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ABSTRACT

Vision Transformers (ViT) have recently been used successfully in various com-
puter vision tasks, but the high computational cost hinders their practical deploy-
ment. One of the most well-known methods to alleviate computational burden is
low-rank approximation. However, how to automatically search for a low-rank
configuration efficiently remains a challenge. In this paper, we propose Trims-
former, an end-to-end automatic low-rank approximation framework based on a
neural architecture search scheme, which tackles the inefficiency of searching for
a target low-rank configuration out of numerous ones. We propose weight in-
heritance which encodes enormous rank choices into a single search space. In
addition, we share the gradient information among building blocks to boost the
convergence of the supernet training. Furthermore, to mitigate the initial perfor-
mance gap between subnetworks caused by using pre-trained weights, we adopt
non-uniform sampling to promote the overall subnetwork performance. Exten-
sive results show the efficacy of our Trimsformer framework. For instance, with
our method, Trim-DeiT-B/Trim-Swin-B can save up to 57%/46% FLOPs with
1.1%/0.2% higher accuracy over DeiT-B/Swin-B. Last but not least, Trimsformer
exhibits remarkable generality and orthogonality. We can yield extra 21%∼26%
FLOPs reductions on top of the popular compression method as well as the com-
pact hybrid structure. Our code will be released.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has dominated natural language processing
(NLP) tasks with impressive results. Though intuitively, transformer model seems inept to the spe-
cial inductive bias of space correlation for images-oriented tasks, it has proved itself of capability on
vision tasks just as good as CNN (Dosovitskiy et al., 2021). Since then, vision transformers (ViT)
and its variants have shown great potential for image classification (Zhai et al., 2021), object detec-
tion (Wei et al., 2022), and semantic segmentation (Liu et al., 2021a). However, the model requires
a large number of parameters and high computational cost to obtain higher accuracy, making it un-
suitable for edge computing. That is mainly due to the stack of self-attention modules that suffer
from quadratic complexity with regard to the input size, among other factors. Hence, research on
efficient transformer models has been gaining importance recently.

Earlier works on compressing ViTs mainly follow the techniques for compressing NLP models,
ranging from unstructured pruning (Zhu et al., 2021), attention head/structured pruning (Yu et al.,
2022b; Chen et al., 2021d), token pruning (Kong et al., 2021; Rao et al., 2021; Yin et al., 2022); to
knowledge distillation (Touvron et al., 2021; Jia et al., 2021) and quantization (Yuan et al., 2021;
Liu et al., 2021b).

Aside from the above-mentioned directions, another important category of method that employ ef-
ficiency in neural network (NN) structure is low-rank approximation. In the case of 2D low-rank
approximation, singular-value decomposition (SVD) minimizes the Frobenius norm of the differ-
ence between the original matrix and the approximated matrix. Yet, SVD cannot be directly utilized
for convolutions in CNNs because weights need to be represented by higher-dimensional (e.g., 4D)
tensors (Lee et al., 2019). Special design (Kim et al., 2016; Lebedev et al., 2015) is developed for
CNNs by decomposing them into multiple consecutive tensors. However, there is still significant
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accuracy drop even after fine-tuning as training is performed on the transformed network struc-
ture with consecutive tensors without activation functions in-between. As a result, convergence can
be degraded due to vanishing or exploding gradients (Lee et al., 2019). This obstacle is largely
alleviated in vision transformer since 90% of total parameters and operations (see Appendix A.1
for detailed analysis) are linear module and conduct matrix multiplication. Linear modules can be
decomposed into just two consecutive matrices. To put it in another way, ViTs are much more
friendly than CNNs when incorporating low-rank decomposition in the structure. Meanwhile, low-
rank decomposition consider redundancy in deep neural networks as noise that contains a very small
percentage of variance. Hence, it’s different from general pruning methodologies for NN compres-
sion, in the way that the overall structural dimension and information flow will not be affected or
truncated through low-rank guided compression techniques.

In literature, LRT (Winata et al., 2020) first applied this strategy on transformer in speech recogni-
tion. It has been a very effective approach to address the problem of large model size and prohibitive
computational cost. However, there has been no systematic study that strives to conduct a low-rank
decomposition for vision transformer. Besides, most of the previous methods construct the low-rank
structure through manual design. Furthermore, to the best of our knowledge, there has been no
sound study on searching for the optimal low-rank architecture of pre-trained transformer model.
Therefore, in this paper, we endeavor to find the potential of automatic low-rank ViT to find the
optimal trade-off between accuracy and efficiency.

Based on neural architecture search (NAS), we propose Trimsformer, an end-to-end automatic low-
rank approximation framework which decomposes linear modules in ViT and searches for rank level
to reconstruct vision transformer architecture.

Our main contributions are outlined as follows:

• We set up a first-of-its-kind low-rank architecture search regime for vision transformer
inspired by fusing components of SVD decomposition, and design the searching space as
the low-rank approximation for the linear components in the architecture.

