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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive performances in
complex text generation tasks. However, the contribution of the input prompt to
the generated content still remains obscure to humans, underscoring the necessity
of understanding the causality between input and output pairs. Existing works for
providing prompt-specific explanation often confine model output to be classifi-
cation or next-word prediction. Few initial attempts aiming to explain the entire
language generation often treat input prompt texts independently, ignoring their
combinatorial effects on the follow-up generation. In this study, we introduce a
counterfactual explanation framework based on joint prompt attribution, JoPA,
which aims to explain how a few prompt texts collaboratively influences the LLM’s
complete generation. Particularly, we formulate the task of prompt attribution for
generation interpretation as a combinatorial optimization problem, and introduce a
probabilistic algorithm to search for the casual input combination in the discrete
space. We define and utilize multiple metrics to evaluate the produced explanations,
demonstrating both the faithfulness and efficiency of our framework.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT4 (Achiam et al., 2023), LLaMA (Touvron et al.,
2023) and Claude (Anthropic, 2024), have shown excellent performance in various natural language
generation tasks including question answering, document summarization, and many more. Despite
the great success of LLMs, we still have very limited understanding of the LLM generation behavior
– which parts in the input cause the model to generate a certain sequence. Unable to explain the
causality between the input prompt and the output generation could cause failure in recognizing
potential unintended consequences, such as harmful response (DAN, 2023; Liu et al., 2023; Zou et al.,
2023; Zhu et al., 2023) and biased generation (Wang et al., 2023) attributed to a specific malicious
description in the input. These issues undermine human trust in model usage, thus highlighting a
pressing need for developing an interpretation tool that attributes how an input prompt leads to the
generated content.

Explaining LLM generation through prompt attribution involves extracting the most influential
prompt texts on the model’s entire generation procedure, a realm that remains relatively under-
explored in current research. While extensive works on input attribution are proposed for text
classification interpretation (Chen & Ji, 2020; Modarressi et al., 2023) and next-word generation
rationale (Zhao & Shan, 2024; Vafa et al., 2021), they can not be directly applied to explain the
full generation sequence due to its complicated joint probability landscape and the autoregressive
generation procedure. The complexity for interpreting LLM generation compounds as the model size
increases. Another line of works involves prompting LLMs to self-explain their behaviors (Wei
et al., 2022). This method relies on the model’s innate reasoning capabilities, although current
findings suggest that these capabilities may not always be faithful (Turpin et al., 2023; Xu et al.,
2024).

There are limited existing attempts focusing on explaining the relationship between the input prompts
and the complete generated sequence. The most relevant approach, Captum (Miglani et al., 2023),
sequentially determines the importance score for each token by calculating the variations in the joint
probability of generating the targeted output sequence when the token is dropped from the model
input. While being straightforward, this approach treats tokens as independent features, ignoring
their joint semantic influence on the generated output. In fact, tokens may contain overlapping or
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complementary information. For example, given the input prompt: “Write a story about the doctor
and his patient”, the most influential components are “doctor” and “patient”. Individually removing
either of these words would not significantly alter the generated output, resulting in inaccurately
low importance score for each of them. This is caused by the semantic interaction among these
components, allowing the model to infer the meaning of the omitted one. Existing attribution methods
that ablate each token individually fail to capture such combinatorial effect. A straightforward remedy
might involve exhaustively assessing all possible combinations to observe the variations in the model
generations, which however is impractical due to the vast search space with long-context input
prompts.

To efficiently search the space for generating accurate prompt explanations, we develop our framework
JoPA, which provides the counterfactual explanation to highlight which components of input prompts
have the fundamental effect on the generated context via solving a combinatorial optimization
problem. We aim to explain the generation behavior of model outputs for any given prompt while
take the joint effects of the prompt components into account. Assuming that removing the essential
parts of the prompt would result in a significant variation in the model’s output, we propose the novel
objective function and formulate our task of providing faithful counterfactual explanations for the
input prompt as an optimization problem. To quantify the influence of token combinations in the
prompt on the generations, we incorporate a mask approach for joint prompt attribution. Thus, our
goal of extracting the explanations has been converted to finding the optimal mask of the input prompt.
We solve this problem by a probabilistic search algorithm, equipped with gradient guidance and
probabilistic updates for efficient exploration in the discrete solution space. Our main contributions
could be summarized as follows:

• We propose a general interpretation scheme for LLM generation task that attributes input
prompts to the entire generation sequence. Notably, this recipe considers the joint influence of
input token combinations on the generation. This motivation naturally formulates a combinatorial
optimization problem for explaining generation with the most influential prompt texts.

• We demonstrate JoPA, an efficient probabilistic search algorithm to solve the optimization problem.
JoPA works by searching better token combinations that lead to larger generation changes. It takes
the advantage of both the gradient information and the probabilistic search-space strategy, thereby
achieving an efficient prompt interpretation tool.

• Our framework demonstrates strong performance on language generation tasks including text
summarization, question-answering, and general instruction datasets. The faithfulness of our
explanations is evaluated based on a suit of comprehensive metrics considering generation prob-
ability, word frequency, and semantic similarity, verifying the transferability and effectiveness
of our methods across a variety of tasks. Moreover, the generated explanations demonstrate the
effectiveness of our framework to potentially be applied to improve the model’s ability, especially
making the model safer and more efficient.

2 RELATED WORK

While there are extensive works devoted to explaining language models in the context of text
classification tasks (Shi et al., 2022; Han et al., 2021; Shi et al., 2023), relatively few attempts (Zhao
& Shan, 2024; Vafa et al., 2021) are proposed to investigate the importance of prompt texts on the
entire generation procedure especially for LLMs. This demonstrates a research gap that this work
aims to fill in.

Explaining Language Generation There are many work explaining the predictions generated by
LLMs by measuring the importance of the input features to the model’s prediction on the classification
tasks. One group of studies perturb the specific input by removing, masking, or altering the input
features, and evaluate the model prediction changes (Kommiya Mothilal et al., 2021; Wu et al.,
2020). The other group of works, such as integrated gradients (IG) (Sundararajan et al., 2017), first-
derivative saliency (Li et al., 2016), and mixed partial derivatives (Tsang et al., 2020) leverage the
gradients of the output with respect to the input to determine the input feature importance. Although
Archipelago (Tsang et al., 2020) explains the feature attributions by considering the combined effects
of the input attributions, it targets for the multi-label classification task and relies on the neutral
baseline. As for the generation tasks, Diffmask learns the differentiable mask for each layer of the
BERT model, but it aims to analyze how decisions are formed across network hidden layers by a
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simple probing classifier. In contrast, our framework targets on offering insights into the relationship
between the input prompt and model generations by employing the mask to highlight the essential
prompt attributions.

