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Abstract

Most dense retrieval models contain an implicit
assumption: the training query-document pairs
are exactly matched. Since it is expensive to
annotate the corpus manually, most training
pairs in real-world applications are automat-
ically collected, which inevitably introduces
mismatched-pair noise. In this paper, we ex-
plore an interesting and challenging problem in
dense retrieval, how to train an effective model
with mismatched-pair noise. To solve this prob-
lem, we propose Noisy Pair Corrector (NPC),
which consists of a detection module and a
correction module. The detection module esti-
mates noise pairs by calculating the perplexity
between the annotated positive and easy neg-
ative documents. The correction module pro-
vides a soft supervised signal via an exponen-
tial moving average (EMA) model. We conduct
experiments on text-retrieval benchmarks Natu-
ral Question and TriviaQA, code-search bench-
marks StaQC and SO-DS. Experimental results
show that NPC achieves excellent performance
in handling both synthetic and realistic noise.

1 Introduction

With the advancements in pre-trained language
models (Devlin et al., 2019; Liu et al., 2019), dense
retrieval has developed rapidly in recent years. It
is essential to many applications including search
engine (Brickley et al., 2019), open-domain ques-
tion answering (Karpukhin et al., 2020a), and code
intelligence (Guo et al., 2021). A typical dense
retrieval model maps both queries and documents
into a low-dimensional vector space, and measures
the relevance between them by the similarity be-
tween their respective representations (Shen et al.,
2014). During training, the model utilizes query-
document pairs as labeled training data (Xiong
et al., 2021) and samples negative documents for
each pair. Then the model learns to minimize the
contrastive loss for obtaining a good representation
ability (Zhang et al., 2022b; Qu et al., 2021).

Correctly Matched Pair
Query: Check that variable is a lambda function
Code:

is_lambda_function(obj):

return isinstance(obj,types.LambdaType)\
obj._ _name__ == "<lambda>"

Mismatched Noise Pair

Query: Sending a Dictionary using Sockets in Python

Code:
import json

data_string

json.dumps(data)

data_loaded = json.loads(data)

Figure 1: Two examples from StaQC training set. In the
bottom example, the given code is mismatched with the
query, since it can not answer the query.

Recent studies on dense retrieval have achieved
promising results with hard negative mining (Xiong
et al., 2021), pretraining (Gao and Callan, 2021a),
distillation (Yang and Seo, 2020), and adversarial
training (Zhang et al., 2022a). All methods con-
tain an implicit assumption: each query is exactly
aligned with the given positive documents in the
training set. However, this assumption is hard to
satisfy in real applications. Especially when the cor-
pus is automatically collected from the internet, it
is inevitable that mismatched pairs are mixed in the
training data. As shown in Fig. 1, the examples are
from StaQC benchmark (Yao et al., 2018), which is
automatically collected from StackOverflow. The
document, i.e., code solution, can not answer the
query but is incorrectly annotated as a positive doc-
ument. Such noisy pairs are widely present in auto-
matically constructed datasets, which will limit the
performance of dense retrievers.

One related work is Noisy Label which mainly
focuses on the classification task (Wang et al., 2019;
Bai et al., 2021; Han et al., 2020). An important
difference is that, dense retrieval adopts a ranking
object for training which aims to push the sim-
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Figure 2: Effect of matched & mismatched pair for
training. Green objects refer to annotated pairs, while
pentagram and triangle are actually aligned pairs. In the
left case, retrieval models are required to push the query
with true-positive document (TP Doc) together and pull
the query with true-negative documents (TN Doc) apart.
In the right case, the retrieval models are misled by the
mismatched data pair, where the false-positive docu-
ment (FP Doc) and the false-negative document (FN
Doc) are wrongly pulled and pushed, respectively.

ilarity between queries and positive documents
greater than the negative documents. As shown
in Fig. 2, the mismatched-pair noise will mislead
the retriever to update in opposite direction. Some
previous works focus on denoising false negatives,
e.g., RocketQA filters the false negatives with a
cross-encoder (Qu et al., 2021); AR2 adopts an
adversarial framework to mitigate the effects of
false negatives (Zhang et al., 2022a). So far, the
mismatched-pair noise (false positive problem) in
dense retrieval has not been well studied.

