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Abstract

Inductive relation prediction, an important task001
for knowledge graph completion, is to predict002
the relations between entities that are unseen003
at the training stage. The latest methods use004
pre-trained language models (PLMs) to encode005
the paths between the head entity and tail entity006
and achieve state-of-the-art prediction perfor-007
mance. However, these methods cannot well008
handle no-path situations and are also unable009
to learn comprehensive representations for dif-010
ferent relations to overcome the difficulty of in-011
ductive relation prediction. To tackle this issue,012
we propose a novel Relation-aware knowledge013
reasoning model entitled Raker which devel-014
ops an adaptive reasoning information extrac-015
tion method to identify relation-aware reason-016
ing neighbors of entities in the target triple to017
handle no-path situations, and enables PLMs018
to be aware of the predicted relation by the019
relation-specific soft prompting. Raker is eval-020
uated on three public datasets and achieves021
SOTA performance in inductive relation predic-022
tion when compared with the baseline methods.023
Notably, the absolute improvement of Raker is024
even more than 10% on the FB15k-237 induc-025
tive setting. Moreover, Raker also demonstrates026
its superiority in both transductive and few-shot027
settings. The code of Raker will be publicly028
available after the double-blind review process.029

1 Introduction030

Knowledge graphs (KGs) are heterogeneous graphs031

consisting of different nodes as entities and differ-032

ent types of edges as relations. KGs play an es-033

sential role in a wide range of applications such as034

recommendation systems (Zhang et al., 2021) and035

question-answering (Yasunaga et al., 2021; Saxena036

et al., 2022). However, most KGs suffer from in-037

completeness, making predicting missing relations038

between entities in KGs a popular research prob-039

lem (Ji et al., 2021; Chen et al., 2023; Liang et al.,040

2022).041

Given an incomplete knowledge graph, the gen- 042

eral relation prediction task is to score the proba- 043

bility that the target triple (h, r, t) is true, where h 044

and t denote the head and tail entities, respectively, 045

and r refers to a certain target relation. Specifi- 046

cally, inductive relation prediction is to predict the 047

relations between entities that are unseen at the 048

training stage. Existing methods for relation pre- 049

diction can be roughly divided into 4 categories, 050

i.e., embedding-based methods, rule-based meth- 051

ods, graph-based methods, and PLM-based meth- 052

ods (Ji et al., 2021; Chen et al., 2023). Embedding- 053

based methods, e.g., TransE (Bordes et al., 2013), 054

RoateE (Sun et al., 2019), encode the entities and 055

relations into a semantic space and then design 056

a score function to measure the possibility of the 057

target triple based on the encoded representations. 058

These approaches achieve good performance on 059

some knowledge graph completion (KGC) bench- 060

marks but are limited to the transductive setting 061

which requires all entities and relations to be seen 062

at the training stage (Chen et al., 2022). Rule- 063

based methods (Meilicke et al., 2018) extract logi- 064

cal rules from KGs to infer whether the target triple 065

is correct. Graph-based methods (Teru et al., 2020; 066

Mai et al., 2021) mainly use Graph Neural Net- 067

works (GNNs) to encode the graph structures of 068

KGs for inferring relations between entities. PLM- 069

based methods, e.g., BERTRL (Zha et al., 2022) 070

and KRST (Su et al., 2023), feed the KG structure 071

information and the textual embeddings of entities 072

and relations into PLMs for target triple predic- 073

tion, and achieve state-of-the-art performance in 074

inductive relation prediction. 075

Particularly, the latest PLM-based methods, e.g., 076

BERTRL and KRST, extract the paths between 077

entities to capture the structure information and 078

are thus highly dependent on the connectivity of 079

KGs. However, KGs often suffer from high in- 080

completeness and sparsity, and there could be no 081

paths between entities. For example, about 13% of 082
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Figure 1: An example of knowledge subgraph.

