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Abstract
Lexically constrained neural machine transla-001
tion (NMT) draws much industrial attention for002
its practical usage in specific domains. How-003
ever, current autoregressive approaches suffer004
from high latency. In this paper, we focus005
on non-autoregressive translation (NAT) for006
this problem for its efficiency advantage. We007
identify that current constrained NAT models,008
which are based on iterative editing, do not009
handle low-frequency constraints well. To this010
end, we propose a plug-in algorithm for this011
line of work, i.e., Aligned Constrained Training012
(ACT), which alleviates this problem by famil-013
iarizing the model with the source-side context014
of the constraints. Experiments on the gen-015
eral and domain datasets show that our model016
improves over the backbone constrained NAT017
model in constraint preservation and translation018
quality, especially for rare constraints.1019

1 Introduction020

Despite the success of neural machine translation021

(NMT) (Bahdanau et al., 2015; Vaswani et al.,022

2017; Barrault et al., 2020), real applications usu-023

ally require the precise (if not exact) translation of024

specific terms. One popular solution is to incor-025

porate dictionaries of pre-defined terminologies as026

lexical constraints to ensure the correct translation027

of terms, which has been demonstrated to be ef-028

fective in many areas such as domain adaptation,029

interactive translation, etc.030

Previous methods on lexically constrained031

translation are mainly built upon Autoregressive032

Translation (AT) models, imposing constraints at033

inference-time (Ture et al., 2012; Hokamp and Liu,034

2017; Post and Vilar, 2018) or training-time (Lu-035

ong et al., 2015; Ailem et al., 2021). However, such036

methods either are time-consuming in real-time ap-037

plications or do not ensure the appearance of con-038

straints in the output. To develop faster MT mod-039

els for industrial applications, Non-Autoregressive040

1Code will be released upon publication.

Source
Travellers︸ ︷︷ ︸

1.8K

screamed︸ ︷︷ ︸
24

and︸︷︷︸
2.8M

children︸ ︷︷ ︸
30.0K

cried︸ ︷︷ ︸
122

.

Target
Reisende︸ ︷︷ ︸

944

htten︸ ︷︷ ︸
9.9K

geschrien︸ ︷︷ ︸
13

und︸︷︷︸
2.6M

Kinder︸ ︷︷ ︸
20.1K

geweint︸ ︷︷ ︸
13

.

Terminology Constraints
scream → geschrien
Unconstrained translation
Reisende schrien und Kinder rieen. ⇒ wrong term
Soft constrained translation
Reisende rien. ⇒ incomplete sentence & wrong term
Hard constrained translation
Reisende geschrien. ⇒ incomplete sentence

Table 1: Translation examples of a lexically constrained
non-autoregressive translation (NAT) model (Gu et al.,
2019) under a low-frequency word as constraint. The
underbraced word frequencies (uncased) are calculated
from the vast WMT14 English-German translation (En-
De) datasets (Vaswani et al., 2017).

Translation (NAT) has been put forth (Gu et al., 041

2018; Ghazvininejad et al., 2019; Gu et al., 2019; 042

Qian et al., 2021), which aims to generate tokens 043

in parallel, boosting inference efficiency compared 044

with left-to-right autoregressive decoding. 045

Researches on lexically constrained NAT are rel- 046

atively under-explored. Recent studies (Susanto 047

et al., 2020; Xu and Carpuat, 2021) impose lexical 048

constraints at inference time upon editing-based 049

iterative NAT models, where constraint tokens are 050

set as the initial sequence for further editing. How- 051

ever, such methods are vulnerable when encoun- 052

tered with low-frequency words as constraints. As 053

illustrated in Table 1, when translated with a rare 054

constraint, the model is unable to generate the cor- 055

rect context of the term “geschrien” as if it does 056

not understand the constraint at all. It is dangerous 057

since terms in specific domains are usually low- 058

frequency words. We argue that the main reasons 059

behind this problem are 1) the inconsistency be- 060

tween training and constrained inference and 2) the 061

unawareness of the source-side context of the con- 062

straints. 063
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To solve this problem, we build our algorithm064

