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ABSTRACT

Recent studies operationalize self-improvement through coding agents that edit
their own codebases, grow a tree of self-modifications through expansion strate-
gies that favor higher software engineering benchmark performance, consider-
ing that this implies more promising subsequent self-modifications. However,
we identify a mismatch between the agent’s self-improvement potential (metapro-
ductivity) and its coding benchmark performance, namely the Metaproductivity-
Performance Mismatch. Inspired by Huxley’s concept of clade, we propose a
metric (CMP) that aggregates the benchmark performances of the descendants of
an agent as an indicator of its potential for self-improvement. We show that the
Gödel Machine, the optimal self-improving machine, is achieved with access to
true CMP. We introduce the Huxley-Gödel Machine (HGM), which, by estimat-
ing CMP and using it as guidance, searches the tree of self-modifications. On
SWE-bench Verified and Polyglot, HGM outperforms prior self-improving cod-
ing agent search methods while using less wall-clock time. Moreover, the agent
optimized by HGM on SWE-bench Verified outperforms SWE-agent, a leading
human-engineered open source coding agent on SWE-bench Lite, where SWE-
agent ranks the best on the official leaderboard, when both use the GPT-5-mini
backbone, demonstrating that HGM self-improvement indeed enhances genuine
coding capability.
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Figure 1: (Left) Weak correlation between the guidance metrics of other methods (based on bench-
mark performance) and long-term self improvement; HGM mitigates this mismatch by leveraging
clade-level metaproductivity. (Right) On SWE-bench Verified, HGM achieves higher accuracy with
2.38 time less allocated CPU-hours. Together, the results indicate the practical advantage of approx-
imating Gödel Machines with long-term self-improvement estimates. SICA encountered repeated
errors after consuming 45% of its budget, preventing any further self-modifications.
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1 INTRODUCTION

Self-improvement, the ability of agents to iteratively revise their own code, underlies the growth of
complex systems, from biological evolution to human culture and scientific progress (Good, 1966;
Schmidhuber, 1987). Bringing this principle into artificial intelligence, self-improving agents (Hut-
ter, 2005; Schmidhuber, 2003; 2006; Hall, 2007) mark a pivotal step toward open-ended AI. Un-
like static systems constrained by fixed architectures, such agents can recursively modify their own
mechanisms and strategies, reusing newly gained abilities to fuel subsequent improvements. This
recursive capacity fosters continual adaptation, reduces reliance on human intervention, and enables
problem-solving capabilities that cannot be fully anticipated at design time.

A central challenge, however, is how to decide which self-modifications to accept. The Gödel ma-
chine (Schmidhuber, 2003) offers a theoretically optimal answer: accept only modifications that
provably increase the expected long-term utility. While this provides a sound blueprint, its reliance
on formal proofs makes it impractical. Current implementations instead rely on coding agents that
edit their own codebases and favor self-modifications from agents with higher benchmark perfor-
mance (Robeyns et al., 2025; Zhang et al., 2025a). Yet, as illustrated in Figure 1 (left), this heuristic
can be misleading: a high-scoring agent may produce unproductive descendants, while a lower-
scoring one seeds lineages that achieve greater long-term gains. We term this phenomenon the
Metaproductivity–Performance Mismatch.

To address this mismatch, we introduce clade-level metaproductivity (CMP), inspired by Huxley’s
notion of clades as lineages of common ancestry (Huxley, 1957). CMP quantifies the productivity
of a lineage by aggregating the success of an agent’s descendants rather than relying only on its
immediate benchmark score. Furthermore, we show in Theorem 1 that access to the true CMP is
sufficient to reproduce the Gödel Machine’s acceptance rule. This insight motivates our proposed
algorithm, the Huxley–Gödel Machine (HGM), which approximates Gödel-style self-improvement
by estimating CMP from clade-aggregated descendant outcomes, and selecting nodes to expand
via Thompson sampling. Furthermore, due to a more reliable estimate, we adaptively decouple
expansion from evaluation, leading to asynchronous execution for efficient parallelism.

Empirically, HGM better aligns with long-run agent productivity than benchmark-driven base-
lines, as shown in Figure 1 (left). On SWE-bench Verified (Jimenez et al., 2024; Chowdhury
et al., 2024) and Polyglot (Gauthier, 2024), HGM consistently outperforms Darwin Gödel Ma-
chine (DGM) (Zhang et al., 2025a) and Self-Improving Coding Agent (SICA) (Robeyns et al.,
2025). Remarkably, one agent found by HGM surpasses SWE-agent (Yang et al., 2024), the highest-
scored open-source human-engineered coding agent with officially checked results, on SWE-bench
Lite (Jimenez et al., 2024), when both use the GPT-5-mini backbone under matched budgets.

To summarize, our contributions are as follows:

• We analytically define the Clade-Metaproductivity (CMP) function as a measure of agents’ self-
improving ability and show that access to a CMP oracle suffices to reproduce the Gödel Machine’s
acceptance mechanism (Theorem 1).

• We empirically observe that immediate benchmark performance is an unreliable predictor of CMP
and show that our CMP estimator better predicts it.

• Using our CMP estimator, we propose the Huxley–Gödel Machine (HGM), which operational-
izes Gödel’s approximately from partial evaluations and guides the expansion via Thompson sam-
pling with adaptive scheduling.

• We empirically validate HGM on SWE-bench Verified and Polyglot, demonstrating higher-quality
optimized agents compared to previous self-improving methods, even though they were discov-
ered within substantially smaller allocated CPU-hours. Furthermore, HGM achieves human-level
coding agent design on SWE-bench Lite by optimizing on SWE-bench Verified.

2 SELF-IMPROVING AS TREE-SEARCH

Both the Darwin Gödel Machine (DGM) and the Self-Improving Coding Agent (SICA) belong to the
class of self-referential AI (Schmidhuber, 1987; 2006; 2007), wherein a single agent modifies itself
to generate new agents, each empirically validated on downstream tasks. In this paper, we formalize
this self-improvement process as an iterative tree-search problem, where the goal is to discover an

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

agent that maximizes performance across multiple downstream tasks. Concretely, starting from an
initial agent as the root, a tree-search policy incrementally grows the tree of self-modified agents.
At each iteration, the policy either selects an agent (a node in the tree) to expand by producing a
child agent (a self-modified version of the selected agent) or selects an agent to undergo additional
evaluation on downstream tasks.

Formally, let Tt denote the archive of our agents at iteration t. In this paper, the archive is always
represented as a tree of evolved agents, and we use the terms archives and trees interchangeably.
T0 = {a0} is initialized as a single-node tree with a fixed initial agent. At iteration t, the policy
selects actions at+1 ∼ π(· | Tt), where π is a policy over actions At = Mt ∪ Vt, where Mt =
{ma : a ∈ Tt} are agent modifications and Vt = {va : a ∈ Tt} are evaluations. Here, ma

instructs agent a to produce a self-modification that is added as a child to the tree, while va selects
an agent from the tree for an additional evaluation on one more downstream task. After exhausting
the computational budget, the policy selects a final agent (afinal = argmaxa∈T Score(a) ∈ TT
where T is the termination iteration and Score is part of the policy) from the final tree as the
returned agent. The objective is to optimize J(π) = E[U(afinal)], where U is a utility function that
measures downstream tasks performance. In this work, we define U as the average of binary success
indicators across all downstream tasks. π denotes an algorithm, with DGM, SICA, and our proposed
HGM representing concrete instances.

