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ABSTRACT

Neural network binarization accelerates deep models by quantizing their weights
and activations into 1-bit. However, there is still a huge performance gap between
Binary Neural Networks (BNNs) and their full-precision counterparts. As the
quantization error caused by weights binarization has been reduced in earlier works,
the activations binarization becomes the major obstacle for further improvement
of the accuracy. In spite of studies about the full-precision networks highlighting
the distributions of activations, few works study the distribution of the binary
activations in BNNs. In this paper, we introduce mutual information as the metric
to measure the information shared by the binary and the latent full-precision
activations. Then we maximize the mutual information by establishing a contrastive
learning framework while training BNNs. Specifically, the representation ability of
the BNNs is greatly strengthened via pulling the positive pairs with binary and full-
precision activations from the same input samples, as well as pushing negative pairs
from different samples (the number of negative pairs can be exponentially large).
This benefits the downstream tasks, not only classification but also segmentation
and depth estimation, etc. The experimental results show that our method can be
implemented as a pile-up module on existing state-of-the-art binarization methods
and can remarkably improve the performance over them on CIFAR-10/100 and
ImageNet, in addition to the good generalization ability on NYUD-v2.

1 INTRODUCTION

Although deep neural networks (DNNs) [1] have achieved remarkable success in various com-
puter vision tasks such as image classification [2] and semantic image segmentation [3], their
over-parametrization problem makes them computationally expensive and storage excessive. To
advance the development of deep learning towards resource-constrained edge devices, researchers
proposed several neural network compression paradigms, such as network pruning [4, 5], knowledge
distillation [6] and network quantization [7, 8]. Among the network quantization methods, the
network binarization method [7] stands out for quantizing weights and activations (i.e. intermediate
feature maps) to ±1, compressing the full-precision counterpart 32× , and replacing time-consuming
inner-product in full-precision networks with efficient xnor-bitcount operation in the BNNs.

However, severe accuracy drops always exist between full-precision models and their binary counter-
parts. To tackle this problem, previous works mainly focus on reducing the quantization error induced
by weights binarization [9, 10], and elaborately approximating binarization function to relieve the
gradient mismatch in the backward propagation [11, 8]. Indeed, they achieve the state-of-the-art
performance. Yet with those two paradigms developing, narrowing down the quantization error
and enhancing the gradient transmission reach their bottlenecks [12, 13], since the 1W32A (only
quantizing the weights into 1-bit, remaining the activations 32-bit) models are capable of performing
as well as the full-precision models, implying that the activations binarization becomes the main
issue for further performance improvement.

To address the accuracy degradation caused by the activations binarization, a few studies propose to
regulate the distributions of the binary activations, e.g. researchers in [14] design a distribution loss to
explicitly regularize the activation flow; researchers in [13] propose to shift the thresholds of binary
activation functions to make the distribution of binary activation unbalanced. They heuristically
design low-level patterns to analyze the distributions of binary activations such as minimum of the
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Figure 1: (a): In contrastive instance learning, the features from different transformations of the same input
image are compared to each other. (b): However BNN can yield the binary activations AB and full-precision
activations AF (i.e. two transformations of an image both from the same BNN) in the same forward pass, thus
the BNN can act as two image transformations in the literature of contrastive learning.
activations and the balanced property of distributions. Nevertheless, they neglect the high-level
indicators of the distribution and the unique characteristics of BNN, where the binary activations and
latent full-precision activations exist in the same forward pass. Thus, we argue that the high-level
properties of distributions, such as correlations and dependencies between binary and full-precision
activations should be captured and utilized.