based on the idea that the context of a rare con-065

straint tends not to be rare as well, i.e., “a stranger’s066

neighbors are not necessarily strangers”, as demon-067

strated in Table 1. We believe that, when the con-068

straint is aligned to the source text, the context of069

its source-side counterpart can be utilized to be070

translated into the context of the target-side con-071

straint, even if the constraint itself is rare. Also,072

when enforced to learn to preserve designated con-073

straints at training-time, a model should be better074

at coping with constraints during inference-time.075

Driven by these motivations, we propose a plug-076

in algorithm to improve constrained NAT, namely077

Aligned Constrained Training (ACT). ACT ex-078

tends the family of editing-based iterative NAT (Gu079

et al., 2019; Susanto et al., 2020; Xu and Carpuat,080

2021), the current paradigm of constrained NAT.081

Specifically, ACT is composed of two major com-082

ponents: Constrained Training and Alignment083

Prompting. The former extends regular training of084

iterative NAT with pseudo training-time constraints085

into the state transition of imitation learning. The086

latter incorporates source alignment information of087

constraints into training and inference, indicating088

the context of the potentially rare terms.089

In summary, this work makes the following con-090

tributions: 1) We identify and analyse the problems091

w.r.t. rare lexical constraints in current constrained092

NAT methods; 2) We propose a plug-in algorithm093

for current constrained NAT models, i.e., aligned094

constrained training, to improve the translation un-095

der rare constraints; 3) Experiments show that our096

approach improves the backbone model w.r.t. con-097

straint preservation and translation quality, espe-098

cially for rare constraints.099

2 Related Work100

Lexically Constrained Translation Existing101

translation methods impose lexical constraints dur-102

ing either inference or training. At training time,103

constrained MT models include code-switching104

data augmentation (Dinu et al., 2019; Song et al.,105

2019; Chen et al., 2020) and training with auxiliary106

tasks such as token or span-level mask-prediction107

(Ailem et al., 2021; Lee et al., 2021). At infer-108

ence time, autoregressive constrained decoding al-109

gorithms include utilizing placeholder tag (Luong110

et al., 2015; Crego et al., 2016), grid beam search111

(Hokamp and Liu, 2017; Post and Vilar, 2018)112

and alignment-enhanced decoding (Alkhouli et al.,113

2018; Song et al., 2020; Chen et al., 2021). For 114

the purpose of efficiency, recent studies also fo- 115

cus on non-autoregressive constrained translation. 116

Susanto et al. (2020) proposes to modify the infer- 117

ence procedure of Levenshtein Transformer (Gu 118

et al., 2019) where they disallow the deletion of 119

constraint words during iterative editing. Xu and 120

Carpuat (2021) further develops this idea and in- 121

troduces a reposition operation that can reorder the 122

constraint tokens. Our work absorbs the idea of 123

both lines of work. Based on NAT methods, we 124

brings alignment information by terminologies to 125

help learn the contextual information for lexical 126

constraints, especially the rare ones. 127

Non-Autoregressive Translation Although en- 128

joy the speed advantage, NAT models suffer from 129

performance degradation due to the multi-modality 130

problem, i.e., generating text when multiple trans- 131

lations are plausible. Gu et al. (2018) applies 132

sequence-level knowledge distillation (KD) (Kim 133

and Rush, 2016) that uses an AT’s output as an 134

NAT’s new target, which reduces word diversity 135

and reordering complexity in reference, resulting 136

in fewer modes (Zhou et al., 2020; Xu et al., 2021). 137

Various algorithms have also been proposed to alle- 138

viate this problem, including incorporating latent 139

variables (Kaiser et al., 2018; Shu et al., 2020), 140

iterative refinement (Ghazvininejad et al., 2019; 141

Stern et al., 2019; Gu et al., 2019; Guo et al., 142

2020), advanced training objective (Wang et al., 143

2019; Du et al., 2021) and gradually learning target- 144

side word inter-dependency by curriculum learning 145

(Qian et al., 2021). Our work extends the family 146

of editing-based iterative NAT models for its flexi- 147

bility to impose lexical constraints (Susanto et al., 148

2020; Xu and Carpuat, 2021). 149

3 Background 150

3.1 Non-Autoregressive Translation 151

Given a source sentence as x and a target sentence 152

as y = {y1, · · · , yn}, an AT model generates in a 153

left-to-right order, i.e., generating yt by condition- 154

ing on x and y<t. An NAT model (Gu et al., 2018), 155

however, discards the word inter-dependency in 156

output tokens, with the conditional independent 157

probability distribution modeled as: 158

P (y|x) =
n∏

t=1

P (yt|x). (1) 159

Such factorization is featured with high effi- 160
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Action Implementation

Insertion Placeholder Classifier: predicts the number
of tokens (0 ∼ Kmax) to be inserted at every
consecutive position pairs and then inserts
the corresponding number of [PLH].
Token Classifier: predicts the actual target
token of the [PLH].

Deletion Deletion Classifier: predicts whether each
token (except for the boundaries) should be
“kept” or “deleted”.

Table 2: The implementation of insertion and deletion.

