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ABSTRACT

In recent years, contrastive learning has achieved the performance that is compara-
ble to supervised learning in representation learning. However, the transferability
of different contrastive learning methods to downstream tasks often varies greatly.
In this paper, we study the downstream generalization ability of two contrastive
learning methods: SimCLR and Spectral Contrastive Learning (Spectral CL). We
find that beyond class-wise features, contrastive learning also learns two types
of features, which we call shared features and subclass features, which play an
important role in model transferability. SimCLR learns more shared and subclass
features than Spectral CL, resulting in better transferability. We theoretically and
experimentally reveal the mechanism by which SimCLR can learn more diverse
features than Spectral CL. Therefore, we propose a method called High-pass Spec-
tral CL to improve the transferability and generalization of Spectral CL, which
achieves better performance than SimCLR and Spectral CL.

1 INTRODUCTION

Figure 1: Comparison of SimCLR and
Spectral CL on CIFAR-10. (a) Linear ac-
curacies on pretraining and transferring
datasets. (b) Singular value spectrum of
the embedding space.

In recent years, contrastive learning is rapidly devel-
oped, achieving comparable performance to supervised
learning in pre-training (Chen et al., 2020; He et al.,
2020). Various contrastive learning methods have been
proposed and have achieved similar linear evaluation
accuracy on ImageNet (Chen et al., 2020; He et al.,
2020; Wang et al., 2021; Zbontar et al., 2021; Dwibedi
et al., 2021). However, these methods often signifi-
cantly differ in their ability to generalize to different
downstream tasks.

This paper explores the differences in downstream gen-
eralization between two classical contrastive learning
methods, SimCLR (Chen et al., 2020) and Spectral Con-
trastive Learning (Spectral CL) (HaoChen et al., 2021).
We justify the reasons for choosing these two methods as follows: 1) the loss functions of SimCLR
and Spectral CL have similar forms and both have been studied theoretically, yet, their differences are
unknown experimentally; and 2) their training approach follows the simplest way without techniques
like momentum encoder (He et al., 2020) or predictor (Grill et al., 2020), facilitating our discussion
about the impact of loss on contrastive learning.

Through experiments, we find that although these two methods have similar linear evaluation accuracy
on the pretraining dataset, their transferability differs significantly, as shown in Figure 1(a). The
finding motivates us to explore the two methods more deeply to understand the impact of loss function
design on downstream generalization. By analyzing the eigen-spectrums of the embedding vectors
learned by these two methods, we find that the features learned by SimCLR are distributed in higher
dimensional subspaces compared to Spectral CL, as shown in Figure 1(b). Intuitively, this means that
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SimCLR learns more diverse features than Spectral CL, thus achieving better transferability. In this
paper, our goal is to understand the embedding space of contrastive learning and the impact of loss
function design on the embedding space of contrastive learning.

2 INVESTIGATING FEATURES LEARNED WITH CONTRASTIVE LOSSES

In this section, we categorize the features learned by contrastive learning into three types: 1) class-
wise features that correspond to class center vectors and reflect the clustering structure of the samples,
2) shared features that correspond to features common among different categories of samples, such
as color and pose and 3) subclass features that correspond to the information of subclasses within
each class. Our experiments show that class-wise features lead to good performance on pre-training
datasets for contrastive learning, but do not guarantee good downstream generalization. And the latter
two types of features are crucial for downstream generalization. We use toy models pretrained on
CIFAR-10 to illustrate our points in this section.

2.1 CLASS-WISE FEATURES REPRESENTED BY CLASS CENTERS

Table 1: Test classification accuracies (%)
for learned classifier and mean classifier
on CIFAR-10. Models are pretrained on
CIFAR-10.

Method Learned classifier Mean classifier

Spectral CL 86.15 82.97
SimCLR 88.56 86.05

In previous work (Arora et al., 2019; Wang et al., 2022),
for ease of theoretical analysis, they usually adopted
the mean classifier, which is defined below.

Definition 2.1 (Mean Classifier). Given the learned fea-
tures of training samples from class i, zi1, · · · , zini

, the
mean classifier uses the class center µi =

1
ni

∑ni

k=1 z
i
k

as the weight of the linear classifier W , i.e. W =
[µ1, ..., µc].