Moreover, a few studies utilize the surrogate model to explain the individual predictions of the
black-box models, and the representative method is called LIME (Ribeiro et al., 2016). As for
explaining the model’s generation behavior, Captum (Miglani et al., 2023) calculates the token’s
importance score by sequentially measuring the contribution of input token to the output, which lacks
of the accounting for the semantic relationships between tokens. Another work, ReAGent (Zhao &
Shan, 2024), focuses on the next-word generation task, computing the importance distribution for
the next token position. This method ignores the contextual dependencies in the generated output and
could not adequately account for dynamically changing generations. Our framework aims to interpret
the joint effects of the input prompts on the entire output contexts with considering of the textual
information covered the input prompt.

Self-explaining by Prompting As language models increase in scale, prompting-based models
demonstrate remarkable abilities in reasoning (Brown et al., 2020), creativity (Oppenlaender, 2022),
and adaptability across a range of tasks (Khattak et al., 2023). However, the complex reasoning
processes of these models remain elusive and require tailored paradigm to better understand the
prompting mechanism. For instance, the chain-of-thought (CoT) paradigm could explain the LLM
behaviors by prompting the model to generate the reasoning chain along with the answers (Wei
et al., 2022), as pre-trained LLMs have demonstrated a certain ability to self-explain their behaviors.
However, recent studies have also suggested that the reasoning chain does not guarantee faithful
explanations of the model’s behavior (Jacovi & Goldberg, 2020) and the final answer might not
always follow the generated reasoning chain (Turpin et al., 2023). xLLM (Chuang et al., 2024)
enhances the fidelity of explanation derived from LLMs via a fidelity evaluator, which however is
designed for classification tasks. Our efforts are concentrated on explaining LLM generation by
analyzing the attribution of the input prompts to the output content, without depending on the model’s
innate reasoning ability that are not yet satisfactory.

3 PRELIMINARIES

We first introduce necessary notions for the LLM generation process, and then discuss limitations of
prior attempts explaining the entire generation via prompt attribution.

LLM Generation Notions Denote a specific input prompt as a sequence of tokens x =
(x1, . . . , xT ), xi ∈ {1, 2, . . . , |V |}, where |V | represents the vocabulary size, T is the length of
the input sequence and the set of all token indices is I = {1, 2, . . . , T}. The corresponding generated
output y could be represented as a sequence of tokens y = (y1, . . . , yS) with yj ∈ {1, 2, . . . , |V |}.
The output tokens {yi}Si=1 are generated from the LLM fθ parameterized by θ in an autoregressive
manner with the probability pθ(y|x) as:

pθ(y|x) = pθ(y1|x)
S−1∏
i=1

pθ(yi+1|x, yi). (1)

The probability of generating the output text y given the input prompt x illustrates that the coherence
and generation of the output texts heavily rely on the input prompt x, indicating an implicit causal
relationships between the input prompt x and the output y.

Limitation of Prior Interpretation Attempt There are limited prior works about explaining
the relationship between the individual input prompts and the entire generated sequence, and their
faithfulness is limited by treating input tokens independently. Specifically, Captum (Miglani et al.,
2023), calculates the importance score for each token by slightly perturbing the input x at the i-th
token:

Gi(x;θ) = pθ(y|x)− pθ(y|xI\{i}), (2)

where I denotes all token indices. Through Eq. (2), one can calculate an attribution score for each
token i indicating its importance towards the original generation result y. Such method is direct and
simple, however, it treats tokens as independent features, ignoring their semantic interaction and
joint effect on the generated output. To make it more obvious, let’s recall the previous example of
“Write a story about a doctor and his patient.”. Note that since “doctor” and “patient” are semantically
correlated, and removing any of the two words would not have a significant influence on the generated
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response, their corresponding importance score will not be too high. On the contrary, the most
important token detected by this approach would be “his”, which is clearly not ideal.

These observations inspire us to develop a new prompt attribution method that considers the semantic
correlation among tokens. Specifically, we assume that the content generated by LLMs is primarily
influenced by a subset of tokens jointly. The remaining tokens serve as auxiliary or potentially less
relevant information. Those subset of tokens, which fundamentally shape the model’s output, are
viewed as the explanatory tokens for the generated content. In other words, explanatory tokens do
not affect the model output independently, but jointly contribute to the generated responses.

4 PROPOSED METHOD

In this section, we propose JoPA, a simple yet effective framework designed for generative tasks to
explain the attribution of the input prompt by solving a discrete optimization problem. We start with
formulating the general objective for the discrete optimization problem, and then we introduce our
proposed probabilistic search algorithm for solving the problem.

Figure 1: Overview of JoPA. Left: Demonstrating the pipeline of the algorithm. Right: Illustrat-
ing the process of mask m sampling.
Problem Formulation for Joint Prompt Attribution In order to explain language generation via
prompt attribution, instead of treating the prompt tokens independently as in previous works (Miglani
et al., 2023), we propose to evaluate the joint effect of k prompt tokens on the generated sequence.

Specifically, consider a binary prompt mask m = (m1, . . . ,mT ) in which mi ∈ {0, 1} indicates
whether the i-th token is important or not. The joint probability of generating the original output
sequence y given an input masked context m⊙ x is computed as pθ(y|m⊙ x), where ⊙ denotes
the Hadamard product. In our paper, we aim to identify a binary mask m, which is a (discrete)
learnable parameter, that maximizes the discrepancy in the probability of generating the same
output y when comparing the masked input m ⊙ x to the original input x. A large discrepancy
indicates that the masked token combination are the most influential components for generating y,
thus should jointly serve as the attributed explanation. Consequently, this involves training the binary
mask m to optimize the following objective function:

max
m∈{0,1}T

L(m,x,y;θ) : = pθ (y|x)− pθ (y|m⊙ x)

s.t. |m|1 = T − k,
(3)

where k represents the number of explanatory tokens. Intuitively, optimizing the objective outlined in
Eq. (3) suggests that we want to find the top k important tokens which, if they are masked, lead to a
substantial variation in model’s output probabilities. Compared with prior methods for individual
token attribution stated in Eq. (2), our formulation in Eq. (3) measures the joint attribution of a subset
of tokens, capturing token interactions to enable more accurate prompt explanations.

Challenges in Solving Eq. (3) Note that Eq. (3) is a constraint discrete optimization problem
that is non-trivial to solve. One naive solution would be transforming the discrete optimization
problem into a continuous one, i.e., let m ∈ [0, 1]T , and formulate the constraint into a regularization
term. Then one can adopt traditional gradient descent based optimization solutions to solve the
problem. However, such a strategy would require extensive gradient calculations and backward
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steps on the original inputs, which can be inefficient in practice especially for LLMs. Moreover, the
obtained continuous mask is not the final explanation we want. In fact, the approximation error when
transforming the continuous mask back into the discrete space can also be quite significant, leading to
worse performances. Another straightforward solution involves searching through all possible token
combinations exhaustively. However, this could be impractical as well due to the enormous search
space especially while facing long-context inputs. Therefore, we hope to develop a new method that
adopts a search-based strategy to simplify the algorithm design and satisfy our constraints, while also
leveraging gradient information for efficient optimization.

