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ABSTRACT

We present the first loss agent, dubbed LossAgent, for low-level image process-
ing tasks, e.g., image super-resolution and restoration, intending to achieve any
customized optimization objectives of low-level image processing in different
practical applications. Notably, not all optimization objectives, such as complex
hand-crafted perceptual metrics, text description, and intricate human feedback,
can be instantiated with existing low-level losses, e.g., MSE loss. which presents a
crucial challenge in optimizing image processing networks in an end-to-end manner.
To eliminate this, our LossAgent introduces the powerful large language model
(LLM) as the loss agent, where the rich textual understanding of prior knowledge
empowers the loss agent with the potential to understand complex optimization
objectives, trajectory, and state feedback from external environments in the opti-
mization process of the low-level image processing networks. In particular, we
establish the loss repository by incorporating existing loss functions that support
the end-to-end optimization for low-level image processing. Then, we design the
optimization-oriented prompt engineering for the loss agent to actively and intel-
ligently decide the compositional weights for each loss in the repository at each
optimization interaction, thereby achieving the required optimization trajectory for
any customized optimization objectives. Extensive experiments on three typical
low-level image processing tasks and multiple optimization objectives have shown
the effectiveness and applicability of our proposed LossAgent.

1 INTRODUCTION

With the revolutionary advancements in deep learning technology, low-level image processing tasks,
e.g., image super-resolution and restoration, have garnered increasing interest from researchers.
Typically, low-level image processing tasks are optimized with the commonly-used loss function,
such as MSE and L1 Losses, in an end-to-end manner, to improve the objective quality (Zamir et al.,
2022; Fei et al., 2023; Liang et al., 2021; Li et al., 2023b; Conde et al., 2024; Xia et al., 2023) or
perceptual quality (Yu et al., 2024; Yue et al., 2024; Chen et al., 2023a;b; Zhang et al., 2021; Wang
et al., 2021). However, optimizing models using a single optimization objective falls short of meeting
real-world needs. For example, in image super-resolution, we desire the super-resolved images
to not only restore the ground truth at the pixel level but also to appear natural without artificial
textures or visually distracting artifacts (Ledig et al., 2017). To address this, some researchers have
introduced the combination of multiple loss functions (Ledig et al., 2017; Wang et al., 2018b;a; 2021;
Zhang et al., 2021) (e.g., GANs) to train networks, enabling the optimized models to satisfy multiple
optimization objectives. Nevertheless, this approach requires the loss functions corresponding to
optimization objectives to be differentiable and suitable for training. Consequently, some advanced
image quality assessment (IQA) metrics, which align more closely with human visual perception, are
not differentiable and thus cannot be directly utilized for end-to-end network optimization.

Recently, large language models (LLMs) such as GPT series (Brown et al., 2020; OpenAI, 2023) and
LLaMA series (MetaAI, 2024; Touvron et al., 2023; Roziere et al., 2023), have shown promising
reasoning and understanding capabilities. This has also catalyzed the trend of utilizing LLMs as
intelligent agents (Shen et al., 2024; Lu et al., 2024; Ge et al., 2024; Shinn et al., 2024), especially
in the field of embodied AI (Yang et al., 2023a; Mu et al., 2024; Schumann et al., 2024; Gupta &
Kembhavi, 2023). By providing the agent with the environment information, predefined settings, rules,
external feedback, and a set of optional actions, it can leverage its powerful reasoning capabilities
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Figure 1: During the training of image processing models (Part I), the loss agent (Part II) gathers
feedback from various optimization objectives (Part III). Combining this feedback with historical
information, the LLM leverages its powerful reasoning capabilities to determine the optimal loss
weights for the subsequent optimization phase of the image processing models (Part I).

to generate outputs that meet customized requirements, such as tool selection (Schick et al., 2024;
Shen et al., 2024), action decisions (Yang et al., 2023b), programming (Surı́s et al., 2023; Gupta &
Kembhavi, 2023), etc.

Inspired by this series of works, we propose the first loss agent, dubbed LossAgent, for low-level
image processing, enabling any customized optimization objectives of the image processing network
for multiple practical applications. To achieve this, we introduce the pre-trained large language
model (LLM), i.e., LLaMA-3 (MetaAI, 2024) as the loss agent to control the optimization trajectory
for different objectives. In the optimization process, an intuitive strategy is to exploit the expected
optimization objective as the loss function to guide the optimization of image processing networks.
However, not all optimization objectives can assist this, such as the complex hand-crafted optimization
objective, textual description, and human feedback, since they cannot be differentiable for end-to-end
optimization. To solve the problem, we propose the compositional loss repository, which collects
existing popular loss functions supported for low-level image processing, and utilize our proposed
LossAgent to adaptively and actively assign the weights for each loss at each iteration period based
on external environments to achieve customized optimization trajectory toward required optimization
objective. In this process, we carefully design the optimization-oriented prompt engineering, which
constructs the prompt templates to guide the LLM to understand the current optimization states,
trajectory and objectives, thereby achieving accurate loss weights planning. To fully utilize the
reasoning capabilities of LLM, the agent receives input of all weights of the model from the beginning
of the training phase to the current stage. This enables the LossAgent to smoothly and automatically
optimize the image processing model towards predefined optimization objectives through the analysis
of historical weights, inference from external feedback, and following customized instructions.

