
FLAIR: STORING UNBOUNDED DATA STREAMS ON MOBILE DEVICES TO

UNLOCK USER PRIVACY AT THE EDGE

Anonymous authors
Paper under double-blind review

Abstract
Mobile devices are producing larger and larger data streams,
such as location streams, which are consumed by machine
learning pipelines deliver location-based services to end users.
Such data streams are generally uploaded and centralized
to be processed by third parties, potentially exposing sensi-
tive personal information. In this context, existing protection
mechanisms, such as Location Privacy Protection Mecha-
nisms (LPPMs), have been investigated. Alas, none of them
have actually been implemented, nor deployed in real-life,
in mobile devices to enforce user privacy at the edge. We
believe that the effective deployment of LPPMs on mobile
devices faces a major challenge: the storage of unbounded
data streams. This paper introduces FLAIR, a storage system
based on a new piece-wise linear approximation technique
that increases the storage capacity of mobile devices by rely-
ing on data modeling. Beyond the FLAIR storage layer, we
also introduce Divide & Stay, a new privacy-preserving tech-
nique to execute Points of Interest (POIs) inference. Finally,
we deploy both of them on Android and iOS to demonstrate
that a real deployment of LPPMs is now possible.

1 Introduction

With the advent of smartphones and more generally the In-
ternet of Things (IoT), connected devices are mainstream in
our societies and widely deployed at the edge. Such con-
strained devices are not only consuming data and services,
such as streaming, geolocalization, or restaurant recommenda-
tions, but also producers of data streams by leveraging a wide
variety of embedded sensors that capture the surrounding en-
vironment of end-users, including their daily routines. Online
services are heavily relying on this crowdsourced data to im-
prove the user experience through machine learning. The
data deluge generated by a user is potentially tremendous:
according to preliminary experiments, a smartphone can gen-
erate approximately 2 pairs of GPS samples and 476 triplets
of accelerometer samples per second, resulting in more than
172,800 location and 41,126,400 acceleration daily samples.
These data streams tend to be uploaded from the device to
third-party service providers to extract the valuable informa-
tion it contains. As an example, the Point Of Interests (POIs)
of a user can be extracted from her GPS traces, to better
understand consumers’ behavior.

(a) Cabspotting subtrace for user 0.

(b) Raw longitude trace for user 0. (c) Modeled longitude with FLAIR.

(d) Raw latitude trace for user 0. (e) Modeled latitude with FLAIR.

Figure 1: FLAIR compacts any location stream as a sequence
of segments, obtained from a piece-wise model.



Submitted to the Journal of Systems Research (JSys) 2023

However, this continuous data stream inevitably includes
sensitive personal information (SPI) that may jeopardize the
privacy of end-users, if processed by malicious stakehold-
ers. While machine learning algorithms are nowadays widely
adopted as a convenient keystone to process large datasets
and infer actionable insights, they often require grouping raw
input datasets in a remote place, thus imposing a privacy
threat for end-users sharing their data. This highlights the
utility vs. privacy trade-off that is inherent to any data-sharing
activity. On the one hand, without crowd-sourced GPS traces,
it would be hard to model traffic in real-time and recommend
itineraries. On the other hand, it is crucial to protect user
privacy when accepting to gather SPI.

To address this ethical challenge, privacy-preserving ma-
chine learning [39] and decentralized machine learning [16,
40] are revisiting state-of-the-art machine learning algorithms
to enforce user privacy, among other properties. Furthermore,
regarding location privacy, several protection mechanisms,
called Location Privacy Protection Mechanisms (LPPMs),
have been developed to preserve user privacy in mobility
situations. Location reports are evaluated and obfuscated be-
fore being sent to a service provider, hence keeping user
data privacy under control. The user no longer automat-
ically shares her data streams with service providers, but
carefully selects what she shares and makes sure the data
she unveils does not contain any SPI. For example, Geo-
Indistinguishability [15] generalizes differential privacy [18]
to GPS traces, while PROMESSE [35] smooths the GPS
traces—both temporally and geographically—to erase POIs
from the input trace. LPPMs successfully preserve sensitive
data, such as POIs, while maintaining the data utility for the
targeted service.

Despite their effectiveness, no LPPM has ever been im-
plemented and deployed on mobile devices: previous works
have been simulated on ADB [25] at best. While extending
those works to Android and iOS devices may be perceived
as straightforward, it faces several challenges imposed by the
scarce resources of mobile devices. In particular, LPPMs
often require the user to access all her GPS traces and, ideally,
the ones of additional users. The strategy consisting in stor-
ing entire raw traces does not scale and is impracticable for
the average user who does not possess high memory devices.
Unfortunately, the memory constraints of modern devices
prevent the users from sharing user traces at the edge of the
network.

This paper demonstrates that modeling data streams make
this transfer possible. In particular, we introduce Fast LineAr
InteRpolation (FLAIR), a new data storage system based on
a new piecewise linear approximation technique, and we use
it to model and store data streams under memory constraints
(see Fig. 1). Unlike existing stream or temporal databases,
FLAIR does not store a fixed number of data samples but
models their evolution, theoretically offering an unlimited
storage capacity. We show that FLAIR can be deployed on

Android and iOS smartphones to store GPS traces of entire
datasets. We then implement a LPPM working directly on mo-
bile phones—which is made possible by the increased GPS
storage capacity offered by FLAIR. However, the LPPM’s
privacy gains need to be evaluated in situ before being up-
loaded to service providers: are POIs actually obfuscated?
To this end, we also introduce a new POI attack algorithm,
dubbed Divide & Stay (D&S), which can compute POI on
large traces in tens of seconds directly on mobile phones. We
report that our combined approaches enable storing tremen-
dous amounts of geolocation data on mobiles, thus allowing
the use of LPPMs to ensure end-user privacy while using
geolocation services.

In the following, we first discuss the related work (Sec. 2),
before diving into the details of FLAIR and how it can be
applied to boost location privacy (Sec. 3). We then present
our experimental setup (Sec. 4) and the results we obtained
(Sec. 5); we discuss the potential shortcoming of our approach
(Sec. 6) before concluding (Sec. 7).

2 Related Works

2.1 Location Privacy Attacks

Raw user mobility traces can be exploited to model the users’
behavior and reveal their sensitive personal information (SPI).
In particular, the Point Of Interests (POIs) are widely used
as a way to extract SPI from mobility traces. In a nutshell,
a POI is a place where the user comes often and stays for a
significant amount of time: it can reveal her home, workplace,
or leisure habits. From POIs, more subtle information can
also be inferred: sexual orientation from attendance to LGBT+
places, for instance. The set of POIs can also be used as a way
to re-identify a user in a dataset of mobility traces [21, 34].
The POIs can be extracted using spatiotemporal clustering
algorithms [23, 42]. Alternatively, an attacker may also re-
identify a user directly from raw traces, without computing
any POI [29].

2.2 Mobility Dataset Protection Mechanisms

When data samples are gathered in a remote server, one can
expect the latter to protect the dataset as a whole. In particular,
k-anonymity [36] is the property of a dataset guaranteeing that
whenever some data leaks, the owner of each data trace is
indistinguishable from at least k−1 other users contributing
to the dataset. Similarly, l-diversity [27] extends k-anonymity
by ensuring that the l users are diverse enough not to infer
SPI about the data owner. Finally, differential privacy [18]
aims at ensuring that the inclusion of a single element in a
dataset does not alter significantly an aggregated query on the
whole dataset. However, all these techniques require personal
samples to be grouped to enforce user privacy.

2



Submitted to the Journal of Systems Research (JSys) 2023

2.3 Location Privacy Protection Mechanisms
Rather than protecting the dataset as a whole, each data sam-
ple can also be protected individually. In the case of location
data, several protection mechanisms—called Location Pri-
vacy Protection Mechanisms (LPPMs)—have been developed.
They may be deployed in a remote server where all data sam-
ples are gathered or directly on the device before any data
exchange.

Geo-Indistinguishability (GEOI) [15] implements differen-
tial privacy [18] at the trace granularity. In particular, GEOI
adjusts mobility traces with two-dimensional Laplacian noise,
making POIs more difficult to infer. Heat Map Confusion
(HMC) [28] aims at preventing re-identification attacks by al-
tering all the traces altogether. The raw traces are transformed
into heat maps, which are altered to look like another heat
map in the dataset, and then transformed back to a GPS trace.

