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Abstract

Inductive relation prediction, an important task
for knowledge graph completion, is to predict
the relations between entities that are unseen
at the training stage. The latest methods use
pre-trained language models (PLMs) to encode
the paths between the head entity and tail entity
and achieve state-of-the-art prediction perfor-
mance. However, these methods cannot well
handle no-path situations and are also unable
to learn comprehensive representations for dif-
ferent relations to overcome the difficulty of in-
ductive relation prediction. To tackle this issue,
we propose a novel Relation-aware knowledge
reasoning model entitled Raker which devel-
ops an adaptive reasoning information extrac-
tion method to identify relation-aware reason-
ing neighbors of entities in the target triple to
handle no-path situations, and enables PLMs
to be aware of the predicted relation by the
relation-specific soft prompting. Raker is eval-
uated on three public datasets and achieves
SOTA performance in inductive relation predic-
tion when compared with the baseline methods.
Notably, the absolute improvement of Raker is
even more than 10% on the FB15k-237 induc-
tive setting. Moreover, Raker also demonstrates
its superiority in both transductive and few-shot
settings. The code of Raker will be publicly
available after the double-blind review process.

1 Introduction

Knowledge graphs (KGs) are heterogeneous graphs
consisting of different nodes as entities and differ-
ent types of edges as relations. KGs play an es-
sential role in a wide range of applications such as
recommendation systems (Zhang et al., 2021) and
question-answering (Yasunaga et al., 2021; Saxena
et al., 2022). However, most KGs suffer from in-
completeness, making predicting missing relations
between entities in KGs a popular research prob-
lem (Ji et al., 2021; Chen et al., 2023; Liang et al.,
2022).

Given an incomplete knowledge graph, the gen-
eral relation prediction task is to score the proba-
bility that the target triple (h, r, t) is true, where h
and ¢ denote the head and tail entities, respectively,
and r refers to a certain target relation. Specifi-
cally, inductive relation prediction is to predict the
relations between entities that are unseen at the
training stage. Existing methods for relation pre-
diction can be roughly divided into 4 categories,
i.e., embedding-based methods, rule-based meth-
ods, graph-based methods, and PLM-based meth-
ods (Jiet al., 2021; Chen et al., 2023). Embedding-
based methods, e.g., TransE (Bordes et al., 2013),
RoateE (Sun et al., 2019), encode the entities and
relations into a semantic space and then design
a score function to measure the possibility of the
target triple based on the encoded representations.
These approaches achieve good performance on
some knowledge graph completion (KGC) bench-
marks but are limited to the transductive setting
which requires all entities and relations to be seen
at the training stage (Chen et al., 2022). Rule-
based methods (Meilicke et al., 2018) extract logi-
cal rules from KGs to infer whether the target triple
is correct. Graph-based methods (Teru et al., 2020;
Mai et al., 2021) mainly use Graph Neural Net-
works (GNNs) to encode the graph structures of
KGs for inferring relations between entities. PLM-
based methods, e.g., BERTRL (Zha et al., 2022)
and KRST (Su et al., 2023), feed the KG structure
information and the textual embeddings of entities
and relations into PLMs for target triple predic-
tion, and achieve state-of-the-art performance in
inductive relation prediction.

Particularly, the latest PLM-based methods, e.g.,
BERTRL and KRST, extract the paths between
entities to capture the structure information and
are thus highly dependent on the connectivity of
KGs. However, KGs often suffer from high in-
completeness and sparsity, and there could be no
paths between entities. For example, about 13% of



live in

Figure 1: An example of knowledge subgraph.

entity pairs have no path connection in the widely
used knowledge graph dataset FB15k-237. With-
out paths connecting the head entity h and the tail
entity ¢, inferring the target triple becomes diffi-
cult. In this case, a natural idea is to add neighbor
triples around entities to enrich the reasoning infor-
mation for prediction. For example, as illustrated
in Figure 1, we wish to predict the target triple (A,
profession, Director), and assume that the direct
relation between C and Moviel is missing. By an-
alyzing the associated triples of A, e.g., (A, direct,
Moviel ) and (A, award, Oscars), we can infer that
the target triple is most likely correct. Therefore,
analyzing the relations surrounding the entities is
helpful to infer the target triple. However, the con-
tributions of neighbors associated with the head
and tail entities are not equal. Some neighbors can
provide strong support information for the target
triple, while the others may be noisy and unreliable.
For example, the neighbor triple (A, live in, USA)
of entity A cannot provide strong clues for predict-
ing (A, profession, director). Therefore, identifying
effective relational neighbors is an important yet
challenging task.