Here, we conduct the experiments with the mean clas-
sifier and the learned classifier on the embedding vectors learned by SimCLR and Spectral CL on
CIFAR-10. The results are shown in Table 1. The two classifiers achieve similar results on pretraining
dataset, which suggests that the features obtained by projecting the embedding onto a subspace
Uc of rank 10 spanned by the class centers are able to perform the linear classification well on the
pretraining dataset. However, from Figure 1(b), we can see that both SimCLR and Spectral CL
have embedding space with a rank higher than 10, suggesting that both methods extract many other
features except classwise features. In the next section, we will focus on analyzing what additional
features beyond the 10 class centers of CIFAR-10 that contrastive learning has learned.

2.2 BEYOND SEPARATION: SHARED AND SUBCLASS FEATURES

In this section, we investigate features in the orthogonal complementary space of Uc denoted as U⊥
c .

We classify these features into two categories: shared features and subclass features. To extract the
shared features and the subclass features, we resort to the concept of principal angles and vectors,
which are the generalization of the concept of ”angle” in three-dimensional space. In Appendix C, we
provide the concept and calculation of principal angles and vectors (Björck & Golub, 1973) in detail.

Here we study the distribution of embedding vectors learned by contrastive learning on U⊥
c . And we

denote the projection operator onto a subspace V as PV (·). Given the embedding vector z, we project
z onto U⊥

c and denote the projection as p = PU⊥
c
(z). To study the shared features and subclass

features of class i, we calculate the principal angles and vectors between the subspace spanned by the
projections p from class i and the subspace spanned by the projections p from other classes. See the
implementation details in Appendix C.

Shared Features. In Figure 2(a), we can observe that most of the principal angles between the
subspaces are concentrated around 0 degrees. The corresponding principal vectors are referred as to
shared features since the embedding spaces from different classes are parallel in these directions. In
Figure 2(c), we can see that these features often correspond to features shared between classes such
as color and pose information.

Subclass Features. In addition to shared features, there is also a portion of principal angles that
are close to 90 degrees (Figure 2(a)). The corresponding principal vectors are denoted as subclass
features since only one class significantly distributes in this direction, while the embedding spaces of
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Figure 2: Experiment on the principal angles and vectors. (a) shows the principal angles of SimCLR
and Spectral CL. (b) and (c) respectively visualize an instance of subclass and shared features
of SimCLR. The values over images depict the projection length on the feature direction. For the
subclass (shared) feature, we visualize 4 (8) samples with minimum and maximum values respectively.
In (b), the subclass feature is unique to the airplane class, distinguishing between fighters and airliners.
In (c), the shared feature reflects the shade of the animal’s color.

other classes are vertical to this direction. In Figure 2(b), we can see that these features correspond to
subclass information.

Comparison between SimCLR and Spectral CL. Figure 2(a) indicates that SimCLR learns more
shared and subclass features compared to Spectral CL. This suggests that SimCLR learns more
diverse features than Spectral CL. We believe that this is the key reason for SimCLR’s superior
downstream generalization performance compared to Spectral CL, as verified in Appendix A.2.

3 PUSHING CONTRASTIVE LEARNING TO LEARN DIVERSE FEATURES

In this section, we theoretically explore the mechanism by which SimCLR learns higher dimensional
embedding than Spectral CL and propose a general method, High-pass Spectral Contrastive Learning
(HSCL), which indeed improves the generalization over the vanilla Spectral CL.

3.1 NOTATION AND FORMULATION

Data Generation. Following HaoChen et al. (2021), given a set of natural data X̄ = {x̄|x̄ ∈ Rd}, we
draw a natural example x̄ as distribution Pd(x̄). And then draw the positive pairs x, x+ from random
augmentation on x̄ with distribution A(·|x̄). We denote the collection of augmented views as X .
Considering the N samples in X as N nodes, we construct an augmentation graph G = (X , A) with
an adjacency matrix A. The edge weight Axx′ between x and x′ is defined as the joint probability
Axx′ = Ex̄A(x|x̄)A(x′|x̄). And we denotes the diagnol degree matrix as D = deg(A) ,i.e.,
Dxx = wx =

∑
x′ Axx′ .