In this work, we explore introducing mutual information for BNNs, in which the mutual information
acts as a fundamental quantity to measure the information amount shared by the binary and latent
real-valued activations in BNNs. In contrast to the aforementioned works focusing on learning
the distribution of binary activations, mutual information naturally captures non-linear statistical
dependencies between variables, and thus can be used as a measure of true dependence [15]. Based
on this metric, we propose a novel method, termed as Contrastive Mutual Information Maximization
for Binary Neural Networks (CMIM-BNN). Specifically, we design a highly effective optimization
strategy using contrastive estimation for the mutual information maximization. As illustrated in
Figure 1, we replace the data transformation module in contrastive learning with the exclusive
structure in BNNs, where full-precision and binary activations are in the same forward pass. In this
way, contrastive learning contributes to inter-class decorrelation of binary activations, and avoids
collapse solutions. In other words, our method is built upon a contrastive learning framework to learn
representative binary activations, in which we pull the binary activation closer to the full-precision
activation and push the binary activation further away from other binary activations in the contrastive
space. Moreover, by utilizing an additional MLP module to extract representations of activations,
our method can explicitly capture higher-order dependencies in the contrastive space. To the best of
our knowledge, it is the first work aiming at maximizing the mutual information of the activations in
BNNs within a contrastive learning framework.

Overall, the contributions of this paper are three-fold:

• Considering the distributions of activations, we propose a novel CMIM framework to optimize
BNNs, by maximizing the mutual information between the binary activation and its latent real-
valued counterpart;

• We develop an effective contrastive learning strategy to achieve the goal of mutual information
maximization for BNNs, and benefited from it, the representation ability of BNNs is clearly
strengthened for not only the classification task but also downstream CV tasks;

• Experimental results show that our method can significantly improve the existing SOTA methods
over the classification task on CIFAR-10/100 and ImageNet, e.g. 6.4% on CIFAR-100 and 3.0% on
ImageNet. Besides, we also demonstrate good generalization ability of the proposed CMIM on
other challenging CV tasks such as depth estimation and semantic segmentation.

2 MUTUAL INFORMATION MAXIMIZATION FOR TRAINING BNNS

2.1 PRELIMINARIES

We first define a Multi-Layer Perceptron (MLP) with K layers. For simplification of derivation, we
discard the bias term of the network. Then the MLP f(x) can be denoted as:

f(W1, · · · ,WK ;x) = (WK · σ ·WK−1 · · · · · σ ·W1)(x), (1)
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where x is the input sample and Wk : Rdk−1 7−→ Rdk(k = 1, ...,K) stands for the weight matrix
connecting the (k− 1)-th and the k-th layer, with dk−1 and dk representing the sizes of the input and
output of the k-th network layer, respectively. The σ(·) function performs element-wise activation for
the feature maps. Notably, for a convolution layer with the input map of m channels and the output
map of n channels, and the size of the kernel w× h, it results in m× n×w× h parameters. We can
re-arrange the parameters to a weight matrix of size n × (m × h × w), such that this convolution
layer can also operate in the same way as the other fully-connected layers. Hence, it is sufficient to
consider networks with the fully-connected layers.

Based on those predefined notions, the sectional MLP fk(x) with the front k layers of the f(x) can
be represented as:

fk(W1, · · · ,Wk;x) = (Wk · σ · · ·σ ·W1)(x). (2)

And the MLP f can be seen as a special case in the function sequence {fk}(k ∈ {1, · · · ,K}), i.e.
f = fK , when k = K.

Binary Neural Networks. Here, we revisit the general binarization method in [16, 7], which
maintains full-precision latent variables WF for gradient updates, and the k-th weight matrix Wk

F

is binarized into ±1, obatining the binary weight matrix Wk
B by a binarize function (normally

sgn(·)), i.e. Wk
B = sgn(Wk

F ). Then the intermediate activation map (full-precision) of the k-th
layer is produced by Ak

F = Wk
BA

k−1
B , then the same quantization method is used to binarize

the full-precision activation map as Ak
B = sgn(Ak

F ), and a whole forward pass of binarization is
performed by iterating this process for L times.

Mutual Information. For two discrete variables X and Y, their mutual information can be defined
as [17]:

I(X,Y) =
∑
x,y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
, (3)

where PXY(x, y) is the joint distribution, PX(x) =
∑
y PXY(x, y) and PY(y) =

∑
x PXY(x, y)

are the marginals of X and Y, respectively.

Mutual information quantifies the amount of information obtained about one random variable by
observing the other random variable. It is a dimensionless quantity with (generally) units of bits,
and can be thought as the reduction in uncertainty about one random variable given knowledge of
another. High mutual information indicates a large reduction in uncertainty; low mutual information
indicates a small reduction; and zero mutual information between two random variables means the
variables are independent. In the content of binarization, considering the binary and full-precision
activations as random variables, we would like them share as much information as possible, since the
binary activations are proceeded from their corresponding full-precision activations. Theoretically,
the mutual information between those two variables should be maximized.