Overall, the LossAgent possesses the following core features:

• LossAgent is capable of obtaining feedback from non-differentiable optimization objectives and
leveraging the model’s powerful reasoning capabilities to convert this feedback into a composition
of loss weights for training, thereby enabling the model to be optimized in an end-to-end manner
towards any optimization objectives.

• LossAgent enjoys a high degree of flexibility. Leveraging its powerful reasoning capabilities,
the agent can update loss weights fully automatically. Additionally, due to its ability to follow
instructions, it can also receive feedbacks from external environments during the training process
to pursue customized needs.

• LossAgent exhibits high scalability. As depicted in Figure 1, our AgentLoss can be extended to
various low-level image processing tasks and multiple different optimization objectives, even if
they are not differentiable, which has been proven in the experimental parts.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

2.1 IMAGE PROCESSING

Image processing consists a broad spectrum of tasks, including image restoration (Potlapalli et al.,
2023; Liang et al., 2021; Fei et al., 2023), image enhancement (Yu et al., 2024; Wang et al., 2023b;c),
and image super-resolution (Yue et al., 2024; Chen et al., 2023a;b; Wang et al., 2021; Zhang et al.,
2021). In low-level image processing tasks, pioneering works (Dong et al., 2015; Lim et al., 2017;
Zhang et al., 2018b) focus primarily on optimizing fidelity-wise metrics such as PSNR and SSIM
through L1 or L2 loss functions. However, models optimized by these metrics tend to generate over-
smooth results (Ledig et al., 2017). To mitigate this problem, works (Ledig et al., 2017; Wang et al.,
2018b; Zhang et al., 2021; Wang et al., 2021) leveraging generative adversarial networks (GANs) to
enable the SR network to learn the distribution of real-world high-quality images. By introducing a
weighted combination of VGG perceptual loss (Ledig et al., 2017; Simonyan & Zisserman, 2014)
and GAN loss, GAN-based works (Wang et al., 2018b; 2021; Zhang et al., 2021) are well-optimized
for human perception objectives. More recently, transformer-based (Liang et al., 2021; Chen et al.,
2023a;b) and diffusion-based works (Fei et al., 2023; Xia et al., 2023; Ma et al., 2023) further improve
the performance on aforementioned optimization objectives.

However, despite the revolution of network structures and loss function designs, optimization tra-
jectories of image processing models have become relatively fixed. While there is a strong demand
for advanced image quality assessment (IQA) metrics (Zhang et al., 2021), many recently developed
IQA metrics (Wu et al., 2023; 2024) cannot be utilized as optimization objectives due to their non-
differentiable nature. In this paper, we tackle this challenge by introducing an LLM-based loss agent.
This agent is capable of bridging any customized optimization objectives with the combination of
loss function weights, allowing for the optimization of image processing models in an end-to-end
manner.

2.2 LLM AGENTS

With the development of data science and computing resources, numerous of large language models
(LLMs) (Li et al., 2023a; Touvron et al., 2023; Brown et al., 2020) have emerged with remarkable
language understanding and reasoning abilities. Despite of the above advantages, LLMs may struggle
with tasks in certain specialized domains, leading to inaccurate outputs (Ge et al., 2024; Mialon
et al., 2023). Consequently, researchers leverage these powerful LLMs as tools planner (Schick
et al., 2024) and intelligent agents (Shinn et al., 2024), adaptively coordinating domain-specific
expert models based on external demands. For example, MM-REACT (Yang et al., 2023b) tackles
various multimodal reasoning and action tasks via prompting ChatGPT (Brown et al., 2020) to invoke
domain experts. ToolFormer (Schick et al., 2024) embeds external API tags within text sequences
to enhance LLMs’ interaction with external resources. HuggingGPT (Shen et al., 2024) effectively
harnesses various expert models from HuggingFace while utilizing LLMs as a controller to adeptly
address tasks across multiple specialized domains. More recently, with appropriate instruction tuning,
researchers have enabled LLMs to adapt to a broader range of tasks, allowing for more specialized
task planning (Shen et al., 2024; Surı́s et al., 2023; Gupta & Kembhavi, 2023). Besides, in the field
of embodied AI, LLM has been seamlessly integrated with vision experts as an agent (Yang et al.,
2023a; Mu et al., 2024). The agent is capable of receiving environmental feedback and generating
optimal actions accordingly.

Different from these great efforts, we propose the first LLM-based agent to handle any customized
optimization objectives for image processing models, named LossAgent. By leveraging the powerful
understanding and reasoning capabilities of LLMs, we transform feedback from external models or
metrics into appropriate adjustments of loss weights in image processing models, allowing image
processing models to be optimized towards any objectives. We hope that our LossAgent will facilitate
the development of image processing to a more open-ended and intelligent society.