ciency at the cost of performance drop in trans-161

lation tasks due to the multi-modality problem, i.e.,162

translating in mixed modes and resulting in token163

repetition, missing, or incoherence.164

3.2 Editing-based Iterative NAT165

For NATs, iterative refinement by editing is an NAT166

paradigm that suits constrained translations due167

to its flexibility. It alleviates the multi-modality168

problem by being autoregressive in editing previ-169

ously generated sequences while maintaining non-170

autoregressiveness within each iteration. Thus, it171

achieves better performance than fully NATs while172

is faster than ATs.173

Levenshtein Transformer To better illustrate174

our idea, we use Levenshtein Transformer (LevT,175

Gu et al., 2019) as the backbone model in this work,176

which is a representative model for constrained177

NAT based on iterative editing.178

LevT is based on the Transformer architecture179

(Vaswani et al., 2017), but more flexible and fast180

than autoregressive ones. It models the generation181

of sentences as Markov Decision Process (MDP)182

defined by a tuple (Y,A, E ,R,y0). At each decod-183

ing iteration, the agent E receives an input y ∈ Y ,184

chooses an action a ∈ A and gets reward r. Y is a185

set of discrete sentences and R is the reward func-186

tion. y0 ∈ A is the initial sentence to be edited.187

Each iteration consists of two basic operations,188

i.e., deletion and insertion, which is described in189

Table 2. For the k-th iteration of the sentence yk =190

(<s>, y1, ..., yn,</s>), the insertion consists of191

placeholder and token classifiers, and the deletion192

is achieved by a deletion classifier. LevT trains the193

model with imitation learning to insert and delete,194

which lets the agent imitate the behaviors drawn195

from the expert policy:196

• Learning to insert: edit to reference by insert-197

ing tokens from a fragmented sentence (e.g.,198

random deletion of reference).199

[0%,10%)
[10%,30%)

[30%,50%)
[50%,70%)

[70%,90%)
[90%,100%]

Frequency buckets of self-constraints

27.2

27.4

27.6

27.8

28.0

28.2

28.4

28.6

28.8

BL
EU

LevT (no)
LevT (soft)
LevT (hard)

Figure 1: Ablation study of self-constrained translation
on WMT14 En→De test set with Wiktionary terminol-
ogy constraints (Dinu et al., 2019).

• Learning to delete: delete from the insertion 200

result of the current training status to the ref- 201

erence. 202

The key idea is to learn how to edit from a ground 203

truth after adding noise or the output of an adver- 204

sary policy to the reference. The ground truth of 205

the editing process is derived from the Levenshtein 206

distance (Levenshtein, 1965). 207

Lexically Constrained Inference Lexical con- 208

straints can be imposed upon a translation model 209

in: 1) soft constraints: allowing the constraints not 210

to appear in the translation; and 2) hard constraints: 211

forcing the constraints to appear in the translation. 212

In NAT, the constraints are generally incorporated 213

at inference time. Susanto et al. (2020) injects con- 214

straints as the initial sequence for iterative editing 215

in Levenshtein Transformer (LevT, Gu et al., 2019), 216

achieving soft constrained translation. And hard 217

constrained translation can be easily done by dis- 218

allowing the deletion of the constraints. Xu and 219

Carpuat (2021) alters the deletion action in LevT 220

with the reposition operation, allowing the reorder- 221

ing of multiple constraints. 222

3.3 Motivating Study: Self-Constrained 223

Translation 224

According to Table 1, constrained NAT models 225

seem to suffer from the low-frequency of lexical 226

constraints, which is dangerous as most terms in 227

practice are rare. To further explore the impact 228

of constraint frequency upon NATs, we conduct a 229

preliminary analysis on constrained LevT (Susanto 230

et al., 2020). We sort words in each reference text 231

based on frequency, dividing them into six buckets 232

by frequency order (as in Figure 1), and sample a 233

word from each bucket as lexical constraints for 234
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translation. We denote these constraints as self-235