2.2 CONTRASTIVE MUTUAL INFORMATION MAXIMIZATION

In the following section, we formalize the idea of constructing a Noise-Contrastive Estimation
(NCE) loss to maximize the mutual information between the binary and the full-precision activations.
Particularly, we derive a novel CMIM loss for training BNNs, where NCE is introduced to avoid the
direct mutual information computation by estimating it with its lower bound in Eq. 7.

For binary network fB and its latent full-precision counterpart fF in the same training iteration, the
series of their activations {akB} and {akF }(k ∈ {1, · · · ,K}), where Ak

B = (ak,1B , · · · ,ak,NB ) and
Ak
F = (ak,1F , · · · ,ak,NF ) can be considered as a series of variables. The corresponding variables

(akB ,a
k
F ) should share more information, i.e. the mutual information of the same layer’s output

activations I(akB ,a
k
F )(k ∈ {1, · · · ,K}) should be maximized to enforce them mutually dependent.

To this end, we introduce the contrastive learning framework into our targeted binarization task. The
basic idea of contrastive learning is to compare different views of the data (usually under different
data augmentations) to calculate similarity scores [18, 19, 20, 21, 22]. This framework is suitable for
our case, since the binary and full-precision activations can be seen as two different views.
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Figure 2: Feeding two images into a BNN, and obtaining the three pairs of binary and full-precision activations.
Our goal is to embed the activations into a contrastive space, then learn from the pair correlation with the
contrastive learning task in Eq. 9.

For a training batch with N samples, the samples can be denoted as: {xi}(i ∈ {1, · · · , N}). We feed
a batch of samples to the BNN and obtain KN2 pairs of activations (ak,iB ,ak,jF ), which augments
the data for the auxiliary task. We define a pair containing two activations from the same sample
as positive pair, i.e. if i = j, (ak,iB ,ak,jF )+ and vice versa. With the Bayes’ theorem, the posterior
probability of two activations from the positive pair can be formalized as:

P (i = j | ak,iB ,ak,jF ) =
P (ak,iB ,ak,jF | i = j) 1

N

P (ak,iB ,ak,jF | i = j) 1
N + P (ak,iB ,ak,jF | i 6= j)N−1N

. (4)

And the probability of activations from negative pair is: P (i 6= j | ak,iB ,ak,jF ) = 1 − P (i = j |
ak,iB ,ak,jF ). To simplify the NCE derivative, several works [23, 24, 25] build assumption about the
dependence of the variables, we also use this assumption that the activations from positive pairs are
dependent and the ones from negative pairs are independent, i.e. P (ak,iB ,ak,jF | i = j) = P (ak,iB ,ak,jF )

and P (ak,iB ,ak,jF | i 6= j) = P (ak,iB )P (ak,jF ). Hence, the above equation can be simplified as:

P (i = j | ak,iB ,ak,jF ) =
P (ak,iB ,ak,jF )

P (ak,iB ,ak,jF ) + P (ak,iB )P (ak,jF )(N − 1)
. (5)

Performing logarithm to Eq. 5 and arranging the terms, we can achieve

logP (i = j | ak,iB ,ak,jF ) = − log

[
1 + (N − 1)

P (ak,iB )P (ak,jF )

P (ak,iB ,ak,jF )

]
≤ log

P (ak,iB ,ak,jF )

P (ak,iB )P (ak,jF )
− log(N − 1).

