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Abstract—Graph Convolutional Networks (GCNs) are pivotal
in a diverse array of applications, including scientific research,
engineering, biomedical protein-protein interactions (PPI), and
natural language processing (NLP). The demand for efficient
GCN computation has catalyzed extensive research into GPU
acceleration techniques. However, a persistent challenge in this
domain is managing out-of-core data, which exceeds the storage
capacity of limited GPU memory, resulting in significant data
movement latency and underutilization of GPU computational
resources.

This paper introduces Peridot, an innovative framework that
leverages NVIDIA GPUDirect Storage (GDS) technology coupled
with sophisticated memory allocation strategies to enhance the
performance of out-of-core GCNs on GPUs. Peridot is engineered
to significantly reduce data movement latency by orchestrating
efficient transfers of sparse matrix data between the GPU and
system memory, particularly during sparse chain matrix multi-
plication. It optimizes memory usage within the GPU to support
larger matrices than previously possible. The system incorporates
a dynamic memory allocation scheme tailored to the sparsity
patterns of matrices, reducing unnecessary memory consumption
and improving data locality. Additionally, by utilizing GDS tech-
nology, Peridot enables direct, high-speed data transfers between
storage devices and GPU memory, bypassing the CPU and
reducing the overhead associated with traditional data transfer
methods. Our evaluations demonstrate that Peridot substantially
surpasses baseline models, offering considerably low latency
in both synthetic and real-world graph benchmarks. These
improvements are particularly notable in scenarios involving
extensive GCN data, where inefficiencies in data movement and
memory allocation have historically been significant obstacles.

I. INTRODUCTION

Graph neural networks (GNNs) have emerged as a powerful
tool for processing structured data, particularly in the field
of natural language processing (NLP), and biomedical appli-
cations. One of the most critical operations in GNNs is the
sparse matrix multiplication (SpGEMM) for modeling graph
structures [7], [9], [18]. However, the computational demands
of this operation can be formidable, especially when dealing
with large-scale graphs, motivating the need for efficient
acceleration techniques [4], [7], [19]. The formidable compu-
tational demands of SpGEMM, which are central to GNNs,
stem largely from the enormous size and inherent sparsity
of matrices typical in applications such as biomedical data
modeling. For instance, the Protein-Protein Interaction (PPI)
networks, which may encompass approximately 68 million
nodes and 1.5 billion edges, exemplify such challenges [15],
[21]. The adjacency matrix for a graph of this scale would need
to accommodate roughly 68 million x 68 million entries. Even

assuming a sparse format with only 1% of these entries being
non-zero, this configuration still results in about 680 million
active entries that require significant computational resources
to manage [7], [9].

The advent of high-performance computing and the ever-
increasing demand for processing large datasets have propelled
the development of more efficient computational methods and
hardware accelerators [12]. Among these, GPUs have emerged
as a pivotal technology, offering substantial parallel processing
capabilities far beyond traditional CPUs. This advancement is
particularly beneficial in the realm of sparse matrix operations,
which are foundational to GCN [2], [10]. Sparse matrices,
characterized by a majority of zero-valued elements, pose
unique challenges and opportunities for optimization GCN per-
formance [1]. Traditional dense matrix operations are compu-
tationally and memory intensive, making them impractical for
sparse matrices, especially when dealing with large-scale data
[13]. Two common formats for representing sparse matrices
are the CSR and CSC formats [3], [17].

This paper introduces Peridot, a novel approach to GPU
memory out-of-core GCN acceleration that harnesses the
power of GPUs. We focus on accelerating the SpGEMM of
matrices represented in GCN, Leveraging the low-latency data
movement between the hierarchical memory layers of GPU
memory, DRAM, and NVMe enhances the overall efficiency
of GCN. Our motivation for Peridot stems from the need for an
efficient, scalable, and adaptable solution for GCN out-of-core
computation on GPUs. Our approach focuses on optimizing
memory access patterns, reducing the latency, and maximizing
parallel execution.

Our hardware-software co-design contributions can be sum-
marized as follows:

• Automatic Data Compression Technique: This technique
utilizes operator hints to detect sparsity based on a tiered
memory hierarchy and selects the appropriate sparse
matrix compression algorithms for matrices A and B,
respectively.

• Automatic Data Transfer Technique: This method selects
a low-latency, zero-copy path through a GPU-directed
storage approach. It enables direct loading of sparse
matrices to the GPU, bypassing the CPU to minimize
CPU involvement. Additionally, verify whether the CPU
is used to compress the matrix before transfer.