constraints. In this way, we have six times the data,236

and the six samples derived from one raw sample237

only differ in the lexical constraints.238

As shown in Figure 1, translation performance239

generally keeps improving as the self-constraint240

gets rarer. This is because setting low-frequency241

words in a sentence as constraints, which are often242

hard to translate, actually lightens the load of an243

NAT model. However, there are two noticeable per-244

formance drops around relative frequency ranges245

of 10%-30% and 90%-100%, denoted as Drop#1246

(-0.3 BLEU) and Drop#2 (-0.6 BLEU). Drop#1247

is probably because the constraint words within248

this range are mostly functional or less important.249

Such words are not as universal as ones at the left-250

most that can fit in most contexts and do not have251

to appear in the target due to multiple modes in252

translation.253

However, we are more interested in the reasons254

for Drop#2 when constraints are low-frequency255

words. We assume a trade-off in self-constrained256

NAT: the model does not have to translate rare257

words as they are set as an initial sequence (con-258

straints), but it will have a hard time understand-259

ing the context of the rare constraint due to 1) the260

rareness itself and 2) the lack of the alignment261

information between target-side constraint tokens262

and source tokens. Thus, the model does not know263

how many tokens should be inserted to the left and264

right of the constraint, which is consistent with the265

findings in Table 1.266

4 Proposed Approach267

The findings and assumptions discussed above mo-268

tivate us to propose a plug-in algorithm for lexically269

constrained NAT models, i.e., Aligned Constrained270

Training (ACT). ACT is designed based on two271

major ideas: 1) Constrained Training: bridging the272

discrepancy between training and constrained infer-273

ence; 2) Alignment Prompting: helping the model274

understand the context of the constraints.275

4.1 Constrained Training276

As introduced in §3.2, constraints are typically im-277

posed during inference time in NAT (Susanto et al.,278

2020; Xu and Carpuat, 2021). Specifically, lexical279

constraints are imposed by setting the initial se-280

quence y0 as (<S>, C1, C2, ..., Ck,</S>), where281

Ci = (c1, c2, ..., cl) is the i-th lexical constrained282

word, l is the number of tokens in the i-th con-283

straint, and k is the number of constraints. 284

However, such mandatory preservation of the 285

constraints is not carried out during training. Dur- 286

ing imitation learning, random deletion is applied 287

for ground-truth y∗ to get the incomplete sentences 288

y′, producing the data samples for expert policies 289

of how to insert from y′ to y∗. This leads to a sit- 290

uation where the model does not learn to preserve 291

fixed tokens and organize the translation around 292

the tokens. Such discrepancy could harm the appli- 293

cations of soft constrained translation. 294

To solve this problem, we propose a simple but 295

effective Constrained Training (CT) algorithm. We 296

first build pseudo terms from the target by sampling 297

0-3 words from reference as the pre-defined con- 298

straints for training.2 Afterward, we disallow the 299

deletion of pseudo term tokens during building data 300

samples for imitation learning. This encourages the 301

model to edit incomplete sentences containing lex- 302

ical constraints into complete ones, bridging the 303

gap between training and inference. 304

4.2 Alignment Prompting 305

As stated in §3.3, we assume the rareness of con- 306

straints hinders the model to insert proper tokens 307

of its contexts (i.e., a stranger’s neighbors are also 308

strangers). To make the matter worse, previous 309

research (Ding et al., 2021) has also shown that 310

lexical choice errors on low-frequency words tend 311

to be propagated from the teacher (an AT model) 312

to the student (an NAT model) in knowledge distil- 313

lation. 314

However, terminologies, by nature, provide hard 315

alignment information for source and target which 316

the model can conveniently utilize. Thus, on top 317

of constrained training, we propose an enhanced 318

approach named Aligned Constrained Training 319

(ACT). We propose to directly align the target-side 320

constraints with the source words and prompt the 321

alignment information to the model during both 322

training and inference. 323

Building Alignment for Constraints We first 324

align the source words to the target-side con- 325

straints, which are either pseudo constraints dur- 326

ing training or actual constraints during infer- 327

ence. For each translated sentence constraints 328

Ctgt = (C1, C2, ..., Ck), we use an external align- 329

ment tool external aligner, such as GIZA++ (Brown 330

2In the experiments, these pseudo constraints are sampled
based on TF-IDF score to mimic the rare but important termi-
nology constraints in practice.
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Dataset # Sent. Avg. Len. Avg. Con.
(test set) of Con. Freq.

WMT14-WIKT 454 1.15 25,724.73
WMT17-IATE 414 1.09 3,685.42
WMT17-WIKT 728 1.22 26,252.70
OPUS-EMEA 2,996 1.95 2,187.63
OPUS-JRC 2,984 1.99 3,725.71

Table 3: Statistics of the test sets with target-side lexical
constraints. “Avg. Len. of Con.” denotes the average
number of words in a constraint. “Avg. Con. Freq.”
is the average frequency of lexical constraints calcu-
lated with the training vocabularies of corresponding
language.