Algorithm 1 Explainable Prompt Generator: JoPA

Input: Input tokens x, output tokens y, the integer k denoting the number of explanatory tokens,
1 ≤ k ≤ T , input mask m(0) = 1, and the sampling numbers N .
Output: Optimal mask m(N)

1: g = |∇m(0)L(m(0),x,y;θ)|
2: Set m(1) as the top-k value mask for g: m(1) = m(0);m

(1)
i = 0,∀i ∈ (g)

3: for n = 1 to N do
4: Sample l ∼ softmax

(
m(n) ⊙ g

)
5: Sample v ∼ softmax

(
(1−m(n))⊙ g

)
6: mtmp = m(n).copy(); switch the value of mtmp

l and mtmp
v

7: if pθ(y|mtmp ⊙ x) < pθ(y|m(n) ⊙ x) then
8: m(n+1) = mtmp

9: else
10: m(n+1) = m(n)

11: end if
12: end for

Proposed Probabilistic Search Algorithm To tackle this challenge, we propose JoPA, a novel
explainable prompt generator, for efficiently obtaining an optimal solution for Eq. (3). We summarize
our JoPA in Algorithm 1. The high-level pipeline is illustrated in Figure 1 left: we initialize and
maintain exactly k entries in the mask m to be zero to enforce the constraint and capture their
joint influence of being masked; the mask is then iteratively updated by sampling indexes for value
swapping, searching towards the direction with increased generation loss L(m,x,y;θ). At the
core of this pipeline is the sampling and update of the discrete mask, which demands an efficient
exploration in the vast search space. Figure 1 right shows this step, which is featured by the
following two essential components, the gradient-guided masking and the probabilistic search update.
Specifically, it illustrates the process of sampling a non-zero entry and a zero entry from m to
swap their values.

Gradient-Guided Masking: Trivial solutions that set the mask m by uniformly random could cost
massive sampling to hit the right optimization direction. Gradient is a common indicator of feature
importance, as evidenced in existing practices (Ebrahimi et al., 2018; Zou et al., 2023; Shin et al.,
2020). Therefore, we propose to use gradient as a guidance to set and sample the mask for more
efficient optimization. Specifically, we begin with the binary mask m(0) = 1 which indicates
that all tokens in the input x are marked as non-explanatory ones. Then we compute the gradient
∇m(0)L(m(0),x,y;θ) of the loss function in Eq. (3), and denote the magnitude of gradients as
g = |∇m(0)L(m(0),x,y;θ)|. Note that the components with larger gradient magnitudes in g imply
that altering the corresponding tokens could result in a sharper change to the generated outputs. In
order to initialize the explanatory k tokens guided by the gradient magnitude, we set the binary
mask m(1) where m

(1)
i = 0 indicates gi is the top-k value in g. The gradient guidance and mask

initialization are obtained following Line 1-2 in the algorithm.

Probabilistic Search Update: While gradient is informative, greedily determining explanatory tokens
by top gradients lacks exploration, leading to suboptimal solutions. Therefore, we propose a prob-
abilistic search mechanism for mask sampling and update. Specifically when updating the current
binary mask m, we iteratively sample a non-zero entry l from the mask and swap its value with a
sampled zero entry v to explore a new (and potentially better) solution for the mask. Particularly,
the sampling is also guided by the gradient calculated before: the non-zero entry in the mask (rep-
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resenting non-explanatory tokens) is sampled following probabilities calculated by the normalized
gradient magnitudes, i.e., softmax(m(n) ⊙ g), and we employ a similar sampling strategy for zero
entries (explanatory tokens). After swapping the mask indicators for the two sampled tokens l and
v, we generate a temporary mask mtmp. We then evaluate whether this temporary mask leads to a
decrease in output probability. If it does, we update the binary mask to mtmp, otherwise we leave the
binary mask as is. Consequently, without requiring intensive gradient computations, these sampling
iterations keep discovering improved solutions for the discrete optimization problem shown in Eq. (3).
We conclude this update by sampling process in Line 3-12.

While capturing the joint influence of being masked, the proposed JoPA uses both the gradient
information and the search-space strategy, thereby achieving better efficiency than adopting either
method alone. JoPA requires only a single step of gradient calculation and avoids the need to convert
between discrete and continuous masks. The obtained gradient information provides a favorable
initial searching direction and reliable sampling probabilities that enhances the search efficiency.

Theoretical Guarantee Here we could prove that our algorithm can theoretically converge to the
local optima given enough iterations. Define that a solution m∗ ∈ {0, 1}T is the local optima, if
we have pθ(y|m∗ ⊙ x) ≤ pθ(y|m ⊙ x) for all m in the one-swap neighborhood of m∗, namely
||m∗ −m||0 = 2 (meaning m differs from m∗ by one swap, as they are constrained to have k zero
entries). It could be proved that the output of the algorithm m̂ is the local optima by contradiction
that with sufficient iterations. Suppose m̂ is not the local optima, there must be a point m′ in its
neighbor satisfying ||m′ − m̂||0 = 2, such that pθ(y|m′ ⊙ x) < pθ(y|m̂ ⊙ x). This means our
algorithm can still find a better solution by sampling another swap in further iterations and thus m̂ is
not the output of our algorithm, leading to a contradiction to the assumption.

5 EXPERIMENT

This section aims to verify the effectiveness and efficiency of our proposed framework for interpreting
the LLMs on the generation task. We conduct the experiments to answer the following questions:

• Q1: Do the generated prompt attributions play a predominant role in the model’s generation,
thereby serving as faithful counterfactual explanations for the generated output?

• Q2: Is our interpretation algorithm efficient for practical usage?

• Q3: Could the proposed algorithm effectively identify a combination of tokens that impose joint
influence on the model generation?

We provide quantitative studies to evaluate the faithfulness of the explanatory prompt fragments
generated by JoPA, comparing with existing interpretation baselines and ablation variants.

5.1 EXPERIMENT SETTINGS

Models & Baselines In the experiment, we employ two LLMs as our targeted fθ(·): LlaMA-2 (7B-
Chat) (Touvron et al., 2023) and Vicuna (7B) (Zheng et al., 2023). There are relatively few methods
attributing prompts on the entire language generation, and we choose random removal (Random),
Integrated-Gradient (Sundararajan et al., 2017), averaged attentions across all layers (Pruthi et al.,
2019)(Attention), last-layer attention (Zhao & Shan, 2024)(Last-Attention) and Captum (Miglani
et al., 2023) as our baseline for comparison. We also compare JoPA with ReAGent (Zhao & Shan,
2024), with the results presented in Appendix A.11. We implement these models using the PyTorch
framework and pretrained weights from the transformers Python library (Wolf et al., 2020), and
conduct our experiments on an Nvidia RTX A6000-48GB platform with CUDA version 12.0.