Formulation. Here we formulate the contrastive loss into the expected form. Given the positive pair
(x, x+) generated by data augmentations, and independently sampled negative samples x′, we learn
an encoder f : Rd → Rm. We formulate the InfoNCE loss and spectral contrastive loss as follows:

Lnce = −Ex,x+ [f(x)⊤f(x+)] + Ex logEx′ [exp(f(x)⊤f(x′))],

Lsp = −Ex,x+ [f(x)⊤f(x+)] +
1

2
ExEx′ [(f(x)⊤f(x′))2].

(1)

And following previous work (Wang & Isola, 2020; Chen et al., 2021),we decompose the contrastive
loss Lcl into two parts, the alignment loss Lalign and the uniformity loss Lunif , i.e., Lcl = Lalign +

Lunif , where, Lalign = −Ex,x+ [f(x)⊤f(x+)], L(nce)
unif = Ex logEx′ [exp(f(x)⊤f(x′))], L(sp)

unif =
1
2ExEx′ [(f(x)⊤f(x′))2].

3.2 DYNAMICS OF SINGULAR VALUE SPECTRUM

In this section, we study the dynamics of the singular value spectrum of SimCLR and Spectral CL.
We first study the dynamics of embedding matrix F via gradient flow, where F ∈ Rm×N is an
embedding matrix where each column represents an embedding vector of samples. Here we borrow
the idea from Wang et al. (2023) and formalize the update of F as message passing schemes.
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Theorem 3.1 (Dynamics of Embedding Matrix). The embedding matrix F evolves by:

Ḟ = −(Galign +Gunif )

where Galign is the gradient of alignment loss and Gunif is the gradient of uniformity loss. And
we have Galign = −2FA, Gunif = 2FA′, where, A′ = A′

sp = DFTFD for Spectral CL and
A′ = A′

nce = (DD−1
expAexp +AexpD

−1
expD)/2 for SimCLR, where Aexp = D exp(FTF )D and

Dexp = deg(Aexp). Note that, log, exp are element-wise operations here.

Figure 3: The evolution of singular values
of embedding space during the training pro-
cess of SimCLR and Spectral CL.

More specifically, the dynamic of the singular value of
F obeys the following property (Jing et al., 2022).

Theorem 3.2 (Dynamics of Singular Value). With a
fixed Σ = A − A′, if Σ has negative eigenvalues, the
embedding matrix F has vanishing singular values.

Here, we record the evolution of singular values of
embedding space of SimCLR and Spectral CL during
the training in Figure 3. It can be seen that a large
portion of singular values of SimCLR rise during the
training process, while Spectral CL has only a few
singular values rising. This implies that A−A′

nce has
more positive eigenvalues than A−A′

sp, and explains
the better feature diversity of SimLCR than Spectral
CL after training (Figure 1(b)).

For ease of discussion, we make an assumption on the
alignment between matrix A and A′.

Assumption 3.3 (Eigenspace Alignment). We assume that A, A′
nce and A′

sp have the same
eigenspaces during the training, i.e., ∃V , s.t. A = V ΛdV

⊤, A′
nce = V ΛnceV

⊤ and A′
sp = V ΛspV

⊤,
where Λd, Λnce and Λsp are diagonal matrices consisting of eigenvalues λi

d, λi
nce and λi

sp.

The assumption is a natural consequence under the interpretation of contrastive learning as spectral
decomposition of the adjacency matrix A by HaoChen et al. (2021). Under Assumption 3.3, the
eigenvalues of A − A′ can be easily computed by λi

d − λi
a, where λi

a is the eigenvalue of A′. By
Theorem 3.1, to keep more singular values of embedding space growing, we need to make λi

d − λi
a

greater than zero. Actually, we verify that SimCLR achieves this by applying a high-pass filter
function on A′

sp to lower the eigenvalues λi
a in Appendix A.3.

3.3 PROPOSED METHOD: HIGH-PASS SPECTRAL CL

Inspired by the mechanism of SimCLR applying a high-pass filter on A′
sp, we propose a method

called High-pass Spectral CL (HSCL) to improve the performance of Spectral CL. We directly apply
a high-pass filter function on the uniformity term of spectral contrastive loss.