(6)

Taking expectation on both sides with respect to P (ak,iB ,ak,jF ), and combining the definition of mutual
information in Eq. 3, we can derive the form of mutual information as:

targeted mutual information︷ ︸︸ ︷
I(akB ,a

k
F ) =

∑
i

∑
j

P (ak,iB ,ak,jF ) log
P (ak,iB ,ak,jF )

P (ak,iB )P (ak,jF )

≥
∑
i

∑
j

P (ak,iB ,ak,jF | i = j)
[
logP (i = j | ak,iB ,ak,jF ) + log(N − 1)

]

=

optimized lower bound︷ ︸︸ ︷
EP (ak,i

B ,ak,j
F |i=j)

[
logP (i = j | ak,iB ,ak,jF )

]
+ log(N − 1),

(7)

where I(akB ,a
k
F ) is the mutual information between the binary and full-precision distributions, our

targeted object. Instead of directly maximizing the mutual information, we choose to maximize its
lower bound in the Eq. 7. However, the distribution P (i = j | ak,iB ,ak,jF ) is hard to estimate. We take
advantage of the idea of contrastive learning, and introduce a critic function h to approximate the
targeted distribution [18, 19, 20]. In practice, we use the following:

h(ak,iB ,ak,jF ) =
exp(τ(ak,iB )>ak,jF )∑
j exp(τ(a

k,i
B )>ak,jF )

(8)
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Algorithm 1 Forward and Backward Propagation of CMIM

Require: A minibatch of data samples (X,Y),
current binary weight Wk

B , latent full-
precision weights Wk

F , and learning rate η.
Ensure: Update weights Wk

F

′.
1: Forward Propagation:
2: for k = 1 to K − 1 do
3: Binarize latent weights: Wk

B ←−
sgn(Wk

F );
4: Perform binary operation with the

activations of next layer: Ak
F ←−

XnorDotProduct(Wk
B ,A

k−1
B );

5: Perform Batch Normalization: Ak
F ←−

BatchNorm(Ak
F );

6: Binarize full-precision activations and ob-
tain binary activations : Ak

B ←− sgn(Ak
F );

7: end for
8: For k = 1, · · · ,K, pair

{
ak,iB

}
and

{
ak,jB

}
as negative and positive pairs, then use Eq. 9
layer by layer to compute the NCE loss
LkNCE between Ak

B and Ak
F for contrastive

learning;
9: Combine a series of NCE loss

{
LkNCE

}
with

the classification loss L into the CMIM loss
LCMIM , with Eq. 11;

10: Backward Propagation: compute the gra-
dient of the overall loss function, i.e. ∂L

∂WB
,

using the straight through estimator to tackle
the sign function;

11: Parameter Update: update the full-
precision weights: Wi

F
′ ←−Wk

F − η ∂L
∂Wk

B

.

where τ is a temperature parameter that controls the concentration level of the distribution [6]. τ is
important for supervised feature learning, and also necessary for tuning the concentration of ak,iB and
ak,jF on our contrastive space.

Loss Function. We define the contrastive loss function LkNCE between the k-th layer’s activations
Ak
B and Ak

F as:

LkNCE = EP (ak,i
B ,ak,j

F |i=j)

[
log h(ak,iB ,ak,jF )

]
+NEP (ak,i

B ,ak,j
F |i6=j)

[
log(1− h(ak,iB ,ak,jF ))

]
. (9)

We would like to comment on the above loss function from the perspective of contrastive learning.
The first term of positive pairs is optimized for capturing more intra-class correlations and the second
term of negative pairs is for inter-class decorrelation. Because the pair construction is instance-wise,
the number of negative samples theoretically can be the size of the entire training set, e.g. 1.2 million
for ImageNet. With those additional hand-craft designed contrastive pairs for the proxy optimization
problem in Eq. 9, the representation capacity of BNNs can be further improved, as many contrastive
learning methods demonstrated [22, 18, 19, 20].

Moreover, the optimal ĥ = argmaxh LkNCE can approximate the targeted distribution, i.e.

ĥ(ak,iB ,ak,jF ) = P (i = j | ak,iB ,ak,jF ), (10)

where the detailed proof is shown in the supplementary material. Thus, with Eq. 7-10 we can derive
that minimizing the NCE loss LkNCE is equivalent to maximizing the targeted mutual information
between the binary and full-precision activations, I(akB ,a

k
F ).

Combining the series of NCE loss from different layers
{
LkNCE

}
, (k = 1, · · · ,K), the overall loss

L can be defined as:

L = λ

K∑
k=1

LkNCE
βK−1−k

+ Lcls, (11)

where Lcls is the classification loss respect to the ground truth, λ is used to control the degree of NCE
loss, β is a coefficient greater than 1, and we denote the CMIM loss as LCMIM =

∑K
k=1

Lk
NCE

βK−1−k .