entity pairs have no path connection in the widely083

used knowledge graph dataset FB15k-237. With-084

out paths connecting the head entity h and the tail085

entity t, inferring the target triple becomes diffi-086

cult. In this case, a natural idea is to add neighbor087

triples around entities to enrich the reasoning infor-088

mation for prediction. For example, as illustrated089

in Figure 1, we wish to predict the target triple (A,090

profession, Director), and assume that the direct091

relation between C and Movie1 is missing. By an-092

alyzing the associated triples of A, e.g., (A, direct,093

Movie1) and (A, award, Oscars), we can infer that094

the target triple is most likely correct. Therefore,095

analyzing the relations surrounding the entities is096

helpful to infer the target triple. However, the con-097

tributions of neighbors associated with the head098

and tail entities are not equal. Some neighbors can099

provide strong support information for the target100

triple, while the others may be noisy and unreliable.101

For example, the neighbor triple (A, live in, USA)102

of entity A cannot provide strong clues for predict-103

ing (A, profession, director). Therefore, identifying104

effective relational neighbors is an important yet105

challenging task.106

In addition, inductive relation prediction needs107

rich information about the target relations because108

the associated entities are unseen at the training109

stage. PLM-based methods like BERTRL and110

KRST use hard prompts to directly input the re-111

lation names into PLMs, and cannot learn com-112

prehensive representations for the target relations,113

which could impede PLMs’ ability to be aware of114

the target relations in KGs.115

To address the above issues, we propose the116

Relation-aware knowledge reasoning model en-117

titled Raker. Raker develops an adaptive reasoning118

information extraction method to adaptively ex-119

tract reasoning information, i.e., reasoning paths120

or relation-aware reasoning neighbors, for rela-121

tion prediction. In addition, Raker designs a soft 122

prompting approach to dynamically learn compre- 123

hensive and semantic relation representations. Fi- 124

nally, we combine the learned relation representa- 125

tions and extracted reasoning information as the 126

input sequence of PLMs for fine-tuning and rela- 127

tion prediction. 128

In sum, we make the following contributions: 129

• We propose a relation-aware knowledge rea- 130

soning model Raker for inductive relation pre- 131

diction and adaptively extract reasoning infor- 132

mation to address the issue of no-connection 133

between entities in PLM-based methods. 134

• We propose the relation-aware reasoning 135

neighbors extraction method to effectively 136

identify those neighbors that are helpful 137

for target relation prediction, and design a 138

relation-specific soft prompting method to 139

learn comprehensive representation for the tar- 140

get relation. 141

• We conduct extensive experiments on three 142

public datasets. Raker outperforms the strong 143

baseline methods by a large margin in induc- 144

tive relation prediction, and also demonstrates 145

its superiority in both transductive and few- 146

shot settings. 147

2 Related Work 148

More details about the four categories of relation 149

prediction methods are provided below. 150

Embedding-based methods. Embedding- 151

based methods, e.g., TransE(Bordes et al., 2013), 152

TransR(Lin et al., 2015), RoateE(Sun et al., 2019), 153

Complex(Trouillon et al., 2016), ConvE(Dettmers 154

et al., 2018), and TuckER(Balazevic et al., 2019), 155

encode entities and relations as low-dimensional 156

vectors to learn their semantic and structural in- 157

formation, and design certain score functions to 158

evaluate the possibility of the target triple based on 159

the encoded vectors. These methods are effective 160

for transductive relation prediction (Li et al., 2023). 161

However, they cannot generalize to unseen enti- 162

ties, making them unsuitable for inductive relation 163

prediction. 164

Rule-based methods. Rule-based methods un- 165

cover logical rules to infer the correctness of the 166

target triple. For example, AMIE (Galárraga et al., 167

2013) and RuleN (Meilicke et al., 2018), extract 168

the inference patterns for relation prediction. Neu- 169

ralLP (Yang et al., 2017) and DRUM (Sadeghian 170
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et al., 2019) employ an end-to-end approach to171