3 METHODS

Notably, there are multiple optimization objectives for image processing tasks such as traditional
metrics like MSE loss to advanced IQA metrics that align with human perception. However, not all
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Figure 2: The overview of LossAgent. LossAgent bridges image processing models with any
optimization objectives through the following workflow: The image processing model will generate
images using checkpoints at the current stage. Subsequently, external expert model will generate
score or textual feedback according to the images provided by the image processing model. The LLM-
based agent model (e.g., LLaMA3) collects feedback and leverages its powerful reasoning abilities
to analyze the relationships between loss weights and optimization objectives, while following our
prompt engineering including system prompt, historical prompt, and customized needs prompt. After
proper analysis, the agent will generate a new combination of loss weights to further guide the next
step in optimizing the image processing model. We provide a detailed case study in Appendix A.3.

optimization objectives can be exploited to guide the end-to-end optimization of image processing
networks since they are not all differentiable. This raises a significant and interesting question “how
to optimize an image processing model when optimization objectives are non-differentiable?” In
this paper, we address this question by proposing the first LLM-based loss agent, which transfers
feedback from these optimization objectives through a pre-trained LLM into the adjustment of loss
weights. This approach enables the image processing model to be optimized in an end-to-end manner.
In this section, we first review the optimization objectives for low-level image processing models and
then explain three parts of LossAgent illustrated in Figure 1 in details.

3.1 OPTIMIZATION OBJECTIVES OF IMAGE PROCESSING MODELS

Although the network structures of image processing models have evolved significantly in recent
years, the optimization objectives of these models have remained largely unchanged. Taking image
super-resolution (ISR) as an example, early works (Lim et al., 2017; Dong et al., 2015; Zhang et al.,
2018b) pursued higher PSNR values, while some recent works (Zhang et al., 2021; Wang et al., 2021;
Yu et al., 2024; Xia et al., 2023; Fei et al., 2023; Yue et al., 2024) have started optimizing networks
to better align with human perception considering metrics such as LPIPS (Zhang et al., 2018a)
and NIQE (Mittal et al., 2012). Despite advances in these ISR models, image quality assessment
(IQA) models have concurrently experienced significant developments. An IQA model evaluates the
visual quality of images by analyzing their attributes and detecting any distortions or imperfections,
making it particularly suitable as an optimization objective for image processing models (Wang et al.,
2023a; Yang et al., 2022). However, due to the specific operations in IQA models (e.g., incorporating
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other models and applying sampling (Wu et al., 2023; 2024)), some advanced IQA metrics are
non-differentiable, preventing them from being utilized as the optimization objectives during the
training of image processing models. Moreover, when leveraging textual feedback from humans
or MLLM-based IQA models such as Co-Instruct (Wu et al., 2024) for optimization objectives, the
metrics derived from these objectives are inherently non-differentiable.

In this paper, we address the above challenges by introducing an LLM-based agent, termed LossAgent.
Instead of directly applying these optimization objectives as loss functions for training image process-
ing models, LossAgent efficiently transfers various forms of feedback from customized optimization
objectives into an actionable weighted composition of a set of differentiable loss functions.

3.2 WEIGHTED COMPOSITIONAL LOSS REPOSITORY

To achieve any optimization trajectory in the training stage of image processing models, we
establish the compositional loss repository with multiple typical differential loss functions
{L1, L2, L3, ..., LM}, such as L1, LPIPS, where the dynamically weighted composition of them with
coefficients {w1, w2, w3, ..., wM} is achieved to modulate the optimization direction timely:

L = w1L1 + w2L2 + · · ·+ wMLM . (1)

Here, M is the total number of loss functions. Based on the above weighted compositional loss
repository, we can adjust the optimization direction directly by generating the weighting coefficients
through our proposed loss agent. To enable the loss agent to adjust weight composition in time based
on feedback from any optimization objective, we divide the training stage of the image processing
model into N stages, where the current state of the image processing model and their corresponding
compositional loss is as:

S = {S0, S1, S2, . . . , Si, . . . , SN}, (2)

Li = wi
1L1 + wi

2L2 + · · ·+ wi
MLM , (3)

where S0 stands for the initial states of the image processing model and i indicates the ith training
stage. The external feedback of the optimization objective will be evaluated by the image processing
model at the end of each training stage with a set of randomly selected testing images as:

I = {I1, I2, . . . , IT }, (4)

where T is the number of images. We have provided the details in the Datasets part of Section 4.1.

3.3 EXTERNAL FEEDBACK FROM OPTIMIZATION OBJECTIVES

To alleviate the cognitive burden on the loss agent for the image processing task, we introduce the
external evaluation expert O to produce the optimization feedback to the loss agent. Concretely, once
we obtained the restored images ISi

at the stage Si, we can utilize external evaluation expert O to
evaluate the quality of restored images ISi

as:

F = O (ISi) , (5)

where F is the external feedback from optimization objectives, which can be a quality score or textual
description. Notably, the external evaluation expert is the tool to represent the optimization objective.
For instance, if the optimization objective is to achieve a higher CLIPIQA (Wang et al., 2023a)
score, we select CLIPIQA as the external evaluation expert. Conversely, when the optimization
objective is more general (e.g., to achieve higher quality), multiple evaluation experts can be utilized
collaboratively to generate feedback. See more details in Section 4.2.2.

3.4 LOSS AGENT

It is noteworthy that the original LLM model cannot be directly applied to image processing tasks
due to the knowledge discrepancy. To equip the LLM model with the capability to understand the
image processing task and adjust the optimization direction of image processing, we exploit prompt
engineering to adapt the pre-trained LLM model to our desired loss agent. Concretely, our proposed
prompt engineering strategy can be divided into three parts: i) system prompt, ii) historical prompt
and iii) customized needs prompt.
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Table 1: Details of training iterations for each stage, total number of training iterations, and initial
weights of loss functions for three image processing models.