PROMESSE [35] smooths the mobility traces, both tem-
porally and geographically, to erase POIs from the trace.
PROMESSE ensures that, between each location sample, there
is at least a given time and distance interval. In the result-
ing mobility trace, the user appears to have a constant speed.
While PROMESSE blurs the time notion from the trace—i.e.,
the user never appears to stay at the same place—it does not
alter their spatial characteristics. Yet, while POIs may be
still inferred if the user repeatedly goes to the same places, it
will be harder to distinguish such POIs from more random
crossing points.

It is also possible to combine several LPPMs to improve
the privacy of users [25, 30]. Because of potential remote
leaks, the user should anonymize her trace locally before shar-
ing it, which is how EDEN [25] operates. However, EDEN
has not been deployed: it has only been simulated on ADB.
Even more so: despite their validity and to the best of our
knowledge, no LPPM has been implemented in mobile de-
vices. This is partly due to the tight constraints of mobile
devices, memory-wise notably: HMC [28], for instance, re-
quires locally loading a large set of GPS traces to operate.

2.4 Temporal Databases & Mobile Devices
To overcome the memory constraints of mobile devices, one
needs efficient embedded temporal databases. To take the
example of Android: only few databases are available, such
as SQLITE and its derivative DRIFT [1], the cloud-based
Firebase [3], the NOSQL HIVE, and OBJECTBOX [11]. The
situation is similar on iOS.

Relational databases Relational databases (e.g., SQL)
are typically designed for OnLine Transactional Processing
(OLTP) and OnLine Analytical Processing (OLAP) work-
loads, which widely differ from time-series workloads. In the

first, reads are mostly contiguous (as opposed to the random-
read tendency of OLTP); writes are most often inserts (not
updates) and typically target the most recent time ranges.
OLAP is designed to store big data workloads to get analyt-
ical statistics from data, while not putting the emphasis on
read nor write performances. Finally, in temporal workloads,
it is unlikely to process writes & reads in the same single
transaction [37].

Despite these profound differences, several relational
databases offer support for temporal data with industry-ready
performance. As an example, TimescaleDB [14] is a middle-
ware that exposes temporal functionalities atop a relational
PostgreSQL foundation.

InfluxDB InfluxDB [8] is one of the most widely used tem-
poral databases. Implemented in Go, this high-performance
time series engine is designed for really fast writes to collect
metrics and events from IoT sensors. Unfortunately, its reten-
tion policy prevents the storage to scale in time: the oldest
samples are dumped to make room for the new ones.

To the best of our knowledge, however, none of the existing
solutions prioritize data compression to the extent that they
would prune raw data samples in favor of modeled approxi-
mations.

Modeling data streams While being discrete, the streams
sampled by sensors represent inherently continuous signals.
Data modeling does not only allow important memory con-
sumption gains, but also flattens sensors’ noise, and enables
extrapolation between measurements. In particular, Piece-
wise Linear Approximation (PLA) are used to model the data
in successive linear polynomials. An intuitive way to do
linear approximation is to apply a bottom-up segmentation:
each pair of consecutive points is connected by interpolations;
the less significant contiguous interpolations are merged, as
long as the obtained interpolations introduce no error above
a given threshold. The bottom-up approach has low com-
plexity but usually requires an offline approach to consider
all the points at once. The Sliding Window And Bottom-up
(SWAB) algorithm [24], however, is an online approach that
uses a sliding window to buffer the latest samples on which
a bottom-up approach is applied. emSWAB [17] improves
the sliding window by adding several samples at the same
time instead of one. Instead of interpolation, linear regression
can also be used to model the samples reported by IoT sen-
sors [22]. For example, GREYCAT [31] adopts polynomial
regressions with higher degrees to further compress the data.
Unfortunately, none of those works have been implemented
on mobile devices to date.

Closer to our work, FSW [26] and the ShrinkingCone al-
gorithm [20] attempt to maximize the length of a segment
while satisfying a given error threshold, using the same prop-
erty used in FLAIR. FSW is not a streaming algorithm as

3



Submitted to the Journal of Systems Research (JSys) 2023

it considers the dataset as a whole, and do not support inser-
tion. The ShrinkingCone algorithm is a streaming greedy
algorithm designed to approximate an index, mapping keys to
positions: it only considers monotonic increasing functions
and can produce disjoints segments. FLAIR models non-
monotonic functions in a streaming fashion, while providing
joints segments.

3 Enabling User Privacy at the Edge

3.1 In-situ Data Management

For privacy’s sake, we advocate for in-situ data management
strategies—i.e., SPI should be anonymized within the mobile
device before any data exchange. This avoids anonymizing by
relying on a trusted third party first gathering multiple users’
raw data. Such a third party may accidentally or intention-
ally leak users’ data, making the adoption of such protection
mechanisms ineffective.

In the following, we will focus on mobility traces. A mobil-
ity trace is an ordered sequence T of pairs (t,g) where t is a
timestamp and g is a geolocation sample, a latitude-longitude
pair for example. The trace is ordered in chronological order
and we assume that reported timestamps are unique.

We believe that keeping the raw data where it is created—
i.e., on the mobile devices—increases user privacy. However,
sharing data is required to enable location-based services,
such as traffic modeling. The user should share their mobility
traces after they have been protected using an LPPM. The
first challenge is to find which LPPM to use and which related
parameters are optimal. To tackle this issue, a public dataset
can be used to estimate the impact of an LPPM and to pick the
best option. EDEN [25] proposes a more advanced solution:
federated learning is used among the participants to learn
a model which can predict the best configuration without
sharing any mobility trace. Nonetheless, both approaches
require storing an important volume of data to successfully
protect user privacy.

The strong resource constraints of mobile devices prevent
the previous solutions to work in practice. In particular, mo-
bile ecosystems lack system components to deploy efficient lo-
cal storage solutions. Not only is there no advanced database
readily available on mobile operating systems, but no native
data modeling framework is provided either. For example,
EDEN was implemented using the PYTORCH library [12],
which is not available on smartphones1: the proposal was
only simulated on a server. It is, therefore, crucial to deliver
tools enabling the deployment of state-of-the-art techniques
in mobile devices to support privacy-preserving strategies at
the edge of a network.

1PyTorch allows importing and using trained models on Android and iOS,
but disallows training them locally.

x0 xt

y0

yt

ε

ε

Amin A0 Amax

Figure 2: FLAIR considers the sample s0 = (x0,y0) of the
current model as the origin. In addition to the current gradient
A0, the minimum and maximum acceptable gradients, Amin
and Amax, are kept. Amin and Amax are defined such that the
error reported by the model is lower than or equal to ε. To
check if a new sample st = (xt ,yt) fits the model, FLAIR
computes its gradient At and compares it to Amin and Amax.

3.2 Unleashing Your Device Storage with
FLAIR

To overcome the memory constraint of mobile devices, effi-
cient temporal databases must be ported onto mobile environ-
ments. In particular, we advocate the use of data modeling,
such as PLA [22, 24] or GREYCAT [31], to increase the stor-
age capacity of constrained devices. We propose Fast LineAr
InteRpolation (FLAIR), a storage system based on a fast PLA
to store approximate models of any data stream on any mobile
device, instead of storing all the raw data samples as state-of-
the-art temporal databases do. For simplicity, we refer to both
the storage system and the associated modeling technique as
FLAIR.

FLAIR models one-dimensional samples as piece-wise lin-
ear interpolations that enforce the following invariant: all
samples modeled by an interpolation must maintain an error
below the configuration parameter ε. Data samples are in-
serted incrementally: the current model is adjusted to fit new
samples until it cannot satisfy the invariant. In that case, the
current model is persisted in memory M , and a new interpo-
lation begins from the two last inserted points. Each model
in M is represented by a pair (si,Ai): si = (xi,yi) is the in-
terpolation’s initial sample, while Ai is the line’s gradient.
Each model thus represents the function y = Ai× (x−xi)+yi.
While working on the current model, its initial sample is set
as the origin s0 = (x0,y0), the current interpolation is thus a
polynomial defined as y = A0× x. The current gradient A0
is the slope between s0 and the last interpolated sample st .
Fig. 2 depicts a FLAIR model with two initial samples s0 and
st . It shows the interpolation parameters (s0,A0), and two
additional gradients Amin and Amax. A naive solution to main-
tain the invariant while updating the current model would be
to memorize every sample between s0 and the last sample st ,
to check their error against the model. Instead, FLAIR only
maintains Amin and Amax, which are updated at each sample

4



Submitted to the Journal of Systems Research (JSys) 2023

x0 xt− 1 xt

y0

yt
<ε

Amin At Amax

(a) Gradient of sample st
remains within [Amin;Amax].

x0 xt− 1 xt

y0

yt

A0

(b) A0, Amin and Amax are updated to
incorporate st into the current model.