Compound Policy. At each step of self-improvement, the system faces a compound decision:
whether to expand the tree by generating new agents or to evaluate existing ones. This decision nat-
urally decomposes into three sub-policies: (i) a selection policy that chooses between expansion and
evaluation, (ii) an expansion policy that determines which parent to modify, and (iii) an evaluation
policy that selects which agent to test. Prior approaches, such as SICA and DGM, conflate these
choices. They always expand a parent, create a child, and immediately evaluate that child on mul-
tiple tasks. This fixed sequence restricts flexibility: once a new agent is generated, it monopolizes
evaluations, even if older agents appear more promising. For instance, an agent that fails nine tasks
in a row continues to consume evaluations, while an older agent with partial successes is ignored.

HGM breaks this rigidity by decoupling expansion from evaluation. At each step, it adaptively
decides whether to generate a new agent or to further probe an existing one, and evaluations are
always at the granularity of a single agent–task pair. This finer control enables early stopping on
unpromising agents. Table 4 summarizes how SICA, DGM, and HGM instantiate these sub-policies.

3 HUXLEY-GÖDEL MACHINE

In this section, we introduce the Huxley–Gödel Machine (HGM), a practical search policy for self-
improving coding agents that elevates lineage-level evidence over short-term node performance.
At the core of HGM lies the notion of clade-level metaproductivity (CMP), which is sufficient to
reproduce the Gödel Machine when its true value is accessible(Theorem. 1). HGM, by estimating
CMP from partially observed evaluations, approximates Gödel Machine, guiding expansion through
Thompson sampling and adaptively balancing modification and evaluation. Our formulation natu-
rally supports asynchronous execution, enabling efficient parallel utilization of compute resources.

3.1 METAPRODUCTIVITY AND CLADE-METAPRODUCTIVITY

Given a policy π, to quantify the quality of how an agent’s self-modification influences the perfor-
mance of the system, we define the notion of global metaproductivity (GMP):

GMPπ(T , a) = ETB∼pπ(·|T ,a)

[
U(argmaxa′∈TB

Scoreπ(a
′))

]
,

where T is a tree of agents and a ∈ T . Scoreπ is the function that scores the agents for the final
selection. The policy π unrolls the trajectory until the end of the episode with policy π and produces
a final archive of agents TB . The distribution of the trajectory is given by pπ .

GMP directly corresponds to the Q-value function in reinforcement learning, with state phrased as
the archive of agents, and action being the selected agent to expand. The GMP value of a node mea-
sures how good (on average) the final agent obtained from the search process will perform. GMP
measures the long-term potential of self-improvements, which also includes modifications that im-
prove self-improvement itself and so on. An algorithm might, at the beginning, focus on improving
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the ability to self-improve while neglecting direct benchmark abilities, only to later focus on them.
This is a principal meta-learning behavior that is captured in the original Gödel Machine (Schmid-
huber, 2003). The objective of designing a policy for self-improvement (Section 2) is equivalent to
optimizing GMP({a0}, a0).
While GMP captures the full long-term potential of a policy, its scope is overly broad for practical
conceptualization. Notably, the Gödel Machine considers only the outcomes of the current agent
and its descendants when deciding whether to accept a modification. Motivated by this observation,
we define a localized variant of GMP that focuses on the subtree rooted at a given agent, i.e., its
clade. We refer to this quantity as Clade-Metaproductivity (CMP):

CMPπ(T , a) = ETB∼pπ(·|T ,a)

[
U(argmaxa′∈C(TB,a)Score(a

′))
]

= ETB∼pπ(·|T ,a)

[
maxa′∈C(TB,a)U(a′)

]
(if Sel = U),

where C(TB, a) is the clade (i.e., the subtree with a as the root) of the node a in the Tree TB and
Score is the final agent selection metric.

CMP contains the non-greedy information about the future evolution of self-improving agents,
therefore guiding good strategies for self-improvement aimed also at the improvement of the self-
improvement itself. Furthermore, we show the crucial relation of CMP to the Gödel Machine.

Theorem 1. Access to a CMP oracle is sufficient to implement a Gödel Machine.

The proof is available in the App. A. This observation motivates us to introduce the estimate of
CMP and use this as guidance in our algorithm. An algorithm with a perfect estimate of CMP
would be able to produce the Gödel Machine. HGM by estimating CMP approximates the original
Gödel Machine. We describe our algorithm fully in the next section.

3.2 ALGORITHM

Existing methods use benchmark performance on coding tasks as a guidance metric, treating task
success as an indicator of self-improvement potential. This assumption is overly greedy: it evalu-
ates only the immediate utility of a modification while ignoring its downstream consequences for
future self-modifications. We refer to this gap as the Metaproductivity-Performance Mismatch: the
divergence between short-term task performance and the long-term capacity for self-improvement
as measured by CMP. Empirical evidence shows that this mismatch happens in practice (see Sec-
tion 4.1.) We aim to model long-term, global dependencies by deriving our estimator of CMP.
Specifically, we define HGM by stating its three subpolicies.

Expansion Policy. The core of the HGM algorithm is its selection criterion for expansion. HGM
aims to estimate Clade-Metaproductivity with the motivation that the true CMP as the criterion
would produce the Gödel-Machine due to Theorem 1. In this sense, HGM approximates Gödel-
Machine, the optimal self-improving machine. This is in contrast to the currently used greedy
selection criteria based on performance metrics, which ignore the potential of the model to improve
self-improving abilities.

We estimate CMP with the weighted average of agents’ empirical performance in the clade. (See
below for how our evaluation policy promotes more accurate estimation of CMP.) Formally, let us
assume a fixed archive of agents Tt, nsuccess(a) be the number of passed tests of a, and nfailure(a) be
the number of failed tests of a. Then

nC
success(a) =

∑
a′∈C(a)

nsuccess(a
′) and nC

failure(a) =
∑

a′∈C(a)

nfailure(a
′).

Where C(a) is the clade of a in Tt. We define our Clade-Metaproductivity estimator as

ĈMP(a) =
nC

success(a)

nC
success(a) + nC

failure(a)
,
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Evaluating productivity at the level of entire clades rather than individual agents offers several key
advantages. It aligns better with the goal of self-improvement, as a modest ancestor can still be
highly valuable if its descendants consistently advance, while stagnant lineages are deprioritized. At
the same time, aggregating evidence across a clade yields more statistically robust estimates than
single-node outcomes by using information from more samples. This is particularly important when
evaluations are costly and benchmarks are only partially observed.

ĈMP(a) can be viewed as a weighted sum over empirical means of agents in C(a), with the weight
for an agent being the number of task evaluations it has. Furthermore, we design our evaluation
selection in such a way that it selects highly performing agents, which creates a selection of a soft
maximum in the clade. We discuss how ĈMP estimates CMP in detail in App. D.

After calculating the CMP estimates, the HGM probabilistically approximates the selection of the
highest scoring agent with Thompson Sampling - a standard method in the bandit literature for
smoothly maximizing the decision criterion (Agrawal & Goyal, 2012; Chapelle & Li, 2011; Lat-
timore et al., 2020). We will refer to a ∼ TS({ns, nf |n ∈ Tt}) as the agent sampled from the
Thompson-Sampling process with parameters ns (number of successes) and nf (number of fail-
ures). Given the fact that the search problem has a known budget, Our algorithm introduces an
exploration-exploitation scheduler τ which is monotonically increasing with respect to the current
time t, encouraging exploration in the early stage and polarization of the sampling distribution when
approaching the end. Formally, we select the agent to expand a∗ as

a∗ ∼ TS({τ(1 + nC
success(a)), τ(1 + nC

failure(a))|a ∈ Tt}).