• To realize efficient and effective supernet training, we 1) design a weight inheritance linear
module to enable weight and gradient sharing across different building blocks within the
same choice block; 2) select the subnetworks with non-uniform sampling during training
to better distribute training resources to subnetworks with different size for balance. Based
on our proposed non-uniform sampling and weight inheritance strategy, we enhance the
supernet training and achieve outstanding results.

• We conduct a series of experiments to demonstrate Trimsformer’s orthogonality to other
compression techniques and its generalization capability on ViT variants, which provides
a new perspective on high ratio compression for ViT. Extensive experiments further show
competitive results on ImageNet-1k when compressing DeiT and Swin-Transformer. For
instance, Trim-DeiT-S, Trim-DeiT-B, Trim-Swin-S, and Trim-Swin-B achieve 30%, 58%,
41%, and 46% FLOPs reduction on corresponding backbone with accuracy improvement of
0.6%, 1.1%, 0.2%, and 0.2%, respectively, when compared with the uncompressed model.

2 RELATED WORK

2.1 TRANSFORMER COMPRESSION

Compression methods for transformers can be broadly categorized into: pruning, token reduction
and efficient architecture design. Pruning techniques are proposed to alleviate the high computa-
tional cost and memory usage by removing the redundant weights in the transformer-based models.
VTP (Zhu et al., 2021) reduced the number of embedding dimensions by extending the network
slimming approach Liu et al. (2017) to ViTs. Fan et al. (2020); Hou et al. (2020) proposed to skip
the inessential layers to obtain a shallow model. Similarly, WDPruning (Yu et al., 2022a) removed
the less significant channels of the linear projection by using a neural-network-based saliency pre-
dictor. For the token-reduction-based techniques, Tang et al. (2021); Rao et al. (2021) hierarchically
remove the redundant patches, thus reducing the computational overhead by slimming the input
features.
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Aside from above, some other works dedicated on design a efficient architecture directly by intro-
ducing CNN to form a hybrid structure. MobileViT (Mehta & Rastegari, 2022) mixed global pro-
cessing in transformers with convolution, which learns better representations with fewer parameters
and simple training recipes.

Recent work endeavored to combine multiple pruning strategies into a unified framework, i.e., con-
sidering multiple dimensions simultaneously. For instance, UVC (Yu et al., 2022b) pruned the heads
in MHSA, channels in linear projection, and considered layer skipping. Meanwhile, MDC (Hou &
Kung, 2022) jointly optimized an extra dimension, the number of patches.

2.2 LOW-RANK APPROXIMATION

Aside from the model compression technique mentioned in the previous section, the low-rank ma-
trix factorization on weights is also an effective methodology to reduce computational burden. In
CNN-based model, Tai et al. (2016) split the convolution kernel into two small ones with fixed rank.
Some other work studied on rank selection to generate more fine-grained low-rank approximation.
Xu et al. (2020) selected the rank base on thresholding. Idelbayev & Carreira-Perpiñán (2020) in-
troduced rank-based cost function and formulated a constraint optimization problem to decide the
rank selection during the training time. Targeting transformer-based model, LRT (Winata et al.,
2020) utilized low-rank factorization to approximate the original linear layer with two smaller ones
and demonstrate its potential on speech recognition tasks; however, the effect of low-rank approx-
imation on linear layers has not yet been well-studied in ViTs. In this work, we explore low-rank
pruning as well as the rank searching on ViT and formulate it as a powerful plug-in.

2.3 ONE-SHOT NAS

One-shot NAS (Elsken et al., 2019; Brock et al., 2018; Cai et al., 2019; Stamoulis et al., 2019; Guo
et al., 2020) have been proposed to find an efficient architecture based on the two-stage strategy:
1) training an over-parameterized supernet; 2) searching for the optimal subnetwork. SPOS Guo
et al. (2020) introduced the evolutionary algorithm to increase searching performance. OFA (Cai
et al., 2020) took the hardware constraint into consideration and trained a once-for-all supernet for
fast subnetwork selection during inference. These methodologies worked on CNN search space
(e.g. kernel size, number of channels). Targeting on transformer, HAT (Wang et al., 2020) focused
on using the supernet for hardware-aware language transformer. AutoFormer (Chen et al., 2021b)
was proposed for ViT by searching for optimal features, such as the number of heads, MLP ratio,
embedding dimension, and the number of transformer blocks. GLiT (Chen et al., 2021a) further
introduced the locality module and added the CNN correlated features into the search space to
decrease the computational cost and explicitly enable local correlation modeling between patches.

3 METHODOLOGY – TRIMSFORMER

Inspired by prior approaches, we propose to solve the low-rank decomposition design guided by an
one-shot NAS scheme, which can automatically generate a more fine-grained configuration instead
of handcrafting it. To formulate it into an one-shot NAS problem, we need to answer the following
question: 1) How to introduce low-rank as a unique and unexplored feature that is orthogonal to
existing ones? 2) How to effectively train a supernet initialized with the pre-trained weights?