Hence, the βK−1−k decreases with k increasing and consequently the Lk
NCE

βK−1−k increases. In this
way, the activations of latter layer can be substantially retained, which leads to better performance in
practice. The complete training process of CMIM is presented in Algorithm 1.

Discussion on the CMIM Loss. Besides the theoretical formulation from the perspective of mutual
information maximization, we also provide an intuitive explanation about CMIM. As illustrated in
Figure 2, we strengthen the representation ability of binary activations (Figure 3) via designing a
proxy task with the contrastive learning framework. By embedding the activations to the contrastive
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(d) CMIM-BNN (ours)

Figure 3: t-SNE [26] visualization of the activations representing for random 10 classes in CIFAR-100. Every
color represents a different class. We can clearly witness the improvement of our method for learning better
binary representations.

space and pull-and-push the paired embeddings, the BNNs can learn better representations from this
difficult yet effective auxiliary contrastive learning task. Note that even though we only pick up two
images to formulate Figure 2, the actual number of negative samples can be huge in practice (e.g.
16,384 for training ResNet-18 on ImageNet), benefit from the MemoryBank [24] technique.

With this property, we speculate that the contrastive pairing works as the data augmentation, which
contributes to our method. This additional pairing provides more information for training the BNNs,
thus our CMIM loss can be treated as an overfitting-mitigated module. We also conduct experiments
in the Section 3.2 and 3.3 to validate our speculation.

Difference with other contrastive learning methods. The key idea of contrastive learning is to
pull representations close in positive pairs and push representations apart in negative pairs in a
contrastive space. Several self-supervised learning methods are rooted in well-established idea of the
mutual information maximization, such as Deep InfoMax [19], Contrastive Predictive Coding [18],
MemoryBank [24], Augmented Multiscale DIM [20], MoCo [21] and SimSaim [22]. These are based
on NCE [23] and InfoNCE [19] which can be seen as a lower bound on mutual information [27].

The formulation of our CMIM-BNN is similar to the classic contrastive learning methods, where
we all are inspired by NCE. However, our approach has several differences from those methods.
Firstly, the training process of BNNs is different from regular network training, where binary and
latent full-precision activations exist in the same forward pass. We seamlessly integrate this mixed-
activation property with NCE, and thus the targeted lower bound formulated for optimization is
different. Secondly, the binary and full-precision weights are both optimized by the NCE loss (i.e.
the two view augmentation networks are optimized simultaneously in contrastive learning), yet most
aforementioned contrastive learning methods optimize their view augmentation networks separately.

3 EXPERIMENTS

In this section, we first conduct experiments to compare with existing state-of-the-art methods in image
classification. Following popular settings in most studies, we use CIFAR-10/100 [28] and ImageNet
ILSVRC-2012 [29] to validate the effectiveness of our proposed binarization method. Besides
comparing our method with the SOTA methods, we design experiments in semantic segmentation
and depth estimation tasks on the NYUD-v2 [30] dataset to testify the generalization ability of our
method. Meanwhile, we design a series of ablation studies to verify the effectiveness of our proposed
technique, and we empirically explain the efficacy of CMIM from the perspective of mitigating
overfitting. All experiments are implemented using PyTorch [31] with one NVIDIA RTX 6000 GPU
while training on CIFAR-10/100 and NYUD-v2, and two GPUs on ImageNet.

Experimental Setup. On CIFAR-10/100, the BNNs are trained by CMIM for 400 epochs with batch
size of 256, initial learning rate of 0.1 and cosine learning rate scheduler. We adopt SGD optimizer
with momentum of 0.9 and weight decay of 1e-4. On ImageNet, binary models are trained for 100
epochs with batch size of 256. SGD optimizer is applied with momentum of 0.9, weight decay of
1e-4, initial learning rate of 0.1 with cosine learning rate scheduler.
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Table 1: Top-1 accuracy (%) on CIFAR-10 (C-10) and
CIFAR-100 (C-100) test set. The higher the better.
W/A denotes the bit number of weights/activations.