Figure 3: When a new sample fits within [Amin;Amax], it is
added to the current model by updating A0 and the interval to
ensure that all previous samples fit the updated model.

Algorithm 1 FLAIR insertion using parameter ε ∈ R+∗

Before: M ; x0,xt−1 ∈ R+; y0,yt−1,A0,Amin,Amax ∈ R
1: function INSERT(xt ∈ R+,yt ∈ R)
2:

(
x∆

t ,y
∆
t
)
← (xt − x0,yt − y0) . Compute At

3: At ← y∆
t /x∆

t
4: if Amin ≤ At ≤ Amax then
5: A0← At . Update model
6: Amin←max

(
Amin,

y∆
t −ε

x∆
t

)
7: Amax←min

(
Amax,

y∆
t +ε

x∆
t

)
8: else
9: M .insert(x0,y0,A0) . Persist model

10: (x0,y0)← (xt−1,yt−1) . Build new model
11:

(
x∆

t ,y
∆
t
)
← (xt − x0,yt − y0)

12: A0← y∆
t /x∆

t
13: Amin←

(
y∆

t − ε
)
/x∆

t
14: Amax←

(
y∆

t + ε
)
/x∆

t
15: end if
16: (xt−1,yt−1)← (xt ,yt) . Update penultimate
17: end function

insertion.
Algorithm 1 details the insertion of a new sample st . First,

FLAIR computes the gradient At of the line (s0,st) (lines 2-3).
If At is inside [Amin;Amax], st is added to the current model
by updating A0, Amin and Amax (lines 5-7), as displayed in
figure 3. Graphically, we see that the resulting ‘allowed cone’
is the intersection of the model’s previous one, and that of st ’s
allowed error. By recurrence, the cone materialized by s0 and
[Amin;Amax] is the intersection of the error margin of every
point modeled by the current interpolation—illustrating how
FLAIR respects its invariant. If At falls outside the interval
[Amin;Amax], st breaks the invariant: the current model is
persisted in memory M (l. 9), and a new model (s0,A0) is
computed from st−1, along with new limits Amin and Amax
(l. 10-14). This case is displayed in figure 4. In any case, the
penultimate sample st−1 is updated on line 16.

In FLAIR, reading a value x is achieved by estimating its
image using the appropriate model, as is shown in algorithm 2.

x0 xt− 1 xt

y0

yt− 1

yt
>ε

At <Amin

(a) Gradient of sample st exceeds ε.
x0 xt

y0

yt

(b) A new model begins from st−1.

Figure 4: When a new sample reports an error > ε, a new
model is created using the penultimate sample st−1 as s0.

Lines 2-3 display the computation of the image when x be-
longs to the current model. When it does not, FLAIR retrieves
the model in charge of approximating x (l. 5). In practice, this
is made through a dichotomy search, as M stores models in
insertion order. Using that model, the interpolation of x is
computed on line 6.

Algorithm 2 FLAIR approximate read
Before: Current model (x0,y0,A0);

Memory M containing previous models
1: function READ(x ∈ R+)
2: if x0 ≤ x then
3: return A0× (x− x0)+ y0
4: end if
5: Select i s.t. (xi,yi,Ai) ∈M ∧ xi ≤ x < xi+1
6: return Ai× (x− xi)+ yi
7: end function

The value of ε has an important impact on the performances
of FLAIR. Figure 5 illustrates the longitude of Figure 1b with
two extreme values for ε. If ε is too small (Fig. 5a), none of the
inserted samples fits the current model at that time, initiating
a new model each time. In that case, there will be one model
per sample, imposing an important memory overhead. The
resulting model overfits the data. On the other hand, if ε is too
large (Fig. 5b), then all the inserted samples fit, and a single
model is kept. While it is the best case memory-wise, the
resulting model simply connects the first and last point and
underfits the data.

While FLAIR is designed for the modeling of one-
dimensional data, it straight-forwardly generalizes to multiple-
dimensional data by combining several instances of FLAIR.
As long as the newly inserted data samples fit the existing
model, the memory footprint of FLAIR remains unchanged.
This potentially unlimited storage capacity makes FLAIR a
key asset for mobile devices, making the storage of mobility
traces possible. We claim that the use of FLAIR alleviates the
memory constraint of mobile devices, making the real use of
LPPM possible and paving the way for user control of SPI.

5



Submitted to the Journal of Systems Research (JSys) 2023

(a) ε is too small: overfitting. (b) ε is too large: underfitting.

Figure 5: The performances of FLAIR is highly dependent
on the value of ε: a too small value will result in overfitting
and a too large one in underfitting.

3.3 Evaluating Your Location Privacy with
D&S

To demonstrate that FLAIR enables the deployment of exist-
ing LPPM in the wild, we use FLAIR on a mobile device to
store an entire dataset of mobility traces. Then, we perform
a geolocation attack on these traces, with and without the
use of an LPPM. We focus on POI attacks [34] and we use
PROMESSE [35] as the LPPM to protect the mobility traces.
POI-attack [34] aims at extracting the POIs from a mobility
trace. The extraction is done by a two-steps algorithm: first
potential candidates for POIs, dubbed stays, are extracted and,
then, these stays are merged to avoid duplication of similar
POIs. A stay is defined as a circle with a radius lower than
Dmax where a user spent a time higher than a set time tmin. A
stay is represented by its center. The two thresholds tmin and
Dmax have an important impact on the type of POI extracted.
Short stays will identify day-to-day patterns, such as shopping
preferences, while long stays will identify travel preferences
and periods, for example. The resulting stays whose centroids
are close to a given value are then merged to obtain the final
POI.

The regular way to extract the stays is to iterate over the
mobility traces and compute stays as they appear [34]. Unfor-
tunately, this approach is very expensive for dense mobility
traces—i.e., with many data samples per unit of time. Instead
of sampling, which results in a loss of information, we in-
troduce a new algorithm to extract the stays while scaling
with the density of the traces. This contribution, named Di-
vide & Stay (D&S), is a divide-and-conquer algorithm that
considers the mobility trace as a whole, and not iteratively.

The intuition behind Divide & Stay is to avoid computing
stays when it is useless. It is impossible to extract a stay from
a segment where more than Dmax meters have been traveled
in less than tmin. For example, the mobility trace of a trip in
a car at high speed in a straight line meets those conditions.
While the regular approach would consider each location until
the end of the trace, D&S skips it entirely. The denser the
trace the more time the regular approach would spend on such
segments. The key idea of Divide & Stay is to recursively
divide the trace until either such a segment is found, and
discarded, or until a fixed size segment is found on which the

regular way to extract stays is performed.
More precisely, in D&S, the trace is split into two parts,

cut in the middle. Both segments left and right, are individ-
ually considered. If the start and endpoint of the segment
are close temporally, but far spatially, it means that no stay
would be possibly extracted: no stay is further searched on
this segment. Otherwise, stays are recursively computed with
the top-down approach on the segment, until the size is lower
than a given threshold S, e.g. 300. In that case, the classical
way to compute stays [34] is triggered on the considered sub-
trace. Algorithm 3 depicts the pseudo-code of Divide & Stay.
The trace T is manipulated as a whole but with the different
indexes s, i, and e for the recursion. T [i].t refers to the times-
tamp of the sample T [i] and T [i].g refers to the associated
location. The distance between two locations is computed
with geo.dist and the function getStays refers to the original
function computing stays [34].

The more discarded segments, the faster compared to the
regular approach. However, stays around the middle points
of index i could be missed, but D&S ignores them as a POI
is a cluster of several stays: it is very unlikely to miss them
all. D&S can be implemented sequentially or concurrently, to
leverage multi-core processors.