To answer this question, we formulate an end-to-end framework for automatic compression consist-
ing of three stages: (I) building a supernet with weight inheritance low-rank linear layers as choice
blocks (Sec 3.1, 3.2); (II) sampling subnetworks with a non-uniform sampling strategy and train-
ing them with soft label distillation (Sec 3.3); and (III) searching for the optimal subnetworks with
an evolutionary algorithm (Sec 3.4). Based on our framework, we successfully introduce low-rank
approximation into the search space; through weight inheritance and non-uniform sampling, we fur-
ther support supernet training and acquire efficient low-rank ViTs with competitive performance.
The general overview of our framework is summarized in Fig 1.
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Figure 1: Overview of Trimsformer framework. (a): Workflow to build LRLinear given the original
weight matrix and rank choices. The workflow is applied to the linear layers of the MLP and

Attention to construct the supernet. (b): Training the supernet with Non-Uniform Sampling (NUS)
and soft label distillation. (c): Evolutionary algorithm for optimal architecture searching.

3.1 ENCODING LOW-RANK INTO THE SEARCH SPACE

ViT blocks consist of two modules. The main component is a Multi-Head Self Attention (MHSA)
module with QKV calculation, follows by three linear layers where the latter two compose of the
MLP module. Our main target is to decompose ViT constituent to allow efficient inference.

To introduce the low-rank feature to the transformer, we want to substitute the linear components
mentioned above with low-rank approximated linear calculation. After performing low-rank ap-
proximation (More details in Appendix A.2), the weight matrix W ∈ Rm×n in a linear component
is replaced by two small matrices Ur ∈ Rm×r and Vr ∈ Rn×r, where r is set according to the rank
under given budget constraint. If we choose a sufficient small r < mn

m+n , the number of parameters
and FLOPs are reduced from O(mn) to O(rm+ rn).

Then it is critical to decide the optimal rank configuration for each linear components. To achieve
this, we resort to the architecture search scheme with one-shot NAS. Thus, we need to introduce
low-rank into the search space. To do so, we treat a low-rank approximated linear component with
a specific rank as a building block. We design N candidate rank level choices set C. For each
specific rank choice ri, the building blocks (Uri , Vri) are generated. All the proposed building
block are gathered into a set S, serving as a choice block. Without loss of generality, we assume that
r1 < r2 < ... < rN . Thus, for each linear component, we have rank level choices C and choice
block set S to formulate as,

C = {r1, r2, ..., rN}, S = {(Ur1 , Vr1), (Ur2 , Vr2), ..., (UrN , VrN )} (1)
During each forward pass for supernet training, when we select the rank level to be ri, we pick the
corresponding building block (Uri , Vri) as low-rank weights, and calculated with:

LRLinear(x, ri) = UriV
T
ri x+ b, (2)

where x is the input for the current linear components and b is the bias term originally encoded in
this components.

Next, we can formulate the search space A for our low-rank one-shot NAS as

A = {(r(1), ..., r(i), ..., r(l))|r(i) ∈ C(i), 1 ≤ i ≤ l}, (3)

where C(i) includes all possible rank choices of the i-th choice block, r(i) is the rank choice of the
i-th choice block, and l is the number of choice blocks.
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3.2 BUILDING LOW-RANK SUPERNETS

Weight Inheritance Low-Rank Linear Layer Now that we have the search space of low-rank
decompositions Uri Vri designated with rank choice ri, we need to design a suitable implementation
for the low-rank choice block. A vanilla version would be following the weight sharing strategy
(Bender et al., 2018) by starting from a supernet and selecting from its subsets. For each building
block (Uri , Vri) in the supernet, we factorize the weights of corresponding linear layers from the
uncompressed model into two low-rank matrices as the pre-trained weights, and concatenated them
into a huge choice block. For each components, the weights of building blocks within the same
choice block are mutually exclusive, demonstrated as:

Uri ∩ Urj = ∅, Vri ∩ Vrj = ∅, ∀ri, rj ∈ C, ri ̸= rj (4)

This vanilla version of concatenating substructure has two main defect in practical use. At one hand,
the concatenation in all makes the super-structure too bloated to be trained under limited resource
budget. On the other hand, for each training step, only the weights in the chosen building blocks
will be activated, and gradients will only back-propagate to a single building block. This makes
the training procedure very inefficient and suboptimal without sharing the gradient, leading to poor
convergence overall Chen et al. (2021b) has also observed the same downsides of this strategy.