In addition, inductive relation prediction needs
rich information about the target relations because
the associated entities are unseen at the training
stage. PLM-based methods like BERTRL and
KRST use hard prompts to directly input the re-
lation names into PLMs, and cannot learn com-
prehensive representations for the target relations,
which could impede PLMs’ ability to be aware of
the target relations in KGs.

To address the above issues, we propose the
Relation-aware knowledge reasoning model en-
titled Raker. Raker develops an adaptive reasoning
information extraction method to adaptively ex-
tract reasoning information, i.e., reasoning paths
or relation-aware reasoning neighbors, for rela-

tion prediction. In addition, Raker designs a soft
prompting approach to dynamically learn compre-
hensive and semantic relation representations. Fi-
nally, we combine the learned relation representa-
tions and extracted reasoning information as the
input sequence of PLMs for fine-tuning and rela-
tion prediction.
In sum, we make the following contributions:

* We propose a relation-aware knowledge rea-
soning model Raker for inductive relation pre-
diction and adaptively extract reasoning infor-
mation to address the issue of no-connection
between entities in PLM-based methods.

* We propose the relation-aware reasoning
neighbors extraction method to effectively
identify those neighbors that are helpful
for target relation prediction, and design a
relation-specific soft prompting method to
learn comprehensive representation for the tar-
get relation.

* We conduct extensive experiments on three
public datasets. Raker outperforms the strong
baseline methods by a large margin in induc-
tive relation prediction, and also demonstrates
its superiority in both transductive and few-
shot settings.

2 Related Work

More details about the four categories of relation
prediction methods are provided below.

Embedding-based methods. = Embedding-
based methods, e.g., TransE(Bordes et al., 2013),
TransR(Lin et al., 2015), RoateE(Sun et al., 2019),
Complex(Trouillon et al., 2016), ConvE(Dettmers
et al., 2018), and TuckER(Balazevic et al., 2019),
encode entities and relations as low-dimensional
vectors to learn their semantic and structural in-
formation, and design certain score functions to
evaluate the possibility of the target triple based on
the encoded vectors. These methods are effective
for transductive relation prediction (Li et al., 2023).
However, they cannot generalize to unseen enti-
ties, making them unsuitable for inductive relation
prediction.

Rule-based methods. Rule-based methods un-
cover logical rules to infer the correctness of the
target triple. For example, AMIE (Gal4rraga et al.,
2013) and RuleN (Meilicke et al., 2018), extract
the inference patterns for relation prediction. Neu-
ralLP (Yang et al., 2017) and DRUM (Sadeghian



et al., 2019) employ an end-to-end approach to
learn differentiable rules, and use the rules with
high weights to predict the target triple.

Graph-based methods. Graph-based meth-
ods (Das et al., 2018; Schlichtkrull et al., 2018;
Li et al., 2022) exploit the structure information
of knowledge graphs to infer the relations between
entities. For example, GralL (Teru et al., 2020)
and CoMPILE (Mai et al., 2021) extract the sub-
graph that encompasses the target triple and lever-
ages GNN message passing to achieve relation pre-
diction. DeepPath (Xiong et al., 2017) and MIN-
ERVA (Das et al., 2018) identify the paths that con-
nect the head and tail entities of the target triple and
use them to predict the missing relation. However,
according to (Zhang et al., 2022), the aggregation
mechanisms in GNNs are not effective for KGs.

PLM-based methods. The pre-trained language
models (PLMs) like BERT (Devlin et al., 2018),
T5 (Raffel et al., 2020), and GPT-3 (Brown et al.,
2020) have revolutionized natural language pro-
cessing, and are widely used for knowledge graph
completion. For example, KG-BERT (Yao et al.,
2019) fine-tunes BERT with the descriptions of en-
tities and relations to predict the missing relations.
PKGC (Lv et al., 2022) uses PLMs to encode the
definition and attributes of head and tail entities for
predicting the target triple. BERTRL (Zha et al.,
2022) employs BERT to encode reasoning paths
between head and tail entities to predict the target
triple. KRST (Su et al., 2023) further introduces
path extraction metrics, i.e., relation path cover-
age and confidence, to select relevant paths for the
target triple. Specifically, BERTRL and KRST cap-
ture both structural and semantic information in
knowledge graphs and achieve SOTA performance
for inductive relation prediction. However, they
still struggle to infer the target triple (h, r,t) when
there are no paths between entities h and ¢, which
significantly hinders their performance in real ap-
plication scenarios.