Based on these observations, we propose Noisy
pair corrector (NPC) framework to solve the false-
positive problem. NPC consists of noise detection
and correction modules. At each epoch, the detec-
tion module estimates whether a query-document
pair is mismatched by the perplexity between the
annotated document and easy negative documents.
Then the correction module provides a soft super-
vised signal for both estimated noisy data and clean
data via an exponential moving average (EMA)
model. Both modules are plug-and-play, which
means NPC is a general training paradigm that can
be easily applied to almost all retrieval models.

The contributions of this paper are as follows:
1) We reveal a long-neglected problem in dense re-
trieval, i.e., mismatched-pair noise, which is ubig-
uitous in the real world. 2) To address this problem,
we propose a simple yet effective method for train-
ing dense retrieval models with mismatched-pair
noise. 3) Extensive experiments on four datasets

verify the effectiveness of our method against syn-
thetic and realistic noise. Our method achieves
new state-of-the-art performance on realistic-noisy
dataset StaQC.

2 Preliminary

Before describing our model in detail, we first in-
troduce the basic elements of dense retrieval, in-
cluding problem definition, model architecture, and
model training.

Given a query ¢, and a document collection
D, dense retrieval aims to find document d rel-
evant to ¢ from ). The training set consists of
a collection of query-document pairs, donated as
C ={(q1,d{), ..., (qn,dL)}, where N is the data
size. Typical dense retrieval models adopt a dual
encoder architecture to map queries and documents
into a dense representation space. Then the rele-
vance score f(q,d) of query ¢ and document d can
be calculated with their dense representations:

f@(Q7 d) = stm (E(Q; H)a E(d§ 9)) ) (D

where E(-; 0) denotes the encoder module param-
eterized with 6, and sim is the similarity func-
tion, e.g., euclidean distance, cosine distance, inner-
product. Based on the embeddings, existing meth-
ods generally utilize ANN technique (Johnson
et al., 2019) for efficient search.

For training dense retrievers, the contrastive loss
is widely applied (Karpukhin et al., 2020a; Zhang
et al., 2022b). Specifically, for each training pair
(gi, d;) € C, we sample m negative irrelevant docu-
ments {d; , ...,d; .} from document collection D.
To push the similarity of positive pairs higher than
negative pairs, the retriever ¢ tends to minimize the
loss function :

e fo(qi,ds)
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where 7 is a hyper-parameter to control the temper-
ature. Previous work (Xiong et al., 2021) has veri-
fied the effectiveness of negative sampling strategy.
The two most common strategies are “In-Batch
Negative” and “Hard Negative” (Karpukhin et al.,
2020a; Qu et al., 2021).

The above training paradigm assumes that the
query-document pairs in training set C' are correctly
aligned. We argue that this assumption is difficult
to satisfy. Since most training data in real-world
applications are collected automatically without
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Figure 3: Overview of noise detection and noise correction. (a) Procedure of Noise Detection. At each epoch,
we first calculate the perplexity of all training query-document pairs using the retriever ¢; next fit the perplexity
distribution with Gaussian Mixture Model to get the correctly matched probability of each pair; finally estimate
the flag set {7;}}¥., by setting the threshold. (b) Framework of Noise Correction. Given a batch of data pairs,
where d; ; is the hard negative of ¢; and {qs,d§ } is the estimated noisy pair, the retriever 6 and teacher §* compute
similarity matrices Sy and Sy~ for all queries and documents, respectively. The retriever learns to minimize (1)
Lont: the negative likelihood probability of true positive documents; (2) L,,s: the KL divergence between Sy and

the rectified soft label Sy« after normalization.

manual inspection, which will unavoidably contain
some mismatched pairs.