Evaluation Policy As stated in the expansion policy, we design our evaluation policy to priori-
tize agents with a higher evaluation score to induce the selection of the maximum over the clade.
Formally, the agent to evaluate a∗ is sampled from the Thompson Sampling process with

a∗ ∼ TS(τ(1 + nsuccess(a)), τ(1 + nfailure(a)).

Selection Policy. Finally, our agent has to choose between expansion and evaluation. At each
iteration, the algorithm first selects whether to evaluate or expand. Previous methods have evaluated
newly created agents directly after their creation. Our novel estimation of agent self-improving
quality has an additional benefit of collecting more samples faster (because it has samples from the
entire clade). This enables a more fine-grained control over when to evaluate and when to create a
new agent for better efficacy. Therefore, we decouple evaluation from expansion and treat them as
separate steps.

To decide how and when to evaluate or expand agents, we draw inspiration from the infinite-armed
bandit literature. Infinite-armed bandit problems capture the tension between repeatedly sampling
known options to reduce uncertainty about promising arms and exploring new options that have the
potential to perform better. This perspective provides a natural lens for our setting, where evaluations
correspond to sampling existing arms and expansions correspond to introducing new ones. In this
work, we follow the strategy of UCB-Air (Wang et al., 2008), which adds arms when the number
of evaluations Nα ≥ m for some α ∈ [0, 1], where m is the number of existing arms. In our case,
arms correspond to the agents; hence, we decide to expand at time t if Nα

t ≥ |Tt|.

Final Agent Selection Strategy HGM iteratively executes the structured policy defined by our
selection policy, expansion policy, and evaluation policy. When the computational budget exceeds,
it returns the agent with the highest ϵ percentile of the utility posterior in the final tree for some
hyperparameter ϵ, namely the best-belief agent. Formally, a best-belief agent is defined as

argmaxa∈TB
Iϵ(1 + nsuccess(a), 1 + nfailure(a)),

where I is the regularized incomplete beta function. See Algorithm1 in Appendix B for the detailed
procedure of HGM.

Asynchronous Implementation As an additional benefit of decoupling the policy, we introduce
asynchronous execution of evaluation and expansion. Since the execution of coding agents generally
requires querying large language models multiple times, the computation time can be lengthy. To
boost our algorithm, we propose the asynchronous HGM algorithm (HGM Async), which utilizes
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Table 1: Clade-Metaproductivity: Empirical vs. Estimation Correlation. We report the Pearson
correlations between the empirical CMPs and the estimates from DGM, SICA, and HGM on SWE-
Verified-60 and Polyglot. For the weighted correlations, each prediction is weighted by its accessed
number of evaluations.

Estimates SWE-Verified-60 Polyglot

Weighted Un-weighted Weighted Un-weighted

SICA 0.444 0.444 0.274 0.274
DGM 0.285 0.406 0.383 0.357
HGM (Ours) 0.778 0.512 0.626 0.873

all possible computational power until the computational budget is exceeded. HGM Async synony-
mously executes one iteration process on each available CPU. Once one iteration finishes, a new
iteration immediately starts. It uses the most recent data with one exception and updates the data
once it finishes. The exception is that one needs to take all running expansions and explorations
into consideration when executing the selection strategy. See experimental results 2 for run time
comparison with DGM and SICA.

4 EXPERIMENTAL RESULTS

We evaluate HGM on challenging software engineering tasks to assess three core aspects: 1) the fi-
delity of HGM’s CMP estimation (Sec. 4.1), 2) its capability for self-improvement with HGM com-
pared with DGM and SICA (Sec. 4.2), and 3) the effectiveness in automatic agent design through
evolutionary processes, benchmarked against a leading human design up to date1 (Sec. 4.3). We
conducted our experiments on the SWE-bench Verified (SWE-Verified) and SWE-bench Lite (SWE-
Lite) variants, and the Polyglot problems, both consisting of coding challenges and are widely used
for coding agent evaluation (Xia et al., 2025; Zhang et al., 2024; 2025b). For budget considerations,
in addition to the full datasets, we use 60-task subsets (SWE-Verified-60), derived from the first two
stages of DGM’s progressive evaluation. In all experiments, we employ HGM with an exploration-
exploitation scheduler B

b , where b is the remaining budget, ϵ = 1, and α = 0.6. All experiments
involving HGM use the HGM-Async algorithm. We apply an identical initial agent when compared
to DGM and SICA, which is adopted from the official implementation of DGM. See Appendix C.1
for a detailed description of the initial agents used in different experiments.

4.1 METAPRODUCTIVITY-PERFORMANCE MISMATCH

The experiments in this section are designed to serve two purposes: (i) to provide evidence of the
Metaproductivity-Performance Misalignment (MPM) issue; and (ii) to assess whether the ĈMP
of HGM is a more reliable CMP estimator than the utility measures adopted by DGM and SICA.
To reveal the misalignment inherent in such reliance, we compute the correlation between their
predictions and empirical CMP. To obtain empirical CMPs, we analyze the expanded search tree
after each method has completed its run. For every node in the tree, we define its empirical CMP
as the maximum empirical mean of the task performance achieved within its clade with the root of
this clade excluded. This construction ensures that empirical CMP captures the self-improvement
ability of a node. We exclude the root of a clade to avoid circular use of the target in the estimators.
For HGM, the ĈMP is defined as a function over the clade of a node; a critical adjustment is required
to avoid target leakage. Specifically, we exclude the evaluations that are most directly related to the
target: the root of the clade (an ancestor of the target) and the subtree rooted at a direct child of
the evaluated node that contains the empirical maximum, thereby ensuring a fair comparison (see
Appendix D for detailed computation). We report both the correlation coefficient weighted by the
number of evaluations used in prediction, as well as the unweighted correlation. We conducted our
experiments on the SWE-Veified-60 and Polyglot datasets.

1The leading SWE-agents on https://www.swebench.com (Lite) as of 22 September 2025.
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Table 2: Self-Improving Capability Comparison. We report the task performance (in accuracy)
of each method’s best-belief agent and the allocated CPU-hours time required for 800 evaluations.
Super-scripted accuracies with “+” indicate performance gains over their respective initial agents.

Best-belief Agent of SWE-Verified-60 Polyglot

Acc. (%)↑ Time (hours)↓ Acc. (%)↑ Time (hours)↓

SICA 50.0+10 infinite loop 25.4+5.1 572
DGM 53.3+13.3 1231 27.1+6.8 2385
HGM (Ours) 56.7+16.7 517 30.5+10.2 347

Results &. Discussion Table 1 summarizes the correlations between the three estimators and the
empirical CMPs (the targets). We first observe that the SICA and DGM estimators achieve positive
Pearson correlation coefficients: 0.444 and 0.285 on SWE-Verified-60, and 0.274 and 0.383 on
Polyglot, respectively, suggesting weak alignments, i.e., MPM. In comparison, HGM’s estimator,
ĈMP, achieves substantially stronger weighted correlations of 0.778 and 0.626 on SWE-Verified-
60 and Polyglot, respectively, as well as 0.512 and 0.8783 unweighted correlation, surpassing SICA
and DGM by wide margins. These results provide strong indications that HGM, equipped with
ĈMP, offers a more reliable estimate of metaproductivity and effectively mitigates the MPM issues
inherent to SICA and DGM.