Inspired by Single-Path NAS (Stamoulis et al., 2019), we incorporate the separated building blocks
into a single superblock, where the low-ranks weights of each building block are actually the subset
of the largest ones. Here, we propose weight inheritance to enable weight sharing between building
blocks during training, addressing both the problem of the bloated super-structure and sub-optimal
gradients. The structure is shown in Fig. 1-a. Concretely, within each choice block, the building
block with the largest rank choice (UrN , VrN ) is set to the size of the factorized weights of the
corresponding linear layer in the uncompressed model and initialized with the SVD. Details shown
in A.2. Under classical calculation of a SVD, eigenvalues are ranked from the largest to the small-
est to the diagonal. Thus, it is intuitive to keep the top eigenvectors even under the lowest rank
choice. Following this instruction, we design the building blocks under a bottom-to-top regime: for
the choice block of rank level ri, we select the top ri columns from Uri+1

, Vri+1
, which can be

formulated as:
Uri = Uri+1

[:, : ri], Vri = Vri+1
[:, : ri] (5)

It is easy to see that each sub-structure is also the sub-matrix of the all the structure with larger rank
level, including the super-matrix:

Uri ⊆ Urk , Vri ⊆ Vrk , ∀k ∈ {i+ 1, i+ 2, ..., N} ∀ri ∈ C (6)

Thus, in one forward pass, the values of Uri and Vri are inherited from the first-ri column vectors
of UrN and VrN respectively; in a backward pass, the gradients of Uri and Vri are updated back
to the corresponding sub-matrices in UrN and VrN . Since the weights of each building block are
shared, the gradient information can be leveraged among the groups. Once we update the weights
of the smaller building blocks, the larger ones will be updated synchronously, and vice versa. Under
the weight inheritance strategy, all building blocks can be trained simultaneously, resulting in better
convergence on the supernet training overall (refer to Sec 4.4 for more detailed analysis.).

Finally, we can replace the linear projection modules in the MHSA and MLP modules with the low-
rank linear layer to construct the supernet for low-rank optimization. (Please refer to Appendix A.3
for more details)
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3.3 TRAINING LOW-RANK SUPERNETS

After performing Stage I, we encode the low-rank search space into the supernet, as shown in Fig.
(2). In stage II, we change the original training objective function from SPOS, formulated as:

WA = argmin
W

Ea∼Γ(A)[Lsoft(N (a,W (a))], (7)

where WA is the weights of the supernet, a ∈ A is a rank configuration, W (a) is weights of a,
N (a,W (a)) denotes the corresponding subnetwork, and Lsoft is the cross-entropy loss with teacher
generated soft labels on training set. In each training step, we select a subnetwork from the prior
distribution Γ(A) with non-uniform sampling, train it with the teacher-generated soft label, and
update weights back in the supernet, as shown in Fig. 1-b. Once the supernet has converged, we can
acquire subnetworks by inheriting the weights from the supernet directly.

Non-Uniform Sampling Unlike previous works (Guo et al., 2020; Chen et al., 2021b) that train
the supernet from scratch, our supernet is initialized with the weight of uncompressed pre-trained
model, and the subnetworks are the low-rank approximated networks for various rank choices. Thus,
during the training process, it is no longer a good choice for subnetworks to be sampled under an
uniform distribution. We want to design a new sampling distribution that mainly under the guidance
of two observations:

• Architecture search algorithm are in general large and hard to train. For a pre-selected
numerous search space, covering all the subnetworks and make every sub structure well-
trained is a intractable task. To enable the overall structure to reach optimal performance
and decent covergence, we need to reasonably distribute the training resources to different
subnetworks under a non-uniform distribution.

• According to the design of weight inheritance, we know that a small submatrix at rank
level i are the subsets of all the matrix with rank level great than i (Eq. 6). Then, the
lower the rank level of a submatrix is, the higher chance for the subnetworks to be shared
in the search space. Hence, it is much more essential to allocate more training resources
(sampling probability) to the smaller structures.

Following the observations mentioned above, we propose a simple but very effective non-uniform
path sampling strategy, which gives the smaller rank choices of each low-rank linear layer a higher
probability of being sampled. Mathematically, the rank choice for each low-rank linear layer can be
expressed by a random variable X . The PMF of X is formulated as:

pX(r) = P (X = r) =
1
r∑

r′∈C
1
r′

, r ∈ C (8)

Remember that C denotes the rank choice set of a specific low-rank linear layer. The prior distribu-
tion of selecting a sequence of rank choice would be Γ(A) = P (X1 = rk1

, ..., Xi = rki
, ..., Xl =

rkl
), where Xi, rki

denotes the random variable of i-th choice block and its correlated rank choice,
individually.

Soft Label Distillation To ensure all compressed subnetworks inside the supernet are well-trained,
we integrate knowledge distillation into our framework. Here, we conduct an empirical study on the
influence of knowledge distillations (see appendix A.5 for more details) and observe that knowledge
distillation makes information recovery easier; also, we find that using only the teacher-generated
soft labels can yield better results than using it along with hard labels, which was widely used in
prior works (Yuan et al., 2020; Touvron et al., 2021; Yu et al., 2022b). To generalize our framework,
we select the uncompressed model itself for the supervising task.