3 Method

We propose NPC framework to learn retrievers with
mismatched-pair noise. As shown in Fig. 3, NPC
consists of two parts: (a) the noise detection mod-
ule as described in Sec. 3.1, and (b) the noise cor-
rection module as described in Sec. 3.2.

3.1 Noise Detection

The noise detection module is meant to detect mis-
matched pairs in the training set. Previous works
have shown that neural networks tend to first learn
clean samples and then gradually fit noisy sam-
ples (Arazo et al., 2019; Arpit et al., 2017). Moti-
vated by this, we hypothesize that: dense retriev-
ers will first learn to distinguish correctly matched
pairs from easy negatives, and then gradually over-
fit the mismatched pairs. Therefore, we determine
whether a training pair is mismatched by the per-
plexity between the annotated document and easy
negative documents.

Specifically, given a retriever 6 and an uncertain
pair (g;, d;), we calculate the perplexity as follows:

e fo(a5,d;)

PPL(g; 4;0) = —log

effg(qi,di)+2;n:1 eTfe(qi,d;j) ’
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where 7 is a hyper-parameter, d;j is the negative
document randomly sampled from the document

collection ID. Note that d; j is a random easy neg-
ative, not a hard negative. We discuss this further
in Appendix C. In practice, we adopt “In-Batch
Negative” strategy for efficiency.

After obtaining the perplexity of each pair, we
need an automated method to divide the noise and
clean data. Motivated by Li et al. (2019), we fit the
perplexity distribution over all training pairs by a
two-component Gaussian Mixture Model (GMM):

K
p(PPL|0)=> me(PPL|k), (4
k=1

where 73, and ¢ (PPL | k) are the mixture coeffi-
cient and the probability density of the k-th com-
ponent, respectively. We optimize the GMM with
the Expectation-Maximization algorithm (Demp-
ster et al., 1977).

Based on the above hypothesis, we treat training
pairs with higher PPL as noise and those with lower
PPL as clean data. So the estimated clean flag can
be calculated as follows:

gi =1 (p('% ‘ PPL(qi,diﬂ)) > )‘) ) (5)

where y; € {1,0} denotes whether we estimate
the pair (g;, d;) to be correctly matched or not, x
is the GMM component with the lower mean, A
is the threshold. p(x | PPL(y, 4,4)) is the poster
probability over the component x, which can be
intuitively understood as the correctly annotated
confidence. We set A to 0.5 in all experiments.



3.2 Noise Correction

Next, we will introduce how to reduce the interfer-
ence of noise pairs after obtaining the estimated
flag set {;}}¥,. One quick fix is to discard the
noise data directly, which is sub-optimal since it
wastes the query data in noisy pairs. Motivated by
semi-supervised methods (Tarvainen and Valpola,
2017), we adopt a self-ensemble teacher to provide
rectified soft labels for noisy pairs. The teacher
is an exponential moving average (EMA) of the
retriever, and the retriever is trained with a weight-
averaged consistency target on noisy data.

Specifically, given a retriever 6, the teacher 6*
is updated with an exponential moving average
strategy as follows:

0y = ab; 1 + (1 —a)by, (6)

where o is a momentum coefficient. Only the pa-
rameters 6 are updated by back-propagation.

For a query ¢; and the candidate document set
Dy, where Dy, = {d; j}]*, could consist of an-
notated documents, hard negatives and in-batch
negatives, we first get teacher’s and retriever’s sim-
ilarity scores, respectively. Then, the retriever 6 is
expected to keep consistent with its smooth teacher
0*. To achieve this goal, we update the retriever
6 by minimizing the KL divergence between the
student’s distribution and the teacher’s distribution.