4.2 EVALUATING HGM SELF-IMPROVING CAPABILITY

To validate our hypothesis that our CMP estimator better predicts future self-improvement and
hence leads to more effective self-modifications, we evaluate HGM against two state-of-the-art self-
improving coding agent methods: DGM and SICA. We conduct controlled experiments under the
same setup as DGM, with a budget-friendly modification applied consistently to both HGM and all
baselines to ensure fairness, i.e., we adopt more cost-efficient backbone LLMs (GPT-5 for expansion
and GPT-5-mini for evaluation for SWE-Verified; Qwen3-Coder-480B-A35B-Instruct for expansion
and Qwen3-Coder-30B-A3B-Instruct for evaluation for Polyglot). For all methods, we start with
the same initial ancestor, which achieves 40% and 20.3% on the SWE-Verified-60 and Polyglot,
respectively. We compare the task performance of their best-belief final agents after a maximum
allowance of 800 benchmark task evaluations, selected in DGM and SICA using empirical means.
In addition, our asynchronous parallelization of expansion and evaluation should enable the self-
improvement to consume fewer allocated CPU-hours than DGM and SICA (see Sec. 3.2). To verify
this, we also report the allocated CPU-hours required for 800 evaluations.

Results &. Discussion We summarize the comparison results in Table 2. Across both SWE-
Verified-60 and Polyglot, all three methods successfully perform agent discovery by optimizing the
initial agent through self-improvement. However, HGM’s best-belief agent demonstrates not only
the highest task performance—56.7% on SWE-Verified-60 and 30.5% on Polyglot—but also the best
efficiency, requiring the fewest allocated CPU-hours for 800 evaluations: 6.86× faster than DGM
and 1.65× faster than SICA on Polyglot, and 2.38× faster than DGM on SWE-Verified-60. Notably,
on SWE-Verified-60, SICA repeatedly encounters “query length out-of-LLM-context-window” dur-
ing self-improvement processes after 360 evaluations. Despite this, the Polyglot results validate our
hypothesis on HGM’s runtime advantage over the baselines. In conclusion, HGM, equipped with
a better utility estimator and asynchronous expansion–evaluation iterations, establishes itself as a
more effective self-improving mechanism compared to DGM and SICA.

4.3 HGM VS. HUMANS: ON CODING AGENTS DESIGN

To gain a better understanding of its potential, we extend our evaluation of HGM by benchmarking it
against the best human performance in coding agent design on SWE-Lite. We consider two settings:
1) optimization on full SWE-Verified and 2) generalization to SWE-Lite.

4.3.1 OPTIMIZATION ON FULL SWE-BENCH VERIFIED

In this experiment, rather than using the SWE-Verified-60, we scale HGM evaluation to the full
SWE-Bench Verified benchmark (500 coding challenges) with an increased number of HGM itera-
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Table 3: Generalization on SWE-Lite: HGM’s Best-belief SWE-Verified Agent. We report the
accuracy of HGM’s best-belief SWE-Verified agent on SWE-Lite under two settings: filtered (com-
pletely unseen) and standard (the leaderboard setting used for evaluating human-designed agents).

Coding Agents SWE-Lite Filtered (%) SWE-Lite Standard (%)
HGM Initial Ancestor 34.8 44.0
SWE-agent+GPT-5-mini 39.6 47.6
HGM’s Best-belief SWE-Verified Agent 40.1 49.0

tions (8000 evaluations). Under this setup, the initial GPT-5-mini agent achieves 53.2% accuracy.
Notably, this stronger starting point underscores the difficulty of further improvement: as task com-
plexity grows and the search space expands, naive strategies tend to plateau.

Results &. Discussion After 8000 evaluations, HGM discovers an optimized agent that solves
61.4% of tasks, surpassing the best human-designed agent built on GPT-5-mini on the SWE-Verified
leaderboard. This establishes our discovered agent as the top-scoring GPT-5-mini–based system,
and positions it among the top-10 agents over all checked submissions, even when compared to
systems built on stronger backbone models that can cost 5× more (e.g., Claude-3.7). While higher
scores on the leaderboard do not necessarily indicate superior general coding ability—since both
human- and machine-designed agents may overfit to the benchmark—these results demonstrate a
promising potential of HGM for competing with established human-designed baselines under iden-
tical model constraints.

4.3.2 GENERALIZATION TO SWE-BENCH LITE

To validate that HGM’s self-evolution produces agents with stronger general coding ability—rather
than merely overfitting to SWE-Verified—we evaluate the top agent discovered on SWE-Verified
against unseen tasks. Specifically, we compare this agent with its initial ancestor (which achieved
53.2% on SWE-Verified) using SWE-Lite, a benchmark of 300 coding tasks, 93 of which overlap
with SWE-Verified. For rigor and comparability, we report two settings: (i) a filtered setting where
the 93 overlapping tasks are excluded, leaving only completely unseen tasks, and (ii) the full 300-
task benchmark, identical to the standard evaluation used for human designs on the leaderboard. As
of the time of writing, no checked submission using GPT-5-mini appears on the SWE-Lite leader-
board. To control for backbone differences and isolate agent design, we adapt the leading system
(with checked submissions) (SWE-agent + Claude 4 Sonnet) by replacing its backbone with GPT-
5-mini, yielding SWE-agent + GPT-5-mini, as an additional baseline for comparison.

Results &. Discussion We show the generalization results of HGM’s best-belief SWE-Verified
agent on SWE-Lite benchmark in Table 3. The best-belief HGM agent found on SWE-Verified
achieves 40.1% under the filtered (completely unseen) setting and 49.0% under the standard set-
ting. Compared to its initial ancestor (34.8% and 44.0%, respectively), these gains substantiate the
effectiveness of HGM’s self-evolution in improving general coding ability—rather than overfitting
to the optimization set. Notably, the superior performance of our HGM agent achieved on the stan-
dard SWE-Lite places it firmly in the second place on the SWE-Lite leaderboard among all checked
submissions. Moreover, based on our local execution result of SWE-agent using the SWE-agent
+ Claude 4 Sonnet submission version with the same configuration, the agent optimized by HGM
outperforms SWE-agent + GPT-5-mini, which achieves 39.6% (vs. 40.1% for us) on the filtered
and 47.6% (vs. 49.0% for us) on the standard. This demonstrates the edge arises not from the
GPT-5-mini backbone but from the genuine design improvements introduced by HGM evolution.

5 RELATED WORKS
Early imagination and formal ideals of self-improvement span learning programs and self-modifying
systems (Friedberg, 1958; Samuel, 1959), with Good (1966) arguing that recursive self-enhancement
could accelerate capability; early evolutionary formulations likewise proposed self-referential learn-
ing via variation and selection over “offspring” programs (Schmidhuber, 1987). The Gödel Machine
formalizes a fully self-referential agent that rewrites its own code when it can prove higher expected
utility (Schmidhuber, 2003; 2006); AIXI (Hutter, 2005) defines an incomputable Bayesian RL agent
that is Pareto-optimal under a Solomonoff prior; and HSEARCH (Hutter, 2002) proposes proof-
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based universal search with compute allocated to candidates having provable bounds. These ideals
motivate the pragmatic, execution-grounded view we adopt, where agents alter their own code and
validate changes empirically.

Before LLMs, pragmatic self-improvement progressed via interaction and agentic RL: The Success-
Story Algorithm forces Self-Modifying Policies to come up with better and better self-modification
algorithms that continually improve reward intake per time (Schmidhuber & Zhao, 1996; Schmidhu-
ber et al., 1997); self-referential learning dynamics reduced outer-loop design via Fitness-Monotonic
Execution favoring execution of models with higher ancestors’ performance (Kirsch & Schmidhu-
ber, 2022a;b); and meta-discovered update rules optimized optimizers and black-box search (Metz
et al., 2021; Lange et al., 2023). Our approach follows this empirical tradition but specializes the
exploration loop to an agent’s own implementation.