et al., 1993; Och and Ney, 2003), to find the331

corresponding source words, denoted as Csrc =332

(C ′
1, C

′
2, ..., C

′
k).333

Prompting Alignment into LevT The encoder334

in LevT, besides token embedding and position335

embedding, is further added with a learnable align-336

ment embedding that comes from Csrc and Ctgt. We337

set the alignment value for each token in C ′
i to i338

and the others to 0, which are further encoded into339

embeddings. The prompting of alignment is not340

limited to training, as we also add such alignment341

embeddings to source tokens aligned to target-side342

constraints during inference.343

5 Experiments344

5.1 Data and Evaluation345

Parallel Data and Knowledge Distillation We346

consider the English→German (En→De) transla-347

tion task and train all of the MT models on WMT14348

En-De (3,961K sentence pairs), a benchmark trans-349

lation dataset. All sentences are pre-processed via350

byte-pair encoding (BPE) (Sennrich et al., 2016)351

into sub-word units. Following the common prac-352

tice of training an NAT model, we use the sentence-353

level knowledge distillation data generated by a354

Transformer, (Vaswani et al., 2017) provided by355

Kasai et al. (2020).356

Datasets with Lexical Constraints Given mod-357

els trained on the above-mentioned training sets,358

we evaluate them on the test sets of several lexically359

constrained translation datasets. These test sets are360

categorized into two types of standard lexically361

constrained translation datasets: 1) Type#1: tasks362

from WMT14 (Vaswani et al., 2017) and WMT17363

(Bojar et al., 2017), which are of the same general364

domain (news) as training sets; 2) Type#2: tasks365

from OPUS (Tiedemann, 2012) that are of spe- 366

cific domains (medical and law). Particularly, the 367

real application scenarios of lexically constrained 368

MT models are usually domain-specific, and the 369

constrained words in these domain datasets are rel- 370

atively less frequent and more important. 371

Following previous work (Dinu et al., 2019; Su- 372

santo et al., 2020; Xu and Carpuat, 2021), the lexi- 373

cal constraints in Type#1 tasks are extracted from 374

existing terminology databases such as Interactive 375

Terminology for Europe (IATE)3 and Wiktionary 376

(WIKT)4 accordingly. The OPUS-EMEA (medical 377

domain) and OPUS-JRC (legal domain) in Type#2 378

tasks are datasets from OPUS. The constraints are 379

extracted by randomly sampling 1 to 3 words from 380

the reference (Post and Vilar, 2018). These con- 381

straints are then tokenized with BPE, yielding a 382

larger number of tokens as constraints. The sta- 383

tistical report is shown in Table 3, indicating the 384

frequencies of Type#2 datasets are generally much 385

lower than Type#1 ones. 386

Evaluation Metrics We use BLEU (Papineni 387

et al., 2002) for estimating the general quality of 388

translation. We also use Term Usage Rate (Term%, 389

Dinu et al., 2019; Susanto et al., 2020; Lee et al., 390

2021) to evaluate lexically constrained translation, 391

which is the ratio of term constraints appearing in 392

the translated text. 393

5.2 Models 394

We use Levenshtein Transformer (LevT, Gu et al., 395

2019) as the backbone model to ACT algorithm for 396

constrained NAT. We compare our approach with a 397

series of previous MT models on applying lexical 398

constraints: 399

• Transformer (Vaswani et al., 2017), set as the 400

AT baseline; 401

• Dynamic Beam Allocation (DBA) (Post and 402

Vilar, 2018) for constrained decoding with 403

dynamic beam allocation over Transformer; 404

• Train-by-sep (Dinu et al., 2019), trained on 405

augmented code-switched data by replacing 406

the source terms with target constraints or ap- 407

pend on source terms during training; 408

• Constrained LevT (Susanto et al., 2020), 409

which develops LevT (Gu et al., 2019) by set- 410

ting constraints as initial editing sequence; 411

3https://iate.europa.eu
4https://www.wiktionary.org
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Models WMT17-IATE WMT17-WIKT WMT14-WIKT Latency
Term% BLEU Term% BLEU Term% BLEU (ms)

Reported results in previous work
Transformer (Vaswani et al., 2017)† 79.65 29.58 79.75 30.80 76.77 31.75 244.5
DBA (Post and Vilar, 2018) 82.00 25.30 99.50 25.80 - - 434.4
Train-by-rep (Dinu et al., 2019) 94.50 26.00 93.40 26.30 - - -
LevT (Gu et al., 2019)† 80.31 28.97 81.11 30.24 80.23 29.86 92.0

w/ soft constraint (Susanto et al., 2020) 93.81 29.73 93.44 30.82 94.43 29.93 -
w/ hard constraint (Susanto et al., 2020) 100.00 30.13 100.00 31.20 100.00 30.49 -

EDITOR (Xu and Carpuat, 2021)† 83.00 27.90 83.50 28.80 - - 121.7
w/ soft constraint 97.10 28.80 96.80 29.30 - - -
w/ hard constraint 100.00 28.90 99.80 29.30 - - 134.1

Our implementation
LevT† 78.32 29.80 80.20 30.75 79.53 29.95 71.9

+ constrained training (CT)† 78.76 29.46 80.77 30.82 79.13 30.24 78.6
+ aligned constrained training (ACT)† 79.43 29.57 80.20 30.63 77.17 30.35 77.0

LevT w/ soft constraint 94.25 30.11 93.78 30.92 94.88 30.38 79.5
+ constrained training (CT) 96.24 30.19 96.61 30.96 97.44 31.01 75.4
+ aligned constrained training (ACT) 96.90 30.56 97.62 31.06 98.82 31.08 76.3

LevT w/ hard constraint 100.00 30.31 100.00 30.65 100.00 30.49 82.7
+ constrained training (CT) 100.00 30.31 100.00 30.99 100.00 31.01 78.1
+ aligned constrained training (ACT) 100.00 30.68 100.00 31.18 100.00 31.11 77.0

Table 4: Translation results with lexical constraints. Term% is the constraint term usage rate. Method† translates
without lexical constraints in input.