To be concrete, the similarity scores between g;
and Dy, are normalized into the following distribu-
tions:

eTfo(aidij)
m ol (qidig
Ej:le fd)(Q'L i,

(N

Then, the consistency loss L.,,s can be written as:

Leons = KL(pe('|qz';in%Pe*(-\Qi; in))) (8)

where K L(-) is the KL divergence, py(.|gi; Dy,)
and pg-(.|gi; Dy, ) denote the conditional probabili-
ties of candidate documents D, by the retriever 0
and the teacher 6%, respectively.

For the estimated noisy pair, the teacher corrects
the supervised signal into a soft label. For the
estimated clean pair, we calculate the contrastive
loss and consistency loss. So the overall loss is
formalized:

L= yiLcont + Lcons: (9)

where g; € {1,0} is estimated by the noise detec-
tion module.

Algorithm 1 Noisy Pair Corrector (NPC)

Require: Retriever 6; Noisy Training dataset C'.
1: Warmup the retriever 6 on noisy dataset C' by
optimizing Eq.2;
2. Initial EMA model 6* with 6;
3: for i = 1 : num_epoch do
4:  Calculate PPL of training pairs with random
negatives using Eq.3;

5:  Fit PPL distribution with GMM;
6:  Get the estimated flag set {g; } using Eq.5;
7.  fori=1:num_batch do
8: Sample negatives with “In-Batch Nega-
tive” or “Hard Negative” strategy;
9: Calculate rectified soft labels with EMA
model 6*;
10 Train 6 by optimizing Eq.9;
11: Update EMA model §* using Eq.6;
12:  end for
13: end for

3.3 Overall Procedure

NPC is a general training framework that can be
easily applied to almost all retrieval methods. Un-
der the classical training process of dense retrieval,
we add the noise detection module before training
each epoch and the noise correction module during
training. The detail is presented in Algorithm 1.

4 Experiments

4.1 Datasets

To verify the effectiveness of NPC in robust
dense retrieval, we conduct experiments on four
commonly-used benchmarks, including Natural
Questions (Kwiatkowski et al., 2019), Trivia
QA (Joshi et al., 2017), StaQC (Yao et al., 2018)
and SO-DS (Heyman and Van Cutsem, 2020).
StaQC (Stack Overflow Question-Code pairs)is
a large dataset that collects real query-code pairs
from Stack Overflow'. The dataset has been widely
used on code summarization (Peddamail et al.,
2018) and code search (Heyman and Van Cutsem,
2020). SO-DS mines query-code pairs from the
most upvoted Stack Overflow posts, mainly focuses
on the data science domain. Following previous
works (Heyman and Van Cutsem, 2020; Li et al.,
2022), we resort to Recall of top-k (R@k) and
Mean Reciprocal Rank (MRR) as the evaluation
metric. StaQC and SO-DS are mined automatically

"https://stackoverflow.com/
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StaQC SO-DS

Methods R@3 R@I0 MRR R@3 R@I0 MRR
BM25 4.5, (Heyman and Van Cutsem, 2020) 8.0 13.3 7.5 23.8 32.3 21.6
NBOW (Heyman and Van Cutsem, 2020) 10.9 16.6 9.5 27.7 38.0 24.7
USE (Heyman and Van Cutsem, 2020) 12.8 20.3 11.7 33.3 48.5 304
CodeBERT (Feng et al., 2020) - - 23.4 - - 23.1
GraphCodeBERT (Guo et al., 2021) - - 24.1 - - 25.2
CodeRetriever (In-Batch Negative) (Li et al., 2022) - - 25.5 - - 27.1
CodeRetriever (Hard Negative) (Li et al., 2022) - - 24.6 - - 31.8
UniXcoder (In-Batch Negative) (Guo et al., 2022) | 29.98 4747 28.04 | 31.90 51.21 28.29
UniXcoder (Hard Negative) (Guo et al., 2022) 31.18 4838 28.63 | 3342 53.37 29.97
NPC (In-Batch Negative) 33.07 5035 30.39 | 35,58 54.54 30.96
NPC (Hard Negative) 3438 52.20 31.36 | 38.00 56.51 32.49