The success of contemporary large language models (LLMs) opens the opportunity to automate the
process of software engineering. The concept of coding agents (Yang et al., 2024; Qian et al., 2023;
Wang et al., 2024; Xia et al., 2024; Hong et al., 2024) introduces an interface enabling LLMs to take
control of conventional computers, offering a practical foundation for building self-improving cod-
ing agents. Two pioneer attempts of self-referential self-improving coding systems in the era of large
language models initiate the route of instructing LLMs to improve the way that they are queried (Ze-
likman et al., 2024; Yin et al., 2024). Go further by implementing self-modifying machines as full
software-engineering projects: they self-reference and self-modify by editing their own reposito-
ries and validating changes on execution-grounded software-engineering tasks (Zhang et al., 2025a;
Robeyns et al., 2025). DGM and SICA, explicitly or implicitly, equate higher software-benchmark
scores with greater self-improvement capacity. By contrast, HGM introduces a qualitative measure
of self-improvement consistent with the theoretical Gödel Machine and directs self-modifications
using estimates of this measure.

The identified tree-search problem spans fixed-budget best-arm identification (BAI), Monte Carlo
Tree Search, and infinite-armed bandits, and introduces a distinct decision: explicit expansion
actions that create new candidate leaves alongside ordinary evaluations. Fixed-budget BAI and
Bayesian value-of-information methods assume a finite known set of arms and offer guarantees for
static candidates, thus not modeling the discovery of unknown arms (Audibert & Bubeck, 2010;
Karnin et al., 2013; Frazier et al., 2008). Monte-Carlo Tree Search and its UCT variants (Coulom,
2006; Kocsis & Szepesvári, 2006) alternate selection, expansion, and simulation, while their backup
and selection rules typically target cumulative reward rather than fixed-budget final-choice objec-
tives under noisy, low-signal feedback, with limited guarantees for pure exploration of leaf quality
(Kaufmann & Koolen, 2017). Infinite-armed bandit formulations capture explore-discover tradeoff
but typically model discoveries as i.i.d. draws from a reservoir, missing tree structure and hierarchi-
cal dependencies (Wang et al., 2008; Bubeck et al., 2011; Carpentier & Valko, 2015).

6 CONCLUSION

Prior works treat software-benchmark performance as a proxy for a coding agent’s self-improvement
ability. We identify a significant gap between benchmark scores and true self-improvement, which
we term the phenomenon of metaproductivity–performance mismatch (MPM). To address it, we de-
fine the clade-metaproductivity (CMP) function as an analytic measure of an agent’s self-improving
ability, and prove that any policy that follows its CMP is a theoretically optimal Gödel Machine.
Building on this, we introduce the Huxley–Gödel Machine (HGM), which (i) estimates CMP by
aggregating clade-level information, (ii) optimizes downstream task performance, and (iii) approx-
imates a Gödel Machine. This clade-based view cleanly decouples expansion from evaluation, en-
abling adaptive allocation that uses limited computational budgets more efficiently.

We validate empirically that benchmark performance is a weak approximation of CMP, and our es-
timator mitigates this mismatch. We demonstrated that HGM outperforms SICA and DGM on both
SWE-bench Verified and Polyglot. Its gains transfer beyond the optimization set: on SWE-bench
Lite, HGM surpasses a leading human-engineered coding agent (ranked number one on the official
leaderboard over checked submissions) when both use GPT-5-mini. By directly optimizing metapro-
ductivity, HGM provides a principled path toward self-modifying systems that improve reliably over
time, advancing the goal of open-ended intelligence.
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REPRODUCIBILITY STATEMENT

The codebase to produce our experimental results is based on the officially released GitHub Repos-
itory of Darwin Gödel Machine Zhang et al. (2025a). Adjustments have been made as detailed in
Appendix C.1. We provide our source code to reproduce the results as reported in Section 4 in the
supplementary material.

LLM USAGE

Large language models (LLMs) are used to help discover relevant works in the literature. In partic-
ular, they have been used for suggesting papers in upper-bound based tree search algorithms. LLMs
are also used to polish the writing and fix grammatical errors.

REFERENCES

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
lem, 2012. URL https://arxiv.org/abs/1111.1797.
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A GÖDEL MACHINE WITH CMP ORACLE

The proof of Gödel Machine being simulated with a CMP oracle is a simple observation that in the
Gödel Machine setup CMP is an actual Qπ-Value function, as the agents above the clades are not
reachable according to the design of Gödel Machines. In order to state that, we need to formalize
precisely what we mean by each term.

The problem setup in the main paper is slightly different from the setup in the original Gödel Ma-
chine. Therefore, we start by introducing the Gödel Machine in the notation that aligns well with the
notation used in the main text. We show the relation between the two setups. Then we will define
what specifically we mean by simulating the Gödel Machine in our setup.

Proof. We define Gödel Machine Proof search as an optimal policy on the POMDP (let’s call it
Gödel POMDP) defined as:

We assume full access to the utility function of each agent; hence, we skip the evaluation actions
from the action space.

State space Gödel POMDP uses an Extended state space, which, apart from the tree of agents T ,
consists of two special agents aparent, achild from the tree T . For a full formal description, let’s also
add a budget descriptor determining the number of transitions left before the budget b is exceeded.

Observation space Observation is limited to the agents (aparent, achild) and the remaining budget b.

Action space For most of the states, the action space consists of two actions - accept and reject. As
in the original Gödel Machine, the action selects the new parent in the next iteration. Intuitively,
accept selects achild as the new parent, and reject lets the parent remain unchanged. For simplicity
of the notation, we will refer to the newly selected agent as if it were the actions, so for policy π,
anew

parent = π((aparent, achild)) corresponds to the action reject.

Each policy also consists of a Score function that scores all possible elements in the observation.
Formally, Score : Obs → T → R is a function from observation into a function of agents that is
applied when the budget b is equal to 0, from which the agent with the highest score is selected as
the final agent.

The policy selects the highest scoring agent scored by the Score(o) function. Furthermore, we
restrict the score functions such that they always produce indicator functions with support as a
subset of the set of observed agents, i.e., one observed agent has a score of 1 and all other agents get
a score of zero.

We introduce the Score function to match the notation from the original problem. It represents the
selected agent at the end of the utility evaluation. For Gödel Machines, the selection function will
always select the current parent as the selected agent for utility evaluation.

Transitions Transitions are generating new self-modifications from the newly selected next parent,
i.e., the action output. At each transition, a self-modification of anew

parent is created and assigned as
a new node achild. anew

parent is becomes the aparent for the next time step. Formally, if a(a) is the
self-modification of a, and Tr is the transition function, then Tr((T , aparent, achild), a, b) = (T ∪
{a(a)}, a, a(a), b− 1) Finally, in the Gödel POMDP, the final node is implicitly selected as the last
aparent. That said, the final reward in Gödel POMDP is U(argmaxa∈TB

Score(aparent, achild)(a))

We also adapt the original problem slightly. Specifically, we match the state space with the extended
space of the Gödel POMDP. Let’s call it Extended MDP. Similarly to Gödel POMDP, its state is a
tree T and two special agents aparent, achild, and the budget b. The action space is the same as in our
problem and consists of a single agent a ∈ T when there is still some budget left. In other cases, the
policy uses its Score : T → T → R function that scores created agents in the trees for the selection
of the final agent. The transition function adds the self-modification to the tree and sets a as the new
aparent and a(a) as the new achild.

We have extended the state space of our original problem. The new problem is also an MDP (call it
an extended MDP). The new state consists of the tree and two special agents (a1, a2) from the tree.
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At each step, the policy selects a single agent a to self-modify. The tree is expanded, the selected
agent becomes a new special agent a1, and the modification a(a) becomes the special agent a2.