learn differentiable rules, and use the rules with172

high weights to predict the target triple.173

Graph-based methods. Graph-based meth-174

ods (Das et al., 2018; Schlichtkrull et al., 2018;175

Li et al., 2022) exploit the structure information176

of knowledge graphs to infer the relations between177

entities. For example, GraIL (Teru et al., 2020)178

and CoMPILE (Mai et al., 2021) extract the sub-179

graph that encompasses the target triple and lever-180

ages GNN message passing to achieve relation pre-181

diction. DeepPath (Xiong et al., 2017) and MIN-182

ERVA (Das et al., 2018) identify the paths that con-183

nect the head and tail entities of the target triple and184

use them to predict the missing relation. However,185

according to (Zhang et al., 2022), the aggregation186

mechanisms in GNNs are not effective for KGs.187

PLM-based methods. The pre-trained language188

models (PLMs) like BERT (Devlin et al., 2018),189

T5 (Raffel et al., 2020), and GPT-3 (Brown et al.,190

2020) have revolutionized natural language pro-191

cessing, and are widely used for knowledge graph192

completion. For example, KG-BERT (Yao et al.,193

2019) fine-tunes BERT with the descriptions of en-194

tities and relations to predict the missing relations.195

PKGC (Lv et al., 2022) uses PLMs to encode the196

definition and attributes of head and tail entities for197

predicting the target triple. BERTRL (Zha et al.,198

2022) employs BERT to encode reasoning paths199

between head and tail entities to predict the target200

triple. KRST (Su et al., 2023) further introduces201

path extraction metrics, i.e., relation path cover-202

age and confidence, to select relevant paths for the203

target triple. Specifically, BERTRL and KRST cap-204

ture both structural and semantic information in205

knowledge graphs and achieve SOTA performance206

for inductive relation prediction. However, they207

still struggle to infer the target triple (h, r, t) when208

there are no paths between entities h and t, which209

significantly hinders their performance in real ap-210

plication scenarios.211

3 Methodology212

Figure 2 illustrates the framework of Raker which213

proposes the adaptive reasoning information ex-214

traction method to address no-path issue and the215

relation-specific soft prompting method to make216

PLMs aware of the predicted relations’ seman-217

tic representation. Concretely, given the target218

triple (h, r, t), Raker primarily extracts the paths219

between entities h and t to obtain reasoning in-220

formation. If there are no paths between the two 221

entities, Raker extracts relation-aware reasoning 222

neighbors as the reasoning information. Mean- 223

while, Raker designs a soft prompt to learn com- 224

prehensive representations for the target relation, 225

thereby guiding the PLMs to focus on the rele- 226

vant information for relation inference. Finally, 227

Raker fine-tunes PLMs for relation prediction with 228

the learned relation representations and extracted 229

reasoning information. 230

3.1 Adaptive Reasoning Information 231

Extraction 232

Given the target triple (h, r, t), Raker first tries 233

to extract the paths between entities h and t 234

since these paths provide effective reasoning in- 235

formation to evaluate the relation r (Zha et al., 236

2022; Su et al., 2023). If the two entities are 237

disconnected, Raker develops the relation-aware 238

reasoning neighbors extraction method to accu- 239

rately identify those neighbor triples that are help- 240

ful for the relation prediction. In this way, we 241

can achieve adaptive reasoning information ex- 242

traction. Note that, the reasoning paths and 243

relation-aware reasoning neighbors usually con- 244

tain duplicate reasoning information. For example, 245

to predict triple (A, profession, Director) in Fig- 246

ure 1, the reasoning path A direct−→ Movie1
direct←− 247

C
profession−→ Director between A and Director 248

covers the reasoning neighbor A direct−→ Moive1. 249

Thus, Raker only uses the reasoning paths if head 250

and tail entities are connected to reduce redun- 251

dancy. 252

For easy representation, we denote a KG as 253

G=(E,R,D), where E and R represent the 254

sets of entities and relations, respectively, and 255

D={(h, r, t)|h, t ∈ E, r∈R} represents the triples 256

in G. 257

3.1.1 Reasoning Paths Extraction 258

Reasoning paths can be formulated as the proba- 259

bility logic rules for knowledge reasoning. For 260

example, we can easily infer (C, mother of, B) 261

from rule (A, father of, B) ∧ (C,married, A) → 262

(C,mother of, B). Therefore, the paths between 263

the head and tail entities show great reasoning 264

power for inductive relation prediction. Follow- 265

ing BERTRL (Zha et al., 2022) and KRST (Su 266

et al., 2023), Raker uses the Breadth-First Search 267

algorithm to extract the reasoning paths between 268

head and tail entities. 269
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Figure 2: The framework of Raker model.