Algorithm 3 Divide & Stay (D&S)
Input: T ∈ (R×G)n; S ∈ N+; s ∈ J0;n−1K;

e ∈ J0;n−1K,(tmin,Dmax) ∈ R2+

Output: STAY S ∈ (R×G)n

STAY S← /0

if T.size()≤ S then
return getStays(T.subtrace(s,e),m,D)

end if
i = b(e+ s)/2c
t1 = T [i].t−T [s].t
d1 = geo.dist(T [s].g,T [i].g)
if ¬(d1 > Dmax∧ t1≤ tmin) then

STAY S+= D&S(T,S,s, i, tmin,Dmax)
end if
t2 = T [e].t−T [i].t
d2 = geo.dist(T [i].g,T [e].g)
if ¬(d2 > Dmax∧ t2≤ tmin) then

STAY S+= D&S(T,S, i,e, tmin,Dmax)
end if
return STAY S

4 Experimental Setup

This section presents observed indicators used to affirm the
value of FLAIR’s contribution to mobile machine learning
on time series. We then introduce datasets that were used to
assert FLAIR’s storage capabilities. Next, we present com-
peting solutions that were also implemented in benchmark

6



Submitted to the Journal of Systems Research (JSys) 2023

applications to compare with FLAIR’s performances. Finally,
we discuss experimentation settings.

4.1 Key Performance Metrics
To evaluate how our approach performs, we use two classes of
key performance metrics: system metrics and privacy-related
metrics. Concerning privacy-related experiments, we only
measure the computation time when evaluating Divide & Stay.
Those metrics highly depend on the chosen algorithms, while
the use of FLAIR has no impact. Since our objective is
to demonstrate that FLAIR can help to port state-of-the-art
LPPM techniques on constrained devices, we do not discuss
privacy-related metrics for other experiments.

Memory footprint The key objective of FLAIR is to re-
duce the memory footprint required to store an unbounded
stream of samples. More specifically, we explore two metrics:
(i) the number of 64-bits variables required by the model and
(ii) the size of the model in the device memory. To do so,
we compare the size of the persistent file with the size of the
vanilla SQLITE database file. We consider the number of
64-bit variables as a device-agnostic estimation of the model
footprint.

I/O throughput Another relevant system metric is the
I/O throughput of the temporal databases. In particular,
we measure how many write and read operations can be
performed per second.

We will be comparing POI-inference algorithms, and POIs
returned by the same algorithm using different data backends.
For that reason, we need two metrics to compare the sets of
POIs returned in the different cases: a distance between POIs,
and the sets’ sizes.

Measuring the quality of inferred POIs is difficult, as there
is no acknowledged definition of how to compute POIs. We
consider as our ground truth the POIs inferred by the state-of-
the-art POI-attack [34], which we refer to as the ‘raw’ POIs.
The existence of such a ‘ground-truth’ is however debatable,
as two different—but close—POIs can be merged by the
algorithm into a single POI. As an example, if a user visits
two different shops separated by a road, but their distance
is lower than Dmax, those will be merged into a single POI
located at the center of the road.

Distance between POIs As the POI definition is mainly
algorithmic, we compute the distance of each obtained POI to
its closest raw POI as the metrics assessing the quality of new
POIs. These distances are reported as a Cumulative Distribu-
tion Function (CDF). If FLAIR does not alter significantly
the locations of the mobility traces it captures, the computed
distances should be short.

Number of POIs In addition to the distances between POIs,
we are also considering their returned quantity as a metric.
In our previous example, visiting the two shops may result
in two different POIs because they have been slightly shifted
by FLAIR. Beyond the numbers, we expect that PROMESSE
successfully anonymizes mobility traces by returning a grand
total of zero POI.

4.2 Mobility Datasets
Cabspotting CABSPOTTING [33] is a mobility dataset of
536 taxis in the San Francisco Bay Area. The data was col-
lected during a month and is composed of 11 million records,
for a total of 388MB.

PrivaMov PRIVAMOV [32] is a multi-sensors mobility
dataset gathered during 15 months by 100 users around the
city of Lyon, France. We use the full GPS dataset, which
includes 156 million records, totaling 7.2GB. Compared
to CABSPOTTING, PRIVAMOV is a highly-dense mobility
dataset.

4.3 Storage Competitors
SQLite SQLITE is the state-of-the-art solution to persist
and query large volumes of data on Android devices. SQLITE
provides a lightweight relational database management sys-
tem. SQLITE is not a temporal database, but is a convenient
and standard way to store samples persistently on a mobile
device. Insertions are atomic, so one may batch them to avoid
one memory access per insertion.

SWAB Sliding-Window And Bottom-up (SWAB) [24] is a
linear interpolation model. As FLAIR, the samples are rep-
resented by a list of linear models. In particular, reading a
sample is achieved by iteratively going through the list of
models until the corresponding one is found and then used
to estimate the requested value. The bottom-up approach of
SWAB starts by connecting every pair of consecutive samples
and then iterates by merging the less significant pair of con-
tiguous interpolations. This process is repeated until no more
pairs can be merged without introducing an error higher than
ε. Contrarily to FLAIR, this bottom-up approach is an offline
one, requiring all the samples to be known. SWAB extends
the bottom-up approach by buffering samples in a sliding
window. New samples are inserted in the sliding window
and then modeled using a bottom-up approach: whenever
the window is full, the oldest model is kept and the captured
samples are removed from the buffer.

One could expect that the bottom-up approach delivers
more accurate models than the greedy FLAIR, even result-
ing in a slight reduction in the number of models and faster
readings. On the other hand, sample insertion is more ex-
pensive than FLAIR due to the execution of the bottom-up

7



Submitted to the Journal of Systems Research (JSys) 2023

approach when storing samples. Like FLAIR, SWAB ensures
that reading stored samples is at most ε away from the exact
values.

Greycat GREYCAT [31] aims at compressing even further
the data by not limiting itself to linear models. GREYCAT
also models the samples by a list of models, but these models
are polynomials. The samples are read exactly the same way.

When inserting a sample, it first checks if it fits the model.
If so, then nothing needs to be done. Otherwise, unlike FLAIR
and SWAB which directly initiate a new model, GREYCAT
tries to increase the degree of the polynomial to make it fit
the new sample. To do so, GREYCAT first regenerates d +1
samples in the interval covered by the current model, where
d is the degree of the current model. Then, a polynomial
regression of degree d +1 is computed on those points along
the new one. If the resulting regression reports an error higher
than ε

2d+1 , then the model is kept, otherwise, the process is re-
peated by incrementing the degree until either a fitting model
is found or a maximum degree is reached. If the maximum
degree is reached, the former model is stored and a new model
is initiated. The resulting model is quite compact, and thus
faster to read, but at the expense of an important insertion
cost.

Unlike FLAIR and SWAB, there can be errors higher than
ε for the inserted samples, as the errors are not computed on
raw samples but on generated ones, which may not coincide.
Furthermore, the use of higher-degree polynomials makes the
implementation subject to overflow: to alleviate this effect,
the inserted values are normalized.

4.4 Experimental Settings
For experiments with unidimensional data—i.e. memory and
throughput benchmarks—we set ε = 10−2. The random sam-
ples used in those experiments are following a uniform dis-
tribution in [−1,000;1,000]: it is very unlikely to have two
successive samples with a difference lower than ε. For ex-
periments on location data, and unless said otherwise, we
set ε = 10−3 for FLAIR, SWAB and Greycat. For Greycat,
the maximum degree for the polynomials is set to 14. For
POI computations, we use tmin = 5 min and a diameter of
Dmax = 500 m for both the standard approach and D&S. Sim-
ilarly, we use δ = 500 m for PROMESSE: it should remove all
the POIs from the traces.

The experiments evaluating the throughput were evaluated
four times each and the average is taken as the standard devi-
ation was small. All the other experiments are deterministic
and performed once.

4.5 Implementation Details
We ran our experiments on a Fairphone 3 [2] running An-
droid 11; we reproduced them on an iPhone 12 [9] running

iOS 15.1.1. We chose to implement our evaluation apps us-
ing Flutter [6]. Flutter is Google’s UI toolkit, based on the
Dart programming language, that can be used to develop
natively compiled apps for Android, iOS, web and desktop
platforms (as long as the project’s dependencies implement
cross-compilation to all considered platforms).

We, therefore, implemented a Flutter library including
FLAIR, its storage competitors, the POI-attack with and with-
out our D&S extension, and PROMESSE. Our implementation
is publicly available [5]. For our experiments, we imple-
mented several mobile applications based on this library.

5 Experimental Results

In this section, we evaluate our implementation of FLAIR on
Android and iOS to show how it can enable in-situ data man-
agement on mobile devices. We first show that using FLAIR
paves the way for storing a tremendous quantity of samples,
by comparing it to SQLITE and reporting its performances
when storing samples generated by the accelerometer. Then,
we deploy the PROMESSE LPPM directly on mobile thanks to
FLAIR. Still on the mobile phones, we evaluate traces using
our POI-attack Divide & Stay (D&S): to assess the precision
of the GPS time series modeled by FLAIR, and the privacy
gain of the LPPM.

