn) = 1−p

1−np > 1, which is true when 0 ≤ pn < 1/n. That
means we can use Jensen’s again:

1

n

n∑
i=1

φ(ai/a) ≥ φ

(
1

n

∑
i

ai
a

)
= φ

(
1

n

)
= 1,

which is what we wanted to show.

C OTHER RELATED WORK

Recent parallel work by Ghaemmaghami et al. (2022) presents a different way to learn a clustering
without having to learn the exact embedding tables first. Instead of using hashing as a “pseudo table”
for clustering to work on, they train a model with a lower dimensional table. They run a special
clustering algorithm designed for low dimensional data on this table, and then retrain the model with
the clustering known. It is interesting future work to better compare the strengths and weaknesses of
our two methods against each other.

Other people have looked at “Learning CountSketch” such as Liu et al. (2020) who gave a formulation
in the learning-based sketching paradigm proposed by Indyk et al. (2019). However, these algorithms
require repeatedly retraining the model, which for big recommendation systems would be much too
slow.
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D HASHING

If h : [n] → [m] and s : [n] → {−1, 1} are random functions, a Count Sketch is a matrix
H ∈ {0,−1, 1}m×n where Hi,j = s(i) if h(i) = j and 0 otherwise. Charikar et al. (2002) showed
that if m is large enough, the matrix H is a dimensionality reduction in the sense that the norm ‖x‖2
of any vector in Rn is approximately preserved, ‖Hx‖2 ≈ ‖x‖2.3

This gives a simple theoretical way to think about the algorithms above: The learned matrix T ′ =
HTT is simply a lower dimensional approximation to the real table that we wanted to learn. While
the theoretical result requires the random “sign function” s for the approximation to be unbiased, in
practice this appears to not be necessary when directly learning T ′. Maybe because the vectors can
simply be slightly shifted to debias the result.

There are many strong theoretical results on the properties of Count Sketches. For example, Woodruff
(2014) showed that they are so called “subspace embeddings” which means the dimensionality
reduction is “robust” and doesn’t have blind spots that SGD may accidentally walk into. However, the
most practical result is that one only needs h to be a “universal hash function” ala Carter & Wegman
(1977), which can be as simple and fast as the “multiply shift” hash function by Dietzfelbinger et al.
(1997).

If Count Sketch shows that hashing each i ∈ [n] to a single row in [m], we may wonder why methods
like Hash Embeddings use multiple hash functions (or DHE uses more than a thousand.) The answer
can be seen in the theoretical analysis of the “Johnson Lindenstrauss” transformation and in particular
the “Sparse Johnson Lindenstrauss” as analyzed by Cohen et al. (2018). The analysis shows that
if the data being hashed is not very uniform, it is indeed better to use more than one hash function
(more than 1 non-zero per column in H .) The exact amount depends on characteristics in the data
distribution, but one can always get away with a sparsity of ε when looking for a 1 + ε dimensionality
reduction. Hence we speculate that DHE could in general replace the 1024 hash functions with
something more like Hash Embeddings with an MLP on top. Another interesting part of the Cohen
et al. (2018) analysis is that one should ideally split [m] in segments, and have one hash function into
each segment. This matches the implementations we based our work on below.

E HOW TO STORE THE HASH FUNCTIONS

We note that unlike the random hash functions used in Step 1, the index pointer functions obtained
from clustering takes space linear in the amount of training data or at least in the ID universe size.
At first this may seem like a major downside of our method, and while it isn’t different from the
index tables needed after Product Quantization, it definitely is something extra not needed by purely
sketching based methods.

We give three reasons why storing this table is not an issue in practice:

1. The index pointer functions can be stored on the CPU rather than the GPU, since they are
used as the first step of the model before the training/inference data has been moved from
the CPU to the GPU. Furthermore the index lookup is typically done faster on CPUs, since
it doesn’t involve any dense matrix operations.