Topology Method Bit-width Acc.(%) Acc.(%)
(W/A) (C-10) (C-100)

Full-precision 32/32 92.1 70.7
DoReFa [32] 1/1 79.3 -

QSQ [33] 1/1 84.1 -
SLB [34] 1/1 85.5 -
LNS [35] 1/1 85.8 -

ResNet IR-Net [8] 1/1 86.5 65.6
-20 RBNN [10] 1/1 87.0 66.0

IR-Net + CMIM 1/1 87.3 68.1
RBNN + CMIM 1/1 87.6 68.2

Full-precision 32/32 93.0 72.5
RAD [14] 1/1 90.5 -

Proxy-BNN [36] 1/1 91.8 67.2
ResNet IR-Net [8] 1/1 91.6 64.5

-18 RBNN [10] 1/1 92.2 65.3
IR-Net + CMIM 1/1 92.2 71.2
RBNN + CMIM 1/1 92.8 71.4

Full-precision 32/32 94.1 73.0
XNOR [9] 1/1 90.5 -

DoReFa [32] 1/1 90.2 -
RAD [14] 1/1 90.5 -

VGG QSQ [33] 1/1 90.0 -
-small SLB [34] 1/1 92.0 -

Proxy-BNN [36] 1/1 91.8 67.2
IR-Net [8] 1/1 90.4 67.0

RBNN [10] 1/1 91.3 67.4
IR-Net + CMIM 1/1 92.0 70.0
RBNN + CMIM 1/1 92.2 71.0

Table 2: Top-1 and Top-5 accuracy on ImageNet. † rep-
resents the architecture which varies from the standard
ResNet architecture but in the same FLOPs level.

Topology Method BW Top-1 Top-5
(W/A) (%) (%)

Full-precision 32/32 69.6 89.2
ABC-Net [37] 1/1 42.7 67.6
XNOR-Net [9] 1/1 51.2 73.2

BNN+ [7] 1/1 53.0 72.6

ResNet-18 DoReFa [32] 1/2 53.4 -
XNOR++ [38] 1/1 57.1 79.9

BiReal [11] 1/1 56.4 79.5
IR-Net [8] 1/1 58.1 80.0

RBNN [10] 1/1 59.9 81.0
BiReal + CMIM 1/1 60.1 81.3
IR-Net + CMIM 1/1 61.2 83.0
RBNN + CMIM 1/1 62.5 84.2

BATS [39]† 1/1 60.4 83.0
BATS + CMIM† 1/1 63.0 85.1
ReActNet [40]† 1/1 69.4 85.5

ReActNet + CMIM† 1/1 71.0 86.3
Full-precision 32/32 73.3 91.3
ABC-Net [37] 1/1 52.4 76.5
XNOR-Net [9] 1/1 53.1 76.2

BiReal [11] 1/1 62.2 83.9

ResNet-34 XNOR++ [38] 1/1 57.1 79.9
IR-Net [8] 1/1 62.9 84.1
LNS [35] 1/1 59.4 81.7

RBNN [10] 1/1 63.1 84.4
IR-Net + CMIM 1/1 64.9 85.8
RBNN + CMIM 1/1 65.0 85.7

3.1 EXPERIMENTAL RESULTS

CIFAR-10/100 are widely-used image classification datasets, where each consists of 50K training
images and 10K testing images of size 32×32 divided into 10/100 classes. 10K training images are
randomly sampled for cross-validation and the rest images are utilized for training. Data augmentation
strategy includes random crop and random flipping as in [41] during training.

For ResNet-20, we compare with DoReFa [32], QSQ [33], SLB [34], LNS [35], IR-Net [8] and
RBNN [10]. For ResNet-18, RAD [14], Proxy-BNN [36], IR-Net and RBNN are chosen to be the
benchmarks. For VGG-small, our method is compared with IR-Net and RBNN, etc.

As presented in Table 1, CMIM constantly outperforms other SOTA methods. On CIFAR-100, our
method achieves 2.5%, 6.1% and 4.0% performance improvement with ResNet-20, ResNet-18 and
VGG-small architectures, respectively. To show the pile-up property , we add CMIM on different
baseline methods, and we can obviously observe the accuracy gain with CMIM.