3.1.2 Relation-aware Reasoning Neighbors270

Extraction271

To predict a target triple, the contributions of neigh-272

bors associated with the head and tail entities are273

not equal. As discussed previously, some neigh-274

bors can provide strong support information for275

the target triple, while others may be noisy and276

unreliable. Therefore, we propose a relation-aware277

reasoning neighbors extraction method to identify278

those neighbors associated with the head and tail279

entities of the target triple that are helpful to the280

relation prediction.281

Given the target triple (h, r, t), relation-aware282

reasoning neighbors refer to these triples that con-283

tain h or t, and their relations could help to predict284

the target relation r. To identify these relation-285

aware reasoning neighbors for the target triple, we286

first calculate the relative frequency of relations for287

all entities in the entire KG. Then, we calculate the288

contribution score of each relation associated with289

the head and tail of the target triple. Finally, the290

relation-aware reasoning neighbors are extracted291

based on the contribution scores.292

For entity e, all the relations associated with e293

are denoted as Re. For each relation r ∈ Re, the294

relative frequency fe
r is calculated as below.295

fe
r =

ne
r∑

ri∈Re ne
ri

(1)296

where ne
r is the frequency of relation r associated 297

with e. For example, we have fC
direct = 1/3 for 298

entity C and relation direct in Figure 1. Then, for 299

each entity e, we can obtain a vector F e consist- 300

ing of the relative frequencies of all the relations 301

associated with e. The vectors for all entities form 302

a matrix F . 303

For the target relation r, we extract the entities 304

that are heads of r in KG G and analyze the dis- 305

tributions of relations associated with these enti- 306

ties. Concretely, we define Dr as the set of triples 307

containing relation r, Dh
r as the set of triples that 308

contain relation r and have h as their head enti- 309

ties, and EH
r as the set of head entities appear- 310

ing in Dr. In addition, we define RH
r as the set 311

of relations associated with entities in EH
r , i.e., 312

RH
r =

⋃
hi∈EH

r
Rhi . 313

For target relation r, we calculate the contribu- 314

tion score p(r | ri) of each relation ri ∈ RH
r to 315

r. Intuitively, given relation ri, p(r | ri) means 316

the probability that the head entity of ri also has 317

the relation r. The contribution score p(r | ri) is 318

calculated as below. 319

p(r | ri) =
p (r) p (ri | r)∑

rk∈R p (rk) p (ri | rk)
(2) 320

p(r) =
|Dr|∑

ri∈R |Dri |
(3) 321
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where p(r) is the appearance probability of relation322