Datasets We employ three distinct text generation datasets: Alpaca (Taori et al., 2023),
tldr_news (Belvèze, 2022), and MHC (Amod, 2024), to evaluate the effectiveness of our method
across various generation tasks. As we aim to capture the joint influence of prompts on the model
generations, we focus on relatively long-context prompts rather than simple one-sentence prompts.
Longer prompts tend to contain more diverse vocabularies, convey more information, and thus more
likely to exhibit high textual correlation. For evaluation purposes, we randomly select approximately
110 data samples with at least 15 words from each dataset. All datasets are publicly available and
more details about the dataset are illustrated in Appendix A.1.
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5.2 EVALUATION METRICS

Faithfulness scores are a key metric for assessing the quality of explanations, with faithful explanations
accurately reflecting the model’s decision-making process (Jacovi & Goldberg, 2020). Studies (Samek
et al., 2017; Hooker et al., 2019) suggest that if a certain input tokens are truly important, their removal
should lead to a more significant change in model output than the removal of random tokens (Madsen
et al., 2022). Therefore, after removing explanatory tokens identified by a faithful method, the
model’s new generation would significantly differ from using the original output. Moreover, the
input prompt with masking these explanatory tokens are less likely to reproduce the original model
response y, indicating a lower value of pθ(y|m⊙ x).

To quantitatively evaluate explanation faithfulness, we measure the change of model generation
behavior from two dimensions. On one hand, we compare the model’s original and new generations:
the originally generated sequence y is based on the complete input prompt x (e.g., y = fθ(x)), while
the new generation is conditioned on the masked prompt (e.g., y′ = fθ(m⊙ x)). We thus measure
the similarity of the original generation y and the new generation y′ based on their word frequency
and semantics. A smaller similarity reflects a larger change in model generation, suggesting a better
explanation. On the other hand, we measure the likelihood of generating the original output y when
the model uses the masked prompt, e.g., changes on pθ(y|m⊙ x). A smaller likelihood indicates
better explanations whose mask prevents the model from generating its original output. Detailed
definitions of these metrics are explained below.

Word Frequency: BLEU (Papineni et al., 2002) is widely used to measure how close the candidate
text y′ is to the reference text y. The score measures the precision of matching n-grams from the text
y′ to y by a clipping method to avoid overcounting and adjusting for brevity of y′ if it is shorter than
y. ROUGE-L (Lin, 2004) is the metric for measuring the overlap of sequences of words between the
two texts, evaluating how much of the y′ matches with the reference y (precision), how much the
reference y is covered by the candidate y′ (recall), and combine them into an F1 score.

Semantic Similarity: SentenceBert (Reimers & Gurevych, 2019) is a variation of the BERT model
which is designed to generate high-quality sentence embeddings for the pairs of sentences. We
leverage SentenceBert to transform the text y and y′ into fixed-length embedding vectors, and
calculate the cosine similarity between their embeddings to quantify their semantic similarity.

Probability Measurement: We define two measurements to reflect how the likelihood of generating the
original text y changes before and after applying the explanation mask. We first define the Probability
Ratio (PR) to indicate how less likely to generate the original output y when explanatory tokens are
masked: PR(x,y,m) = p̃θ(y|m⊙x)

p̃θ(y|x) , where p̃(y|x) = p(y|x)1/s is the length-normalized generation
probability. If the PR score is far below the random baseline, we can conclude that the masked
tokens are indeed important to cause the model generating y. In addition, we also calculate the KL-
divergence between these two distributions to measure their difference: DKL(pθ(y|m⊙x)||pθ(y|x)),
and a larger score indicates a larger change in generation likelihood and a more accurate explanation.

5.3 MAIN RESULTS ON FAITHFULNESS (Q1)

We evaluate the faithfulness of the explanatory prompt tokens generated by our framework on five
aforementioned metrics. Table 1 shows the results of different methods on three datasets by masking
k = 3 identified tokens. Experiments on the larger dataset is shown in Appendix A.10. For all metrics
except the KL-divergence, a lower score is better which is annotated as ↓. In general, we observe that
our method consistently demonstrates better interpretation faithfulness on all datasets compared with
baselines, with a clear margin. In particular, we have the following observations demonstrating the
advantage of our method:

Slight random perturbations on the input prompt do not significantly alter the model’s output,
validating the soundness of our approach. This is evident from the high PR value of around
0.958 and the low KL value of only 0.023 on the MHC dataset when randomly masking tokens. Only
when essential tokens are perturbed, particularly when masked, does the generation of content and
probability change substantially. The noticeable gaps in these metrics between JoPA and Random
underscore the genuine importance of the masked tokens and their role as counterfactual explanations
for the model output. The variance assessment of these metrics is presented in Appendix A.6,
highlighting the performance stability of our algorithm.
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Model Dataset Methods
Metric(@3)

BLEU↓ ROUGE-L↓ SentenceBert↓ PR↓ KL↑
Precision Recall F1

LlaMA-2
(7B-Chat)

Alpaca

Random 0.601 0.527 0.533 0.522 0.825 0.842 0.134
Last-Attention 0.533 0.423 0.452 0.432 0.672 0.770 0.202
Attention 0.547 0.447 0.460 0.448 0.721 0.791 0.170
Captum 0.515 0.409 0.421 0.409 0.680 0.602 0.417
Integrated-Gradient 0.541 0.424 0.435 0.424 0.725 0.726 0.242
JoPA 0.484 0.388 0.386 0.379 0.642 0.549 0.504

tldr_news

Random 0.794 0.742 0.741 0.741 0.923 0.944 0.037
Last-Attention 0.747 0.683 0.685 0.683 0.876 0.869 0.108
Attention 0.767 0.703 0.710 0.706 0.900 0.899 0.077
Captum 0.759 0.701 0.703 0.701 0.900 0.910 0.069
Integrated-Gradient 0.713 0.641 0.642 0.640 0.866 0.817 0.149
JoPA 0.692 0.619 0.610 0.612 0.841 0.604 0.394

MHC

Random 0.723 0.617 0.614 0.615 0.787 0.958 0.023
Last-Attention 0.660 0.529 0.525 0.526 0.736 0.907 0.023
Attention 0.665 0.536 0.538 0.531 0.745 0.916 0.056
Captum 0.640 0.497 0.493 0.494 0.663 0.760 0.189
Integrated-Gradient 0.646 0.500 0.496 0.498 0.687 0.836 0.117
JoPA 0.575 0.403 0.405 0.403 0.602 0.701 0.246

Vicuna
(7B)