• Metadata and Data Decoupling Technique: This approach
is designed for out-of-core SpGEMM computations to
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Fig. 1. Chain Matrix Multiplication in a Graph Convolutional Network Layer
During the Aggregation and Combination Phases

optimize space allocation within a tiered memory system,
including High Bandwidth Memory (HBM), GDS, and
host DRAM.

II. BACKGROUND AND MOTIVATION

A. Graph Convolutional Networks

GCNs exhibit parallels to traditional convolutions in the
realm of graph analysis, particularly in their approach of
sharing ”filter” parameters across all graph locations. However,
a distinguishing characteristic of GCNs is their dependence on
message-passing techniques. This implies that vertices within
a graph engage in information exchange with their neighbors
via the transmission of ”messages”. To express GCNs in
more mathematical terms, we first need to determine how to
aggregate the various messages received by a node. Given
the varying number of messages across nodes, an operation
that can handle any number of inputs is required. Common
approaches include summation or averaging. Let’s define the
previous features of nodes as H(k). Then, a GCN layer can
be expressed as:

H(k+1) = σ
(
D̂− 1

2 ÂD̂− 1
2H(k)W (k)

)
Here, W (k) are the weight parameters that transform the

input features into messages, i.e., H(k)W (k). We modify the
adjacency matrix A by adding the identity matrix I to it,
resulting in Â = A + I . This modification ensures that each
node includes its own features in the message-passing process.

To average the messages rather than summing them, we
compute the matrix D̂, a diagonal matrix where each diagonal
element D̂ii denotes the number of neighbors (including the
node itself) node i has the symbol σ denotes an activation
function, which is not limited to the sigmoid function. In
practice, ReLU-based activation functions are often used in
GNNs. Fig. 1 the computation in a GCN layer during the
aggregation and combination phases.

The aggregation equation is defined as:

Aggregate(k) = D̂− 1
2 ÂD̂− 1

2H(k) (1)

where Â is the augmented adjacency matrix with self-
connections, and D̂ is the diagonal degree matrix of Â.
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Fig. 2. Peridot memory utilization

The combination equation with the transformation through
weight parameters and an activation function is given by:

H(k+1) = σ
(

Aggregate(k)W (k)
)

(2)

where W (k) represents the weight matrix at layer k and σ is
the activation function, such as ReLU.

III. PERIDOT CO-DESIGN FOR OUT-OF-CORE GCN

GCNs, integral to processing relational data, employ ad-
jacency and weight matrices that benefit substantially from
compression into CSR and CSC formats. Our focus is on
streamlining the data architecture to facilitate efficient process-
ing during various computational phases. Specifically, during
the aggregation phase, the adjacency matrix is handled in CSR
format, designated as CSR A, while the feature matrix is
managed in CSC format, termed CSC B. This configuration
is inverted during the combination phase to maximize compu-
tational efficiency. Fig. 2 illustrates the memory utilization of
Peridot during the aggregation and combination phases.

i. Automatic Data Compression Technique: This tech-
nique applies advanced algorithms to compress matrices into
CSR and CSC formats, facilitating more efficient data pro-
cessing and storage. By utilizing operator hints, the system
intelligently detects sparsity within the data based on a tiered
memory hierarchy, selecting the most effective compression
algorithms for each matrix. This not only optimizes memory
utilization but also enhances the speed and scalability of GCN
operations.

ii. Automatic Data Transfer Technique: To further reduce
latency and streamline data flow, this technique employs a
GPU-directed storage approach, enabling a low-latency, zero-
copy path for the direct loading of sparse matrices to the
GPU. This method minimizes CPU involvement and verifies
the necessity of CPU-based matrix compression prior to data
transfer. By optimizing the data pathway, this technique en-
sures that crucial computational resources are preserved for
processing rather than data handling.

iii. Metadata and Data Decoupling Technique De-
signed for out-of-core SpGEMM computations, this strat-
egy optimizes space allocation within a tiered memory sys-
tem—including High Bandwidth Memory (HBM), GPUDirect
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Storage (GDS), and host DRAM. By decoupling metadata
from actual data, the system can more effectively manage
memory allocation, enhancing both the efficiency and speed
of data access during the computation phases.

• Aggregation Phase: Initiating with an analysis of the
adjacency matrix’s byte size in CSR format and the
feature matrix in CSC format, we assess the data’s com-
patibility with available GPU and DRAM memory ca-
pacities, avoiding actual data loading to minimize initial
overhead. This assessment guides the deployment of GPU
Direct Storage to directly transfer the compressed feature
matrix (CSC B). Following this, CSR A’s metadata is
transferred to DRAM, with strategic portions cached into
GPU memory as tiles to ensure optimal data availability
for subsequent computations. This preparation is crucial
for handling dynamically required data, such as the
updated feature matrix H(k+1), and facilitates seamless
data conversions.