• EDITOR (Xu and Carpuat, 2021), a variant412

of LevT, replacing the delete action with a413

reposition action.414

Implementation Details We use and extend the415

FairSeq framework (Ott et al., 2019) for train-416

ing our models. We keep mostly the default pa-417

rameters of FairSeq, such as setting dmodel =418

512, dhidden = 2,048, nheads = 8, nlayers = 6 and419

pdropout = 0.3. The learning rate is set as 0.0005,420

the warmup step is set as 4,000 steps. All models421

are trained with a batch size of 16,000 tokens for422

maximum of 300,000 steps with Adam optimizer423

(Kingma and Ba, 2014) on 2 NVIDIA GeForce424

RTX 3090 GPUs with gradient accumulation of 4425

batches. Checkpoints for testing are selected from426

the average weights of the last 5 checkpoints. For427

Transformer (Vaswani et al., 2017), we use the428

checkpoint released by Ott et al. (2018).429

5.3 Main Results430

Table 4 reports the performance of LevT with ACT431

(as well as the CT ablation) on the type 1 tasks432

(WIKT and IATE as terminologies), compared with433

baselines. In general, the results indicate the pro-434

posed CT/ACT algorithms achieve a consistent435

gain in performance, term coverage, and speed over436

the backbone model mainly in the setting of con-437

strained translation.438

When translating with soft constraints, i.e., the439

constraints need not appear in the output, adding440

ACT to LevT helps preserve the terminology con- 441

straints (+∼5 Term%) and improves translation 442

performance (+0.31-0.88 on BLEU). If we enforce 443

hard constraints, the term usage rate doubtlessly 444

reaches 100%, with reasonable improvements on 445

BLEU. When translating without constraints, how- 446

ever, adding ACT does not bring consistent im- 447

provements as hard and soft constraints do, which 448

could be attributed to the discrepancy between 449

training and inference. 450

As for the ablation for CT and ACT, we have two 451

observations: 1) term usage rate increases mainly 452

because of CT, and can be further improved by 453

ACT; 2) translation quality (BLEU) increases due 454

to the additional hard alignment of ACT over CT. 455

The former could be attributed to the behavior of 456

not deleting the constraints in CT. The latter is 457

because of the introduction of source-side informa- 458

tion of constraints that familiarize the model with 459

the constraint context. 460

Table 3 also shows the efficiency advantage of 461

non-autoregressive methods compared with autore- 462

gressive ones, which is widely reported in the 463

NAT research literature. The proposed methods 464

do not cause drops in translation speed against the 465

backbone LevT. When translating with lexical con- 466

straints, LevT with CT or ACT is even faster than 467

LevT. In contrast, constrained decoding methods 468

for autoregressive models (i.e., DBA) nearly dou- 469

ble the translation latency. Since the main purpose 470

of non-autoregressive research is developing effi- 471
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Model OPUS-EMEA OPUS-JRC

Term% BLEU Term% BLEU

LevT† 52.40 27.90 55.39 30.24
+ ACT† 53.41 28.30 55.35 31.01

LevT w/ soft 83.37 30.35 84.32 32.53
+ ACT 92.09 32.02 91.94 33.70

LevT w/ hard 100.00 30.77 100.00 30.08
+ ACT 100.00 32.30 100.00 34.09

Table 5: Experiments on test sets from OPUS, which
is outside the training set (WMT14 En→De). Re-
sults shows ACT brings larger performance for lower-
frequency lexical constraints within these datasets.

cient algorithms, such findings could facilitate the472

industrial usage for constrained translation.473

Translation Results on Domain Datasets For a474

generalized evaluation of our methods, we apply475

the models trained on the general domain dataset476

(WMT14 En-De) to medical (OPUS-EMEA) and477

legal domains (OPUS-JRC). As seen in Table 5,478

even greater performance boosts are witnessed.479

When trained with ACT, both term usage (+∼8-480

10 Term%) and translation performance (up to 4481

BLEU points) largely increase, which is more sig-482

nificant than the general domain.483

The reason behind this observation is that the484

backbone LevT would have a hard time recog-485

nizing them as constraints since the lexical con-486

straints in these datasets are much rarer. There-487

fore, forcing LevT to translate with these rare con-488

straints would generate worse text, e.g., BLEU489

drops for 2.45 points on OPUS-JRC than with soft490

constraints. And when translating with soft con-491

straints, LevT over-deletes these rare constraints.492

In contrast, the context information around con-493

straints is effectively pin-pointed by ACT, so ACT494

would know the context (“neighbors”) of the rare495

constraint (“strangers”) and insert the translated496

context around the lexical constraints. In this way,497

more terms are preserved by ACT, and the transla-498

tion achieves better results.499

6 Analysis500

6.1 Self-Constrained Translation Revisited501

As a direct response to our motivation in this paper,502

we revisit the ablation study of self-constrained503

NAT in §3.3 with the proposed ACT algorithm.504

Same as before, we build self-constraints from each505

target sentence and sort them by frequency. As506

shown in Figure 2(a), different from constrained507

[0%,10%)
[10%,30%)

[30%,50%)
[50%,70%)

[70%,90%)
[90%,100%]

Frequency buckets of self-constraints

27.5

28.0

28.5

29.0

29.5

BL
EU

LevT (no)
LevT (soft)
LevT (hard)
LevT+ACT (no)
LevT+ACT (soft)
LevT+ACT (hard)

(a) Sorting self-constraints by frequency.