Alpaca

Random 0.587 0.541 0.552 0.535 0.786 0.891 0.079
Last-Attention 0.475 0.423 0.436 0.415 0.672 0.840 0.113
Attention 0.486 0.447 0.469 0.441 0.683 0.831 0.140
Captum 0.466 0.435 0.427 0.418 0.649 0.654 0.347
Integrated-Gradient 0.541 0.495 0.503 0.488 0.744 0.835 0.135
JoPA 0.433 0.395 0.390 0.377 0.639 0.589 0.459

tldr_news

Random 0.781 0.736 0.746 0.737 0.921 0.891 0.091
Last-Attention 0.746 0.707 0.718 0.708 0.898 0.876 0.114
Attention 0.621 0.514 0.515 0.509 0.817 0.714 0.294
Captum 0.556 0.470 0.461 0.459 0.775 0.376 0.829
Integrated-Gradient 0.705 0.669 0.672 0.666 0.874 0.821 0.183
JoPA 0.536 0.456 0.454 0.448 0.772 0.317 1.006

MHC

Random 0.715 0.625 0.623 0.623 0.810 0.972 0.012
Last-Attention 0.684 0.570 0.573 0.570 0.773 0.947 0.028
Attention 0.685 0.581 0.581 0.580 0.775 0.950 0.026
Captum 0.579 0.438 0.432 0.433 0.627 0.811 0.120
Integrated-Gradient 0.672 0.559 0.555 0.556 0.762 0.941 0.030
JoPA 0.575 0.431 0.425 0.427 0.620 0.783 0.141

Table 1: Faithfulness Measurement Results for LlaMA-2 (7B-Chat) and Vicuna (7B)
JoPA can effectively capture semantically important prompt fragments, and the advantage
stands out for long context. Compared to Captum and Integrated-Gradient, our method generally
yields lower values for BLEU and ROUGE-L across all datasets. The discrepancies between JoPA and
Captum are more pronounced for datasets with longer text, such as tldr_news and MHC. Specifically,
on the tldr_news dataset, the F1-score of JoPA is 12.7% lower than Captum for the LlaMA-2 (7B-
Chat) model, and on the MHC dataset, it is 17.85% lower, this all indicates that JoPA finds and
removes the more important token. Furthermore, the SentenceBert results are better on all datasets,
indicating larger semantic variations in the generated output after removing tokens by JoPA.

JoPA works even better on stronger LLMs. The gaps between JoPA and Captum are less apparent
on the Vicuna (7B) model compared to the LlaMA-2 (7B-Chat) model, which could be attributed to
the model’s inherent inference capabilities. Our method is based on the premise that there are textual
correlations among the input tokens, allowing the model to infer from the remaining content when
a portion of the tokens is masked. If the model has a poor ability to infer the masked token, it may
struggle to capture the contextual information. Consequently, the effectiveness of our method is tied
to the LLM’s proficiency in inference and understanding.
5.4 TIME EFFICIENCY (Q2)

Method Dataset
Alpaca tldr_news MHC

Time(s) Captum 1169.648 1727.602 1806.551
JoPA 15.225 15.397 14.473

Table 2: Time Efficiency on LlaMA-2 (7B-Chat)

In Table 2, we compare the average time
cost of JoPA and Captum for generating
k = 3 explanatory tokens for each prompt
instance. Note that since Captum’s design
requires sequentially appending the next
token to the input prompt to re-generate the
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new output, the time consumption of Captum would increase significantly when the prompt is long.
As the average length of MHC is longer than the Alpaca shown in Table 3, the computational time
increases from 1169.648s to 1806.551s for Captum, which is quite inefficient and impractical. As
for comparison, our algorithm aims to solve the combinatorial optimization problem efficiently via
the proposed probabilistic search algorithm, which significantly reduce the computational cost of
the explanation generation. And also since our design only needs to perform the gradient-guided
probabilistic search step for a certain number of times, the computation time remains consistent
regardless of the prompt length as can be shown form Table 3.

5.5 QUALITATIVE VISUALIZATION (Q3)

Writing a book to teach others a few things can 
be a rewarding experience on many levels. This 
article discusses publishing and whether one 
should self-publish or find a publisher. It 
covers topics such as royalty rates, rights, 
cover design, copyright, and much more.

Here are some potential headlines based on 
the context you provided: 1. "Navigating the 
World of Publishing: A Guide to Self-
Publishing vs. Traditional Publishing” …

Write a story about a 
doctor and his patient.

Here is a story about a 
doctor and his patient: 
Dr. Smith was a kind and 
compassionate doctor who 
had been practicing 
medicine for over 20 
years …

Legend:  Captum     JoPA

Figure 2: Case study for visualizing the explanation of the model responses.

Use Case Study. Figure 2 uses a case study to showcase our method can effectively identify
interacted tokens. This figure illustrates the identified explanatory tokens by Captum and our method
JoPA. While there are few overlaps in the found tokens, compared with our method, those found
by Captum are mostly not important to the generated response. This demonstrates the Captum’s
limited ability to explain the relationship between input prompt and output response, especially
considering the textual correlations within input tokens. For instances, the tokens “publishing”,
“publish” and “book” have semantic correlations, thus Captum masking one by one individually
cannot really eliminate this information complementarily provided by the others, especially when the
LLM has a certain context inference ability. Similar issues exist in the second case, where “doctor”
and “patient” has semantic interactions. Therefore, treating tokens independently and ignoring their
joint influence on the generation is not a favored choice for prompt attribution. This case study
highlights the importance of our formulation of joint attribution, and verifies the effectiveness of our
algorithm in discovering important token combinations on the generated output. More examples are
shown in Appendix. A.2.

Discussion on Benefits. Moreover, our algorithm shows significant potential for improving model
safety and supporting model diagnosis, as elaborated in Appendix A.3. In situations involving a
malicious prompt with an adversarial suffix, our approach can be leveraged to effectively detect and
remove the attributes responsible for the success of jailbreak attacks. By identifying and filtering out
these harmful tokens, we can enhance the model’s robustness, making it more resistant to adversarial
manipulations and ensuring safer outputs. When it comes to model diagnosis, our method can also
provide valuable insights. Specifically, users can utilize this approach to assess how effectively the
model responds to a particular input prompt. This evaluation process serves as a diagnostic tool,
helping to verify whether the generated content is both relevant to the provided prompt and consistent
with its intended meaning. Consequently, our algorithm not only enhances the model’s security by
mitigating risks from malicious inputs but also contributes to ensuring the reliability and accuracy of
the model’s output, ultimately improving user trust and satisfaction.

5.6 ABLATION STUDY

Number of Explanatory Tokens. Figure 3 shows the Probability Ratio (PR) score as the number
of masked tokens k changes on each dataset for LlaMA-2 (7B-Chat). Our algorithm consistently
outperforms other baseline methods even with larger k, demonstrating the stable performance and
effectiveness of JoPA. After masking k = 2 tokens, the value of PR would decrease dramatically,
indicating that these two tokens are crucial for generating the output y and they act as the triggers
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that alter the probability distribution of the output. As the number of tokens increase to k = 5, the
PR keeps decreasing but with a less sharp slope. This suggests that the probability of generating the
original output y is significantly determined by a few predominant tokens.