LHSCL =− Ex,x+ [f(x)⊤f(x+)

+
1

2
ExEx′ [(f(x)⊤f(x′))(Wf(x))⊤(Wf(x′))],

(2)

where W is a high-pass filter on eigenspace of embedding, i.e., W = Ug(Λ)U⊤ where U and Λ are
from the SVD decomposition on matrix FD = UΛV ⊤ and g(·) is a high-pass filter function. In
Appendix B.1, we show the pseudocode of our algorithm. We verify the effectiveness of our method
by experiment in Appendix B.3.

Here we show that applying a high-pass filter on the uniformity loss is equal to applying a high-pass
filter on A′

sp.

Theorem 3.4 (HSCL Applies a High-pass Filter on A′
sp). HSCL implicitly applies the high-pass

function on A′
sp, i.e., λi

HSCL = g(λi
sp)λ

i
sp, where g(·) is a high-pass filter function, and λi

HSCL is
the eigenvalue of A′

HSCL.
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4 RELATED WORK

Contrastive learning and understandings. Contrastive learning has achieved great success and
shown comparable performance to supervised learning in learning visual representation. A widely
adopted learning objective is the InfoNCE loss (Oord et al., 2018), with representative methods like
SimCLR (Chen et al., 2020) and MoCo (He et al., 2020). HaoChen et al. (2021) recently proposed a
new contrastive loss, named spectral contrastive loss, that also achieves comparable performance on
downstream data. Meanwhile, they draw a formal connection between this objective and a matrix
decomposition problem, based on which they establish guarantees on downstream data. Besides,
there are other works providing understanding for contrastive learning from the perspectives of
identifiability (Cui et al., 2022) and probabilistic framework (Du et al., 2022).

Dimensional collapse of contrastive learning. Dimensional collapse (Hua et al., 2021) is a
common phenomenon in contrastive methods, where the embedding only spans a low dimesional
subspace. Recent work (Jing et al., 2022) analyses the dynamics of contrastive learning and points
out that strong data augmentation and implicit regularization drives models toward low-rank solutions.
Some papers (Chen et al., 2022; Robinson et al., 2021; Wang & Liu, 2021) have also discussed
improving the robustness and transferability of contrastive learning by learning more diverse features.
Different from these works, we theoretically show that a simple high-pass filter can improve the
diversity of features learned by contrastive learning.

Features learned by contrastive learning. Chen et al. (2021) first study the phenomenon of feature
suppression, where features shared between different enhancement perspectives compete with each
other, such as “color distribution” and “object class”. Robinson et al. (2021) propose a method for
altering positive and negative samples in order to mitigate feature suppression and guide contrastive
models towards a wider variety of features. Zhao et al. (2023) investigate how to make contrastive
learning learn domain-invariant features for better transferability. In this paper, we experimentally
illustrate that SimCLR suffers less from feature suppression than Spectral CL and propose HSCL to
push contrastive learning to learn diverse features.

5 CONCLUSION

In this paper, we discuss the features learned by contrastive learning and the impact of these features on
downstream generalization. We show that in addition to class-wise features, contrastive learning also
learns shared features and subclass features. SimCLR achieves better downstream generalization and
transferability than Spectral CL by learning more shared features and subclass features. Meanwhile,
we theoretically reveal the mechanism that SimCLR achieves learning to more diverse features is to
apply a high-pass function on the matrix A′. We hope that our work could inspire more studies about
the design and interpretation of contrastive loss functions.
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A ADDITIONAL EXPERIMENT

A.1 VISUALIZATION OF SHARED FEATURES AND SUBCLASS FEATURES

Here we visualize shared features and subclass features of Spectral CL and SimCLR in Figure 4, 5, 6,
7.

Figure 4: Two instances of shared features of SimCLR trained on CIFAR-10.

Figure 5: Two instances of subclass features of SimCLR trained on CIFAR-10.
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Figure 6: Two instances of shared features of Spectral CL trained on CIFAR-10.

Figure 7: Two instances of subclass features of Spectral CL trained on CIFAR-10.

A.2 SHARED AND SUBCLASS FEATURES ARE CRUCIAL TO DOWNSTREAM TASKS

Models learned by self-supervised learning are often utilized as feature extractors to transfer to
other downstream tasks. In order to measure the generalization ability of the model, we transfer a
pre-trained model on CIFAR-10 to CIFAR-100. To demonstrate the impact of shared features and
subclass features on the generalization ability of the model, we project the extracted embedding
vectors onto subspaces spanned by different kinds of features and train a linear classifier on the
projected vectors to obtain classification accuracy.