[0%,10%)
[10%,30%)

[30%,50%)
[50%,70%)

[70%,90%)
[90%,100%]

TF-IDF buckets of self-constraints

27.5

28.0

28.5

29.0

29.5

30.0

30.5
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EU

LevT (no)
LevT (soft)
LevT (hard)
LevT+ACT (no)
LevT+ACT (soft)
LevT+ACT (hard)

(b) Sorting self-constraints by TF-IDF.

Figure 2: Extended self-constrained translation results
on WMT14-WIKT. Each and every word of a reference
is used as a lexical constraint (i.e., self-constraint) for
translation, sorted by frequency or TF-IDF.

LevT that suffers from Drop#2 (§3.3), ACT man- 508

aged to handle this scenario pretty well. Following 509

the motivations given in §3.3, when constraints be- 510

come rarer, ACT successfully breaks the trade-off 511

with better understanding of the provided contex- 512

tual information. 513

What if the self-constraints are sorted based 514

on TF-IDF? We also study the importance of 515

different words in a sentence via TF-IDF by forcing 516

them as constraints. As results in Figure 2(b) show, 517

we have very similar observations from frequency- 518

based self-constraints at Figure 2(a), and the gap 519

between LevT and LevT + ACT is even higher as 520

TF-IDF score reaches the highest. 521

6.2 How does ACT perform under different 522

kinds of lexical constraints? 523

The experiments in §6.1 create pseudo lexical con- 524

straints by traversing the target-side reference for 525

understanding the proposed ACT. In the following 526

analyses, we study different properties of lexical 527

constraints, e.g., frequency and numbers, and how 528

they affect constrained translation. 529
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Model WMT14-WIKT WMT17-IATE WMT17-WIKT

ALL HIGH MED. LOW ALL HIGH MED. LOW ALL HIGH MED. LOW

LevT† 29.95 30.46 28.03 31.49 29.80 30.08 29.72 29.45 30.75 30.96 29.09 32.16
+ ACT† 30.35 30.68 28.00 32.54 29.57 29.63 29.57 29.20 30.63 30.35 29.11 32.46

LevT w/ soft 30.38 30.37 28.50 32.19 30.11 29.25 30.67 30.04 30.92 30.70 29.58 32.23
+ ACT 31.08 30.48 29.18 33.85 30.56 29.93 31.05 30.36 31.06 30.72 29.53 32.73

LevT w/ hard 30.49 30.50 28.67 31.99 30.31 29.46 30.66 30.37 30.65 30.28 29.44 32.00
+ ACT 31.11 30.23 29.32 33.85 30.68 29.97 31.18 30.67 31.18 30.58 29.71 32.90

Table 6: Ablation results of terminology-constrained En→De translation tasks w.r.t. word frequency of terms.

1 2 3 4 5
Number of constraints

27

28

29

30

31

32

33

BL
EU

LevT (no)
LevT (soft)
LevT (hard)
LevT+ACT (no)
LevT+ACT (soft)
LevT+ACT (hard)

Figure 3: Ablation results of constrained translation
with one-to-multiple constraints.