5.1 Memory Benchmark
As there is no temporal database, such as InfluxDB, avail-
able on Android, We first compare FLAIR’s performances
with SQLITE, as it is the only database natively provided on
Android.

To compare the memory consumption of the two ap-
proaches, two same operations are performed with both
SQLITE and FLAIR: (i) the incremental insertion of random
samples and (ii) the incremental insertion of constant samples.
The memory footprint on the disk of both solutions is com-
pared when storing timestamped values. As FLAIR models
the inserted samples, random values are the worst-case sce-
nario it can face, while inserting constant values represents
the ideal one. One million samples are stored and, for ev-
ery 10,000 insertion, the size of the file associated with the
storage solution is saved. The experiments are done with a
publicly available application [10].

Figure 6 depicts the memory footprint of both approaches.
On the one hand, the size of the SQLITE file grows linearly
with the number of inserted samples, no matter the nature
(random or constant) of the samples. On the other hand, the
FLAIR size grows linearly with random values, while the size
is constant for constant values. In particular, for the constant
values, the required size is negligible. The difference between
vanilla SQLITE and FLAIR is explained by the way the model
is stored: while SQLITE optimizes the way the raw data
is stored, FLAIR is an in-memory stream storage solution

8



Submitted to the Journal of Systems Research (JSys) 2023

0.0 0.2 0.4 0.6 0.8 1.0
n 1e6

0

20

40

60
M

b

FLAIR (C)
FLAIR (R)
SQL (C)
SQL (R)

Figure 6: Insertion of 1,000,000 samples, random (R) or
constant (C), in both SQLITE and FLAIR.

which naively stores coefficients in text file. Using more
efficient storage would shrink the difference between the two.
As expected, the memory footprint of a data stream storage
solution clearly outperforms the one of a vanilla SQLITE
database in the case of stable values. While random and
constant values are extreme cases, in practice data streams
exhibits a behavior between the two scenarios which allows
FLAIR to lower the memory required to store those data
streams.

In practice, we compare SQLITE and FLAIR to store the
entire PRIVAMOV dataset (7.2GB). FLAIR only requires
25MB compared to more than 5GB for SQLITE, despite the
naive storage scheme used by FLAIR. On mobile devices,
loading the raw dataset in memory crashes the application,
while FLAIR fits the same dataset into memory.

5.2 Throughput Benchmark
We compare FLAIR with its competitors among the temporal
databases: SWAB and GREYCAT. We study the throughput of
each approach, in terms of numbers of insertions and readings
per second. For the insertions, we successively insert 1M
random samples in the storage solution (random values are
used as a worst-case situation for FLAIR, due to its way of
modeling data). For the reads, we also incrementally insert
1M samples before querying 10,000 random samples among
the inserted ones. GREYCAT is an exception: due to its long
insertion time, we only insert 10,000 random values and those
values are then queried. Our experiment is done using a
publicly available application [13].

Figure 7 shows the throughput of the approaches for se-
quential insertions and random reads. Note the logarithmic
scale. FLAIR drastically outperforms its competitors for the
insertions: it provides a speed-up from ×133 against SWAB
up to ×3,505 against GREYCAT. The insertion scheme of
FLAIR is fast as it relies on few parameters. On the other
hand, GREYCAT relies on a costly procedure when a sample
is inserted: it tries to increase the degree of the current model
until it fits with the new point or until a maximum degree is
reached. GREYCAT aims at computing a model as compact
as possible, which is not the best choice for fast online inser-

FLAIR SWAB Greycat

103

104

105

106

in
se

rti
on

s p
er

 se
co

nd

x133.02

x3505.63

(a) Sequential Insertions
FLAIR SWAB

102

103

104

105

re
ad

s p
er

 se
co

nd

x2343.05

(b) Random Reads

Figure 7: Throughput for insertions and reads using FLAIR,
SWAB, and GREYCAT (log scale). FLAIR drastically outper-
forms its competitors for insertions and reads.

tions. While SWAB performs better, it cannot compare to
FLAIR because of the way SWAB inserts a sample: when
its sliding window is full and a new sample does not fit the
current model, a costly bottom-up approach is triggered over
the entire window.

For the reads (Fig 7b), FLAIR also outperforms SWAB.
Our investigation reports that the gain reported by FLAIR
largely benefits from the time index it exploits to fetch the
models: SWAB browses the list of models sequentially until
the good model is found while FLAIR relies on a dichotomy
search. SWAB has a complexity linear in the size of the
models list while FLAIR has a logarithmic one. Nonetheless,
their lists of models have roughly the same size as random
samples were added. GREYCAT has the same approach as
SWAB and this is why it is not represented in the results:
with only 10,000 insertions instead of 1M, its list of models
is significantly smaller compared to the others, making the
comparison unfair. Nonetheless, we expect GREYCAT to have
a better throughput as its model list shall be shorter.

Note that those results have been obtained with the worst-
case: random samples. Similarly unfit for FLAIR are periodi-
cal signals such as raw audio: our tests show a memory usage
similar to random noise. Because FLAIR leverages linear
interpolations, it performs best with signals that have a linear
shape (e.g. GPS, accelerometer). We expect SWAB to store
fewer models than FLAIR thanks to its sliding window, re-
sulting in faster reads. However, the throughput obtained for
FLAIR is minimal and FLAIR is an order of magnitude faster
than SWAB for insertions, so it does not make a significant
difference. We can conclude that FLAIR is the best solu-
tion for storing an unbounded stream of samples on mobile
devices.

5.3 Privacy Benchmark

5.3.1 Location privacy

Location data is not only highly sensitive privacy-wise, but
also crucial for location-based services. While LPPMs have
been developed to protect user locations, they are generally
used on the server where the data is aggregated. The data

9



Submitted to the Journal of Systems Research (JSys) 2023

is thus exposed to classical threats, such as malicious users,
man in the middle, or database leaks. To avoid them, the best
solution is to keep the data on the device where it is produced,
until it is sufficiently obfuscated to be shared with a third-
party. With GPS data, this protection mechanism must be
undertaken by a device-local LPPM. Evaluating the privacy
of the resulting trace must also be performed locally, by exe-
cuting attacks on the obfuscated data. Both processes require
storing all the user mobility traces directly on the mobile.
While existing approaches have simulated this approach [25],
no real deployment has ever been reported. In this section, we
show that using FLAIR enables overcoming one of the mem-
ory hurdles of constrained devices. We use FLAIR to store
entire GPS traces on mobile devices, execute POI attacks, and
protect the traces using the LPPM PROMESSE [35].

PROMESSE [35] is an LPPM that intends to hide POIs
from a mobility trace by introducing a negligible spatial error.
To do so, PROMESSE smooths the trajectories by replacing
the mobility trace with a new one applying a constant speed
while keeping the same starting and ending timestamps. The
new trace T ′ is characterized by the distance δ between two
points. First, additional locations are inserted by considering
the existing locations one by one in chronological order. If
the distance between the last generated location T ′[i] and
the current one T [c] is below δ, this location is discarded.
Otherwise, T ′[i+ 1] is not defined as the current location
T [c], but the location between T ′[i] and T [c], such that the
distance between T ′[i] and T ′[i+1] is equal to δ. Once all the
locations included in the new mobility trace are defined, the
timestamps are updated to ensure that the period between the
two locations is the same, keeping the timestamps of the first
and last locations unchanged. The resulting mobility trace
is protected against POI attacks while providing high spatial
accuracy.

Our experiments are performed using a publicly available
application [7].

Enforcing privacy on CABSPOTTING Using FLAIR, we
store the entire CABSPOTTING dataset’s latitudes and lon-
gitudes in memory, using both ε = 10−3 and ε = 2× 10−3

(representing an accuracy of approximately a hundred meters).
For each user, we compute the gain in terms of memory we
save by modeling the dataset instead of storing the raw traces.

Figure 8 reports the gain distribution as a CDF along with
the average gain on the entire dataset. One can observe that
most of the user traces benefit from using FLAIR, and FLAIR
provides an overall gain of 21% for ε = 10−3 on the entire
dataset, and a gain of 47.9% for ε = 2×10−3. Nonetheless,
the mobility of a few users imposes an important cost: for
them, using FLAIR is counter-productive. Fortunately, this
does not balance out the gain for the other users.