r in KG G, and |Dr| denotes the number of triples323

in Dr. The item p (ri | r) in Eq. (3) is calculated324

as below.325

p (ri | r) =
∑

hi∈EH
r

shi

(r,ri)
(4)326

where sh(r,ri)=fh
ri × finv, fh

ri is the relative fre-327

quency of relation ri associated with entity h∈EH
r ,328

and finv is the inverse frequency, i.e., the logarithm329

of the ratio between the total number of entities and330

the number of entities having relation ri.331

For example, in Figure 1, only triple (C, pro-332

fession, Director) contains target relation profes-333

sion. Therefore, we have EH
pro={C} and RH

pro =334

{profession, direct, live in}, and just need to an-335

alyze the relations associated with C. Specifi-336

cally, for relation direct, we have fC
dir=1/3 and337

finv=log(8/2) since the example KG has 8 enti-338

ties and 2 entities have relation direct if the relation339

direct between entities C and Movie1 is ignored.340

Finally, we have p (pro | dir) = sC(pro,dir) =341

1/3× log(8/2).342

After calculating the contribution score p(r | ri)343

for each relation ri ∈ RH
r , we use a threshold α to344

filter out those relations in RH
r with contribution345

scores lower than α to get the reliable relations346

RH′
r associated with head entities for relation r.347

In addition, for target relation r, we also calculate348

the reliable relations, i.e., RT ′
r , associated with tail349

entities in the same way.350

Then, we further calculate the reliable relations351

Rh′
and Rt′ for the head entity h and tail entity t,352

respectively, in the target triple, i.e.,353

Rh′
= Rh ∩RH′

r , Rt′ = Rt ∩RT ′
r (5)354

where Rh and Rt are the sets of relations associated355

with entities h and t, respectively.356

Finally, if both Rh′
and Rt′ are not empty, we357

extract the relation-aware reasoning neighbors RN358

for the target triple (h, r, t) as below.359

RN = (∪rh∈Rh′D
h
rh
) ∪ (∪rt∈Rt′D

t
rt) (6)360

For the implementation details of relation-aware361

reasoning neighbors extraction, please refer to ap-362

pendix A.363

3.2 Relation-specific Soft Prompting364

Existing PLM-based relation prediction methods365

usually use hard prompts to encode the target triple,366

e.g., "Question: [head entity] [relation] what ? 367

Is the correct answer [tail entity] ?". Such hard 368

prompts struggle to be aware of the predicted re- 369

lation and cannot adapt to diverse triples. Further- 370

more, they are limited to the pre-defined set of in- 371

structions and impede the PLM’s ability to leverage 372

the internal knowledge to generalize to unseen en- 373

tities in inductive relation prediction. To overcome 374

these limitations, we propose the relation-specific 375

soft prompting method. 376

Concretely, given a pre-trained language 377

model LMθ parametrized by θ, the input 378

sentence embedding generated by Raker is 379

z=[e([CLS]) v e(q) e([SEP]) e(c)] which fuses 380

the embedding of hard prompt q for the target triple, 381

the embedding of adaptive reasoning information c, 382

and the relation-specific soft prompt v, where e(·) 383

denoted as embedding operation. 384

During the training, the ith input lji for the jth 385

layer of the PLM in Raker is calculated as below. 386

lji =


vr
i (0 ≤ i < k) ∧ (j = 0)

zi (i ≥ k) ∧ (j = 0)

LMθ

(
hj−1
:

)
i

Otherwise
(7) 387

where j = 0 corresponds to the input layer, LMθ(·) 388

is the forward function of language model layer, 389

vr
i denotes the ith relation-specific soft prompt 390

vector, k is the number of vr. Given the target 391

triple(h, r, t), vr is generated based on the matrix 392

Vϕ for relations, i.e., 393

vr = Ur(Vϕ) (8) 394

where Vϕ ∈ R|R|×k×m, |R| denotes the number of 395

distinct relations in KG G, m is the dimension of 396

each soft prompt vector and set to 768, and Ur(·) 397

denotes the transformation function for generating 398

the specific vector for relation r. 399

Raker leverages the trainable matrix Vϕ to dy- 400

namically learn relation-specific representations 401

which provide more targeted and reliable contex- 402

tual information for the target triple. By combining 403

the soft prompts with hard prompts, Raker can 404

enhance PLMs’ awareness of relation for better 405

relation prediction. 406

3.3 Triple Prediction via PLM 407

3.3.1 Input Sentence Formation 408

Raker combines prompts and adaptive reasoning in-
formation to generate the input sentences for PLMs,
i.e.,

z = [e([CLS]) v e(q) e([SEP]) e(c)]
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where v is the relation-specific soft prompt, q is the409

hard prompt for the target triple, and c is the adap-410

tive reasoning information. Adaptive reasoning411

information c can be cp or cn, where cp represents412

the reasoning paths and cn represents the relation-413

aware reasoning neighbors.414

An input sentence embedding example of z w.r.t.415

the target triple (A, profession, Director) in Figure 1416

is shown as follows.417

z = [e([CLS]) vpro e(q) e([SEP]) e(c)]
q = Question: A profession what? Is the correct answer

Director ?
c = [cp or cn]

cp = A direct Movie1; C direct Movie1; C profession
Director [SEP] Des(A) [SEP] Des(Director)

cn = A direct Movie1; A award Oscars [SEP] Des(A)
[SEP] Des(Director)