3.4 SEARCHING FOR OPTIMAL RANK CONFIGURATION

In stage III, we aim to maximize the model performance under FLOPs constraints:

a∗ = argmax
a∈A

ACCval(N (a,WA(a))) s.t. Flower ≤ F(a) ≤ Fupper, (9)
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where ACCval is the accuracy on validation set, F(a) denotes the FLOPs of the subnetwork with the
rank configuration a, Flower and Fupper are the lower bound and upper bound of FLOPs constraints,
respectively.

Here, we adopt an evolutionary algorithm to search for the proper rank choices, with the workflow
shown in Fig. 1-c. We take every rank choice r as genes and every rank configuration a as chro-
mosomes. In the beginning, we randomly sample and pick Np rank configurations under the FLOPs
constraint as the initial population. During each epoch, we select the top-k rank configurations from
the population as parents and execute mutation and crossover operations to generate the new rank
configurations. Next, we add the new rank configurations that satisfy the FLOPs constraint, to the
population of the next generation. Finally, we apply random sampling to produce more rank con-
figurations by ensuring the population count is Np. After Ne epochs, the evolutionary algorithm is
finished, and we can acquire the proper rank configuration.

4 EXPERIMENTS

We train and test the Trimsformer on ImageNet-1k (Deng et al., 2009) dataset with several repre-
sentative ViT models, including DeiT (Touvron et al., 2021), Swin Transformer (Liu et al., 2021a),
as our pre-trained backbone. For the details of hyperparameter used in training and supernet config-
uration please refer to appendix A.4.

Table 1: Comparison of Trimsformer with different ViT compression methods on ImageNet-1k
dataset. ”Top-1 Acc diff” denotes accuracy improvement over the baseline. ”Ours” denotes the

model obtained on Trimsformer

Base-model Method FLOPs FLOPs
saving Params Params

saving Top-1 Acc Top-1 Acc
diff

DeiT-S

Baseline 4.7G - 22.1M - 79.8% -
DynamicViT 3.4G 28% 23.1M - 79.6% -0.2%

SPViT 3.3G 30% 16.4M 26% 78.3% -1.5%
WDPruning 3.1G 32% 15.0M 32% 78.6% -1.2%

S2ViTE 3.1G 32% 14.6M 34% 79.2% -0.6%
UVC 2.7G 42% - - 79.4% -0.4%
Ours 3.1G 32% 14.5M 34% 79.4% -0.4%

DeiT-B

Baseline 17.6G - 86.4M - 81.8% -
S2ViTE 11.8G 33% 56.8M 35% 82.2% +0.4%
SPViT 11.7G 33% 62.3M 28% 81.6% -0.2%

DynamicViT 11.2G 36% 87.2M - 81.3% -0.5%
WDPruning 11.0G 37% 60.6M 30% 81.1% -0.7%

UVC 8.0G 55% - - 80.6% -1.2%
Ours 11.1G 36% 53.6M 38% 82.2% +0.4%
Ours 8.0G 55% 37.9M 56% 81.5% -0.3%

Swin-S

Baseline 8.7G - 49.6M - 83.2% -
DynamicViT 6.9G 20% 50.8M - 83.2% 0.0%
WDPruning 6.8G 22% 37.4M 26% 82.4% -0.8%

SPViT 6.1G 30% 39.2M 30% 82.4% -0.8%
Ours 6.6G 25% 37.3M 26% 83.2% 0.0%
Ours 6.1G 30% 34.8M 30% 82.8% -0.4%

Swin-B

Baseline 15.4G - 87.8M - 83.5% -
DynamicViT 12.1G 21% 88.8M - 83.4% -0.1%

SPViT 11.4G 26% 68.0M 24% 83.2% -0.3%
Ours 11.4G 26% 63.5M 28% 83.7% +0.2%

4.1 RESULTS – COMPARISON WITH DIFFERENT COMPRESSION METHODS

We compare our results with state-of-the-art ViT pruning methods, ranging from input sequence
reduction (DynamicViT (Rao et al., 2021)), weight pruning (WDPruning (Yu et al., 2022a), S2ViTE
(Chen et al., 2021d)), and multi-dimension pruning (UVC (Yu et al., 2022b).

The results are shown in Tab. 1. Compared to weight pruning methodologies (WDPruning), we
achieve around 1% accuracy improvement under the same or smaller level of computation reduc-
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tion and model size on every backbone. Secondly, when considering the sequence reduction-based
methods (DynamicViT), we demonstrate comparable FLOPs savings on all different optimized tar-
gets and reduce the parameters significantly. For DeiT-B/Swin-B, we can enjoy 20%/6% additional
FLOPs reduction and an extra 60%/30% model size saving when compared to DynamicViT. Lastly,
compared to multi-dimensional compression methods, we achieve better results on DeiT-Base with
1% improvement on performance under the same FLOPs level. Overall, we can observe that Trims-
former shows competitive performance with SOTA methods on small models like DeiT-S and Swin-
S while outperforms all the compared methods on large models like DeiT-B and Swin-B.