3 Methodology

Figure 2 illustrates the framework of Raker which
proposes the adaptive reasoning information ex-
traction method to address no-path issue and the
relation-specific soft prompting method to make
PLMs aware of the predicted relations’ seman-
tic representation. Concretely, given the target
triple (h,r,t), Raker primarily extracts the paths
between entities & and ¢ to obtain reasoning in-

formation. If there are no paths between the two
entities, Raker extracts relation-aware reasoning
neighbors as the reasoning information. Mean-
while, Raker designs a soft prompt to learn com-
prehensive representations for the target relation,
thereby guiding the PLMs to focus on the rele-
vant information for relation inference. Finally,
Raker fine-tunes PLMs for relation prediction with
the learned relation representations and extracted
reasoning information.

3.1 Adaptive Reasoning Information
Extraction

Given the target triple (h,r,t), Raker first tries
to extract the paths between entities h and ¢
since these paths provide effective reasoning in-
formation to evaluate the relation r (Zha et al.,
2022; Su et al., 2023). If the two entities are
disconnected, Raker develops the relation-aware
reasoning neighbors extraction method to accu-
rately identify those neighbor triples that are help-
ful for the relation prediction. In this way, we
can achieve adaptive reasoning information ex-
traction. Note that, the reasoning paths and
relation-aware reasoning neighbors usually con-
tain duplicate reasoning information. For example,
to predict triple (A, profession, Director) in Fig-

direct

ure 1, the reasoning path A ireet Noviel 4
O PLES Director between A and Director
covers the reasoning neighbor A et Aoivel.
Thus, Raker only uses the reasoning paths if head
and tail entities are connected to reduce redun-
dancy.

For easy representation, we denote a KG as
G=(E,R,D), where E and R represent the
sets of entities and relations, respectively, and
D={(h,r,t)|h,t € E,r€R} represents the triples
in G.

3.1.1 Reasoning Paths Extraction

Reasoning paths can be formulated as the proba-
bility logic rules for knowledge reasoning. For
example, we can easily infer (C, mother of, B)
from rule (A, father of, B) A (C,married, A) —
(C, mother of, B). Therefore, the paths between
the head and tail entities show great reasoning
power for inductive relation prediction. Follow-
ing BERTRL (Zha et al., 2022) and KRST (Su
et al., 2023), Raker uses the Breadth-First Search
algorithm to extract the reasoning paths between
head and tail entities.
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Figure 2: The framework of Raker model.

3.1.2 Relation-aware Reasoning Neighbors
Extraction

To predict a target triple, the contributions of neigh-
bors associated with the head and tail entities are
not equal. As discussed previously, some neigh-
bors can provide strong support information for
the target triple, while others may be noisy and
unreliable. Therefore, we propose a relation-aware
reasoning neighbors extraction method to identify
those neighbors associated with the head and tail
entities of the target triple that are helpful to the
relation prediction.

Given the target triple (h,r,t), relation-aware
reasoning neighbors refer to these triples that con-
tain h or ¢, and their relations could help to predict
the target relation r. To identify these relation-
aware reasoning neighbors for the target triple, we
first calculate the relative frequency of relations for
all entities in the entire KG. Then, we calculate the
contribution score of each relation associated with
the head and tail of the target triple. Finally, the
relation-aware reasoning neighbors are extracted
based on the contribution scores.

For entity e, all the relations associated with e
are denoted as €. For each relation » € R¢, the
relative frequency f is calculated as below.

fi= e (1)

where n;. is the frequency of relation r associated
with e. For example, we have fcgrect = 1/3 for
entity C and relation direct in Figure 1. Then, for
each entity e, we can obtain a vector F' consist-
ing of the relative frequencies of all the relations
associated with e. The vectors for all entities form
a matrix F'.

For the target relation r, we extract the entities
that are heads of r in KG G and analyze the dis-
tributions of relations associated with these enti-
ties. Concretely, we define D, as the set of triples
containing relation r, D! as the set of triples that
contain relation r and have h as their head enti-
ties, and EX as the set of head entities appear-
ing in D,. In addition, we define R as the set
of relations associated with entities in E/7, i.e.,
Rﬁ = UhieEH RM.