Experimental results in Table 2 indicate that utilizing class centers demonstrate good classification
performance on the pre-training dataset CIFAR-10 and the enhancement in classification accuracy
derived from utilizing shared and subclass features is relatively modest. Conversely, when evaluated
on the transfer dataset CIFAR-100, the enhancement in classification accuracy derived from utilizing
shared and subclass features is substantial (with the exception of Spectral CL’s subclass features,
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Table 2: Linear classification accuracy on CIFAR-10 and CIFAR-100 after projecting embeddings
into different subspaces. Uc, Ub, Us respectively represent subspaces spanned by class centers,
subclass features, and shared features. The model is pretrained on CIFAR-10.

Method Subspace CIFAR-10 CIFAR-100

SimCLR
Uc (baseline) 86.73 17.58
Uc + Ub 87.41 (+0.68) 21.61 (+4.03)
Uc + Us 89.19 (+2.46) 31.74 (+14.16)

Spectral CL
Uc (baseline) 85.78 18.55
Uc + Ub 85.96 (+0.18) 18.91 (+0.36)
Uc + Us 86.37 (+0.59) 23.64 (+5.09)

which did not yield a considerable enhancement due to a dearth of subclass features). This suggests
that achieving good performance on a pre-training dataset does not ensure good transferability to
downstream tasks. Incorporating a more diverse set of features, comprising both shared and subclass
features can augment the model’s generalization capability.

A.3 SIMCLR APPLIES A HIGH-PASS FILTER ON A′
sp

Figure 8: Spectral filter function g(λi
sp) = λi

nce/λ
i
sp. A′

nce and A′
sp are computed on the embeddings

learned by SimCLR on CIFAR-10.

As discussed in Section 3.2, SimCLR has more singular values rising than Spectral CL, which
suggests that A− A′

nce has more positive eigenvalues than A− A′
sp. Here we experimently show

that SimCLR applys a high-pass filter on A′
sp, i.e., g(λi

sp) = λi
nce/λ

i
sp is a high-pass spectral filter.

For clarity, we state the definition of spectral filter below.
Definition A.1 (Spectral Filter). A spectral filter process G of a signal f is to apply a scalar function
(i.e. a spectral filter) g : R → R element-wisely on its eigenvalues in its spectral domain, i.e.,
ux = Gf(x) = V g(Λ)V ⊤f(x), where G = V g(Λ)V ⊤ is also called a spectral convolution operator.
A filter can be categorized as low-pass or high-pass. Generally speaking, a high-pass filter will
lower the large eigenvalues and amplify small eigenvalues, i.e., a high-pass filter is a monotonically
decreasing function, while a low-pass filter does the opposite.

SimCLR Applys a High-pass Filter on A′
sp. To show how SimCLR keeps the singular values

growing, we investigate the spectral filter g(λi
sp) = λi

nce/λ
i
sp. From Figure 8, we can see that the

filter function lowers the higher eigenvalues such that SimCLR can keep λi
d − λi

a > 0 for a large
portion of eigenvalues.

B EXPERIMENT

B.1 ALGORITHM

Here we show the pseudocode of HSCL in Algorithm 1.
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Algorithm 1 Pseudocode of HSCL
Require: batch size N , structure of encoder network f , filter function g
for sampled minibatch {x̄i}Ni=1 do

for i ∈ {1, · · · , N} do
draw two augmentations xi = aug(x̄i) and x′

i = aug(x̄′
i)

compute zi = f(xi) and z′i = f(x′
i).

end for
compute matrix B =

∑N
i=1 (ziz

⊤
i + z′iz

′⊤
i ).

Apply eigen-decomposition B = V SV ⊤.
Compute filter matrix W = V g(S1/2)V ⊤.
Compute loss L = − 2

N

∑N
i=1 z

⊤
i z′i +

1
N(N−1)

∑
i ̸=j(z

⊤
i z′j)((Wzi)

⊤(Wz′j)).
update f to minimize L.

end for

B.2 IMPLEMENTATION DETAILS

Pretraining. We pretrain the model on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). For
the backbone network, we use the CIFAR variant of ResNet18 (He et al., 2016). For the projection
head, we use a 2-layer MLP with output dimensions 128 with ReLU. We train the model with SGD
with momentum 0.9 and weight decay 1× 10−5. The learning rate starts at 0.3 with linear warmup
for the first 10 epochs and decreases to 0 with cosine decay schedule. We train for 1000 epochs with
batch size 256. For HSCL, we choose variants with three different high-pass filter functions for our
experiments: g(λ) = λ−0.1, g(λ) = λ−0.3 and g(λ) = λ−0.5.