Table 1: Retrieval performance on StaQC and SO-DS, which are realistic-noisy datasets. The results of the first
block are borrowed from published papers (Heyman and Van Cutsem, 2020; Li et al., 2022). If the results are not
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provided, we mark them as

without human annotation. Therefore, there are
numerous mismatched pairs in training data.
Natural Questions (NQ) collects real queries
from the Google search engine. Each question
is paired with an answer span and golden passages
from the Wikipedia pages. Trivia QA (TQ) is a
reading comprehension corpus authored by trivia
enthusiasts. In NQ and TQ, the goal of the retrieval
stage is to find positive passages given queries
from a large collection. Following Karpukhin et al.
(2020a), we report Recall of top-k (R@k) as the
evaluation metric. As NQ and TQ are well anno-
tated by humans, we simulate the mismatched-pair
noise with reference to the setting in the noisy clas-
sification task (Natarajan et al., 2013). Specifically,
we randomly select a specific percentage of training
queries and pair random documents to them.

4.2 Implementation Details

NPC is a general training paradigm that can be di-
rectly applied to almost all retrieval models. For
StaQC and SO-DS, we adopt UniXcoder (Guo
et al., 2022) as our backbone, which is the SoTA
model for code representation. Following Guo et al.
(2022), we adopt the cosine distance as similarity
function and set temperature A to 20. We update
model parameters using the Adam optimizer and
perform early stopping on the development set. The
learning rate, batch size, warmup epoch, and train-
ing epoch are set to 2e-5, 256, 5, and 10, respec-
tively. In the “Hard Negative” setting, we adopt the
same strategy as Li et al. (2022). For a fair com-
parison, we implement UniXcoder with the same
hyperparameters.

For NQ and TQ, we adopt BERT (Devlin et al.,
2019) as our initial model. Following Karpukhin
et al. (2020a), we adopt inner-product as the sim-
ilarity function and set temperature A to 1. The
max sequence length is 16 for query and 128 for
passage. The learning rate, batch size, warmup
epoch, and training epoch are set to 2e-5, 512, 10,
and 40, respectively. We adopt “BM?25 Negative”
and “Hard Negative” strategies as described in the
DPR toolkit 2. For a fair comparison, we imple-
ment DPR (Karpukhin et al., 2020a) with the same
hyperparameters.

All the experiments are run on 8§ NVIDIA Tesla
A100 GPUs. The implementation code of NPC is
based on Huggingface (Wolf et al., 2020).

4.3 Results

Results on StaQC and SO-DS: Table 1 shows
the results on the realistic-noisy datasets StaQC
and SO-DS. Both datasets contain a large num-
ber of real noise pairs. The first block shows the
results of previous SOTA methods. BM25 ... is
a traditional sparse retriever based on the exact
term matching of queries and code descriptions.
NBOW is an unsupervised retriever that leverages
pretrained word embedding of queries and code
descriptions for retrieval. USE is a simple dense re-
triever based transformer. CodeBERT, GraphCode-
BERT are pretrained models for code understand-
ing using large-scale code corpus. CodeRetriever
is a pretrained model dedicated to code retrieval,
which is pretrained with unimodal and bimodal