4.2 RESULTS – SEARCHING FOR THE OPTIMAL ARCHITECTURE

The effectiveness of Trimsformer on ViT compression have already been demonstrated above, now
we want to unleash the potential of Trimsformer on constructing an optimal architecture. To push
the Pareto frontier further up, we want to search for an optimal architecture that is of both lighter
computation and higher performance than current backbones. To further improve the accuracy while
keep the FLOPs low, we replace the teacher model with Swin Transformer (Liu et al., 2021a) for
supervising. In Tab. 2, it is demonstrated that Trimsformer can push the current SOTA transformer
backbones to around 1% performance improvement while saving on average 30% of the computa-
tional cost for smaller model. On larger models like Swin-B and DeiT-B, the margin is pushed fur-
ther with at most 57% FLOPs saving while improving 1.1% top-1 accuracy for DeiT-B. We further
describe a Pareto frontier in Fig. 3. Under the structure design of Trimsformer, vanilla ViT archi-
tecture(ViT, DeiT) can achieve competitive results with the Swin Transformer family even without
the specialized shifted window strategy. When the Trimsformer is applied on Swin Transformer
backbone, we develop a superior set of models that achieves the best trade-off between FLOPs and
accuracy. Trim-Swin-B surpass the margins of S3 (Chen et al., 2021c) and MiniViT (Zhang et al.,
2022), where both of them developed new architecture based on Swin backbone.

Table 2: Result of optimal Trimsformer architecture on ImageNet-1k dataset.

Models Top-1 Acc Top-1 Acc
diff FLOPs FLOPs

saving Params Params
saving

DeiT-S 79.8% - 4.7G - 22M -
Trim-DeiT-S 81.0% +1.2% 4.1G 14% 19M 14%
Trim-DeiT-S 80.5% +0.7% 3.3G 30% 15M 32%

Swin-T 81.3% - 4.5G - 28M -
Trim-Swin-T 82.2% +0.9% 3.6G 20% 23M 17%
Trim-Swin-T 81.5% +0.2% 2.9G 36% 19M 32%

Swin-S 83.0% - 8.7G - 50M -
Trim-Swin-S 83.8% +0.8% 6.5G 25% 38M 25%
Trim-Swin-S 83.2% + 0.2% 5.1G 41% 29M 42%

DeiT-B 81.8% - 17.6G - 87M -
Trim-DeiT-B 83.7% +1.9% 10.5G 40% 50M 42%
Trim-DeiT-B 82.9% +0.9% 7.5G 57% 36M 59%

Swin-B 83.3% - 15.4G - 88M -
Trim-Swin-B 84.4% +1.1% 9.5G 38% 54M 39%
Trim-Swin-B 83.6% +0.8% 8.3G 46% 48M 46%
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Figure 3: Pareto frontier comparison curve for
Trimsformer with SOTA Vision Transformers.
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4.3 GENERALITY AND ORTHOGONALITY

Results on the Compact Hybrid Transformer In the previous section, we have demonstrated
the generality of Trimsformer on Transformer-only variants DeiT and Swin Transformer. Here we
further show that our approach is agnostic to model architectures even on a hybrid structure (i.e.,
CNN + Transformer). The results of trimming a TinyViT-22M with 224 x 224 input is shown in
Tab. 3. The computational cost can be reduced by 25% without sacrificing performance on TinyViT,
affirming the generality of our proposed Trimsformer.

Integrating with Other Compression Methods To show the orthogonality of our approach, we
integrate the proposed Trimsformer with token reduction based compression method DynamicViT
to achieve further compression ratio. Here, we use the uncompressed model itself for supervising.
From Tab. 3, Trimsformer achieves 21%/26% more FLOPs reduction while only sacrificing 0.3%
more performance degradation on DeiT-S/B. Fig. 4 provides an clearer view for the demonstration
of orthogonality. On DeiT-B, when integrating Trimsformer with DynamicViT, the reduction on
FLOPS is further improved by 1.7x over standalone DynamicViT. Moreover, on the small-scale
model DeiT-S, we can also earn 1.4x more FLOPs improvement and a compelling 50% FLOPs
savings in total. Thus, Trimsformer provides a new perspective that is orthogonal to the previous
compression methods. By applying multiple compression techniques, ViT can be compressed to an
appealing ratio with less than 50% of the original FLOPs and less than 1% drop on performance.

Table 3: Results on TinyViT and integration with
DynamicViT. DynamicViT is denoted as DyViT.

The model with Trim- prefix are the model
generated by Trimsformer.

Model GFLOPs Top-1 Acc

TinyViT-21M 4.3G 83.1%
Trim-TinyViT-21M 3.2G (-25%) 83.1% (-0%)

DeiT-S 4.7G 79.8%
DyViT-DeiT-S 3.4G (-28%) 79.6% (-0.3%)
Trim-DyViT-DeiT-S 2.3G (-49%) 79.3% (-0.6%)

DeiT-B 17.6G 81.8%
DyViT-DeiT-B 11.2G (-36%) 81.3% (-0.5%)
Trim-DyViT-DeiT-B 6.70G (-62%) 81.0% (-0.8%)
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Figure 5: Pareto frontier of Trimsformer with
Swin-S backbone using different configurations.