Task Iters. for Each Stage Total Iters. Initial Loss Weights

Classical Image SR 5000 100k L = 1.0LL1 + 0.1Lperceptual + 0.01LGAN
Real-world Image SR 5000 200k L = 1.0LL1 + 0.1Lperceptual + 0.01LGAN
All-in-one IR 2500 100k L = 1.0LL1 + 0.1Lperceptual + 1.0LLPIPS

After feedback F is generated from external expert models, the loss agent will collect and utilize
this feedback to generate a new set of loss weights. LLM demonstrates exceptional capabilities
in following instructions and making decisions (Shen et al., 2024; OpenAI, 2023; Touvron et al.,
2023). Consequently, enabling the loss agent to accomplish our task is feasible by providing accurate
and sufficient prompt guidance. Initially, we employ prompt engineering through system prompt
approach following previous works (Shen et al., 2024; Yang et al., 2023a; Mu et al., 2024; Surı́s
et al., 2023) to convey to the loss agent the role it needs to undertake, the inputs it will receive, the
required outputs, and the objectives to be achieved. An example of our prompt engineering under
the ISR scenario is given in Figure 2. The most important instruction for the agent is the objectives
clarification: “Your ultimate goal is to help the SR model achieve higher score feedback.”. This is
because LLM may not encompass the knowledge of how these IQA metrics should be evaluated.
Therefore, it is crucial to clarify whether lower or higher scores indicate better image quality. Without
this context, LLM might intuitively assume that higher scores indicate better quality, resulting in
incorrect reasoning.

Subsequently, to mitigate the hallucination phenomenon in LLM and prevent undesirable responses in
situations of information scarcity, we gather the optimization trajectory of the loss agent as historical
prompt and provide this information as context to the LLM.

Following this, we impose certain rule-based constraints on LLM through customized needs prompt.
Furthermore, we incorporate format regularization into these rules to alleviate the challenge of parsing
LLM outputs, which we found to be highly effective in standardizing the outputs. It is noteworthy
that the design of such customized needs prompt not only provides flexibility for current usage but
also accommodates a variety of future needs.

Ultimately, the loss agent consolidates all received information, leveraging its robust understanding
and reasoning capabilities to generate a new set of loss weights as:

Li+1 = wi+1
1 L1 + wi+1

2 L2 + · · ·+ wi+1
M LM (6)

This new combination of loss functions will be employed to optimize the image processing model at
stage i+ 1. Based on the system prompt, the historical prompt, and the customized needs prompt,
our LossAgent is capable of updating reasonable new loss weights for training image processing
model. Please refer to Section 4.3 for more details.

4 EXPERIMENTS

4.1 SETTINGS

To demonstrate the effectiveness of our LossAgent, we perform the evaluation on three representative
low-level image processing tasks: classical image super-resolution, real-world image super-resolution
and all-in-one image restoration. We adopt two typical image processing models: SwinIR (Liang et al.,
2021) for super-resolution tasks and PromptIR (Potlapalli et al., 2023) for all-in-one restoration task.
To demonstrate the effectiveness of LossAgent towards various optimization objectives, we assess
the performance of our method across three testing settings: single optimization objective, double
optimization objectives and textual optimization objectives. For all score-based IQA optimization
objectives, we adopt their pyiqa python implementation (Chen & Mo, 2022). We select open-
sourced Meta-Llama-3-8B-Instruct1 as the LLM of our loss agent due to its impressive
reasoning capabilities. We provide the training details in Appendix A.1

Datasets For image SR tasks, we follow previous works (Liang et al., 2021; Wang et al., 2021) and
adopt DF2K (Agustsson & Timofte, 2017; Timofte et al., 2017) as the training dataset. For all-in-one

1https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Table 2: Quantitative comparisons between LossAgent and other methods on classical image SR.
“Pre-trained” denotes the pre-trained checkpoint we load. “Baseline” denotes that we train the model
with fixed loss weights. As NIQE (Mittal et al., 2012), MANIQA (Yang et al., 2022), CLIPIQA (Wang
et al., 2023a) and Q-Align (Wu et al., 2023) are no-reference IQA metrics, we also calculate these
metrics for ground-truth (GT) as a reference. ↑ / ↓ indicate higher/lower is better. Best results are
bolded.

Metrics Methods Datasets Avg.
Set5 Set14 BSD100 Urban100 Manga109

NIQE↓
Pre-trained 7.10 6.22 6.11 5.46 5.37 6.05
Baseline 5.09 4.07 3.99 4.04 3.95 4.23

LossAgent 4.82 3.91 3.86 3.96 3.88 4.08
GT (Ref.) 5.15 4.86 3.19 4.02 3.53 4.15

MANIQA↑
Pre-trained 0.446 0.409 0.349 0.482 0.446 0.426
Baseline 0.458 0.406 0.354 0.494 0.416 0.425

LossAgent 0.474 0.418 0.365 0.496 0.424 0.436
GT (Ref.) 0.534 0.449 0.523 0.552 0.420 0.496

CLIPIQA↑
Pre-trained 0.605 0.517 0.534 0.501 0.637 0.559
Baseline 0.765 0.694 0.649 0.624 0.710 0.688