https://github.com/facebookresearch/
DPR
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. Natural Questions Trivia QA
Noisy Methods R@1 R@5 R@20 R@I00 R@I R@5 R@20 R@100
BM25x% - - 591 737 - - 669  76.7
DPRx ; - 784 854 - - 794 850
o | DPR(BM25Negative) | 4502 6695 79.61 86.08 |53.14 7131 7979  85.19
NPC (BM25 Negative) | 45.55 6822 8020 86.62 | 52.37 7091 79.43  84.86
DPR (Hard Negative) 51.88 7356 8296 8774 | 5658 73.10 80.85 85.74
NPC (Hard Negative) 5194 73.64 83.08 8811 | 5636 7322 8074  85.68
DPR (BM25 Negative) | 27.07 47.79 6336  75.69 | 35.73 52.88 64.05 74.16
DPR-C (BM25 Negative) | 43.69 66.62 79.07 86.12 | 52.10 70.52 79.05  85.08
5o | NPC(BM25Negative) | 4522 6842 7976 8656 | 5234 7022 7910 8486
DPR (Hard Negative) 3761 6073 71.68 7956 | 4339 60.67 7034  77.88
DPR-C (Hard Negative) | 51.66 72.40 8150 87.80 | 5535 72.36 8033  85.34
NPC (Hard Negative) 51.85 73.06 8247 87.80 | 56.03 7254 80.59 85.58
DPR (BM25 Negative) | 16.12 33.88 49.70 6338 | 2009 34.63 4742  61.04
DPR-C (BM25 Negative) | 4129 6521 7848 8570 | 49.61 68.81 78.00 8423
so | NPC(BM25 Negative) | 4287 65.65 7837 8576 | 50.80 6898 7821 8443
DPR (Hard Negative) 2387 4234 5512 67.06 | 2847 4512 5688  67.62
DPR-C (Hard Negative) | 48.87 70.52 81.44 87.17 | 53.07 70.36 79.02  84.69
NPC (Hard Negative) 48.81 70.60 81.17 8720 | 53.09 7027 7931 84.96

Table 2: Retrieval performance on Natural Questions and Trivia QA under the noise ratio of 0%, 20%, and 50%,
respectively. The results of BM25+ and DPRx are borrowed from Karpukhin et al. (2020a). If the results are not
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provided, we mark them as

contrastive learning on a large-scale corpus. The
second block shows the results of UniXcoder with
two negative sampling strategies. UniXcoder is
also a pretrained model that utilizes multi-modal
data, including code, comment, and AST, for better
code representation. The results are implemented
by ourselves for a fair comparison with NPC. The
bottom block shows the results of NPC using two
negative sampling strategies.

From the results, we can see that our proposed
NPC consistently performs better than the evalu-
ated models across all metrics. Compared with
the strong baseline UniXcoder which ignores the
mismatched-pair problem, NPC achieves a signif-
icant improvement with both “in-batch negative”
and “hard negative” sampling strategies. It indi-
cates that the mismatched-pair problem greatly lim-
its the performance of dense retrieval models, and
NPC, a general training paradigm, can mitigate this
negative effect.

Results on NQ and TQ: Table 2 shows the re-
sults on the synthetic-noisy datasets NQ and TQ
under the noise ratio of 0%, 20%, and 50%. We
compare NPC with BM25 (Yang et al., 2017) and
DPR (Karpukhin et al., 2020a). BM25 is an un-
supervised sparse retriever that is not affected by
noisy data. DPR (Karpukhin et al., 2020a) is a
widely used method for training dense retrievers.

We implement NPC and DPR using two negative
sampling strategies. Besides, we evaluate DPR
on clean datasets by discarding the synthetic-noisy
pairs, denoted by DPR-C. DPR-C is a strong base-
line that is not affected by mismatched pairs.

We can observe that (1) With the increase of
the noise ratio, DPR shows severe performance
degradation. When the noise rate is 50%, the
performance of supervised DPR is lower than un-
supervised BM25. (2) Under the noise-free set-
ting, NPC achieves competitive results compared
to DPR, even though NPC is designed to combat
mismatched-pair noise. (3) When the training data
contains noisy pairs, NPC outperforms the DPR
method by a large margin, with only a slight per-
formance drop when the noise increases. Even
comparing DPR-C, which is trained on clean data,
NPC still achieves competitive results.