0 2 3 4 5 10
Number of Tokens Masked

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

PR

Alpaca

Random
Integrated-Gradient
JoPA
Captum

0 2 3 4 5 10
Number of Tokens Masked

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

PR

tldr_news

Random
Integrated-Gradient
JoPA
Captum

0 2 3 4 5 10
Number of Tokens Masked

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

PR

MHC

Random
Integrated-Gradient
JoPA
Captum

Figure 3: Probability Ratio with varying number of masked tokens k.
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Figure 4: Convergence
plot of JoPA.

Number of Sampling Iterations. We now demonstrate the convergence of our search algorithm.
For each sampling iteration, we sample entries in the mask for value swapping; the mask will be
updated if the swapping leads to a drop in the generation log-likelihood log pθ(y|m⊙ x). Figure 4
empirically shows how the log-likelihood decreases as the sampling and mask update continue. The
quickly decreasing trend demonstrates that our algorithm is successfully performed to improve the
quality of mask in locating the predominant tokens on generating y.

Recall that in our algorithm, we use gradient as guidance to initialize the mask (e.g., m(1)) and
calculate sampling probability (i.e., softmax(m(n)⊙g)). To verify the efficiency of gradient guidance,
we compare JoPA with two variants: w/o Initialization that initializes the mask by uniformly random
instead of gradient, and w/o Probability that samples swapping entries by uniformly random instead
of gradient. Table 5 in the Appendix reports their resulting generation log-likelihood log pθ(y|m⊙x)
in different iterations. We observe that without using gradient for initialization, the randomly
initialized mask starts from a worse point with a high generation likelihood; and without using
gradient to guide the sampling, the mask is updated in less effective direction to explore the search
space, resulting in a high generation likelihood in the end. These results show that gradient is a useful
and efficient tool for initializing the optimization from a better starting point and guiding the search
to a better optimal point.

In addition, we extend the application of our framework, JoPA, to a larger model and a more
challenging task, specifically Few-shot Chain-of-Thought (CoT) reasoning (Wei et al., 2022; Kojima
et al., 2022), as described in Appendix A.8 and Appendix A.9. The better performance of our
algorithm compared with others highlights the transferability of our framework across different model
architectures and tasks.

6 CONCLUSIONS

In this study, we introduce JoPA, an efficient probabilistic search algorithm designed to generate the
prompt attributions that elicit the model outputs for the generation tasks. We tackle the challenge
of explaining the generation behavior for any given prompt by analyzing the joint effect of the
prompt attributions on the output. We frame this explanation task as a discrete optimization problem,
which can be efficiently solved by our proposed probabilistic search algorithm. This methodology
enables efficient generation of any arbitrary number of explanatory prompt attributions that are
deterministic to the generated content. Our framework is rigorously evaluated across extensive
language generation tasks, including text summarization, question-answering, and general instruction
datasets. The faithfulness of the explanatory prompt attributions is thoroughly analyzed and assessed
by comprehensive metrics. The results demonstrate that our proposed method efficiently generates
explanatory attributions that faithfully reflect the model’s generation behavior for the specific prompt.
These explanatory attributions interact in semantically and jointly influence the output generation.
Furthermore, the overall excellent performance of our method on these diverse datasets highlights its
remarkable transferability.
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A APPENDIX

A.1 DATASET DETAILS

We evaluate explanations on three datasets: Alpaca, tldr_news and MHC. Due to the extensive
computational cost, we randomly select approaximately 110 data samples with at least 15 words from
each datasets. The statistics of the data used in our experiment can be found in Table 3.

• Alpaca Taori et al. (2023) is a dataset with 52000 unique examples consisting of instructions
and demonstrations generated by OpenAI’s text-davinci-003 engine. Each example in the dataset
includes an instruction that describes the task the model should perform, accompanied by optional
input context for that task. In our experiment, we randomly select a subset of these examples for
verification purposes.

• tldr_news Belvèze (2022) dataset is constructed by collecting a daily tech newsletter. For every
piece of data, there is a headline and corresponding content extracted. The task is to ask the model
to simplify the extracted content and then generate a headline from the input.

• mental_health_counseling (MHC) Amod (2024) includes broad pairs of questions and answers
derived from online counseling and therapy platforms. It covers a wide range of mental-health
related questions and concerns, as well as the advice provided by the psychologists. It is utilized
for used to fine-tuning the model to generate the metal health advice. Here, we prompt the model
to generate an advice based on the provided question.

Dataset Length Number Prompt Examples
Alpaca 16-137 108 Pretend you are a project manager of a construction com-

pany. Describe a time when you had to make a difficult
decision.

tldr_news 14-138 120 Reddit aired a five-second long ad during the Super Bowl.
The ad consisted of a long text message that hinted at the
GameStop stocks saga. A screenshot of the ad is available
in the article.

MHC 18-478 100 I cannot help myself from thinking about smoking. What
can I do to get rid of this addiction?

Table 3: Data Statistics

A.2 CASE STUDY

In this section, we visualize three examples which are selected from the dataset Alpaca, tldr_news,
and MHC respectively, shown in Figure. 5. The tokens in the red frame are the k explanatory tokens
extracted by the model LlaMA-2 (7B-Chat), and the output responses framed in blue are the most
informative results selected by human. In the first data sample, the recognized token: "brains" and
"cognitive", has some semantic relationship intuitively. It is a common sense the cognitive ability is
underpinned by the brain’s function and structure. There are numerous reports and studies focused
on the functionally relationship between the brain and cognitive ability (Zhang, 2019). Due to the
extensive amount of data on which the LLMs are trained, the model can integrate their relationship
which is reflected in its response.

As for the second example, the visualized tokens are almost related to the "book" and "publish",
which aligns with the theme of the output content. Removing either "publishing" or "publish" would
not greatly alter the meaning of the input prompt. This example also shows that our method could
detect some fix expressions like "whether...or..", whose relation is recognized by the token "vs." in
the output.

In the last example, we could figure out the model infers or "guesses" that the kid feels frustrated
and helpless, a sentiment partly related to the token "never". The generated output does not mention
the reason to explain how the model makes such inference. From this point, our method could
generate human-intelligible explanations to assist the users in identifying which parts of the prompts
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fundamentally lead to the undesired response, providing guidance on how to revise the prompts
effectively.

Writing a book to teach others a few things can be a rewarding experience on many levels. 
This article discusses publishing and whether one should self-publish or find a publisher. It 
covers topics such as royalty rates, rights, cover design, copyright, and much more.