• Combination Phase: In the post-aggregation state, the
CSR formatted feature matrix H(k+1) is relocated to
DRAM, and the subsequent layer’s weights W (k+1) in
CSC format are prepared within the GPU. This config-
uration ensures that all critical data is optimally placed
within the GPU’s memory constraints. After computa-
tions, the updated feature matrix H(k+1) can archived
back to NVMe storage, supporting error correction or
future computations. This phase is critical for reducing
latency and maximizing bandwidth, enhancing the overall
computational throughput of the GCN.

Our approach systematically addresses the conventional
bottlenecks of memory limitations and data transfer delays
inherent in GCNs. Preliminary results indicate substantial
improvements in both latency reduction and bandwidth uti-
lization, thus advancing the efficiency of GCN operations.

IV. EVALUATION

A. Methodology
Peridot integrates sparsity-aware optimizations that specif-

ically reduce the I/O transfer overhead associated with zero-
copy operations. The architecture of Peridot strategically em-
ploys the CSR format for matrices on the left-hand side of
multiplications and the CSC format for the right-hand side.
This deliberate choice maximizes memory coalescence and
minimizes memory access latency on the GPU, crucially en-
hancing the efficiency of sparse matrix multiplications. These
multiplications often suffer from irregular memory access
patterns and require careful management to make efficient use
of GPU memory bandwidth.

The performance of Peridot was evaluated using an undi-
rected graph suite of sparse matrices from the SuiteSparse
matrix collection detailed in Table I. Which provides a diverse
set of real-world sparse matrices. The evaluation metrics
focused on speedup factors compared to baseline.

The experimental setup for evaluating the Peridot is metic-
ulously designed to ensure a robust and comprehensive as-
sessment of its performance in GCN. This setup encompasses

the hardware configuration, software environment, and the
selection of datasets for testing. NVIDIA RTX 4090, chosen
for its high computational capability, extensive memory, and
support for CUDA, making it ideal for high-performance
computing tasks. CUDA Toolkit Version 12.2 for Peridot
enabling GDS and baseline both using Cuda.

In our experiment, we evaluate Baseline, Peridot, and Peri-
dot without GDS:

• Baseline: The baseline configuration involves storing
50% of both the adjacency matrix and the feature matrix
directly in GPU memory, with the remainder stored
in DRAM. This setup reflects a conventional approach
where data is statically partitioned between GPU memory
and system memory without dynamic reallocation based
on computational demands.

• Peridot: Pre-analysis of the graph’s adjacency and weight
matrices. It employs an automatic data transfer technique
that dynamically allocates the optimal proportion of the
adjacency matrix and associated data for GPU and system
memory storage. Peridot utilizes GPU Direct Storage
(GDS) to facilitate efficient and rapid data transfers back
and forth between the GPU and system storage, opti-
mizing computational throughput and reducing memory
transfer latency.

• Peridot without GDS: In contrast to its GDS-enabled
counterpart, Peridot without GDS also performs a pre-
liminary analysis of the adjacency and weight matrices
but relies solely on traditional memory transfer methods.
It uses the same automatic data transfer technique to
determine the optimal data allocation for the adjacency
matrix but confines data transfer activities to DRAM and
CPU interactions.

B. Experimental Results and Analyses

The performance comparison table Table II clearly delin-
eates the capabilities of the Peridot system both with and
without GPU Direct Storage (GDS) against a traditional base-
line. This analysis focuses on two key metrics: bandwidth and
latency, which are critical for assessing the efficiency of data-
handling techniques in GCNs.

The results demonstrate that Peridot significantly enhances
bandwidth across all datasets when compared to the base-
line configuration. For instance, in the kmer V2a dataset,
the bandwidth increases from 3952.42 MB/s in the baseline
to 6566.6 MB/s with Peridot employing GDS, marking a
substantial improvement. This indicates that the integration of
GDS effectively optimizes data transfer processes, allowing
for faster handling of large-scale graph data.