4.4 Analysis

In this section, we conduct a set of detailed exper-
iments on analyzing the proposed NPC training
framework to help understand its pros and cons.
Ablations of Noise Detection and Noise Cor-
rection: To get a better insight into NPC, we con-
duct ablation studies on the realistic-noisy dataset
StaQC and the synthetic-noisy dataset NQ under
the noise ratio of 50%. The result are shown in



Methods NQ StaQC
De Co HN | R@l R@5 R@20 R@100 | R@l R@3 R@5 MRR
- - - 16.84 33.06 4822 6231 | 18.08 31.09 4794 2793
- v - | 21.66 40.83 5590 69.33 | 1851 31.01 48.98 28.34
v - - 1 39.08 6218 75.19 8331 | 20.05 32.71 51.14 30.09
v v - | 42,57 6547 7750 8479 | 20.70 33.55 52.71 30.66
- - v | 2346 4242 5463 6554 | 18.66 31.74 48.63 28.64
- v v | 2542 46.07 58.63 69.06 | 19.35 32.09 49.71 29.21
v - v | 4455 6649 7759 8503 | 2093 33.55 5152 30.86
v o v v 15007 6993 80.07 8589 | 2193 34.51 52.87 3191

Table 3: Ablation studies on StaQC dev set and NQ dev set under noise ratio of 50%.

Setting R@1 R@5 R@20 R@100
n=5  50.03 69.64 80.17 85.76
n=10 50.07 69.93 80.07 85.89
n=20 38.09 6031 72.00 80.07
n=40 3298 5589 6850 77.67

Table 4: Performance of NPC on NQ dev set with dif-
ferent warmup epoch number n.

Table 3. “De” and “Co” refer to noise detection
and noise correction, respectively. “HN” indicates
whether to perform “Hard Negative” strategy. For
both synthetic noise and realistic noise, we can see
that the noise detection module brings a significant
gain, no matter which negative sampling strategy
is used. Correction also enhances the robustness of
the retriever since it provides rectified soft labels
which can lead the model output to be smoother.
The results show that combining the two obtains
better performance compared with only using the
detection module or correction module.

Impact of Warmup Epoch: According to the
foregoing, NPC first warms up the retriever on the
noisy dataset for initialization. In table 4, we show
the performance of NPC with different warmup
epoch number n. In this experiment, we adopt
“Hard Negative” sampling strategy. We observe the
performance degradation when increasing n from
5 to 30. According to the memorization effect of
neural networks, we believe that warming up too
long can cause the retriever overfits noisy pairs.
Even if iterative detection is used in NPC, it is
difficult to eliminate this effect.

Impact of Iterative Detection: In the training
of NPC, we perform iterative noise detection ev-
ery epoch. A straightforward approach is to detect
the noise only once after warmup and fix the esti-
mated flag set {g; }. To study the effectiveness of
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perplexity of each query-document pair

(a) Before warmup (b) After warmup
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perplexity of each query-document pair

(c) DPR (d) NPC

Figure 4: Perplexity distribution of training pairs under
different settings.

Setting ‘ R@l R@5 R@20 R@I100
NPC 50.07 69.93 80.07 85.89
-w/o iterative detection | 47.29 68.39 78.79 85.38
-ppl with HN 4281 65.06 7522  83.09

Table 5: Ablation studies of iterative noise detection
and perplexity variants

iterative detection, we conducted an ablation study.
The results are shown in Table 5. We can see that
the model performance degrades after removing
iterative detection.

Ablations of PPL: We distinguish noise pairs
according to the perplexity between the annotated
positive document and easy negatives. When cal-
culating the perplexity, “Hard Negative” will cause
trouble for detection. We construct ablation exper-
iments to verify this, and the results are shown in
Table 5. We can see that the perplexity with “Hard
Negative” results in performance degradation.