To better understand how the ε parameter introduced by
FLAIR affects the utility of the resulting traces, we study
the POIs inferred from the modeled traces. We compute the

-50 0 21.02 47.9

gain (%)

0

0.5

1.0

P(
d
<
x

)

0.002

0.001

Figure 8: Memory gain distribution when storing CABSPOT-
TING with FLAIR. Using FLAIR with ε = 10−3 reports on a
gain of 21%, while ε = 2×10−3 reaches a gain of 48%.

0 10000 20000 30000 40000

distance (m)

0.0

0.5

1.0

P(
d
<
x

)

0.002

0.001

(a) Global distribution

0 509 826 1000

distance (m)

0

0.9

P(
d
<
x

)

0.002

0.001

(b) Zoom for d < 1,000 m

Figure 9: Distances distribution when using FLAIR on CAB-
SPOTTING. The distances are computed between the POIs
obtained using the modeled traces and their closest counter-
parts, obtained with the raw traces. Except for a few extreme
values, the values are close: 90% of the POIs are at a distance
lower than 510 meters from the ground truth. The use of
FLAIR does not alter the utility of the traces.

POIs of the trace both with and without using FLAIR. To
estimate the relevance of the obtained POIs, we compute the
distance of each POI reported while using the trace modeled
by FLAIR to the closest POI among the POIs in the raw trace.
Figure 9 depicts the distribution, as a CDF, of this distance
between "modeled" and "raw" POIs. Figure 9a shows that the
distance is short: with ε = 10−3, 99.5% of the distances are
lower than 2,425 meters and 99% are lower than 1,700 meters.
Figure 9b zooms on this distribution, focusing on distances
lower than 1,000 meters. With ε = 10−3, 90% of the obtained
POIs using FLAIR are at a distance lower than 510 meters to
a POI inferred from the raw trace. By construction, POIs are
the center of spheres of a diameter of 500 meters where the
user has stayed more than 5 minutes. The vast majority of the
obtained POIs using FLAIR being within 500 meters of raw
POIs, it means that FLAIR delivers relevant approximations.
With ε = 2×10−3, 90% of the obtained POIs using FLAIR
are at a distance lower than 826 meters to a POI inferred from
the raw trace: the gain in memory has an impact on the utility
of the resulting trace.

Figure 10 reports on the sensibility analysis of ε, both in
terms of gains and distances. As expected, the higher ε, the

10



Submitted to the Journal of Systems Research (JSys) 2023

-50 0 50

gain (%)

0

0.5

1.0

P(
d
<
x

)

(a) Gain

0 500 1000

distance (m)

0

0.9

P(
d
<
x

) 0.01

0.005

0.002

0.001

0.0005

0.0001

(b) Distribution for d < 1,000 m

Figure 10: Distances distribution for different ε when using
FLAIR on CABSPOTTING. Distances and memory gain are
computed from the modeled traces with different values for ε.
The higher ε, the higher the gain, but the longer the distances
between the inferred and raw POI.

better the gains, but the longest the distances. Regarding
the gains (Fig. 10a), a low ε can induce a memory overhead.
Indeed, if the model is used only for one data point, it gen-
erates a memory overhead similarly to Fig. 6, in this case
of 50%. We, therefore, recommend using ε = 10−3 as the
minimal tolerated error to observe a gain. Regarding the dis-
tances, Figure 10b reports on the distribution of distances
below 1,000 meters, as the higher values follow the same
tendency as Figure 9a. Except for a few extreme values, most
of the distances remain short, even for high ε values.

Processing Benchmark For dense datasets, e.g. with more
than two GPS samples per second, the gain becomes even
more significant. For example, storing the entire PRIVAMOV
dataset using FLAIR with ε = 10−3 results in a memory
gain of 99.87%. Compared to sampling, FLAIR stores all
the samples, instead of discarding a part of them. However,
the large number of samples can be a hindrance to many
approaches, including the extraction of POI. To be able to
port LPPMs onto constrained devices, other bottlenecks of
the systems should be resolved, in addition to storage.

For example, computing POIs with the traditional POI at-
tacks may lead to unpractical computation time. Computing
the POIs of the user 1 of PRIVAMOV takes 2hours: comput-
ing the POIs for the entire dataset is far too costly. We cannot
expect end-users to execute processes with such computation
time on their mobile phone: while FLAIR has removed the
memory constraint, computation time is still a hurdle. Di-
vide & Stay is a way, in this case, to decrease the complexity of
POI computation. Table 1 displays PRIVAMOV user 1 POIs’
computation time on different platforms. It shows that ap-
plying Divide & Stay to the user 1 mobility trace decreases
the computation from 2hours to 59seconds on Android, pro-
viding a ×120 speed-up; speed gain even reaches ×164 on
iOS, computation time decreasing from 1hour to 22seconds.
Divide & Stay makes the in-situ use of POI attacks and the
corresponding LPPM possible.

In addition to speed, the quality of the inferred POIs is
the most salient concern about Divide & Stay. We assess the

Table 1: Computation times of raw POIs for PRIVAMOV
user 1 on different platforms. Divide & Stay (D&S) is at
least 100 times faster than state-of-the-art approaches.

Platform POI-attack D&S Speed-up
Desktop 59 min 20 s 32 s ×111

iOS 1 h 00 min 01 s 22 s ×164
Android 1 h 58 min 04 s 59 s ×120

0 22 50 100

distance (m)

0

0.9

P(
d
<
x

)

Figure 11: Distances distribution when using Divide & Stay
on CABSPOTTING. The distances between the POIs are ob-
tained using Divide & Stay and their closest counterparts, ob-
tained with the traditional POI attack. Except for a few ex-
treme values, the values are close: more than 68% are the
same and 90% of the POIs are at a distance lower than 22
meters than a "real" one.

quality by computing the distances to the POIs obtained from
the POI-attack on CABSPOTTING. We choose CABSPOTTING
because computing it on PRIVAMOV is prohibitive it terms of
computation time. Figure 11 displays the distribution of the
distances below 100 meters: more than 68% are the same and
90% of the POIs are at a distance lower than 22 meters from
actual ones. Divide & Stay provides an important speed-up
without altering the quality of POIs. Note that FLAIR was
not used in this case, as the performances of Divide & Stay
are orthogonal to the use of a temporal database to model the
samples.

Bringing back privacy to the user. By using both FLAIR
and D&S we can perform POI-attacks and use LPPMs di-
rectly on the user’s device. We consider the POIs of user
0 of CABSPOTTING with and without FLAIR, D&S, and
PROMESSE, see Table 2.

The use of FLAIR and D&S alters the number of POIs,
which explains the extreme values obtained in the distribution
of the distances (Fig. 9 and 10b): it corresponds to POIs that
have no counterpart and may be far away from other POIs.
The use of D&S corroborates the results of Figure 11: an
important part of the inferred POIs look similar to the raw
ones. On the other hand, even though the number of POIs
is similar, none of the POIs obtained using FLAIR are equal
to the original one, with or without D&S, despite being very

11



Submitted to the Journal of Systems Research (JSys) 2023

Table 2: Impact of FLAIR and D&S on the number of inferred
POIs from user 0 trace in CABSPOTTING. Thanks to FLAIR
and D&S, PROMESSE succeeds to protect user privacy at the
edge.

without PROMESSE with PROMESSE︷ ︸︸ ︷ ︷ ︸︸ ︷
Algorithm Raw POIs FLAIR Raw POIs FLAIR
POI-attack 30 31 0 0

D&S 30 30 0 0
POI-attack ∩ D&S 21 20 - -

close.
To conclude, our implementation of the data stream stor-

age solution, FLAIR, enables the effective deployment of
more advanced techniques, such as EDEN [25] or HMC [28].
This may require new algorithms, such as Divide & Stay, but
it enables in-situ data privacy protection before sharing any
sensitive information. We believe that this is a critical step
forward towards improving user privacy as all LPPMs experi-
ments until today were either centralized or simulated.

5.4 Stability Benchmark
We further explore the capability of FLAIR to capture stable
models that group as many samples as possible for the longest
possible durations. Figure 12 reports on the time and the
number of samples covered by the models of FLAIR for the
CABSPOTTING and PRIVAMOV datasets. One can observe
that the stability of FLAIR depends on the density of the
considered datasets. While FLAIR only captures at most
4 samples for 90% of the models stored in CABSPOTTING
(Fig. 12a), it reaches up to 2,841 samples in the context of
PRIVAMOV (Fig. 12c), which samples GPS locations at a
higher frequency than CABSPOTTING. This is confirmed by
our observations of Figures 12b and 12d, which report a time
coverage of 202 ms and 3,602 ms for 90% of FLAIR models
in CABSPOTTING and PRIVAMOV, respectively. Given that
PRIVAMOV is a larger dataset than CABSPOTTING (7.2 GB
vs. 388 MB), one can conclude that FLAIR succeeds to scale
with the volume of data to be stored.