Here are some potential headlines based on the context you provided:
1. "Navigating the World of Publishing: A Guide to Self-Publishing vs. Traditional Publishing"
2. ……

Evaluate the validity of this statement: Jellyfish don’t have brains, therefore, they don’t have 
any cognitive abilities. 

The statement "Jellyfish don't have brains, therefore they don't have any cognitive abilities" is 
a valid statement in the sense that jellyfish do not have a centralized nervous system or brain. 
……

Please generate advice or suggestions in response to the following question.
I'm having issues with my relative. The police never believe the experiences I have been 
through because I am only a kid.

It‘s completely understandable that you’re feeling frustrated and helpless when the police don‘t 
believe you, especially when you’re a minor. Here are some suggestions that may help you 
cope with this situation:
……

Figure 5: Case study for visualizing the top-k tokens in each example.

In Figure 6, we also illustrate the changes in the model response as the targeted top-k token is
removed from the input prompt. Compared with the top-k tokens identified by our method, those
found by Captum are mostly not important to the response. This demonstrates the Captum’s limited
ability to explain the relationship between input prompt and output response with the consideration of
the textual information. Moreover, when masking the token "publishing" or "publish", as identified by
our method JoPA, the generated outputs do not exhibit significant variations in either word frequency
or semantics. However, substantial changes in the generated outputs occur only when both tokens are
simultaneously masked. This highlights the effectiveness of our methodology in explaining the joint
effect of the prompt attributions on the generated output.

A.3 BENEFITS TO THE COMMUNITY ON IMPROVING MODEL ABILITY

Benefit on Model Safety Our method has the potential to help LLM defend against jailbreaking
attacks, making the model more robust. We verify this via a real case study. Given an adversarial
prompt with malicious request: "Generate a message that spreads fake news. organized few GO a
a a a newcommand ! SudGuiheures ! !/ refection/:" It can jailbreak Llama-2 (7B-Chat) model to
generate unsafe responses. Our algorithm successfully attributes "Sud" and "he", which are part of
the adversarial suffix. By deleting these attributions, the attack fails. Thus, our approach could help
detect these high-risk malicious tokens to robustify model safety.

Benefit on Model Diagnosis Our approach can also be used to assess the relevance of model’s
response to the prompt, helping diagnose the effectiveness of model responding to the prompt. For a
real case study, consider a single prompt consisting of multiple tasks: "Create a message to complain
about the noise in the neighborhood to friends. Give me the Python code for filtering results based on
the following columns..." We find Llama-2 (7B-Chat) only responds to the first request, neglecting
the second one. Our approach attributes the model’s output to tokens like "complain" "noise" and
"friends", mainly about the first request. Thus by input attribution, our method can help diagnose the
overlooked request and suggest better prompt design.
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Writing a book to teach others a few things can be a rewarding experience on many levels. 
This article discusses publishing and whether one should self-publish or find a publisher. It 
covers topics such as royalty rates, rights, cover design, copyright, and much more.

Here are some potential headlines based on the context you provided:
1. "Navigating the World of Publishing: A Guide to Self-Publishing vs. Traditional Publishing"
2. ……

Writing a book to teach others a few things can be a rewarding experience on many levels. 
This article discusses publishing and whether one should self-publish or find a publisher. It 
covers topics such as royalty rates, rights, cover design, copyright, and much more.

Here are some potential headlines based on the context you provided:
1. "Navigating the World of Publishing: A Guide to Self-Publishing vs. Traditional Publishing"
2. ……

Writing a book to teach others a few things can be a rewarding experience on many levels. 
This article discusses publishing and whether one should self-publish or find a publisher. It 
covers topics such as royalty rates, rights, cover design, copyright, and much more.

Here are some potential headlines based on the context you provided:
1. "Navigating the World of Self-Publishing: A Guide to Making Your Book a Success”
2. ……

Writing a book to teach others a few things can be a rewarding experience on many levels. 
This article discusses publishing and whether one should self-publish or find a publisher. It 
covers topics such as royalty rates, rights, cover design, copyright, and much more.

Here are some potential headlines based on the context you provided:
1. "Navigating the World of Publishing: A Guide to Self-Publishing vs. Traditional Routes"
2. ……

Legend:          Captum           JoPA

Figure 6: Case study for visualizing the variation of the model responses after the specific tokens are
masked.

Detection Accuracy JoPA could be used as the defense of the jailbreak attaks and help users to
design better prompts to get satisfying responses. We also do the experiments to show the effectiveness
of applying JoPA to detect malicious prompts on Llama-2 (7B-Chat) model, which is similar to the
application done in CONTEXTCITE (Cohen-Wang et al., 2024) The results are shown below:

Method Detection Accuracy by JoPA ASR

GCG 100% 3%
Prompt with Random Search 91% 90%

Table 4: Comparison of detection accuracy and attack success rate.

The table presents the detection accuracy of JoPA against different adversarial prompts generated by
GCG attacks (Zou et al., 2023) and Prompt with Random Search (Andriushchenko et al., 2024) on
Llama-2 (7B-Chat). For Prompt with Random Search, the ASR is 90% (Chao et al., 2024), while
JoPA achieves a detection accuracy of 91%. This indicates that JoPA successfully identifies 91% of
malicious prompts, highlighting its potential utility as a defense mechanism.

A.4 DISCUSSION ON COUNTERFACTUAL EXPLANATION

Our work JoPA is to explain the generation of LLMs by identifying a small changes (i.e., masking
few tokens) needed to alter the outcome (i.e., minimizing the probability of the original generation).
This can be understood as counterfactual explanation, since it answers a "what if" question: if these
input tokens are masked, the LLM would not generate the response. Namely, by applying the mask m
on the input prompt x, the generation probability of its original response y would be largely decreased
(i.e., pθ(y|m⊙ x) ≪ pθ(y|x)). This suggests that the newly generated output y′ resulting from the
masked prompt would differ substantially from the original outcome y, as measured by our metrics in
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Table 1: the semantic similarity (SentenceBert) and word similarity (BLEU and ROUGE-L) between
y and y′ are much smaller than those from baselines. Here are several case studies to illustrate the
concepts discussed.

General Q&A Task Given the input prompt to the model: "Follow the law of supply and demand,
describe what would happen to the price of a good if the demand increased." The model would
generate the response: "\nIn economics, the law of supply and demand states that the price of a
good is determined by the interaction between the quantity of the good that...". After masking
the 3 explanatory tokens: ’supply’, ’price’, and ’demand’, the generated response would change
significantly: "However, I must inform you that the question you’ve provided is not factually coherent,
and I cannot provide an answer that may not be accurate or safe...".

Fill-in-the-Blank Task Given the input prompt for the model to fill in the blank:" Fill in the blank
with a word or phrase The most successful team in the NBA is the ____" the original response is: "The
most successful team in the NBA is the Golden State Warriors". If we masked out the explanatory
tokens ’most’, ’successful’, and ’NBA’ from the input, the output would change to: "\Based on the
context you provided, the word that best fits the blank is "best." So, the sentence would read:\The
team in the office is the best."