LossAgent 0.788 0.718 0.679 0.643 0.729 0.711
GT (Ref.) 0.807 0.740 0.756 0.675 0.700 0.736

Q-Align↑
Pre-trained 3.03 3.29 2.98 4.38 3.65 3.47
Baseline 3.04 3.45 3.34 4.53 3.66 3.60

LossAgent 3.07 3.48 3.41 4.53 3.65 3.63
GT (Ref.) 3.36 3.63 4.04 4.53 3.60 3.83

image restoration task, we follow (Li et al., 2022; Potlapalli et al., 2023) to use a combination of
BSD400 (Arbelaez et al., 2010), WED (Ma et al., 2016), Rain100L (Yang et al., 2020) and SOTS (Li
et al., 2018) to optimize the model. We utilize five SR benchmarks with ground-truth to evaluate the
performance of LossAgent on classical image SR: Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al.,
2010), BSD100 (Martin et al., 2001), Urban100 (Huang et al., 2015) and Manga109 (Matsui et al.,
2017). Two real-world benchmarks without ground-truth are adopted to evaluate real-world image SR:
OST300 (Wang et al., 2018a) and RealSRSet (Zhang et al., 2021). We follow PromptIR (Potlapalli
et al., 2023) to use SOTS(test) (Li et al., 2018), Rain100L(test) (Yang et al., 2020) and BSD68 (Martin
et al., 2001) to evaluate the all-in-one image restoration performance. For testing images I mentioned
in Equation 4, we randomly sample 10 images from Set14 (Zeyde et al., 2010) for classical image SR;
randomly sample 10 images from RealSRSet (Zhang et al., 2021) for real-world image SR; randomly
sample 10 images from evaluation sets of PromptIR for all-in-one IR.

4.2 EVALUATION ON OPTIMIZATION OBJECTIVES

4.2.1 SINGLE OPTIMIZATION OBJECTIVE

In this section, we validate the effectiveness of LossAgent towards single optimization objective. We
select four IQA metrics as the optimization objective: NIQE (Mittal et al., 2012), MANIQA (Yang
et al., 2022), CLIPIQA (Wang et al., 2023a) and Q-Align (Wu et al., 2023). For each metric, we start
from the pre-trained checkpoints and initial loss weights listed in Table 1, and optimize the image
processing model using LossAgent with external feedback from this metric. As demonstrated in
Table 2, 3 and 4, our LossAgent outperforms baseline method (i.e., fixed loss weights) across almost
all the benchmarks under all the optimization objectives, which not only reveals the effectiveness of
LossAgent but also indicates that our method enjoys plausible generalization abilities across different
image processing models. Notably, LossAgent performs well on real-world image SR task, suggesting
the efficacy of our proposed method in complex application scenarios. However, in the all-in-one
IR task, LossAgent does not perform as robustly as in the other two tasks. We attribute this to the
minimal differences between images generated in consecutive stages, which limit the instructional
information available to the agent and hinder its ability to conduct thorough analysis and inference to
adjust loss weights. We provide qualitative comparisons between baseline method and our LossAgent
on real-world image super-resolution task in Figure 3. As observed, image processing model restores
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Figure 3: Qualitative comparisons between baseline and LossAgent on real-world image super-
resolution across four optimization objectives.

Table 3: Quantitative comparisons between LossAgent and other methods on real-world image SR.
Best results are bolded. Notice that, there is no ground-truth for this task.

Methods Metrics Datasets Avg. Metrics Datasets Avg.
OST300 RealSRSet OST300 RealSRSet

Pre-trained
NIQE↓

6.31 7.62 6.96
MANIQA↑

0.332 0.360 0.346
Baseline 3.26 5.12 4.19 0.366 0.385 0.375

LossAgent 3.05 4.43 3.74 0.371 0.394 0.383

Pre-trained
Q-Align↑

4.47 3.43 3.95
CLIPIQA↑

0.419 0.444 0.432
Baseline 4.55 3.81 4.18 0.528 0.611 0.569

LossAgent 4.58 3.87 4.22 0.571 0.649 0.610

images that more aligned with human perception with the help of LossAgent. Specifically, images in
the second row encompass vivid textures, resulting in better quality assessments.

4.2.2 DOUBLE OPTIMIZATION OBJECTIVES

To fully explore the potential of LossAgent, we conduct an experiment on classical image SR task.
In this experiment, we utilize two optimization objectives (i.e., Q-Align (Wu et al., 2023) and
PSNR) simultaneously to adjust loss weights. As observed from Table 5, including PSNR as an
optimization objective yields PSNR gains across all benchmarks while maintaining comparable
Q-Align performance. We attribute this to the powerful reasoning capabilities of LLM. Such results
showcase the flexibility of LossAgent towards various optimization objectives.