5.5 Beyond Location Streams
Storing timestamps In all the previous experiments, the
timestamps were not modeled by FLAIR, as we expect the
user to query the time at which she is interested in the sam-
ples. However, it is straightforward to store timestamps using
FLAIR: we store couples (i, ti) with ti being the ith inserted
timestamp. Unlike other sensor samples, the nature of the
timestamps makes them a good candidate for modeling: their
value keeps increasing in a relatively periodic fashion. To
assess the efficiency of FLAIR for storing timestamps, we
stored all the timestamps of the user 1 of the PRIVAMOV
dataset with ε = 1—i.e., we tolerate an error of one second
per estimate. The 4,341,716 timestamps were stored using

0 4 10

N: number of points per model

0

0.43

0.9
1

P(
N
<
x

)

(a) Samples per CABSPOTTING model.

0 202 1000

t: time (ms) per model

0

0.43

0.9
1

P(
t
<
x

)

(b) Duration of CABSPOTTING models.

44 2841

N: number of points per model

0
0.1

0.9
1

P(
N
<
x

)

(c) Samples per PRIVAMOV model.

35 3602

t: time (ms) per model

0
0.1

0.9
1

P(
t
<
x

)

(d) Duration of PRIVAMOV models.

Figure 12: Stability of the inferred models when using FLAIR
on PRIVAMOV and CABSPOTTING with ε = 10−3.

26,862 models for a total of 80,592 floats and an overall gain
of 98%, with a mean average error (MAE) of 0.246 second.
Hence, not only the use of FLAIR results in a dramatic gain
of memory, but it provides very good estimations.

Storing accelerations To assess that FLAIR is suitable for
storing unbounded data streams, we use FLAIR to store ac-
celerometer samples. While storing random samples is of
little benefit, accelerometer samples are used in practice to
model user mobility. Coupled with other sensors’ data, such
as GPS values, we can infer if the user is walking, biking or
taking a car for example [19,38,41]. However, the accelerom-
eter produces more than 15 samples per second, hence chal-
lenging the storage of such a data stream. Our implementation
is publicly available [4].

We store 10,000 consecutive accelerometer samples with
FLAIR and, for every 100 insertions, we report on the size
of the file and the relative gain. We use FLAIR with ε = 1 as
the accelerometer has high variability, even when the mobile
is stationary. FLAIR reports a constant memory whenever
stationary, and a small gain (>×1.39) when walking. FLAIR
is thus a suitable solution to store data streams produced by
the sensors of mobile devices.

We also observed that the performances of FLAIR may
differ, depending on device configurations. As older hard-
ware’s accelerometers are noisier and produce fewer samples
than newer sensors, FLAIR’s gain appears as higher on latter
generation hardware. For instance, inserting 10k samples
with a Pixel 7 Pro (Android 13) smartphone is completed in
21 seconds, while doing the same on a Moto Z (Android 8)
lasts for 49 seconds. Regarding iOS, latest iPhone 14 Plus
(iOS 16.0.1) takes up 1 minute 39 seconds to store same sam-
ples count.

12



Submitted to the Journal of Systems Research (JSys) 2023

6 Threats to Validity

While the combination of FLAIR and D&S succeeds to embed
LPPMs within mobile devices and increasing user privacy, our
results might be threatened by some variables we considered.

The hardware threats relate to the classes of constrained de-
vices we considered. In particular, we focused on the specific
case of smartphones, which is the most commonly deployed
mobile device in the wild. To limit the bias introduced by a
given hardware configuration, we deployed both FLAIR and
D&S on both recent Android and iOS smartphones for most of
the reported experiments, while we also considered the impact
of hardware configurations on the reported performances.

Another potential bias relates to the mobility datasets we
considered in the context of this paper. To limit this threat, we
evaluated our solutions on two established mobility datasets,
CABSPOTTING and PRIVAMOV, which exhibit different char-
acteristics. Yet, we could further explore the impact of these
characteristics (sampling frequency, number of participants,
duration and scales of the mobility traces). Beyond mobility
datasets, we could consider the evaluation of other IoT data
streams, such as air quality metrics, to assess the capability
of FLAIR to handle a wide diversity of data streams. To miti-
gate this threat, we reported on the storage of timestamps and
accelerations in addition to 2-dimensional locations.

Our implementations of FLAIR and D&S may suffer from
software bugs that affect the reported performances. To limit
this threat, we make the code of our libraries and applications
freely available to encourage the reproducibility of our results
and share the implementation decisions we took as part of the
current implementation.

Finally, our results might strongly depend on the param-
eters we pick to evaluate our contributions. While FLAIR
performances (gain, memory footprint) vary depending on the
value of the ε parameter, we considered a sensitive analysis of
this parameter and we propose a default value ε = 10−3 that
delivers a minimum memory gain that limits the modeling
error.

7 Conclusion

The contributions of this paper are threefold: we introduced
i) a new storage system based on piece-wise linear model
dubbed FLAIR, ii) a new way to compute POIs, called Di-
vide & Stay, and finally iii) demonstrated how FLAIR could
unlock device-local privacy protections on time series while
using machine learning. Our extensive evaluations, based on
real applications available for Android and iOS, show that
FLAIR drastically outperforms its competitors in terms of
insertion throughput—FLAIR is more than 130 times faster
than the traditional SWAB—and read throughput—FLAIR
reads 2,340 times faster than SWAB. While FLAIR can store
tremendous data on mobile devices, Divide & Stay provides
an important speed-up to reduce the total computation time of

POI attacks by several orders of magnitude, making them suit-
able for mobile computing. By sharing these two frameworks
with mobile developers, our contribution is an important step
forward towards the real deployment of LPPMs and, more
generally, privacy-friendly data-intensive workloads at the
edge (e.g., federated learning on mobile phones).

References

[1] Drift library. https://pub.dev/packages/drift.
Last accessed on Sep 22nd, 2022.

[2] Fairphone 3 product page. https://shop.fairphone.
com/en/fairphone-3. Last accessed on Sep 22nd,
2022.

[3] Firebase services. https://firebase.google.com.
Last accessed on Sep 22nd, 2022.

[4] Flair accelerometer example application.
https://anonymous.4open.science/r/
temporalbddflutter_jsys/example/README.md.
Last accessed on Mar 1st, 2023.

[5] Flair implementation. https://anonymous.4open.
science/r/temporalbddflutter_jsys. Last ac-
cessed on Mar 1st, 2023.

[6] Flutter framework. https://flutter.dev/. Last
accessed on Sep 22nd, 2022.

[7] In-situ lppm. https://anonymous.4open.science/
r/in-situ-lppm_jsys. Last accessed on Mar 1st,
2023.

[8] Influxdb. https://www.influxdata.com/
products/influxdb-overview/. last accessed
June 1, 2022.

[9] iphone 12 product page. https://www.apple.com/
iphone-12/specs/. Last accessed on Sep 22nd, 2022.

[10] Memory space benchmarking application. https:
//anonymous.4open.science/r/benchmarking_
memory_space_jsys. Last accessed on Mar 1st, 2023.

[11] Objectbox database. https://objectbox.io. Last
accessed on Sep 22nd, 2022.

[12] Pytorch library. https://www.pytorch.org. Last accessed
on Sep 22nd, 2022.

[13] Throughput benchmarking application. https:
//anonymous.4open.science/r/benchmarking_
throughput_jsys. Last accessed on Mar 1st, 2023.

[14] Timescale database. https://www.timescale.com.
Last accessed on Sep 22nd, 2022.