418

where Des(·) is the textual description of the entity419

that is used to augment the reasoning information420

for the target triple (Yao et al., 2019; Wang et al.,421

2022). If the relation direct between entities C and422

Movie1 exits, we have c = cp, otherwise c = cn.423

3.3.2 Relation Prediction424

After input sentence formation, Raker uses one425

linear layer on top of [CLS] to score the target426

triple’s correctness, which can be regarded as a427

binary classification task. If reasoning paths are428

used, following BERTRL and KRST, Raker takes429

each reasoning path as a separate input to the PLM.430

We define z(cpi) as the input sentence embedding431

using the ith reasoning path, and the corresponding432

prediction probability is proi, i.e.,433

proi = pro(y|z(cpi)), i = 1, 2, ..., N (9)434

where y ∈ {0, 1} is class label, and N is the num-435

ber of reasoning paths. Then, the final score of436

target triple (h, r, t) is calculated as below.437

score(h, r, t) = max
i=1,2,...,N

pro(y = 1 | z(cpi))
(10)438

If relation-aware reasoning neighbors are439

used as the reasoning information, we have440

score(h, r, t) = pro(y|z(cn)).441

We follow the negative sampling strategy in442

BERTRL to produce negative samples, i.e., ran-443

domly sampling entities from the common 3-hop444

entities of head and tail entities to corrupt the head445

or tail of each positive triple.446

Raker is trained based on the cross entropy loss, 447

i.e., 448

L = −
∑
τ

(yτ log p+ (1− yτ ) log (1− p))

(11) 449

where yτ ∈ {0, 1} indicates the negative or positive 450

label. 451

4 Experiments 452

4.1 Datasets 453

We conducted extensive experiments on three 454

widely used knowledge graph completion 455

datasets, i.e., FB15k-237 (Toutanova et al., 456

2015), WN18RR (Dettmers et al., 2018), and 457

NELL-995 (Xiong et al., 2017). Table 1 presents 458

the details of three datasets. We use the inductive, 459

transductive, few-shot subsets of these three 460

datasets according to the setting in BERTRL (Zha 461

et al., 2022). 462

Table 1: Statistics of three datasets.

Dataset KG Relations Entities Triples Avg. degree

WN18RR

train 9 2746 6670 4.86
train-2000 9 1970 2002 2.03
train-1000 9 1362 1001 1.47
test-transductive 7 962 638 1.32
test-inductive 8 922 1991 4.32

FB15k-237

train 180 1594 5223 6.56
train-2000 180 1280 2008 3.14
train-1000 180 923 1027 2.23
train-rel50 50 1310 3283 5.01
train-rel100 100 1499 3895 5.20
test-transductive 102 550 492 1.79
test-inductive 142 1093 2404 4.40

NELL-995

train 88 2564 10063 7.85
train-2000 88 1346 2011 2.99
train-1000 88 893 1020 2.28
test-transductive 60 1936 968 1.00
test-inductive 79 2086 6621 6.35

4.2 Experiment Settings 463

Raker is implemented based on the Bert-uncased- 464

base using PyTorch, and trained on two NVIDIA 465

GeForce RTX 3090 GPUs. Following the evalua- 466

tion in Grail (Teru et al., 2020) and BERTRL(Zha 467

et al., 2022), we measure the Mean Reciprocal 468

Rank (MRR) and Hits@1 of one positive triple 469

among 50 samples with 49 negative triples. MRR 470

calculates the average reciprocal rank of all posi- 471

tive triples and Hits@1 calculates the percentage of 472

cases where the positive triple appears as the top-1 473

ranked triple. Following BERTRL, we randomly 474

generate negative triples and use them for training 475

and validation. For a fair comparison, we directly 476

use the negative triples provided by BERTRL for 477
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Table 2: Results of transductive and inductive relation prediction.

Transductive Inductive

WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

MRR

RuleN 0.669 0.674 0.736 0.780 0.462 0.710
GRAIL 0.676 0.597 0.727 0.799 0.469 0.675
MINERVA 0.656 0.572 0.592 - - -
TuckER 0.646 0.682 0.800 - - -
KG-BERT - - - 0.547 0.500 0.419
BERTRL 0.683 0.695 0.781 0.792 0.605 0.808
KRST 0.899 0.720 0.800 0.890 0.716 0.769
Raker 0.912 0.784 0.813 0.930 0.817 0.835
Absolute Imp. 1.3%↑ 6.4%↑ 1.3%↑ 4.0%↑ 10.1%↑ 2.7%↑