4.2.3 TEXTUAL OPTIMIZATION OBJECTIVES

While score metrics are common in image processing tasks, it is rare for tasks to utilize textual metrics
as optimization objectives. Recently, Co-Instruct (Wu et al., 2024) employs MLLMs to evaluate image
quality and generate corresponding textual descriptions. To explore the flexibility and scalability of
LossAgent, we choose Co-Instruct as the optimization objective. The results on all-in-one IR task
are shown in Table 6. Notice that, there aren’t any methods available to evaluate a model optimized
by textual guidance. Since Co-Instruct and Q-Align utilize similar network structures and training
datasets, we find it reasonable to evaluate the performance of the Co-Instruct-optimized model by
Q-Align score. As observed, Co-Instruct-optimized model achieves comparable results with baseline
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Table 4: Quantitative comparisons between LossAgent and other methods on all-in-one IR. Best
results are bolded.

Metrics Methods Dehaze Derain Denoise Avg.
SOTS Rain100L σ = 15 σ = 25 σ = 50

NIQE↓
Pre-trained 2.91 3.16 3.77 3.96 4.25 3.61
Baseline 2.98 3.18 3.43 3.49 3.71 3.36

LossAgent 2.95 3.17 3.38 3.48 3.80 3.36
GT (Ref.) 2.94 3.17 3.13 3.13 3.13 3.10

MANIQA↑
Pre-trained 0.441 0.498 0.493 0.457 0.377 0.453
Baseline 0.447 0.503 0.482 0.450 0.381 0.453

LossAgent 0.450 0.505 0.491 0.462 0.386 0.459
GT (Ref.) 0.442 0.509 0.525 0.525 0.525 0.505

CLIPIQA↑
Pre-trained 0.494 0.750 0.686 0.672 0.640 0.649
Baseline 0.534 0.769 0.795 0.785 0.725 0.722

LossAgent 0.542 0.771 0.807 0.777 0.706 0.721
GT (Ref.) 0.544 0.755 0.757 0.757 0.757 0.714

Q-Align↑
Pre-trained 4.02 3.92 4.09 3.96 3.61 3.92
Baseline 4.03 3.94 3.95 3.94 3.76 3.92

LossAgent 3.99 3.95 3.97 3.96 3.82 3.94
GT (Ref.) 3.96 4.01 4.11 4.11 4.11 4.08

Table 5: Quantitative comparisons between single and double optimization objectives. For latter
situation, we include both Q-Align score and PSNR value as external feedback for LossAgent.

Methods Datasets Avg.
Set5 Set14 BSD100 Urban100 Manga109

Q-Align↑ 3.07/30.62 3.48/27.28 3.41/26.41 4.53/25.96 3.65/29.91 3.63/28.04
Q-Align↑+PSNR↑ 3.12/31.14 3.46/27.52 3.42/26.62 4.53/26.27 3.65/30.29 3.64/28.37

and Q-Align-optimized model, suggesting that LossAgent successfully transfers non-differentiable
optimization objective into appropriate adjustments of loss weights.

Table 6: Quantitative comparisons between baseline model and Co-Instruct-optimized model. We use
Q-Align score to evaluate model performance.

Methods Dehaze Derain Denoise Avg.
SOTS Rain100L σ = 15 σ = 25 σ = 50

Baseline 4.03 3.94 3.95 3.94 3.76 3.92
Q-Align 3.99 3.95 3.97 3.96 3.82 3.94

Co-Instruct 4.05 3.95 3.95 3.94 3.82 3.94

Summary We have validated the flexibility and scalability of LossAgent in this part through
three evaluation settings: single optimization objective, double optimization objectives, and textual
optimization objectives. As observed, our LossAgent is efficient towards multiple image processing
tasks and various optimization objectives, which also bridges advanced IQA metrics with image
processing models. We provide more ablation studies about loss agent in Appendix A.2.

4.3 EVALUATION ON EFFECTIVENESS OF PROMPT DESIGN

As described in Section 3.4, we carefully devise prompts for the LLM to prevent hallucination and
generate reasonable loss weights. Our prompt design mainly focuses on three parts: i) System
prompt clarifies the roles and goals of LLM. Most importantly, it provides a brief introduction to
these IQA metrics about whether lower or higher scores indicate better image quality. ii) Historical
prompt accommodates previous optimization trajectories, furnishing rich context for the LLM to
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Table 7: Effectiveness of system prompt. “W/o” represents that we remove descriptions about the
relationship between scores and the qualities of images from system prompt. “W” represents system
prompt with relationship-aware descriptions. Evaluating on NIQE↓.

System Prompt Datasets Avg.
Set5 Set14 BSD100 Urban100 Manga109

w/o 5.12 4.24 4.02 4.17 4.06 4.32
w/ 4.82 3.91 3.86 3.96 3.88 4.08

Table 8: Effectiveness of historical prompt. Si represents the
current stage, while S0 represents the initial stage. Evaluating
on MANIQA↑.

Trajectories Datasets Avg.
Set5 Set14 BSD. Urban. Manga.

{Si−1, Si} 0.464 0.405 0.364 0.487 0.413 0.427
{S0, . . . , Si} 0.474 0.418 0.365 0.496 0.424 0.436

Table 9: Effectiveness of formatting
rules. The successful rate is calcu-
lated across the entire training.

Methods Successful Rate

W/o Example 21.37% (171/800)

LossAgent 99.87% (799/800)

infer reasonable loss weights. iii) Customized needs prompt gives rule-based constraints on LLM’s
reasoning process. Unless stated otherwise, the experiments in this section are conducted on classical
image super-resolution tasks.