For target relation r, we calculate the contribu-
tion score p(r | r;) of each relation r; € R to
r. Intuitively, given relation r;, p(r | r;) means
the probability that the head entity of r; also has
the relation 7. The contribution score p(r | r;) is
calculated as below.

p(r)p(ri|r)

i) = 2

i) = )
_Ip,|

M) S el Dl @



where p(r) is the appearance probability of relation
rin KG G, and | D, | denotes the number of triples
in D,. The item p (r; | 7) in Eq. (3) is calculated
as below.

h;
p(ri|r)= Z S(r,ry) (4)
hiEETH
where SZ = ffz X finv, [l is the relative fre-

quency of relation r; associated with entity he B!,
and f;n, is the inverse frequency, i.e., the logarithm
of the ratio between the total number of entities and
the number of entities having relation 7;.

For example, in Figure 1, only triple (C, pro-
fession, Director) contains target relation profes-
sion. Therefore, we have EJY ={C} and R =
{profession, direct, live in}, and just need to an-
alyze the relations associated with C. Specifi-
cally, for relation direct, we have fcgrzl /3 and
finv=log(8/2) since the example KG has 8 enti-
ties and 2 entities have relation direct if the relation
direct between entities C and Moviel is ignored.
Finally, we have p (pro | dir) = s(c;m’dm =
1/3 x log(8/2).

After calculating the contribution score p(r | ;)
for each relation r; € R,H , we use a threshold « to
filter out those relations in R with contribution
scores lower than « to get the reliable relations
RH " associated with head entities for relation 7.
In addition, for target relation r, we also calculate
the reliable relations, i.e., RT, associated with tail
entities in the same way.

Then, we further calculate the reliable relations
R" and R for the head entity h and tail entity ¢,
respectively, in the target triple, i.e.,

RY =R'nRY R'=R'NnRI (5

where R and R! are the sets of relations associated
with entities h and ¢, respectively.

Finally, if both R" and R' are not empty, we
extract the relation-aware reasoning neighbors RN
for the target triple (h,r,t) as below.

RN = (U, pw Dl ) U (U,,cgeDL)  (6)

For the implementation details of relation-aware
reasoning neighbors extraction, please refer to ap-
pendix A.

3.2 Relation-specific Soft Prompting

Existing PLM-based relation prediction methods
usually use hard prompts to encode the target triple,

e.g., "Question: [head entity] [relation] what ?
Is the correct answer [tail entity] ?". Such hard
prompts struggle to be aware of the predicted re-
lation and cannot adapt to diverse triples. Further-
more, they are limited to the pre-defined set of in-
structions and impede the PLM’s ability to leverage
the internal knowledge to generalize to unseen en-
tities in inductive relation prediction. To overcome
these limitations, we propose the relation-specific
soft prompting method.

Concretely, given a pre-trained language
model LM,y parametrized by 6, the input
sentence embedding generated by Raker is
z=[e([CLS]) v e(q) e([SEP]) e(c)] which fuses
the embedding of hard prompt g for the target triple,
the embedding of adaptive reasoning information c,
and the relation-specific soft prompt v, where e(-)
denoted as embedding operation. '

During the training, the i** input I/ for the ;"
layer of the PLM in Raker is calculated as below.

vy 0<i<k)A(j=0)
1= z o (2R)A([=0)
LMy (hj _1)i Otherwise
(N

where 7 = 0 corresponds to the input layer, LMy (-)
is the forward function of language model layer,
v; denotes the ith relation-specific soft prompt
vector, k is the number of v”. Given the target
triple(h, r,t), v" is generated based on the matrix
V, for relations, i.e.,

v" =U,(Vyp) ®)

where V,, € RIXFxm 1| B denotes the number of
distinct relations in KG G, m is the dimension of
each soft prompt vector and set to 768, and U,.(-)
denotes the transformation function for generating
the specific vector for relation r.

Raker leverages the trainable matrix Vi to dy-
namically learn relation-specific representations
which provide more targeted and reliable contex-
tual information for the target triple. By combining
the soft prompts with hard prompts, Raker can
enhance PLMs’ awareness of relation for better
relation prediction.