Linear Evaluation. We train a linear classifier on the embedding vectors using SGD with momen-
tum 0.9 and batch size 64 for 100 epochs. We run the experiments with learning rate starting from 1,
0.1, 0.01 and decayed by 10× at the 60th and 80th epochs. We report the best linear accuracy.

Transfer Learning. To evaluate the transferability of the models, we transfer models pretrained on
CIFAR-10 to CIFAR-100 by training a linear classifier on the embedding vectors. The settings for
training the linear classifier are the same as in linear evaluation.

B.3 RESULTS

HSCL Learns Higher Dimensional Features. We compute the singular value spectrum of the
embedding space learned by HSCL on CIFAR-10. From Figure 9, it can be seen that HSCL learns a
higher dimensional representation than Spectral CL.
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Figure 9: Singular value spectrums of the embedding spaces learned on CIFAR-10. Obviously, HSCL
has higher dimensional embedding spaces than Spectral CL.

HSCL Achieves Better Generalization. We report the accuracy on CIFAR-10/100 in Table 3. The
experiment results show that the embeddings learned by HSCL achieve better performance than
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Table 3: Accuracies of linear classifiers trained on embeddings learned with different methods on
pretraining datasets CIFAR-10 and CIFAR-100.

Method CIFAR-10 CIFAR-100

Spectral CL 86.07 47.76
SimCLR 88.84 56.77

HSCL (g(λ) = λ−0.1) 88.46 53.10
HSCL (g(λ) = λ−0.3) 90.56 59.83
HSCL (g(λ) = λ−0.5) 90.42 61.91

Table 4: Accuracies of transferring models pretrained on CIFAR-10 to CIFAR-100.

Method CIFAR-100

Spectral CL 20.30
SimCLR 28.22

HSCL (g(λ) = λ−0.1) 24.56
HSCL (g(λ) = λ−0.3) 33.85
HSCL (g(λ) = λ−0.5) 36.84

SimCLR and Spectral CL. In Table 4, we report the accuracy of transferring the model pretraining on
CIFAR-10 to CIFAR-100, and show that our algorithm has better transferability than SimCLR and
Spectral CL.

C IMPLEMENTATION DETAILS ABOUT SHARED FEATURES AND SUBCLASS
FEATURES.

C.1 PRINCIPLE ANGLES AND VECTORS

Here we provide the concept of principle angles and vectors (Björck & Golub, 1973).
Definition C.1 (Principal angles and vectors). Consider two subspaces X ,Y in the n-dimentional
eucledian space Rn of dimensions p and d, respectively. The m = min(p, q) principal angles
0 ≤ θ1 ≤ θ2 ≤ ... ≤ θm ≤ π/2 between these subspaces, and their corresponding principal vectors,
are defined recursively by

cos(θk) = max
x∈X,y∈Y

|x⊺y| = |x⊺
kyk|

subject to
∥x∥ = ∥y∥ = 1, x⊺xi = 0, y⊺yi = 0, i = 1, ..., k − 1

The vectors {x1, ..., xm} and {y1, ..., ym} are the principal vectors.

And we calculate principal angles and vectors basing on the following theorem (Björck & Golub,
1973).
Theorem C.2 (Computation of Principal Angles and Vectors). Let the columns of matrices X ∈ Rn×p

and Y ∈ Rn×q form orthonormal bases for the subspaces X and Y , correspondingly. Let the SVD of
X⊤Y be UΣV ⊤, where U and V are unitary matrices and Sigma is a p× q diagonal matrix with
diagonal elements s1(X⊤Y ),...,sm(X⊤Y ) in nonincreasing order with m = min(p, q). Then

cos(θk) = sk(X
⊤Y )

where θk denotes the k-th principal angle between X and Y . And the princpal vectors associated
with this pair of subspaces are given by the first m columns of XU and Y V , correspondingly.