Effectiveness of System Prompt In Table 7, we remove the prompt that describes the relationship
between scores and the qualities of images. Take NIQE (Mittal et al., 2012) as an example, where
a lower score indicates a better quality, LossAgent fails to improve the performance of the ISR
model on the NIQE metric. We attribute this to the LLM potentially interpreting a higher score as an
indicator of better quality. Consequently, our system prompt design helps mitigate hallucination in
the decision-making process of LossAgent.

Effectiveness of Historical Prompt Although LLM possesses strong reasoning and decision-
making capabilities, it is unable to generate rational loss weights effectively without sufficient
context. Therefore, we provide such context by collecting all historical optimization trajectories.
As demonstrated in Table 8, providing full historical information through prompt achieves the best
performance, while providing only two trajectories (i.e., loss weights and feedback at stage Si and
Si−1) leading to performance drops.

Effectiveness of Customized Needs Prompt As LLM generates textual outputs, it is necessary
to standardize its outputs by rule-based constraints, making the weights identifiable by programs.
We empirically find that given an example of the format effectively reduces hallucination in LLM’s
outputs. We validate this through the correct rate of output format, as shown in Table 9. Removing
this example leads to a significant drop in the successful rate of generating standardized output. In
contrast, our LossAgent successfully generates standardized output, with only one failure case out of
800 samples. This demonstrates the effectiveness of our customized needs prompt design.

5 CONCLUSION

In this paper, we propose the first loss agent to address any customized optimization objectives for
low-level image processing tasks. By introducing powerful LLM as the loss agent, our LossAgent
is capable of understanding various optimization objectives, trajectories, and stage feedback from
external expert models. To take full advantage of the reasoning abilities of LLM, we carefully design
the optimization-oriented prompt engineering for the loss agent by providing detailed instructions
along with customized needs prompts. Moreover, we include historical information in our prompt to
prevent hallucinations and incorrect reasoning caused by the LLM. Extensive experiments on three
representative low-level image processing tasks with various customized optimization objectives have
demonstrated the flexibility and scalability of our LossAgent.
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A APPENDIX

A.1 TRAINING DETAILS

As demonstrated in Section 3.2, we divide the whole training process of image processing models
into several stages to enable the dynamic adjustment of loss weights through LossAgent. We list the
details of training iterations for each stage, total number of training iterations, and initial weights
of loss functions in Table 1. For two image super-resolution tasks, we utilize the PSNR-oriented
pre-trained checkpoints of SwinIR (Liang et al., 2021) as initial checkpoints for both tasks, and then
apply popular GAN-based training strategies for image SR tasks using our LossAgent. For all-in-one
image restoration task, we adopt the pre-trained checkpoint of PromptIR (Potlapalli et al., 2023)
as the initial checkpoint. However, since GAN-based training is uncommon for this task, we use a
combination of L1 loss, perceptual loss, and LPIPS loss as loss functions to evaluate the performance
of our LossAgent. The rationale behind utilizing pre-trained checkpoints as initial checkpoints is
to mitigate unstable fluctuations in the early stages of training of image processing models. Such
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fluctuations may otherwise misguide the LossAgent, leading to inaccurate updates of loss weights. It
is noteworthy that, to avoid the affection from the learning rate of the optimizer to our experiments,
we uniformly set the learning rate to 1e-4 for all three tasks and keep it constant throughout the
training process. Following previous implementations, we utilize an Adam optimizer for each task.
We use 8 NVIDIA TESLA V100 GPUs for our experiments, with a total batchsize of 32 for image
SR tasks and a total batchsize of 16 for all-in-one restoration task.

A.2 MORE ABLATION STUDIES

In this section, we provide more ablation studies for LossAgent.

A.2.1 ITERATIONS FOR EACH STAGE

In this part, we conduct ablation studies about training iterations for each stage. As demonstrated in
Table 10, a moderate choice of 5000 training iterations for each stage achieves the best results. As if
iterations are small (i.e., 2500), when reaching the end of training, the list of historical loss weights
tends to become very long, thus making it difficult to perform reasoning. As if iterations are large
(i.e., 10000), the total update steps tend to be insufficient for a reasonable adjustment of loss weights
during training, thereby causing suboptimal results. Therefore, we select the optimal iteration steps
for the classical image SR task to be 5000. We apply the same principle to the other two tasks, as
listed in Table 1.

Table 10: Quantitative comparisons between different iterations for each stage. Results are reported
on classical image SR task using Q-Align score. The best results are bolded.

Iters. Datasets Avg.
Set5 Set14 BSD100 Urban100 Manga109

2500 3.06 3.47 3.36 4.52 3.65 3.61
5000 3.07 3.48 3.41 4.53 3.65 3.63
10000 3.02 3.45 3.35 4.49 3.65 3.59

A.2.2 TESTING IMAGE SET I

As a crucial part of generating feedback from external expert models, the choice of the testing image
set I is important. We observe that using the sampled Set14 Zeyde et al. (2010) as the testing
image set achieves a better CLIPIQA score compared to using the sampled DIV2K Agustsson &
Timofte (2017). We attribute this phenomenon to the relatively high resolution of the DIV2K images.
Since some advanced IQA metrics leverage a pre-trained vision encoder to resize input images, this
results in originally similar high-resolution images becoming even harder to distinguish after resizing.
Consequently, the IQA model may assign similar or even identical scores to these images, failing
to provide useful information to our LossAgent. This can cause the LLM to hallucinate and make
unreasonable inferences, leading to incorrect adjustment of loss weights. As a result, we choose
Set14 as the testing image set for the classical image SR task. We apply the same principle to the
other two tasks.