Are improvements by ACT robust against con-530

straints of different frequencies? Given termi-531

nology constraints in the samples, we sort them532

by (averaged) frequency and evenly divide the cor-533

responding data samples into high, medium and534

low categories.The results on translation quality535

of each category for the En→De translation tasks536

are presented in Table 6. We find that LevT ben-537

efits mostly from ACT in the scenarios of lower-538

frequency terms for three datasets. Although, in539

some settings such as HIGH in WMT14-WIKT and540

MED in WMT17-WIKT, the introduction of ACT541

for constrained LevT seems to bring performance542

drops for those higher-frequency terms. Since543

terms from IATE are rarer than WIKT as in Table544

3, the improvements brought by ACT are steady.545

Are improvements by ACT robust against con-546

straints of different numbers? In more practical547

settings, the number of constraints is usually more548

than one. To simulate this, we randomly sample 1-549

5 words from each reference as lexical constraints,550

and results are presented in Figure 3. We find that,551

as the number of constraints grows, the translation552

quality ostensibly becomes better for LevT with553

or without ACT. And ACT consistently brings ex-554

tra improvements, indicating the help by ACT for555

constrained decoding in constrained NAT.556

6.3 Limitations 557

Although the proposed ACT algorithm is effective 558

to improve NAT models on constrained translation, 559

we also find it does not bring much performance 560

gain on translation quality (i.e., BLEU) over the 561

backbone LevT for unconstrained translation. The 562

results on the full set of WMT14 En→De test set 563

further corroborate this finding, which is shown in 564

Appendix A. 565

Another limitation of our work is that we do not 566

propose a new paradigm for constrained NAT. The 567

purpose of this work is to enhance existing methods 568

for constrained NAT, i.e., editing-based iterative 569

NAT methods, under rare lexical constraints. It 570

would be interesting for future research to explore 571

new ways to impose lexical constraints on NAT 572

models, perhaps on non-iterative NAT. 573

Note that, machine translation in real scenario 574

still falls behind human performance. Moreover, 575

since we primary focus on improving constrained 576

NAT, real applications calls for refinement in vari- 577

ous aspects that we do not consider in this work. 578

7 Conclusion 579

In this work, we propose a plug-in algorithm 580

(ACT) to improve lexically constrained non- 581

autoregressive translation, especially under low- 582

frequency constraints. ACT bridges the gap 583

between training and constrained inference and 584

prompts the context information of the constraints 585

to the constrained NAT model. Experiments show 586

that ACT improves translation quality and term 587

preservation over the backbone NAT model Lev- 588

enshtein Transformer. Further analyses show that 589

the findings are consistent over constraints varied 590

from frequency, TF-IDF, and lengths. In the future, 591

we will explore the application of this approach 592

to more languages. We also encourage future re- 593

search to explore a new paradigm of constrained 594

NAT methods beyond editing-based iterative NAT. 595
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A Results on Full Test Set of WMT14872

(En→De)873

We extend the experiment on WMT14 En→De874

task to the full test set (3,003 samples) in Ta-875

ble 7. Following Susanto et al., we report results876

on both the filtered test set for sentence pairs that877

contain at least one target constraint (“Con.”, 454878

sentences) and the full test set (“Full”, 3,003 sen-879

tences), which contains samples that do not have880

lexical constraints. When trained on the full test881

set, term usage rate raises from 94.88% to 98.82%882

when trained with ACT under soft constrained de-883

coding, but the BLEU score has marginal improve-884

ments. The conclusion is consistent with the ex-885

periments in the main body of the paper that LevT886

with ACT is not significantly better than LevT on887

unconstrained translation, though our main claim888

rests on the scenario of constrained NAT.889

Model Term% BLEU

Full (3,003) Con. (454)

LevT† 79.53 26.95 29.95
+ ACT† 77.17 26.93 30.35

LevT w/ soft 94.88 27.04 30.38
+ ACT 98.82 27.06 31.08

LevT w/ hard 100.00 27.06 30.49
+ ACT 100.00 27.07 31.11

Table 7: Experiments on the test set of WMT14 En→De
task, which shares the same domain of training set. Fol-
lowing Susanto et al. (2020), “Con.” is the subset of
WMT14-Full as shown in Table 3, where every sample
has at least one lexical term as constraint.

B Case Study890

The case study of LevT and LevT with ACT is pre-891

sented in Table 8. In the case of unconstrained or892

soft constrained translation, LevT incorrectly trans-893

lates low frequency constraint words (e.g., Hühn-894

erfeiern in case 1). In the case of hard constrained895

translation, LevT tends to have more interfering896

words around the constraint words (e.g., sind in897

case 1). After incorporating ACT, we witness con-898

sistent improvements in the translation of the con-899

straints for LevT, especially for soft constrained900

translation where it successfully translates given901

constraints. However, when the translation is not902

constrained on lexical terms (i.e., unconstrained903

translation), LevT with ACT still struggles at trans-904

lating the term correctly (both case 1 and 2).905

Case 1
Source
However, carriages are also popular for hen parties, he
commented.
Target
Kutschen sind aber auch für Jungesellinnenabschiede be-
liebt, meint er.
Terminology Constraints
hen parties → Jungesellinnenabschiede

LevT
Unconstrained translation
Kutschen sind aber auch für Hühnerfeiern beliebt, kom-
mentierte er. ⇒ wrong term
Soft constrained translation
Allerdings sind auch für Hinnenabschiebeliebt, kommen-
tierte er. ⇒ wrong term
Hard constrained translation
Aber Auch für Jungesellinnenabschiede sind beliebt, sagte
er. ⇒ incomplete sentence

LevT + ACT
Unconstrained translation
Wagen sind aber auch für Hühnerpartys beliebt, kommen-
tierte er. ⇒ wrong term
Soft constrained translation
Kutschen sind aber auch für Jungesellinnenabschiede be-
liebt, sagte er.
Hard constrained translation
Kutschen sind aber auch für Jungesellinnenabschiede be-
liebt, sagte er.

Case 2
Source
The media also reported that several people injured.
Target
Medien berichteten außerdem von mehreren Verletzten.
Terminology Constraints
injured → Verletzten

LevT
Unconstrained translation
Die Medien berichteten auch, dass mehrere Menschen
verletzt wurden. ⇒ wrong term
Soft constrained translation
Die Medien berichteten auch, dass mehrere Verletzte wur-
den. ⇒ wrong term
Hard constrained translation
Die Medien berichteten auch, dass mehrere Verletzte wur-
den. ⇒ wrong term

LevT + ACT
Unconstrained translation
Die Medien berichteten auch, dass mehrere Menschen
verletzt wurden. ⇒ wrong term
Soft constrained translation
Die Medien berichteten auch, dass mehrere Verletzten.
Hard constrained translation
Die Medien berichteten auch, dass mehrere Verletzten.

Table 8: Case study of LevT and LevT with ACT. Text
in brown denotes the constraint word, text in red de-
notes the translation error of constraints, and ⇒ denotes
analysis of the translation errors.
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