C.2 SEPARATION OF SHARED FEATURES AND SUBCLASS FEATURES.

Here we show the implementation details about the separation of shared features and subclass features.
To get the shared features and subclass features of class i, we first collect the projection belonging to
class i, Pi = [pi1, ..., p

i
ni
], and the projection belonging to other classes, P̄i = ∪j ̸=iPj . We denote

the subspace spanned by vectors in Pi as Vi and the subspace spanned by vectors in P̄i as V̄i.

11
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Following Theorem C.2, we first calculate the orthonormal bases for the subspaces Vi and V̄i. We
show the calculation process here as an example for bases of Vi. Apply SVD decomposition on Pi,
and get Pi = UΛV T , where the diagonal elements of Λ are λ1,...,λd in descending order. We select

the first m column of U as the bases for Vi, where m = min{k|
∑k

j=1 λ2
j∑d

j=1 λ2
j

> 0.995}. The process of

calculating the bases for V̄i is the same.

Then follow Theorem C.2, we can compute the principal angles and vectors between Vi and V̄i.

D OMITTED PROOFS

In this section, we present proofs for all theorems in the main paper.

D.1 PROOF OF THEOREM 3.1

First, we reformulate the alignment loss and the uniformity loss into matrix form:

Lalign = −Tr(FAFT )

L(sp)
unif =

1

2
∥D1/2FTFD1/2∥2F

L(nce)
unif = Tr(D log(deg(exp(FTF )D))).

(3)

Then we derive the gradient of the alignment loss and the uniformity loss.

The gradient of Lalign:

∂Lalign

∂F
= −∂Tr(FAF⊤)

∂F

= −(FA⊤ + FA)

= −2FA

The gradient of L(sp)
unif :

∂L(sp)
unif

∂F
= −

∂ 1
2∥D

1/2FTFD1/2∥2F
∂F

= 2F (DF⊤FD)

The gradient of L(nce)
unif on f(x):

∂L(HSCL)
unif

∂f(x)
=

∂
∑

x wx log
∑

x′ wx′ [exp(f(x)⊤f(x′))]

∂f(x)

=
∑
x′

(wx′
wx exp(f(x

′)T f(x))∑
i wxi

exp(f(x′)T f(xi))
+ wx

wx′ exp(f(x)T f(x′))∑
j wxj

exp(f(x)T f(xj))
)f(x′)

In matrix, we have
∂L(HSCL)

unif

∂F = 2FA′
nce.

D.2 PROOF OF THEOREM 3.2

Proof. Here we follow the proof in Jing et al. (2022). According to Theorem 3.1, we have

d

dt
F = 2FΣ

For a fixed Σ, we solve this equation analyically,

F (t) = F (0) exp(2Σt)

12
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Apply eigen-decomposition on Σ, Σ = UΛU⊤. Therefore,

F (t) = F (0)U exp(2Λt)U⊤

When Σ has negative eigenvalues, i.e., Λ has negative terms, we have for t → ∞, exp(2Λt) is
rank deficient. Therefore, we know that F (∞) is also rank deficient, the embedding matrix F has
vanishing singular values.

D.3 PROOF OF THEOREM 3.4

The gradient of L(HSCL)
unif on f(x):

∂L(HSCL)
unif

∂f(x)
=

1

2

∂ExEx′ [(f(x)⊤f(x′))(Wf(x))⊤(Wf(x′))]

∂f(x)

=
1

2

∂
∑

x wx

∑
x′ wx′(f(x)⊤f(x′))(Wf(x))⊤(Wf(x′))

∂f(x)

= 2
∑
x′

(f(x)⊤W⊤Wf(x′))f(x′)

In matrix,

∂L(HSCL)
unif

∂F
= 2F (DF⊤(W⊤W )FD)

So A′
HSCL = DF⊤(W⊤W )FD. Note that FD = UΛV T and W = Ug(Λ)U⊤, we have,

A′
HSCL = V ΛU⊤(Ug(Λ)2U⊤)UΛV ⊤

= V Λ2g(Λ)2V ⊤

Note that, A′
sp = V ΛU⊤UΛV ⊤ = V Λ2V ⊤. So we have

λi
HSCL = λi

spg
′(λi

sp)

where g′(·) is a high-pass filter function defined as g′(λi
sp) = (g(Λ)i)

2.
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