4.4 ABLATION STUDY

Effect of Non-Uniform Sampling By considering the initial performance of the subnetworks, a
non-uniform sampling strategy can make a better allocation of the total supernet training resource,
allocating more training steps to those subnetworks with more pre-trained weights pruned. As shown
in Fig. 5, the smaller subnetworks can achieve higher accuracy than the uniform sampling, which is
preferable for pruning purposes.

Effect of Weight Inheritance From Sec. 3, we know that weight inheritance make the supernet
slim and converges better. We demonstrate its effectiveness in Fig. 5. It can be observed that weight
inheritance with either uniform or non-uniform sampling converges to the baseline at around 7 to
7.5 GFLOPs, while classical weight sharing cannot.

Finally, when the two proposed strategies are conducted simultaneously, the resulting configurations
sit on the Pareto frontier. Reader can find more ablation studies in appendix A.5.

5 CONCLUSION

This paper proposes Trimsformer, an end-to-end framework that automatically searches for opti-
mal low-rank configuration. Extensive experiments show strong performance and good generality.
Extending our framework for multi-dimensional compression can be an exciting direction in the
future.
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A APPENDIX

A.1 ANALYSIS OF COMPUTATIONAL COST

Table 4: FLOPs analysis. Linear projections account for a high percentage of the total computation
cost in DeiT-B and Swin-B.

Model # MHSA
linear projections

MLP
linear projections Others Total

DeiT-B FLOPs 5.58G (32%) 11.15G (64%) 0.52G (4%) 17.56G

Params 28.31M (32%) 56.62M (66%) 1.38M (2%) 86.31M

Swin-B FLOPs 4.93G (32%) 9.87G (63%) 0.67G (5%) 15.47G

Params 27.92M (32%) 55.83M (64%) 3.81M (4%) 87.56M

A.2 RANK-K LOW-RANK APPROXIMATION

Firstly, we decompose W into three matrices Û ∈ Rm×r, Σ̂ ∈ Rr×r, and V̂ ∈ Rn×r by singular
value decomposition, where r = min(m,n), Σ̂ = diag(σ1, σ2, ..., σr), and σ1 ≥ σ2 ≥ ... ≥ σr ≥
0

[Û , Σ̂, V̂ ] = SVD(W ) (10)

Secondly, we fuse Σ̂ into Û or V̂ to reduce the number of parameters by the following equation.

U =

{
Û Σ̂ , n > m

Û ,m ≥ n
, V T =

{
V̂ T , n > m

Σ̂V̂ T ,m ≥ n
(11)

Lastly, we pick the first k columns from U and V to construct the Uk and Vk.

Uk = U [:, : k], Vk = V [:, : k] (12)

A.3 DETAILS OF BUILDING SUPERNETS

In the following two paragraphs, we will show the way to incorporate the weight inheritance low-
rank linear layers into Attention and MLP, which are two primary components of ViT, to build the
low-rank supernet.

Low-Rank Linear Layer in Attention A typical attention module in transformers is mainly com-
posed of three learnable weight matrices which perform the linear transformation to generate the
query (WQ ∈ Rn×d), key (WK ∈ Rn×d), and value (WV ∈ Rn×d) embeddings as well as the
self-attention module that aggregate the global correlations. In practice, the three learnable weight
matrices can be combined into a single large weight matrix WQKV ∈ Rn×3d since the inputs
are identical, where n is the number of input patches, and d is the embedding dimension of input
patches. We can replace the weight matrix WQKV with a weight inheritance low-rank linear layer
LRLinearQKV to reduce the operations and parameters of the attention module.

The number of activated parameters in LRLinearQKV is 4nr, where r is the given rank choice of
WQKV . If we choose a sufficient small r < 3

4n, the number of parameters and FLOPs are smaller
compared to the uncompressed one.

[Q,K, V ] = LRLinearQKV(x, r) (13)

Notably, this modification can be generally applied to various type of attention designs that required
linear embeddings for query, key and value, such as deformable ttention (Xia et al., 2022) or shifted-
window based self-attention (Liu et al., 2021a).
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Low-Rank Linear Layer in Multi-Layer Perceptron A typical MLP layer in transformers con-
tains two linear layers and the GELU activation. We can replace linear layers with weight inheritance
low-rank linear layers to reduce the computational cost.

MLP(x, r1, r2) = x+ LRLinearFC2(GELU(LRLinearFC1(x, r1), r2) (14)

The number of activated parameters in a weight inheritance low-rank linear layer is 5nr, when MLP
ratio is equal to 4, where r is the given rank choice of the weight matrix. If we choose a sufficient
small r < 4

5n, the number of parameters and FLOPs are smaller compared to the uncompressed
one.

Table 5: Configuration for supernet. R is the number of the full rank for each layer.