Every policy from Gödel POMDP can be mapped to a policy in the extended MDP. Specifically,
let πG be the policy in the Gödel POMDP, then we define the corresponding policy in the extended
MDP πE as πE((T , aparent, achild)) = πG(aparent, achild). At each node, the policy chooses between
the two special nodes, ignoring the rest of the tree.

Now we adapt CMP to Gödel POMDP. CMP adapted to the Gödel case is still a function of a state
in the extended state space (not only observation) and agent.

CMPπ,Score((T , ap, ac, b), a)

=E(TB ,aBp,aBc,0)∼pπ(·|(T ,ap,ac,b),a)

[
U( argmax

a′∈C(TB,a)

Score(aBp, aBc)(a
′))

]

=E(TB ,aBp,aBc,0)∼pπ(·|(T ,ap,ac,b),a)

[
U( argmax

a′∈{aBp,aBc}
Score(aBp, aBc)(a

′))

]
=Qπ,Score((T , ap, ac, b), a).

The second equality comes from the fact that the support of the Score function is a set with an
element from the current observation. The third equality comes from directly unrolling the Q-value
function.

The Gödel Machine is defined by a prover that produces a proof whether accepting or selecting a
given node (or rejecting). Here, the algorithm by having access to CMP has access to the true Q
value function in the Gödel POMDP. This serves as a proof of better utility of either parent or the
child. Additionally, we state that we break the tie by selecting the parent node as in the original
Gödel Machine. Hence, the algorithm that follows it is a Gödel Machine.

Independently, as this proof directly shows that Gödel Machine selects an action that maximizes its
own Q-value function, it is optimal due to the Bellman Optimality Equation. With the procedure
shown above, we can adapt it to the extended MDP.
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B ALGORITHM

Algorithm 1 presents the procedure of HGM.

In the standard HGM, when an expansion ends with a new a added to the tree, the next following
evaluation actions have the choice of choosing a. At the beginning of the search, the first actions
have the most dense ratio of expansion actions, and the following evaluation actions would diverge
more from the standard HGM since most of their choices are not generated yet, concentrating on the
early finished expansions. Therefore, to avoid this bias, we initialize by expanding the initial agent
5 times with each of the processes in parallel.

The asynchronization also introduces another bias that favors agents with fewer evaluated results to
be more often selected for evaluation than in the standard HGM. This is due to the fact that the easy
tasks usually stop earlier than the difficult ones. This yields agents with fewer evaluations having
a higher empirical mean. During our experiments, we observed that many agents were successful
on the first ten evaluated tasks; however, this accuracy drops quickly as the number of evaluations
grows. After having more than 50 evaluations, this bias is barely observed.

Algorithm 1 Huxley–Gödel Machine (HGM)

1: Input: the initial agent a0, widening parameter α, and the percentile ϵ for final selection
2: Initialize a tree T with root a0
3: Initialize counters nC

success(a), n
C
failure(a), nsuccess(a), nfailure(a) for all a ∈ T

4: while Computational Budget not Exceeded do
5: if |T | ≤ nα and expandable parents exist then
6: Expand:
7: for each node a ∈ A do
8: Sample SC(a) ∼ Beta(τ(1 + nC

success(a)), τ(1 + nC
failure(a)))

9: end for
10: Select node a⋆ = argmaxa SC(a)
11: Create child c by self-modification of a⋆
12: Add c to T
13: else
14: Evaluate:
15: for each agent a ∈ A with remaining tasks do
16: Sample S(a) ∼ Beta(τ(1 + nsuccess(a)), τ(1 + nfailure(a)))
17: end for
18: Select agent a⋆ = argmaxa S(a)
19: Allocate a benchmark task to a⋆

20: update nsuccess, nfailure for a⋆
21: update nC

success, n
C
failure for a⋆ and ancestors

22: end if
23: end while
24: Return argmaxa∈TB

Iϵ(1 + nsuccess(a), 1 + nfailure(a))

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL DETAILS

C.1 INITIAL AGENTS

Our initial agents applied in Section 4.2 are adopted from the official implementation of DGM with
minor changes, including modifying API support, setting up a timeout option, and adding a length
of LLM interaction restriction. The initial agent is essentially a single loop of LLM queries with
two tool options, i.e., file editing and bash command execution. We set a time limit of one hour for
each agent execution.

The initial agents used in SWE-bench experiments and Polyglot experiments differ in that the Poly-
glot initial agent includes test commands with different programming language support. There are
two additional functions in the SWE-bench initial agent that serve to summarize existing tests and
execute the tests with a report generated, respectively.

The initial agent employed in Section 4.3 is further adjusted by removing the file-editing tool, leav-
ing only the bash tool, to minimize initial inductive bias. The time limit is extended to five hours
for both self-modification and task evaluation, reducing the risk of prematurely eliminating stronger
agents due to time constraints.

C.2 OTHER DETAILS

For the Polyglot experiments presented in Section 4.2, the exact large language model used for
self-modification is an int4 and int8 mixed quantized version of Qwen3-Coder-480B-A35B-Instruct
generated by AutoRound (Intel, 2025). It is impossible to report the detailed expansions of each
method we tested in the experiments since there is no way to force the evolving agents to log them.
A self-improving agent can always self-modify to remove the log function. During our experiments,
we do observe such self-modification happening. Overall, we spent approximately $5000 USD to
produce all experimental results.
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D EMPIRICAL CMP AND ITS ESTIMATION

In this section, we provide the exact formula to compute the empirical CMP and the variant of our
CMP estimator being used in Section 4.1 for correlation analysis. The empirical CMP of an agent a
as a node in a tree is defined as

maxa′∈C(a)\{a}
nsuccess(a

′)

nsuccess(a′) + nfailure(a′)
.

The prediction of our CMP estimator is defined as

nC
success(a)− nsuccess(a)− nC

success(b
∗)

nC
failure(a)− nfailure(a)− nC

failure(b
∗) + nC

success(a)− nsuccess(a)− nC
success(b

∗)
,

where b∗ is a child of a such that(
argmaxn∈C(a)

nsuccess(n)

nfailure(n)

)
∩ C(b∗) ̸= ∅.

For both SICA and DGM, we consider the benchmark performance of an agent as their estimator of
the agent’s CMP.
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E BASELINES

Table 2 summarizes the three subpolicies of SICA, DGM, and HGM, which define solutions to the
iterative tree search problem defined in 2.

Subpolicy SICA DGM HGM (Ours)

Mod vs. Eval Alternates between
modification and evalu-
ation.

Alternates between
modification and evalu-
ation.

Adaptive choice be-
tween modification and
evaluation.

Modification
Strategy

Greedily selects the
agent with the best
performance up to this
point and modifies it
with the entire history
accessible to the agent.

Selects the node proba-
bilistically based on the
evaluation metric and
the number of children
of the agents.

Selects the node based
on the statistics of the
clade stemming from a
given node.

Evaluation
Strategy

Evaluates the most
recently created agent
on the entire evaluation
dataset.

Progressively evaluates
the last created agent on
subsets of the dataset,
expanding if results are
promising.

Selects the agent based
on the statistics and
evaluates it on a single
task.

Table 4: Comparison of structured policies across self-improving methods. Each method is de-
scribed by three subpolicies: Mod vs. Eval, Modification Strategy, and Evaluation Strategy.
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F DISCOVERED AGENTS

We present interesting findings about HGM-discovered agents during our experiments. By man-
ually inspecting the diff patch files that were generated by self-modification, we make interesting
observations.