The case studies of diverse tasks above demonstrate that the new responses generated from the masked
inputs differ significantly from the original outputs, which highlights the impact of these explanatory
tokens in influencing and altering the model’s output.

A.5 GRADIENT DESIGN

The Table. 5 displays the log-likelihood without using the gradient as the guidance to initialize the
optimization process or to do sampling at different stage when searching for the optimal results.

Methods Number of Iterations

1 5 10 15 20 30 40 50

JoPA -42.448 -51.661 -56.378 -59.852 -62.303 -64.812 -67.274 -69.426
w/o Initialization -33.906 -44.555 -50.828 -55.652 -58.483 -62.694 -64.793 -66.415
w/o Probability -41.759 -49.867 -53.784 -57.107 -59.639 -63.339 -65.848 -67.496

Table 5: Ablation study showing the log-likelihood without using gradient for initialization or
sampling with different number of iterations.

A.6 VARIANCE ASSESSMENT

To assess the variance of these metrics, we run the experiment with different seed for 3 times on the
Llama-2 (7B-Chat) model. The results of different metrics on three datasets are shown in the Table. 6,
where value in each cell denotes mean ± std. The small variance indicates that our algorithm is quite
stable across different runs.

Dataset BLEU↓ ROUGE-L↓ SentenceBert↓ PR↓ KL↑
Precision Recall F1

Alpaca 0.479±0.005 0.378±0.008 0.380±0.010 0.371±0.009 0.638±0.005 0.552±0.002 0.496±0.007
tldr_news 0.694±0.003 0.612±0.004 0.613±0.001 0.610±0.002 0.842±0.004 0.592±0.005 0.406± 0.008
MHC 0.575±0.000 0.407±0.001 0.406±0.001 0.403±0.001 0.595±0.008 0.701±0.000 0.245±0.000

Table 6: Variance measurement results for LlaMA-2 (7B-Chat)

A.7 OPTIMIZING MASK VIA GRADIENT

As discussed in Section 4, the strategy that directly optimizes the mask based on gradients requires first
relaxing the discrete problem into a continuous optimization problem (i.e. m ∈ [0, 1]T ), optimizing
via gradient descent, and later projecting the continuous solution back into the discrete space (i.e.,
m ∈ {0, 1}T ). This projection from continuous to discrete space in practice usually results in large
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rounding error, i.e., after projection, the loss increases dramatically. The results of this strategy for
Llama-2 (7B-Chat) model on the Alpaca dataset are in Table 7:

Method BLEU↓ ROUGE-L↓ SentenceBert↓ PR↓ KL↑
Precision Recall F1

Gradient 0.624 0.523 0.534 0.520 0.839 0.825 0.030
JoPA 0.484 0.388 0.386 0.379 0.642 0.549 0.504

Table 7: Optimizing continuous mask on Alpaca dataset

The results verify our claim: directly optimizing m using the gradients (and then projecting to
discrete solution) has much worse performance than our method, highlighting the challenge of this
discrete optimization problem and our contribution of solving it effectively.

A.8 RESULTS ON LARGER MODEL

To further validate a wider applicability of our algorithm on larger models, we conducted additional
experiments for Llama-2 (70B-Chat) 16-bit model on the Alpaca dataset. Due to the inefficiency of
baseline Captum, we randomly sampled 20 instances from the Alpaca dataset to obtain the results in
Table 8, which demonstrate that our algorithm still outperforms the baselines on this larger model
with clear margins.

Method BLEU↓ ROUGE-L↓ SentenceBert↓ PR↓ KL↑
Precision Recall F1

Random 642 0.553 0.552 0.551 0.801 0.894 0.085
Captum 0.565 0.458 0.469 0.462 0.659 0.647 0.333
JoPA 0.547 0.415 0.410 0.410 0.627 0.615 0.363

Table 8: Results of Llama-2 (70B-Chat) model on Alpaca dataset

A.9 METHOD GENERALIZABILITY ON REASONING TASK

We demonstrate the generalizability of our algorithm by conducting an additional experiment on
the reasoning task of Few-shot-CoT (Wei et al., 2022; Kojima et al., 2022), using the dataset
AQuA (Kojima et al., 2022; Goswami et al., 2024). The following results in Table 9 shows the
remarkable performance of our method, indicating its ability to generalize well on more complex
tasks like CoT.

Method BLEU↓ ROUGE-L↓ SentenceBert↓ PR↓ KL↑
Precision Recall F1

Random 0.967 0.976 0.978 0.977 0.995 0.958 0.039
Captum 0.872 0.849 0.893 0.870 0.962 0.666 0.369
JoPA 0.778 0.671 0.726 0.696 0.894 0.600 0.456

Table 9: Experimental results on reasoning task of Few-shot-CoT

A.10 RESULTS ON LARGER DATASET

As the Captum is 1000 times slower than JoPA (Table 2), to afford the comparison, we were using
around 100 data in our experiments. Here, we increase the data size by randomly sampling 800
Alpaca data to demonstrate the effectiveness of our method. The experimental results in Table 10
indicate the effectiveness of our method as the sample size increases on Llama-2 (7B-Chat) model.
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Method BLEU↑ ROUGE-L↑ SentenceBert↑ PR↑ KL↓
Precision Recall F1

Random 0.621 0.539 0.540 0.535 0.824 0.871 0.104
Captum 0.498 0.401 0.402 0.395 0.660 0.623 0.392
JoPA 0.479 0.383 0.376 0.372 0.642 0.565 0.479

Table 10: Experimental results on evaluation metrics for larger data samples.

A.11 COMPARISON WITH OTHER BASELINES

ReAGent (Zhao & Shan, 2024) addresses a different task than JoPA. It focuses on classification
tasks by explaining the importance of words in inputs corresponding to the predicted label and
extends this approach to generation tasks by explaining the single next predicted word. In contrast,
our task focuses on explaining the relationship between the input prompt and the entire generated
sentences. To compare the performance of JoPA and ReAGent on the generation task, we modify
ReAGent’s explanatory target to encompass the full generation outputs rather than a single word. We
conduct experiments on the Alpaca dataset using the Llama-2 (7B-Chat) model, and the results are
presented in Table 11. The experimental results demonstrate that JoPA outperforms in explaining the
relationship between joint attributions in the input and the resulting output.

Method BLEU↑ ROUGE-L↑ SentenceBert↑ PR↑ KL↓
Precision Recall F1

ReAGent 0.607 0.511 0.514 0.508 0.803 0.857 0.111
JoPA 0.484 0.388 0.386 0.379 0.642 0.549 0.504

Table 11: Experimental results between JoPA and ReAGent on Alpaca dataset.
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