3.3 Triple Prediction via PLM

3.3.1 Input Sentence Formation

Raker combines prompts and adaptive reasoning in-
formation to generate the input sentences for PLMs,
ie.,

z = [e([CLS]) v e(q) e([SEP]) e(c)]



where v is the relation-specific soft prompt, ¢ is the
hard prompt for the target triple, and c is the adap-
tive reasoning information. Adaptive reasoning
information c can be ¢, or c,, where ¢, represents
the reasoning paths and c,, represents the relation-
aware reasoning neighbors.

An input sentence embedding example of z w.r.t.
the target triple (A, profession, Director) in Figure 1
is shown as follows.

z = [e([CLS]) v"" e(q) e([SEP]) e(c)]

q = Question: A profession what? Is the correct answer
Director ?

¢ = [cp or cn

¢p = A direct Moviel; C direct Moviel; C profession
Director [SEP] Des(A) [SEP] Des(Director)

¢, = A direct Moviel; A award Oscars [SEP] Des(A)
[SEP] Des(Director)

where Des(+) is the textual description of the entity
that is used to augment the reasoning information
for the target triple (Yao et al., 2019; Wang et al.,
2022). If the relation direct between entities C and
Moviel exits, we have ¢ = ¢, otherwise ¢ = ¢,.

3.3.2 Relation Prediction

After input sentence formation, Raker uses one
linear layer on top of [CLS] to score the target
triple’s correctness, which can be regarded as a
binary classification task. If reasoning paths are
used, following BERTRL and KRST, Raker takes
each reasoning path as a separate input to the PLM.
We define z(cp,) as the input sentence embedding
using the 7*" reasoning path, and the corresponding

prediction probability is pro;, i.e.,
pro; = pro(y|z(cp,)), i=1,2,., N (9)

where y € {0, 1} is class label, and N is the num-
ber of reasoning paths. Then, the final score of
target triple (h, r, t) is calculated as below.

score(h,r,t) = ;maprro(y =11 z2(cp,))

i=1,2,...,
(10)

If relation-aware reasoning neighbors are
used as the reasoning information, we have
score(h,r,t) = pro(y|z(cp)).

We follow the negative sampling strategy in
BERTRL to produce negative samples, i.e., ran-
domly sampling entities from the common 3-hop
entities of head and tail entities to corrupt the head
or tail of each positive triple.

Raker is trained based on the cross entropy loss,
ie.,

L= —Z(yTlogp—i—(l—yf)log(l—p))

=

(11)
where y, € {0, 1} indicates the negative or positive
label.

4 Experiments

4.1 Datasets

We conducted extensive experiments on three
widely used knowledge graph completion
datasets, i.e., FB15k-237 (Toutanova et al.,
2015), WNI18RR (Dettmers et al., 2018), and
NELL-995 (Xiong et al., 2017). Table 1 presents
the details of three datasets. We use the inductive,
transductive, few-shot subsets of these three
datasets according to the setting in BERTRL (Zha
et al., 2022).

Table 1: Statistics of three datasets.

Dataset KG Relations Entities Triples Avg. degree

train 9 2746 6670 4.86
train-2000 9 1970 2002 2.03
WNI8RR  train-1000 9 1362 1001 1.47
test-transductive 7 962 638 1.32
test-inductive 8 922 1991 4.32
train 180 1594 5223 6.56
train-2000 180 1280 2008 3.14
train-1000 180 923 1027 223
FB15k-237 train-rel50 50 1310 3283 5.01
train-rel 100 100 1499 3895 5.20
test-transductive 102 550 492 1.79
test-inductive 142 1093 2404 4.40
train 88 2564 10063 7.85
train-2000 88 1346 2011 2.99
NELL-995  train-1000 88 893 1020 228
test-transductive 60 1936 968 1.00
test-inductive 79 2086 6621 6.35

4.2 Experiment Settings

Raker is implemented based on the Bert-uncased-
base using PyTorch, and trained on two NVIDIA
GeForce RTX 3090 GPUs. Following the evalua-
tion in Grail (Teru et al., 2020) and BERTRL(Zha
et al., 2022), we measure the Mean Reciprocal
Rank (MRR) and Hits@1 of one positive triple
among 50 samples with 49 negative triples. MRR
calculates the average reciprocal rank of all posi-
tive triples and Hits@]1 calculates the percentage of
cases where the positive triple appears as the top-1
ranked triple. Following BERTRL, we randomly
generate negative triples and use them for training
and validation. For a fair comparison, we directly
use the negative triples provided by BERTRL for



Table 2: Results of transductive and inductive relation prediction.