Hit@1

RulN 0.646 0.603 0.636 0.745 0.415 0.638
GRAIL 0.644 0.494 0.615 0.769 0.390 0.554
MINERVA 0.632 0.534 0.553 - - -
TuckER 0.600 0.615 0.729 - - -
KG-BERT - - - 0.436 0.341 0.244
BERTRL 0.655 0.620 0.686 0.755 0.541 0.715
KRST 0.835 0.639 0.694 0.809 0.600 0.649
Raker 0.853 0.701 0.730 0.888 0.729 0.748
Absolute Imp. 1.8%↑ 6.2%↑ 3.6%↑ 7.9%↑ 12.9%↑ 3.3%↑

testing. Each experiment is run twice and the mean478

results are reported. We set the learning rate to479

5×10−5, reliable neighbors threshold α = 0.5, and480

the length of relation-specific soft prompt k = 10.481

4.3 Results of Transductive and Inductive482

Relation Prediction483

Table 2 presents the results of both transductive484

and inductive relation prediction. Since WN18RR485

dataset has only 9 relations, and the paths between486

entities could be highly redundant, we employ the487

path filtering strategy in KRST model to reduce488

such redundancy.489

According to the results in Table 2,490

Raker achieves the best performance among491

all methods, and largely outperforms the baselines.492

Especially, the improvement of Raker is more493

than 10% on the FB15k-237 inductive subset494

which has the largest number of distinct relations495

among three datasets, and has many entity pairs496

that are not connected. The relation-specific soft497

prompting and relation-aware-reasoning neighbors498

together contribute to such improvement.499

4.4 Results of Few-shot Relation Prediction500

For few-shot relation prediction, Raker follows501

BERTRL to extract reasoning paths on the sub-502

graphs and Raker* follows KRST to extract reason-503

ing paths on the entire KG graph. According to the504

results in Table 3, Raker and Raker* outperform505

most baseline methods over three datasets. In gen- 506

eral, Raker* performs better than Raker because ex- 507

tracting reasoning paths from the entire KG graph 508

could learn more information about the target triple. 509

KRST performs best on the NELL-995 dataset for 510

transductive relation prediction since most entity 511

pairs in this dataset are connected and the contri- 512

bution from relation-aware reasoning neighbors is 513

thus limited. 514

4.5 Unseen Relation Prediction 515

Raker leverages a pre-trained language model for 516

relation prediction, and has the potential to pre- 517

dict unseen relations. Table 4 presents the results 518

of unseen relation prediction on the subsets of 519

FB15k-237 with a zero-shot setting introduced by 520

BERTRL. Following BERTRL, we use the triples 521

with 50 types of relations and 100 types of relations 522

for training, and testing on the FB15k-237 induc- 523

tive dataset. According to the results, Raker largely 524

outperforms BERTRL and KRST since it can ex- 525

tract more reasoning information for relation pre- 526

diction. 527

4.6 Ablation Study 528

Table 5 shows the results of Raker after remov- 529

ing the relation-aware reasoning neighbors extrac- 530

tion method and the relation-specific soft prompt- 531

ing method. Obviously, after removing either of 532

the two components, the performance of Raker de- 533
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Table 3: Results of few-shot relation prediction.

Transductive Inductive

WN18RR FB15k-237 NELL-995 WN18RR FB15k-237 NELL-995

1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000

MRR

RuleN 0.567 0.625 0.434 0.577 0.453 0.609 0.681 0.773 0.236 0.383 0.334 0.495
GRAIL 0.588 0.673 0.375 0.453 0.292 0.436 0.652 0.799 0.380 0.432 0.458 0.462
MINERVA 0.125 0.268 0.198 0.364 0.182 0.322 - - - - - -
TuckER 0.258 0.448 0.457 0.601 0.436 0.577 - - - - - -
KG-BERT - - - - - - 0.471 0.525 0.431 0.460 0.406 0.406
BERTRL 0.662 0.673 0.618 0.667 0.648 0.693 0.765 0.777 0.526 0.565 0.736 0.744
KRST 0.871 0.882 0.696 0.701 0.743 0.781 0.886 0.878 0.679 0.680 0.745 0.738
Raker 0.810 0.850 0.670 0.728 0.673 0.757 0.892 0.917 0.637 0.687 0.750 0.783
Raker* 0.877 0.887 0.731 0.736 0.718 0.751 0.891 0.910 0.701 0.723 0.662 0.727