ImageNet is a dataset with 1.2 million training images and 50k validation images equally divided
into 1K classes. ImageNet has greater diversity, and its image size is 469×387 (average). We report
the single-crop evaluation result using 224×224 center crop from images.

For ResNet-18, we compare our method with XNOR-Net [9], ABC-Net [37], DoReFa [32],
BiReal [11], XNOR++ [38], IR-Net [8], RBNN [10]. For ResNet-34, we compare our method
with BiReal, IR-Net and RBNN, etc.. All experimental results are either taken from their published
papers or reproduced ourselves using their code. As demonstrated in Table 2, our proposed method
exceeds all the methods in both top-1 and top-5 accuracy. Particularly, CMIM achieves around 2.5%
Top-1 accuracy gain with ResNet-18 architecture, as well as 1.9% Top-1 accuracy improvement with
ResNet-34 architecture, compared with the state-of-the-art method RBNN.

Apart from the aforementioned methods binarizing networks with the ResNet architecture, we
also conduct experiments to compare with methods designing BNNs with variant architectures.
For example, BATS [39] utilizes neural architecture search [42] to automatically design a BNN
architecture and ReActNet [40] designs BNNs with mobile-net [43] architectures. With adding
CMIM module on those architectures, we observe that BNNs trained with CMIM have noticeable
performance gain, which further consolidates the effectiveness of our method.

3.2 NUMBER OF NEGATIVE SAMPLES IN CMIM

The number of negative samples n nce is an important hyper-parameter in our method, which ensures
the estimation accuracy level of the optimized distribution in Eq. 7. We perform experiments with
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Figure 4: In-depth analysis on different aspects of the proposed approach including a comparison of learned
correlation maps from different methods (a-d), the effect of number of negative samples in contrastive mutual
information maximization (c-f), training and testing curves (g), and a comparison of fine-tuning results (h).

ResNet18 on CIFAR-100 for parameter analysis of n nce, with range from 20 to 215. As the results in
Figure 4f presented, the accuracy arises with increasing n nce, which also validates our speculation in
the Section 2.2 that the contrastive pairing module, serving as a data augmentation module in training,
contributes to the performance improvement of CMIM.

3.3 MITIGATE OVERFITTING

A good training objective should be reflected in consistent improvement in the testing performance.
We investigate the relation between the training and the testing accuracy across iterations. Figure 4g
shows that (1) the binary ResNet-18 can reach 100% on training set of CIFAR-100, which means its
representative ability is enough for this dataset; (2) on the final stage, the testing performance of the
BNN trained with CMIM loss is mush better, while the training performance is relatively lower, which
is a clear sign of mitigating overfitting. In addition, as the results shown in the Table 3, we can observe
the phenomenon that the accuracy gain on CIFAR-100 is more noticeable than the gain on ImageNet.
This phenomenon can also be explained from the perspective of mitigating overfitting. Since the
contrastive pairing (data augmentation for the proxy contrastive learning task) plays a significant role
in improving the performance of BNNs, and the data for training is sufficient on ImageNet than on
CIFAR. The overfitting issue is not that severe on ImageNet. Hence, our binarization method could
be more suitable for relatively data-deficient tasks.

3.4 ABLATION STUDY

We conduct a series of ablative studies of our proposed method in CIFAR-10/100 and ImageNet
datasets with the ResNet18 architecture. By adjusting the coefficient λ in the loss function LCMIM

(Eq. 11), where λ = 0 equals to no CMIM loss are added as our baseline. In the ablative studies,
we introduce IR-Net [8] as our baseline method on all the datasets. The results are shown in
Table 3. With λ increasing, the performance improvements show the effectiveness of CMIM loss.

Raw Image Ground truth IR-Net CMIM-BNN

Figure 5: Results of depth estimation and segmentation.

Table 3: Ablation study of CMIM. The results are pre-
sented in the form of accuracy rate (%). λ = 0 denotes
no CMIM loss added, serving as our baseline.