Transductive Inductive
WNI8RR FBI15k-237 NELL-995 WNI8RR FB15k-237 NELL-995
RuleN 0.669 0.674 0.736 0.780 0.462 0.710
GRAIL 0.676 0.597 0.727 0.799 0.469 0.675
MINERVA 0.656 0.572 0.592 - - -
TuckER 0.646 0.682 0.800 - - -
MRR KG-BERT - - - 0.547 0.500 0.419
BERTRL 0.683 0.695 0.781 0.792 0.605 0.808
KRST 0.899 0.720 0.800 0.890 0.716 0.769
Raker 0.912 0.784 0.813 0.930 0.817 0.835
Absolute Imp. 1.3%" 6.4%1 1.3%" 4.0%1 10.1%1 2.7%1
RulN 0.646 0.603 0.636 0.745 0.415 0.638
GRAIL 0.644 0.494 0.615 0.769 0.390 0.554
MINERVA 0.632 0.534 0.553 - - -
TuckER 0.600 0.615 0.729 - - -
Hit@1l KG-BERT - - - 0.436 0.341 0.244
BERTRL 0.655 0.620 0.686 0.755 0.541 0.715
KRST 0.835 0.639 0.694 0.809 0.600 0.649
Raker 0.853 0.701 0.730 0.888 0.729 0.748
Absolute Imp. 1.8%7" 6.2%1 3.6%1 7.9%1 12.9%1 3.3%1

testing. Each experiment is run twice and the mean
results are reported. We set the learning rate to
5x 107, reliable neighbors threshold o = 0.5, and
the length of relation-specific soft prompt & = 10.

4.3 Results of Transductive and Inductive
Relation Prediction

Table 2 presents the results of both transductive
and inductive relation prediction. Since WN18RR
dataset has only 9 relations, and the paths between
entities could be highly redundant, we employ the
path filtering strategy in KRST model to reduce
such redundancy.

According to the results in Table 2,
Raker achieves the best performance among
all methods, and largely outperforms the baselines.
Especially, the improvement of Raker is more
than 10% on the FB15k-237 inductive subset
which has the largest number of distinct relations
among three datasets, and has many entity pairs
that are not connected. The relation-specific soft
prompting and relation-aware-reasoning neighbors
together contribute to such improvement.

4.4 Results of Few-shot Relation Prediction

For few-shot relation prediction, Raker follows
BERTRL to extract reasoning paths on the sub-
graphs and Raker* follows KRST to extract reason-
ing paths on the entire KG graph. According to the
results in Table 3, Raker and Raker* outperform

most baseline methods over three datasets. In gen-
eral, Raker* performs better than Raker because ex-
tracting reasoning paths from the entire KG graph
could learn more information about the target triple.
KRST performs best on the NELL-995 dataset for
transductive relation prediction since most entity
pairs in this dataset are connected and the contri-
bution from relation-aware reasoning neighbors is
thus limited.

4.5 Unseen Relation Prediction

Raker leverages a pre-trained language model for
relation prediction, and has the potential to pre-
dict unseen relations. Table 4 presents the results
of unseen relation prediction on the subsets of
FB15k-237 with a zero-shot setting introduced by
BERTRL. Following BERTRL, we use the triples
with 50 types of relations and 100 types of relations
for training, and testing on the FB15k-237 induc-
tive dataset. According to the results, Raker largely
outperforms BERTRL and KRST since it can ex-
tract more reasoning information for relation pre-
diction.

4.6 Ablation Study

Table 5 shows the results of Raker after remov-
ing the relation-aware reasoning neighbors extrac-
tion method and the relation-specific soft prompt-
ing method. Obviously, after removing either of
the two components, the performance of Raker de-



Table 3: Results of few-shot relation prediction.