Hit@1

RuleN 0.548 0.605 0.374 0.508 0.365 0.501 0.649 0.737 0.207 0.344 0.282 0.418
GRAIL 0.489 0.633 0.267 0.352 0.198 0.342 0.516 0.769 0.273 0.351 0.295 0.298
MINERVA 0.106 0.248 0.170 0.324 0.152 0.284 - - - - - -
TuckER 0.320 0.415 0.407 0.529 0.392 0.520 - - - - - -
KG-BERT - - - - - - 0.364 0.404 0.288 0.317 0.236 0.236
BERTRL 0.621 0.637 0.517 0.583 0.526 0.582 0.713 0.731 0.441 0.493 0.622 0.628
KRST 0.790 0.810 0.611 0.602 0.628 0.678 0.811 0.793 0.537 0.524 0.637 0.629
Raker 0.745 0.783 0.590 0.629 0.545 0.657 0.835 0.864 0.531 0.578 0.641 0.683
Raker* 0.815 0.823 0.621 0.632 0.589 0.637 0.819 0.850 0.566 0.593 0.505 0.598

Table 4: Results of unseen relation prediction.

Method 50 relations 100 relations

MRR

KG-BERT - -
BERTRL 0.580 0.612
KRST 0.660 0.692
Raker 0.714 0.769

Hit@1

KG-BERT 0.266 0.450
BERTRL 0.534 0.585
KRST 0.551 0.560
Raker 0.619 0.668

creases dramatically, which indicates the effective-534

ness and necessity of the two components.535

Table 5: Results of ablation studies on FB15k-237-
inductive dataset.

Method MRR Hit@1

w/o Relation-aware reasoning neighbors 0.720 0.643
w/o Relation-specific soft prompts 0.746 0.646
Raker 0.817 0.729

5 Conclusion536

In this work, we propose the relation-aware knowl-537

edge reasoning model Raker for inductive relation538

prediction, and adaptively extract reasoning infor-539

mation to address the issue of no-connection be-540

tween entities. Raker introduces the relation-aware541

reasoning neighbors extraction method to effec- 542

tively identify those neighbors that are helpful for 543

target relation prediction, and designs a relation- 544

specific soft prompting method to learn compre- 545

hensive representation for the target relation. Ac- 546

cording to the experiment results under different 547

settings, Raker largely outperforms the baseline 548

methods in both inductive relation prediction and 549

transductive relation prediction, and also achieves 550

good performance for few-shot setting and unseen 551

relation prediction. 552

Limitations 553

Although Raker can well address the issue of no- 554

path between entities and largely outperforms base- 555

line methods, it still has two limitations. First, 556

Raker extracts paths and neighbors for each triple, 557

and could be of high computational complexity if 558

applied to predict missing entities. Second, reason- 559

ing paths and neighbors are used alternatively in 560

Raker, and better integration methods are expected 561

to take their advantage while avoiding redundancy. 562
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A Implementation of Relation-aware 823

Reasoning Neighbors Extraction 824

Algorithm 1 provides the implementation details of 825

the relation-aware reasoning neighbors extraction 826

method.

Algorithm 1 Relation-aware Reasoning Neighbors
Extraction
Input: KG G, target triple (h, r, t), and α
Output: Relation-aware reasoning neigh-
bors

1: Get RH
r and EH

r , initialize RH′
r and RT ′

r as
list()

2: Calculate F as Eq. (1)
3: for h ∈ EH

r do
4: for ri ∈ F [h] do
5: // len(F [e][ri]) denotes numbers of enti-

ties has relation ri
6: finv = log(len(F )/len(F [e][ri]))
7: p (ri | r)+ = fh

ri × finv
8: end for
9: end for

10: for ri ∈ RH
r do

11: Calculate score p (r | ri) as Eq. (2)
12: if p (r | ri) >= α then
13: RH′

r .append(ri)
14: end if
15: end for
16: Repeat step 3-15 for calculating RT ′

r

17: Calculate Rh′
and Rt′ as Eq. (5)

18: if Rh′
is not empty and Rt′ is not empty then

19: return RN as Eq. (6)
20: else
21: return empty list()
22: end if

827
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