Dataset
λ 0 (baseline) 0.2 0.4 0.8 1.6 3.2 6.4 12.8

CIFAR-10 87.59 90.92 91.63 92.06 92.18 91.89 91.32 91.01
CIFAR-100 64.53 68.21 69.31 70.67 70.86 71.09 71.19 71.17

ImageNet-1K 58.03 59.29 59.99 61.22 61.17 61.02 60.64 59.7
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3.5 GENERALIZATION ABILITY

To study the dependence of the binary activations from the same layer, we visualize the correlation
matrix of those activations by using the shade of the color to represent the cosine similarity of two
activations. Red stands for two activations are similar and blue vice versa. As shown in figures 4a-4d,
CMIM captures more intra-class correlations (diagonal boxes are redder) and alleviates more inter-
class correlations (non-diagonal boxes are bluer). Those intensified representative activations are
constructive for fine-tuning down-stream tasks. To further assess the generalization capacity of the
learned binary features, we transfer the learned binary backbone to the image segmentation and depth
estimation on NYUD-v2 dataset. We follow the standard pipeline for fine-tuning. A prevalent practice
is to pre-train the backbone network on ImageNet and fine-tune it for the downstream tasks. Thus,
we conduct experiments with DeepLab heads with binary ResNet18 backbone. While fine-tuning,
the learning rate is initialized to 0.001 and scaled down by 10 times after every 50K iterations and
we fix the binary backbone weights, only updating the task-specific heads layers. The results are
presented in Figure 4h, X-axis is the depth estimation accuracy (-logrmse, higher is better), Y-axis
is segmentation performance (mIoU, higher is better) and the size of dot denotes the performance
of classification (bigger is better). And the visualization samples are presented in Figure 5. We can
witness that the models with backbone pre-trained by CMIM outperform other methods on both
segmentation and depth estimation tasks.

4 RELATED WORK

In [7], the researchers initiate the studies of BNNs by using the sign function to binarize weights
and activations to ±1. To eliminate the vanishing gradient issue caused by the sign function in the
binarization, the straight-through estimator (STE) [44] is utilized for the network backpropagation.
Based on this archetype, copious studies contribute to improving the performance of BNNs. For
example, researchers in [9] disclose that the quantization error between the full-precision weights
and the corresponding binarized weights is one of the major obstacles degrading the representation
capabilities of BNNs. Reducing the quantization error thus becomes a fundamental research direction
to improve the performance of BNNs. Researchers propose XNOR-Net [9] to introduce a scaling
factor calculated by L1 norm for both weights and activation functions to minimize the quantization
error. Inspired by XNOR-Net, XNOR++ [38] further learns both spatial and channel-wise scaling
factors to improves the performances. Bi-Real [11] proposes double residual connections with
full-precision downsampling layers to mitigate the excessive gradient vanishing issue caused by
binarization. ProxyBNN [36] designs a proxy matrix as a basis of the latent parameter space to
guide the alignment of the weights with different bits by recovering the smoothness of BNNs. Those
methods have advanced the network binarization techniques.

Nevertheless, we argue that those methods focusing on narrowing down the quantization error and
enhancing the gradient transmission reach their bottleneck (e.g. 1W32A ResNet-18 trained by
ProxyBNN achieves 67.7% Top-1 accuracy on ImageNet, while full-precision version is only 68.5%).
Because they neglect the activations in BNNs, especially the relationship between the binary and
latent full-precision activations. We treat them as discrete variables and investigate them under the
metric of mutual information. By maximizing the mutual information, the performance of BNNs is
further improved.

5 CONCLUSION

In this paper, we investigate the activations of BNNs by introducing mutual information to mea-
sure the distributional similarity between the binary and latent full-precision activations. We take
advantage of the exclusive structure of the BNN, where the binary and real-valued networks exist
on the same forward pass, and establish a proxy contrastive learning task to maximize the targeted
mutual information. We name this method CMIM-BNN. Because of the push-and-pull scheme in
the contrastive learning, the BNNs derived by our method have better representation ability, ben-
efiting downstream tasks, such as classification and segmentation, etc.. We conduct experiments
on CIFAR-10/100, ImageNet (for classification) and NYUD-v2 (fine-tuning for depth estimation
and segmentation). The results show that CMIM outperforms several state-of-the-art binarization
methods on those tasks.
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