Even without GDS, Peridot shows improved bandwidth
over the baseline, although the gains are less pronounced
compared to the GDS-enabled configuration. This suggests
that the core optimizations in Peridot, such as advanced
memory management and data transfer techniques, contribute
positively to performance but are significantly enhanced by
leveraging GDS technology.
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TABLE I
MEMORY REQUIREMENTS AND GPU MEMORY CONSTRAINTS FOR SUITESPARSE GRAPH DATASETS [5]

Dataset No. Vertices No. Edges Memory Req. (GB) GPU Mem. Restrict. (GB)
kmer V2a 55.04M 117.21M 4.63 4
kmer U1a 67.71M 138.77M 5.52 4

mycielskian18 196.6K 300.93M 9.63 8
kmer P1a 139.35M 297.82M 11.76 10
kmer A2a 170.72M 360.58M 14.27 12
kmer V1r 214M 465.41M 18.317 16

TABLE II
PERFORMANCE COMPARISON OF GCN DATA HANDLING TECHNIQUES

Dataset Baseline Peridot Peridot without GDS
Bandwith (MB/s) Latency (ms) Bandwith (MB/s) Latency (ms) Bandwith (MB/s) Latency (ms)

kmer V2a 3952.42 1054.15 6566.6 529 4761.79 729.502
kmer U1a Out of core – Out of core – Out of core –

mycielskian18 3514.33 2285.49 7104.39 1017 4739.62 1524.42
kmer P1a 3504.27 3773.47 7307.5 1207 4782.98 1844.07
kmer A2a 3660.48 4526.35 7355.86 1455 4893.4 2187.19
kmer V1r 3745.9 5104.49 7132.88 1926 4820.03 2850.17

The latency metrics further reinforce the benefits of the
Peridot system. With the integration of GDS, latency is
markedly reduced across all datasets. For example, the latency
for the mycielskian18 dataset decreases from 2285.49 millisec-
onds in the baseline to 1017 milliseconds with Peridot using
GDS, more than halving the delay involved in processing.
This reduction is crucial for applications requiring real-time
processing of graph data, such as dynamic network analysis
and interactive data visualization.

Peridot without GDS also demonstrates reduced latency
compared to the baseline, although not as dramatically as its
GDS-enabled counterpart. This indicates that while GDS plays
a significant role in optimizing latency, the inherent design of
Peridot itself is geared towards more efficient data processing.

V. RELATED WORK

A Systematic Survey of General Sparse Matrix-Matrix
Multiplication This survey meticulously categorizes and eval-
uates a wide range of algorithms and optimizations developed
for SpGEMM, offering insights into their applicability across
various computing platforms, including CPUs, GPUs, and
distributed systems. The authors provide a detailed classi-
fication based on the algorithmic strategies employed for
SpGEMM, such as row-wise, column-wise, and hybrid ap-
proaches, alongside discussing the merits and limitations of
each method. They also explore the evolution of parallel
computing techniques that enhance SpGEMM performance
on modern high-performance computing architectures. Special
attention is given to optimizations that address the challenges
posed by the sparse nature of the matrices, such as minimizing
memory access latency and maximizing computational effi-
ciency [6].

Sextans: A Streaming Accelerator for General-Purpose
Sparse-Matrix Dense-Matrix Multiplication introduce a
novel hardware accelerator designed to efficiently handle the

sparse-matrix dense-matrix multiplication (SpMM), a fun-
damental operation in various scientific and data analytics
applications. The Sextans accelerator is specifically tailored to
enhance the performance of SpMM operations by leveraging a
streaming architecture that optimizes data flow and minimizes
memory access latency. The Sextans framework distinguishes
itself by adopting a general-purpose approach that accommo-
dates a wide range of sparse matrix formats and densities,
ensuring broad applicability across different domains [14].

Accelerating sparse matrix–matrix multiplication with
GPU Tensor Cores their methodology encompasses a detailed
analysis of the memory access patterns and computational
strategies that can be optimized for sparse matrices, ensur-
ing that the Tensor Cores are utilized efficiently despite the
inherent challenges posed by irregular data structures [8],
[20]. This research work not only contributes to the computa-
tional mathematics and high-performance computing fields by
demonstrating the feasibility and benefits of adapting sparse
computations to Tensor Cores but also sets a foundational
framework for future explorations into optimizing other sparse
linear algebra operations using emerging GPU features [11],
[16].

VI. CONCLUSION

Peridot is an innovative approach designed to significantly
enhance the performance of out-of-core GCNs through the
strategic use of GDS. Our results demonstrate that Peridot,
by integrating advanced data transfer techniques and memory
management strategies, offers substantial improvements in
processing large-scale graph data, as evidenced by marked
increases in bandwidth and reductions in latency across mul-
tiple datasets. This optimization is particularly evident in
scenarios where the GDS technology is employed, showcasing
its capability to handle intensive data transfers addressing the
critical challenges of memory limitations and data transfer
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delays that have historically impeded the scalability of graph
processing applications.
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