2. The index pointers can replace the original IDs. Unless we are working in a purely streaming
setting, the training data has to be stored somewhere. If IDs are 64 bit integers, replacing
them with four 16-bit index pointers is net neutral.

3. Some hashing and pruning can be used as a prepossessing step, reducing the universe size
of the IDs and thus the size of the index table needed.

F GRAPHS USING AUC AS THE METRIC

We also evaluate the models using AUC, another often employed metric for gauging the effectiveness
of a recommendation model. For example, it was used in (Kang et al., 2021). It provides the

3This also implies that inner products are approximately preserved by the dimensionality reduction.
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probability of getting a correct prediction when evaluating a test sample from a balanced dataset.
Thus, a better model is implied by a larger AUC. In this section, we plot the graphs again using AUC.
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Figure 12: Clustered QR outperforms Hashing and Compositional methods. This figure is fig. 6
plotted with AUC.
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(a) Kaggle dataset, 1 epoch: This figure is fig. 7a
plotted with AUC.
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(b) Kaggle dataset, 2 epochs: This is fig. 7b plotted
with AUC.

Figure 13: All methods trained for 1 or 2 epochs on Kaggle using AUC as the metric.

G TABLE COLLAPSE

Table collapsing was a problem we encountered for the circular clustering method as described in
appendix A. We describe the problem and the metric we used to detect it here, since we think they
may be of interest to the community.

Suppose we are doing k-means clustering on a table of 3 partitions in order to obtain 3 index pointer
functions hcj . These functions can be thought as a table, where the (i, j)-entry is given by hcj(i).

There are multiple failure modes we have to be aware of. The first one is column-wise collapse:
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(a) Terabyte dataset, 1 epoch: This figure is fig. 8a
plotted with AUC.
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(b) DHE, Kaggle dataset, 1 epoch: This figure is
fig. 8b plotted with AUC.

Figure 14: Experiments on Terabyte dataset and with Deep Hashing Embeddings using AUC as the
metric.

1 0 0
1 1 2
1 0 3
...

...
...

1 3 1

In this table the first column has collapsed to just one cluster. Because of the way k-means clustering
works, this exact case of complete collapse isn’t actually possible, but we might get arbitrarily low
entropy as measured by H1, which we define as follows: For each column j, its column entropy is
defined to be the entropy of the probability distribution pj : hcj([n])→ [0, 1] defined by

pj(x) =
#{i : hcj(i) = x}

n
.

Then we define H1 to be the minimum entropy of the (here 3) column-entropies.

The second failure mode is pairwise collapse:

1 0 1
2 2 3
1 0 3
3 1 0
2 2 1

In this case the second column is just a permutation of the first column. This means the expanded
set of possible vectors is much smaller than we would expect. We can measure pairwise collapse
by computing the entropy of the histogram of pairs, where the entropy of the column pair (j1, j2) is
defined by the column entropy of hcj1(·) + max(hcj1)hcj2(·). Then we define H2 to be the minimum
of such pair-entropies for all

(
3
2

)
pairs of columns.

Pairwise entropy can be trivially generalized to triple-wise and so on. If we have c columns we may
compute each of H1, . . . ,Hc. In practice H1 and H2 may contain all the information we need.

G.1 WHAT ENTROPIES ARE EXPECTED?

The maximum value forH1 is log k, in the case of a uniform distribution over clusters. The maximum
value for H2 is log

(
k
2

)
≈ 2 log k. (Note log n is also an upper bound, where n is the number of

points in the dataset / rows in the table.)
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With the QR method we expect all the entropies to be near their maximum. However, for the Circular
Clustering method this is not the case! That would mean we haven’t been able to extract any useful
cluster information from the data.

Instead we expect entropies close to what one gets from performing Product Quantization (PQ) on a
complete dataset. In short:

1. Too high entropy: We are just doing QR more slowly.
2. Too low entropy: We have a table collapse.
3. Golden midpoint: Whatever entropy normal PQ gets.
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