Transductive Inductive
WNI18RR FB15k-237 NELL-995 WNI18RR FB15k-237 NELL-995

1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000
RuleN 0.567 0.625 0.434 0.577 0453 0.609 0.681 0.773 0.236 0.383 0.334 0.495
GRAIL 0.588 0.673 0.375 0.453 0.292 0436 0.652 0.799 0.380 0.432 0.458 0.462

MINERVA 0.125 0.268 0.198 0.364 0.182 0.322 - - - - - -

TuckER 0.258 0.448 0.457 0.601 0436 0.577 - - - - - -
MRR  KG-BERT - - - - - - 0.471 0.525 0431 0.460 0.406 0.406
BERTRL 0.662 0.673 0.618 0.667 0.648 0.693 0.765 0.777 0.526 0.565 0.736 0.744
KRST 0.871 0.882 0.696 0.701 0.743 0.781 0.886 0.878 0.679 0.680 0.745 0.738
Raker 0.810 0.850 0.670 0.728 0.673 0.757 0.892 0.917 0.637 0.687 0.750 0.783
Raker* 0.877 0.887 0.731 0.736 0.718 0.751 0.891 0.910 0.701 0.723 0.662 0.727
RuleN 0.548 0.605 0.374 0.508 0.365 0.501 0.649 0.737 0.207 0.344 0.282 0.418
GRAIL 0.489 0.633 0.267 0.352 0.198 0.342 0.516 0.769 0.273 0.351 0.295 0.298

MINERVA 0.106 0.248 0.170 0.324 0.152 0.284 - - - - - -

TuckER 0320 0415 0407 0.529 0.392 0.520 - - - - - -
Hit@l KG-BERT - - - - - - 0.364 0.404 0.288 0.317 0.236 0.236
BERTRL 0.621 0.637 0.517 0.583 0.526 0.582 0.713 0.731 0.441 0.493 0.622 0.628
KRST 0.790 0.810 0.611 0.602 0.628 0.678 0.811 0.793 0.537 0.524 0.637 0.629
Raker 0.745 0.783 0.590 0.629 0.545 0.657 0.835 0.864 0.531 0.578 0.641 0.683
Raker* 0.815 0.823 0.621 0.632 0.589 0.637 0.819 0.850 0.566 0.593 0.505 0.598

Table 4: Results of unseen relation prediction.

Method 50 relations 100 relations
KG-BERT - .
BERTRL 0.580 0.612

MRR  kRsT 0.660 0.692
Raker 0.714 0.769
KG-BERT 0.266 0.450

i@ BERTRL 0.534 0.585

! KRST 0.551 0.560
Raker 0.619 0.668

creases dramatically, which indicates the effective-
ness and necessity of the two components.

Table 5: Results of ablation studies on FB15k-237-
inductive dataset.

Method MRR Hit@1
w/o Relation-aware reasoning neighbors 0.720  0.643
w/o Relation-specific soft prompts 0.746  0.646
Raker 0.817 0.729

5 Conclusion

In this work, we propose the relation-aware knowl-
edge reasoning model Raker for inductive relation
prediction, and adaptively extract reasoning infor-
mation to address the issue of no-connection be-
tween entities. Raker introduces the relation-aware

reasoning neighbors extraction method to effec-
tively identify those neighbors that are helpful for
target relation prediction, and designs a relation-
specific soft prompting method to learn compre-
hensive representation for the target relation. Ac-
cording to the experiment results under different
settings, Raker largely outperforms the baseline
methods in both inductive relation prediction and
transductive relation prediction, and also achieves
good performance for few-shot setting and unseen
relation prediction.

Limitations

Although Raker can well address the issue of no-
path between entities and largely outperforms base-
line methods, it still has two limitations. First,
Raker extracts paths and neighbors for each triple,
and could be of high computational complexity if
applied to predict missing entities. Second, reason-
ing paths and neighbors are used alternatively in
Raker, and better integration methods are expected
to take their advantage while avoiding redundancy.
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A

Implementation of Relation-aware
Reasoning Neighbors Extraction

Algorithm 1 provides the implementation details of
the relation-aware reasoning neighbors extraction
method.

Algorithm 1 Relation-aware Reasoning Neighbors
Extraction

Input: KG G, target triple (h,,t), and o

Output:

Relation-aware reasoning neigh-

bors

1:

Get R and E!, initialize RF' and RI" as
list()
Calculate F' as Eq. (1)
for h € E do
for r; € F[h] do
/I len(F'[e][r;]) denotes numbers of enti-
ties has relation r;
finv = log(len(F)/len(F [e][r:]))
p(ri ‘ T)‘l_:f;t X finv
end for
end for
for ; € R do
Calculate score p (r | r;) as Eq. (2)
ifp(r | ) >= o then
R™ .append(r;)
end if

: end for

: Repeat step 3-15 for calculating RT

. Calculate R" and R as Eq. (5)

. if R" is not empty and R’ is not empty then

return RN as Eq. (6)

. else

return empty list()

. end if
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