One engaging self-modification we found implements iterative refinement to make incremental im-
provements. In the self-improving context, it means that during one expansion (self-modification)
step, the agent is accurately performing multiple self-modifications. More interestingly, this phe-
nomenon can be viewed as the agent being self-motivated to perform self-modification, instead of
being instructed to do so by humans. This self-motivated repetitive self-modification automatically
creates arbitrary levels of meta-improvement in the sense that each self-modification ideally needs
to consider all its subsequent self-modifications, which the subsequent self-modifications also need
to consider future self-modifications. We show in List 1 the part of the patch file that includes the
implementation of this self-modification.

Another interesting phenomenon we observe is the file structures that self-modifying agents create.
Many agents tend to write the chunk they self-modify into a diff patch file, usually with a constant
file name. When multiple consecutive attempts of these self-modifying actions apply, the structure
of these git diff files becomes abstruse. Imagine that there is a diff file that includes certain edits.
Once there are changes applied to this file, it then generates the diff patch file. In this new patch file,
a nested format of editing record appears. At the beginning of some lines, there are multiple + and -
signs that correspond to nested file edits. This is a natural format to present information that inspires
long-sighted self-improvement since it shows how self-modifications indeed influence subsequent
self-modifications. The authors find it mind-bending to understand such a file structure and parse
the semantics manually. For readers interested in further investigation, we provide one instance of
such a file structure in List 2.

Listing 1: The self-modifying agent that executes multiple self-modifications per instruction.
+def attempt_error_resolution(git_dir, test_output, test_error,

↪→ language):
+ """
+ Attempt to automatically diagnose and resolve errors.
+ Returns a tuple of (resolved, message) where resolved indicates if

↪→ errors were fixed.
+ """
+ safe_log("Attempting automated error diagnosis and resolution...")
+
+ # Diagnose errors using our enhanced bash tool function
+ diagnosis = diagnose_errors(test_output, test_error, "")
+
+ if not diagnosis["has_errors"]:
+ return False, "No errors detected to resolve."
+
+ resolution_messages = []
+
+ # Try to apply automated fixes for each diagnosed error
+ for error in diagnosis["errors"]:
+ safe_log(f"Processing error: {error[’type’]} -

↪→ {error[’description’]}")
+
+ # Simple resolution strategies based on error type
+ if error["type"] == "python_module_not_found":
+ # For Python module not found errors, we might install the

↪→ module
+ match = re.search(r"No module named ’([ˆ’]+)’",

↪→ error["description"])
+ if match:
+ module = match.group(1)
+ resolution_messages.append(f"Would attempt to install

↪→ Python module: {module}")
+ # In practice, we would run: pip install {module}
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+ # But we’ll skip actual installation to avoid side
↪→ effects

+
+ elif error["type"] == "python_syntax_error" and "file" in error:
+ # For syntax errors, we could potentially apply fixes
+ file_path = os.path.join(git_dir, error["file"])
+ if os.path.exists(file_path):
+ resolution_messages.append(f"Would attempt to fix

↪→ syntax error in {file_path} at line {error.get(’line’,
↪→ ’unknown’)}")

+ # In practice, we would use the editor tool’s apply_fix
↪→ command

+ # This is just a demonstration of what could be done
+
+ elif error["type"] == "test_failure":
+ # For test failures, we might suggest reviewing the

↪→ implementation
+ resolution_messages.append("Would analyze test failures and

↪→ suggest implementation improvements")
+
+ if resolution_messages:
+ return True, "Automated resolution attempted:\n" +

↪→ "\n".join(resolution_messages)
+ else:
+ return False, "No automated resolutions available for detected

↪→ errors."
+
class AgenticSystem:

def __init__(
self,

@@ -243,6 +293,16 @@ Your task is to make changes to the files in the
↪→ {self.git_dir} directory to add

safe_log(f"Attempt {attempt + 1} test results: {’PASSED’ if
↪→ test_success else ’FAILED’}")

+ # If tests failed, attempt automated error resolution
+ if not test_success:
+ resolved, resolution_message = attempt_error_resolution(
+ self.git_dir, test_output, test_error, self.language
+ )
+ safe_log(f"Error resolution: {resolution_message}")
+
+ # Even if we couldn’t automatically resolve, we still

↪→ provide feedback
+ # In a more advanced implementation, we might actually

↪→ apply fixes here
+

# If this is the first attempt or tests passed and we
↪→ didn’t have a successful attempt yet, update best patch

if attempt == 0 or (test_success and (best_patch is None or
↪→ not best_test_results)):

best_patch = current_patch
@@ -278,37 +338,31 @@ Please revise your code to fix these issues and

↪→ try again.
# Log final summary
safe_log(f"\n{’=’*20} FINAL SUMMARY {’=’*20}")
safe_log(f"Best solution found on attempt:

↪→ {best_test_results[’attempt’] if best_test_results else ’None’}")
- safe_log(f"Tests passed: {best_test_results[’test_success’] if

↪→ best_test_results else ’Unknown’}")
+ safe_log(f"Final test result: {’PASSED’ if best_test_results

↪→ and best_test_results[’test_success’] else ’FAILED’}")
+
+ if best_test_results:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

+ safe_log(f"Final test
↪→ output:\n{best_test_results[’test_output’]}")

+ if best_test_results[’test_error’]:
+ safe_log(f"Final test

↪→ errors:\n{best_test_results[’test_error’]}")

- # Save attempt history to a file
- history_file =

↪→ os.path.join(os.path.dirname(self.chat_history_file),
↪→ ’attempt_history.md’)

- with open(history_file, ’w’) as f:
- f.write("# Attempt History\n\n")
- for result in self.attempt_history:
- f.write(f"## Attempt {result[’attempt’]}\n")
- f.write(f"**Tests Passed**: {result[’test_success’]}\n")
- f.write(f"**LLM Calls Used**: {result[’llm_calls’]}\n")
- f.write(f"**Test

↪→ Output**:\n‘‘‘\n{result[’test_output’]}\n‘‘‘\n")
- f.write(f"**Test

↪→ Error**:\n‘‘‘\n{result[’test_error’]}\n‘‘‘\n")
- f.write(f"**Patch**:\n‘‘‘\n{result[’patch’]}\n‘‘‘\n\n")
+ return bool(best_test_results and

↪→ best_test_results[’test_success’])

Listing 2: An instance of the nested diff patch format.
diff --git a/attempt_history.md b/attempt_history.md
new file mode 100644
index 0000000..b132b1a
--- /dev/null
+++ b/attempt_history.md
@@ -0,0 +1,727 @@
+# Attempt History
+
+## Attempt 1
+**Tests Passed**: True
+**LLM Calls Used**: 18
+**Test Output**:
+‘‘‘
+============================= test session starts

↪→ ==============================
+platform linux -- Python 3.10.18, pytest-8.4.2, pluggy-1.6.0 --

↪→ /usr/local/bin/python3.10
+cachedir: .pytest_cache
+rootdir: /dgm
+configfile: pytest.ini
+testpaths: tests
+plugins: asyncio-1.1.0, anyio-4.10.0
+asyncio: mode=strict, asyncio_default_fixture_loop_scope=None,

↪→ asyncio_default_test_loop_scope=function
+collecting ... collected 29 items
+
+tests/test_bash_tool.py::TestBashTool::test_simple_command PASSED

↪→ [ 3%]
+tests/test_bash_tool.py::TestBashTool::test_multiple_commands PASSED

↪→ [ 6%]
+tests/test_bash_tool.py::TestBashTool::test_command_with_error PASSED

↪→ [ 10%]
+tests/test_bash_tool.py::TestBashTool::test_environment_variables

↪→ PASSED [ 13%]
+tests/test_bash_tool.py::TestBashTool::test_command_output_processing