Backbone KD-type Rank choices Params range

Swin-T Uncompressed one [ 9
16R, 10

16R, 11
16R, R] 22M∼28M

Swin-L [ 7
16R, 8

16R, 9
16R, R] 18M∼28M

Swin-S Uncompressed one [ 8
16R, 9

16R, 10
16R, R] 34M∼50M

Swin-L [ 6
16R, 7

16R, 8
16R, R] 27M∼50M

Swin-B Uncompressed one [ 8
16R, 9

16R, 10
16R, R] 60M∼88M

Swin-L [ 6
16R, 7

16R, 8
16R, R] 48M∼88M

DeiT-S Uncompressed one [ 7
16R, 8

16R, 9
16R, 1016R, R] 13M∼22M

Swin-L [ 5
12R, 6

12R, 7
12R, 8

12R, R] 13M∼22M

DeiT-B Uncompressed one [ 1348R, 17
48R, 21

48R, 25
48R, R] 36M∼86M

Swin-L [ 1148R, 15
48R, 19

48R, 23
48R, 27

48R] 31M∼64M

Table 6: Hyper-parameter settings for training

Model
family Epochs Learning

rate
Weight
decay

Drop
path CutMix Mixup Repeated

augmentation

Swin 150 1 ∗ 10−5 0.01 0.1 ✗ ✗ ✓

DeiT 300 7.5 ∗ 10−6 0.01 0.0 ✗ ✗ ✓

A.4 IMPLEMENTATION DETAILS

The search space for each supernet with different backbone and distillation types are defined in Tab.
5. Here, we set rank choices for QKV, FC1, and FC2 to be identical for a simple implementation;
however, we can set them to be different to support more complicated configurations. For training,
we adopt a similar recipe to the backbone, and Tab. 5,6 provide the details for the hyperparameter
setting. Here, we set a relatively small learning rate for fine-tuning since the weights are derived
from the pre-trained model. For the implementation of the soft label distillation training we adopt
the fast-distillation framework from TinyViT (Wu et al., 2022).

To implement the evolutionary algorithm, we set the number of epochs Ne to be 20 and the popula-
tion size Np to be 50. Every generation, the top-10 configurations are selected to perform mutation
with probability Pm set to be 0.2. The number of chromosomes generated by mutation (Nm) and
crossover (Nc) is set to be 25.

A.5 MORE ABLATION STUDY

Effect of Neural Architecture Search on Low-Rank Approximation We re-implement the LRT
as our comparison baseline to investigate the effect of our NAS-based low-rank approximation. We
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Table 7: Ablation study. The top-1 accuracy is averaged over 400 random sampled sub-networks
from the Trimsformer supernet with Swin-S backbone on ImageNet-1k. WS: Weight sharing. SS:
Sampling strategy. KD: Knowledge distillation. Hard: Hard label. Soft: Soft label. US: Uniform

Sampling. NUS: Non-Uniform Sampling. CWS: Classical Weight Sharing. WI: Weight
Inheritance. Note that CWS + US reduces to the vanilla one-shot NAS.

#
WS SS KD Supernet

parameters
Average

Top-1 AccCWS WI US NUS Hard Soft

1 ✓ ✓ ✓ 142M 82.76% ±0.16%
2 ✓ ✓ ✓ 142M 82.82% ±0.13%
3 ✓ ✓ ✓ 61M 82.84% ±0.19%
4 ✓ ✓ ✓ ✓ 61M 82.73% ±0.18%
5 ✓ ✓ ✓ 61M 82.91% ±0.16%

Table 8: Comparison of methodologies for rank decision. We report the top-1 accuracy of the
low-rank approximated Swin-S model on ImageNet. The GPU hours are measured on V100 GPU.

N denotes the number of deployment scenarios.

Method FLOPs ACC Configuration
design type

Training cost
(GPU hours)

Search cost
(GPU hours) Total

LRT 6.6G 83.1% Manual 208N 0 208N

Ours 6.1G 82.8%
Auto 208 24N 208+24NOurs 6.6G 83.2%

Ours 7.0G 83.4%

train both networks with soft label-only knowledge distillation for fair comparison under the same
target GFLOPs. We summarize the comparison in Tab. 8.

As shown in Tab. 8, first, we can see that the training cost of LRT is proportional to the number
of deployment scenarios, while Trimsformer remains constant and can generate accuracy-FLOPs
trade-offs by training only once. Second, due to the lack of a proper searching method, LRT
is coarse-grained and requires the user to set the rank manually, while Trimsformer can generate
the configurations automatically; besides, the configurations can be non-uniform, providing a fine-
grained approximation with better performance.

Effect of Soft Label Distillation From the ablation study presented in Table 7, we observe that
training with only the soft label can yield a supernet with better performance; using an extra ground
truth label leads to a 0.2% performance degradation on average for the subnets of Swin-S. This
phenomenon indicates that ground truth labels may not be a proper guideline for the compressed
small networks because they may be too assertive and, thus, suppress the learning effect during
fine-tuning.
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