Table 11: Quantitative comparisons between different iterations for each stage. Results are reported
on classical image SR task using Q-Align score. The best results are bolded.

Image Set Datasets Avg.
Set5 Set14 BSD100 Urban100 Manga109

Set14 0.788 0.718 0.679 0.643 0.729 0.711
DIV2K 0.783 0.706 0.675 0.638 0.721 0.704

A.2.3 THE ILLUSTRATION OF LOSS WEIGHT CURVES

To provide a more intuitive understanding of how LossAgent updates the loss weights, we provide a
visualization of the loss weight curves on classical image super-resolution task in Figure 4.
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(a) NIQE (b) MANIQA (c) CLIPIQA

(d) Q-Align (e) Random

Figure 4: Illustration of loss weight curves on classical image super-resolution task across four
optimization objectives. Zoom in for better view.

A.3 CASE STUDY

In this section, we provide a case study on classical image super-resolution in Figure 5 to help readers
better understand the process of LossAgent. As demonstrated, LossAgent is capable of analyzing the
relationships between loss weights and score feedback from historical prompt (we mark such analysis
in green). Moreover, LossAgent updates new loss weights considering not only these relationships
but also the functionality of each loss function (we mark such thoughts in red). To get the updated loss
weights, we use a python program to parse the pattern “L1:Perceptual:GAN=0.7:0.3:0.05” into the
numeric array “[0.7, 0.3, 0.05]”. Therefore, the correctness of this pattern is important. As analysed
in Section 4.3, we use rule-based formatting constraints, which is helpful for LLaMA3 model.

A.4 BROADER IMPACT

As mentioned in the paper, we are the first to explore the potential of LLM-based agents in the
field of optimizing image processing models towards any optimization objectives. Apart from
some commonly used metrics such as PSNR, SSIM, etc., we discuss recent advanced image quality
assessment (IQA) metrics that align better with human perceptions. Our experiments reveal the
possibility of adopting these advanced metrics as optimization objectives for image processing tasks,
bridging the field of low-level image processing with IQA. As our LossAgent enjoys high flexibility
and scalability, it can evolve with the development of large language models and image processing
models, thereby paving the way for the next steps in these fields.
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Case Study – NIQE, 25000 iters., Response of one sampled 
image from Set14
System Prompt
You are a helpful assistant that help people develop loss weights of an SR model. You will receive 
some historical weights, and score feedback from experts. The SR model is trained with each 
historical weight for fixed steps of parameter updates sequentially. The historical weights 
demonstrated the loss weight changes from the beginning of training. The feedback includes the 
score changes of SR images from the beginning of training in detail. The score depicts the overall 
quality of images. The lower score stands for better quality. Your ultimate goal is to help the SR 
model achieve a lower score feedback.

Historical Prompt
Feedback: Initial loss weights of L1 loss, Perceptual loss and GAN loss is 1.0:0.1:0.01. The initial 
score of the image before training is 4.7087. The score of the image at this step is 2.9642.
Step 5000 weights is 0.79286:0.20714:0.0575. The score of the image at this step is 2.5495
Step 10000 weights is 0.79286:0.1875:0.055. The score of the image at this step is 2.7706
Step 15000 weights is 0.78214:0.18393:0.06286. The score of the image at this step is 2.8586
Step 20000 weights is 0.72857:0.21786:0.07036. The score of the image at this step is 2.705

Customized Needs Prompt
Based on your observation of all historical loss weights, the scores and your knowledge about 
these losses, please develop a new loss weights to train the SR model.
You should follow these rules:
1. The output should in format 'Weights: L1:Perceptual:GAN=?:?:? (for example: 
L1:Perceptual:GAN=1.0:0.1:0.01)' 'Thoughts: (The reason you give this weights)'.
2. Your ultimate goal is to help SR model achieve a lower score feedback (which indicates a 
better image quality).
3. You can randomly increase or decrease the weight of each loss by a small amount if historical 
weights are not enough for making a decision.

LLM’s Feedback
Based on the historical data and the goal of improving image quality (lower score), here's a 
proposed set of updated loss weights for your SR model:
Weights: L1:Perceptual:GAN=0.7:0.3:0.05
Thoughts: Decreasing the L1 loss weight and slightly increasing the Perceptual loss weight seems 
beneficial based on the observed score changes. Initially, the model started with a high L1 loss 
weight, which has been gradually reduced over training steps. This reduction correlated with 
improvements in image quality scores. The slight increase in Perceptual loss weight helps in 
preserving more perceptual details, further enhancing image quality. GAN loss weight is kept 
relatively low to prevent overfitting to the discriminator and maintain visual fidelity.
This adjustment aims to leverage the learning from historical weight changes, emphasizing a 
balance that has shown incremental improvements in image quality scores over training steps. 
Adjusting weights further could be iterative, guided by continued monitoring of image quality 
feedback during training.

Figure 5: A case study of LossAgent on classical image super-resolution task at 25000 iterations.
The optimization objective is NIQE.
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