↪→ PASSED [ 17%]
+tests/test_bash_tool.py::TestBashTool::test_long_running_command PASSED

↪→ [ 20%]
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+tests/test_bash_tool.py::TestBashTool::test_invalid_commands[invalid_command_name]
↪→ PASSED [ 24%]

+tests/test_bash_tool.py::TestBashTool::test_invalid_commands[cd
↪→ /nonexistent/path] PASSED [ 27%]

+tests/test_bash_tool.py::TestBashTool::test_invalid_commands[/bin/nonexistent]
↪→ PASSED [ 31%]

+tests/test_bash_tool.py::TestBashTool::test_command_with_special_chars
↪→ PASSED [ 34%]

+tests/test_bash_tool.py::TestBashTool::test_multiple_line_output PASSED
↪→ [ 37%]

+tests/test_bash_tool.py::TestBashTool::test_large_output_handling
↪→ PASSED [ 41%]

+tests/test_edit_tool.py::TestEditorTool::test_view_file PASSED
↪→ [ 44%]

+tests/test_edit_tool.py::TestEditorTool::test_create_file PASSED
↪→ [ 48%]

+tests/test_edit_tool.py::TestEditorTool::test_create_existing_file
↪→ PASSED [ 51%]

+tests/test_edit_tool.py::TestEditorTool::test_edit_file PASSED
↪→ [ 55%]

+tests/test_edit_tool.py::TestEditorTool::test_edit_nonexistent_file
↪→ PASSED [ 58%]

+tests/test_edit_tool.py::TestEditorTool::test_view_directory PASSED
↪→ [ 62%]

+tests/test_edit_tool.py::TestEditorTool::test_invalid_path PASSED
↪→ [ 65%]

+tests/test_edit_tool.py::TestEditorTool::test_invalid_commands[unknown_command]
↪→ PASSED [ 68%]

+tests/test_edit_tool.py::TestEditorTool::test_invalid_commands[] PASSED
↪→ [ 72%]

+tests/test_edit_tool.py::TestEditorTool::test_invalid_commands[None]
↪→ PASSED [ 75%]

+tests/test_error_diagnosis.py::TestErrorDiagnosis::test_python_syntax_error_diagnosis
↪→ PASSED [ 79%]

+tests/test_error_diagnosis.py::TestErrorDiagnosis::test_python_module_not_found_diagnosis
↪→ PASSED [ 82%]

+tests/test_error_diagnosis.py::TestErrorDiagnosis::test_no_error_diagnosis
↪→ PASSED [ 86%]

+tests/test_error_diagnosis.py::TestErrorDiagnosis::test_format_diagnosis_with_errors
↪→ PASSED [ 89%]

+tests/test_error_diagnosis.py::TestErrorDiagnosis::test_format_diagnosis_without_errors
↪→ PASSED [ 93%]

+tests/test_error_diagnosis.py::TestAutomatedFixes::test_apply_missing_import_fix
↪→ PASSED [ 96%]

+tests/test_error_diagnosis.py::TestAutomatedFixes::test_apply_syntax_error_fix
↪→ PASSED [100%]

+
+==================================== PASSES

↪→ ====================================
+=========================== short test summary info

↪→ ============================
+PASSED tests/test_bash_tool.py::TestBashTool::test_simple_command
+PASSED tests/test_bash_tool.py::TestBashTool::test_multiple_commands
+PASSED tests/test_bash_tool.py::TestBashTool::test_command_with_error
+PASSED tests/test_bash_tool.py::TestBashTool::test_environment_variables
+PASSED

↪→ tests/test_bash_tool.py::TestBashTool::test_command_output_processing
+PASSED tests/test_bash_tool.py::TestBashTool::test_long_running_command
+PASSED

↪→ tests/test_bash_tool.py::TestBashTool::test_invalid_commands[invalid_command_name]
+PASSED tests/test_bash_tool.py::TestBashTool::test_invalid_commands[cd

↪→ /nonexistent/path]
+PASSED

↪→ tests/test_bash_tool.py::TestBashTool::test_invalid_commands[/bin/nonexistent]
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+PASSED
↪→ tests/test_bash_tool.py::TestBashTool::test_command_with_special_chars

+PASSED tests/test_bash_tool.py::TestBashTool::test_multiple_line_output
+PASSED tests/test_bash_tool.py::TestBashTool::test_large_output_handling
+PASSED tests/test_edit_tool.py::TestEditorTool::test_view_file
+PASSED tests/test_edit_tool.py::TestEditorTool::test_create_file
+PASSED

↪→ tests/test_edit_tool.py::TestEditorTool::test_create_existing_file
+PASSED tests/test_edit_tool.py::TestEditorTool::test_edit_file
+PASSED

↪→ tests/test_edit_tool.py::TestEditorTool::test_edit_nonexistent_file
+PASSED tests/test_edit_tool.py::TestEditorTool::test_view_directory
+PASSED tests/test_edit_tool.py::TestEditorTool::test_invalid_path
+PASSED

↪→ tests/test_edit_tool.py::TestEditorTool::test_invalid_commands[unknown_command]
+PASSED tests/test_edit_tool.py::TestEditorTool::test_invalid_commands[]
+PASSED

↪→ tests/test_edit_tool.py::TestEditorTool::test_invalid_commands[None]
+PASSED

↪→ tests/test_error_diagnosis.py::TestErrorDiagnosis::test_python_syntax_error_diagnosis
+PASSED

↪→ tests/test_error_diagnosis.py::TestErrorDiagnosis::test_python_module_not_found_diagnosis
+PASSED

↪→ tests/test_error_diagnosis.py::TestErrorDiagnosis::test_no_error_diagnosis
+PASSED

↪→ tests/test_error_diagnosis.py::TestErrorDiagnosis::test_format_diagnosis_with_errors
+PASSED

↪→ tests/test_error_diagnosis.py::TestErrorDiagnosis::test_format_diagnosis_without_errors
+PASSED

↪→ tests/test_error_diagnosis.py::TestAutomatedFixes::test_apply_missing_import_fix
+PASSED

↪→ tests/test_error_diagnosis.py::TestAutomatedFixes::test_apply_syntax_error_fix
+============================== 29 passed in 3.58s

↪→ ==============================
+
+‘‘‘
+**Test Error**:
+‘‘‘
+
+‘‘‘
+**Patch**:
+‘‘‘
+diff --git a/coding_agent.py b/coding_agent.py
+index 78e8ad4..77e5097 100644
+--- a/coding_agent.py
++++ b/coding_agent.py
+@@ -5,9 +5,13 @@ from logging.handlers import RotatingFileHandler
+ import os
+ import threading
+ import time
++import json
++import re
+
+ from llm_withtools import CLAUDE_MODEL, OPENAI_MODEL, chat_with_agent
+ from utils.git_utils import diff_versus_commit, reset_to_commit,

↪→ apply_patch
++from tools.bash import diagnose_errors
++from tools.edit import apply_automated_fix, read_file, write_file
+
+ # reset_to_commit(git_dname, commit)
+ # apply_patch(git_dname, patch_str)
+@@ -136,6 +140,52 @@ def run_tests(git_dir, language):
+ # Always change back to original directory
+ os.chdir(original_cwd)
+
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++def attempt_error_resolution(git_dir, test_output, test_error,
↪→ language):

++ """
++ Attempt to automatically diagnose and resolve errors.
++ Returns a tuple of (resolved, message) where resolved indicates if

↪→ errors were fixed.
++ """
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