13

https://pub.dev/packages/drift
https://shop.fairphone.com/en/fairphone-3
https://shop.fairphone.com/en/fairphone-3
https://firebase.google.com
https://anonymous.4open.science/r/temporalbddflutter_jsys/example/README.md
https://anonymous.4open.science/r/temporalbddflutter_jsys/example/README.md
https://anonymous.4open.science/r/temporalbddflutter_jsys
https://anonymous.4open.science/r/temporalbddflutter_jsys
https://flutter.dev/
https://anonymous.4open.science/r/in-situ-lppm_jsys
https://anonymous.4open.science/r/in-situ-lppm_jsys
https://www.influxdata.com/products/influxdb-overview/
https://www.influxdata.com/products/influxdb-overview/
https://www.apple.com/iphone-12/specs/
https://www.apple.com/iphone-12/specs/
https://anonymous.4open.science/r/benchmarking_memory_space_jsys
https://anonymous.4open.science/r/benchmarking_memory_space_jsys
https://anonymous.4open.science/r/benchmarking_memory_space_jsys
https://objectbox.io
https://anonymous.4open.science/r/benchmarking_throughput_jsys
https://anonymous.4open.science/r/benchmarking_throughput_jsys
https://anonymous.4open.science/r/benchmarking_throughput_jsys
https://www.timescale.com


Submitted to the Journal of Systems Research (JSys) 2023

[15] Miguel E Andrés, Nicolás E Bordenabe, Konstanti-
nos Chatzikokolakis, and Catuscia Palamidessi. Geo-
indistinguishability: Differential privacy for location-
based systems. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications
security, pages 901–914, 2013.

[16] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and
Marc Tommasi. Fast and differentially private algo-
rithms for decentralized collaborative machine learning.
PhD thesis, INRIA Lille, 2017.

[17] Eugen Berlin and Kristof Van Laerhoven. An on-line
piecewise linear approximation technique for wireless
sensor networks. In IEEE Local Computer Network
Conference, pages 905–912. IEEE, 2010.

[18] Cynthia Dwork. Differential privacy: A survey of
results. In International conference on theory and appli-
cations of models of computation, pages 1–19. Springer,
2008.

[19] Shih-Hau Fang, Hao-Hsiang Liao, Yu-Xiang Fei, Kai-
Hsiang Chen, Jen-Wei Huang, Yu-Ding Lu, and Yu Tsao.
Transportation modes classification using sensors on
smartphones. Sensors, 16(8):1324, 2016.

[20] Alex Galakatos, Michael Markovitch, Carsten Binnig,
Rodrigo Fonseca, and Tim Kraska. Fiting-tree: A data-
aware index structure. In Proceedings of the 2019 In-
ternational Conference on Management of Data, pages
1189–1206, 2019.

[21] Sébastien Gambs, Marc-Olivier Killijian, and
Miguel Núñez del Prado Cortez. De-anonymization
attack on geolocated data. Journal of Computer and
System Sciences, 80(8):1597–1614, 2014.

[22] Florian Grützmacher, Benjamin Beichler, Albert Hein,
Thomas Kirste, and Christian Haubelt. Time and mem-
ory efficient online piecewise linear approximation of
sensor signals. Sensors, 18(6):1672, 2018.

[23] Ramaswamy Hariharan and Kentaro Toyama. Project
lachesis: parsing and modeling location histories. In
International Conference on Geographic Information
Science, pages 106–124. Springer, 2004.

[24] Eamonn Keogh, Selina Chu, David Hart, and Michael
Pazzani. An online algorithm for segmenting time series.
In Proceedings 2001 IEEE international conference on
data mining, pages 289–296. IEEE, 2001.

[25] Besma Khalfoun, Sonia Ben Mokhtar, Sara Bouchenak,
and Vlad Nitu. Eden: Enforcing location privacy
through re-identification risk assessment: A federated
learning approach. Proceedings of the ACM on Inter-
active, Mobile, Wearable and Ubiquitous Technologies,
5(2):1–25, 2021.

[26] Xiaoyan Liu, Zhenjiang Lin, and Huaiqing Wang. Novel
online methods for time series segmentation. IEEE
Transactions on Knowledge and Data Engineering,
20(12):1616–1626, 2008.

[27] Ashwin Machanavajjhala, Daniel Kifer, Johannes
Gehrke, and Muthuramakrishnan Venkitasubramaniam.
l-diversity: Privacy beyond k-anonymity. ACM Trans-
actions on Knowledge Discovery from Data (TKDD),
1(1):3–es, 2007.

[28] Mohamed Maouche, Sonia Ben Mokhtar, and Sara
Bouchenak. Hmc: Robust privacy protection of mobility
data against multiple re-identification attacks. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2(3):1–25, 2018.

[29] Mohamed Maouche, Sonia Ben Mokhtar, and Sara
Bouchenak. Ap-attack: a novel user re-identification
attack on mobility datasets. In Proceedings of the 14th
EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, pages
48–57, 2017.

[30] Lakhdar Meftah, Romain Rouvoy, and Isabelle Chris-
ment. Fougere: user-centric location privacy in mobile
crowdsourcing apps. In IFIP International Conference
on Distributed Applications and Interoperable Systems,
pages 116–132. Springer, 2019.

[31] Assaad Moawad, Thomas Hartmann, François Fouquet,
Grégory Nain, Jacques Klein, and Yves Le Traon. Be-
yond discrete modeling: A continuous and efficient
model for iot. In 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages
and Systems (MODELS), pages 90–99. IEEE, 2015.

[32] Sonia Ben Mokhtar, Antoine Boutet, Louafi Bouzouina,
Patrick Bonnel, Olivier Brette, Lionel Brunie, Math-
ieu Cunche, Stephane D’Alu, Vincent Primault, Patrice
Raveneau, et al. Priva’mov: Analysing human mobility
through multi-sensor datasets. In NetMob 2017, 2017.

[33] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and
Matthias Grossglauser. Crawdad data set epfl/mobility
(v. 2009-02-24), 2009.

[34] Vincent Primault, Sonia Ben Mokhtar, Cédric Lau-
radoux, and Lionel Brunie. Differentially private loca-
tion privacy in practice. arXiv preprint arXiv:1410.7744,
2014.

[35] Vincent Primault, Sonia Ben Mokhtar, Cédric Lau-
radoux, and Lionel Brunie. Time distortion anonymiza-
tion for the publication of mobility data with high utility.
In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1,
pages 539–546. IEEE, 2015.

14



Submitted to the Journal of Systems Research (JSys) 2023

[36] Latanya Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 10(05):557–570, 2002.

[37] Timescale. Building a distributed time-
series database on PostgreSQL, August
2019. Last accessed on June 26th 2022.
URL: https://www.timescale.com/blog/
building-a-distributed-time-series-database-on-postgresql/.

[38] Lin Wang, Hristijan Gjoreski, Mathias Ciliberto, Sami
Mekki, Stefan Valentin, and Daniel Roggen. Enabling
reproducible research in sensor-based transportation
mode recognition with the sussex-huawei dataset. IEEE
Access, 7:10870–10891, 2019.

[39] Kaihe Xu, Hao Yue, Linke Guo, Yuanxiong Guo, and
Yuguang Fang. Privacy-preserving machine learning
algorithms for big data systems. In 2015 IEEE 35th
international conference on distributed computing sys-
tems, pages 318–327. IEEE, 2015.

[40] Blaise Agüera y Arcas. Decentralized machine learning.
In 2018 IEEE International Conference on Big Data
(Big Data), pages 1–1. IEEE, 2018.

[41] Meng-Chieh Yu, Tong Yu, Shao-Chen Wang, Chih-Jen
Lin, and Edward Y Chang. Big data small footprint:
The design of a low-power classifier for detecting trans-
portation modes. Proceedings of the VLDB Endowment,
7(13):1429–1440, 2014.

[42] Changqing Zhou, Dan Frankowski, Pamela Ludford,
Shashi Shekhar, and Loren Terveen. Discovering per-
sonal gazetteers: an interactive clustering approach. In
Proceedings of the 12th annual ACM international work-
shop on Geographic information systems, pages 266–
273, 2004.

15

https://www.timescale.com/blog/building-a-distributed-time-series-database-on-postgresql/
https://www.timescale.com/blog/building-a-distributed-time-series-database-on-postgresql/

	Introduction
	Related Works
	Location Privacy Attacks
	Mobility Dataset Protection Mechanisms
	Location Privacy Protection Mechanisms
	Temporal Databases & Mobile Devices

	Enabling User Privacy at the Edge
	In-situ Data Management
	Unleashing Your Device Storage with flair
	Evaluating Your Location Privacy with ds

	Experimental Setup
	Key Performance Metrics
	Mobility Datasets
	Storage Competitors
	Experimental Settings
	Implementation Details

	Experimental Results
	Memory Benchmark
	Throughput Benchmark
	Privacy Benchmark
	Location privacy

	Stability Benchmark
	Beyond Location Streams

	Threats to Validity
	Conclusion