Visualization of Perplexity Distribution: In
Fig. 4, we illustrate the perplexity distribution of
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Figure 5: Retrieval performance of DPR and NPC on
NQ dev set under different noise ratios.

training pairs before and after warmup, after train-
ing with DPR, and after training with NPC. The
experiment is on NQ under the noise ratio of 50%.
We can see that the perplexity of most noisy pairs is
larger than the clean pairs after warmup, which veri-
fies our hypothesis in Sec. 3.1. Comparing Fig. 4(c)
and Fig. 4(d), we find that the retriever trained with
DPR will overfit the noise pairs. However, NPC en-
ables the retriever to correctly distinguish clean and
noisy pairs because it avoids the dominant effect of
noise during network optimization.

Visualization of Generalizability Fig. 5 shows
the performance of DPR and NPC under the noise
ratio ranging from 0% to 80%. We can see that as
the noise ratio increases, the performance degrada-
tion of DPR is much larger than that of NPC, which
demonstrates the generalizability of NPC.

5 Related Work

5.1 Dense Retrieval

Dense retrieval has shown better performance than
traditional sparse retrieval methods (Lee et al.,
2019; Karpukhin et al., 2020a). The studies of
dense retrieval can be divided into two categories,
(1) unsupervised pre-training to get better initializa-
tion (2) more effective fine-tuning on labeled data.
In the first category, Some researchers focus on how
to generate contrastive pairs automatically from a
large unsupervised corpus (Lee et al., 2019; Chang
et al., 2019; Ma et al., 2022; Li et al., 2022). An-
other line of research enforces the model to produce
an information-rich CLS representation (Gao and
Callan, 2021a,b; Lu et al., 2021). As for effective
fine-tuning strategies, recent studies show that neg-
ative sampling techniques are critical to the perfor-
mance of dense retrievers. DPR (Karpukhin et al.,
2020b) adopts in-batch negatives and BM25 nega-
tives; ANCE (Xiong et al., 2021), RocketQA (Qu
et al., 2021), and AR2 (Zhang et al., 2022a) im-
prove the hard negative sampling by iterative re-
placement, denoising, and adversarial framework,

respectively. Several works distill knowledge from
ranker to retriever (Izacard and Grave, 2020; Yang
and Seo, 2020; Ren et al., 2021; Zeng et al., 2022).

Although the above methods have achieved
promising results, they are highly dependent on
correctly matched data, which is difficult to satisfy
in real scenes. When the corpus is automatically
mined, some mismatched pairs will inevitably be
mixed in the training set. Previous works about
denoising dense retrieval mainly focus on the false-
negative problem (Qu et al., 2021; Zhang et al.,
2022a), while the mismatched-pair noise problem
has seldom been considered.

5.2 Denoising Techniques

Label noise is a common problem in real-world
applications. Numerous methods have been pro-
posed to solve this problem, and almost all of them
focus on the classification task (Han et al., 2020).
Some works design robust loss functions to learn
models under label noise (Ghosh et al., 2017; Ma
et al., 2020). Another line of work aims to identify
noise from the training set with the memorization
effect of neural networks (Arazo et al., 2019; Han
et al., 2018; Bai et al., 2021), i.e., the deep neural
network always learns clean samples before fitting
noisy samples (Arpit et al., 2017).

The studies mentioned above mainly focus on
classification. This paper studies the mismatched
noise problem in dense retrieval, i.e., the mis-
matched errors in paired data rather than the errors
in category annotations, which is more complex to
handle. Different from classifiers the training tar-
get of dense retrievers aims to bring representations
of positive pairs closer together and negative pairs
further apart. It is challenging to adopt denoising
methods in classification tasks directly.

6 Conclusion

This paper explores a neglected problem in dense
retrieval, i.e., mismatched-pair noise. To solve this
problem, we propose NPC, which iteratively de-
tects noisy pairs per epoch and then provides rec-
tified soft labels via an EMA model. We conduct
experiments on four benchmarks. Experimental
results show the excellent performance of NPC in
handling synthetic and realistic mismatched-pair
noise. We believe this work points out the long-
neglected problems in dense retrieval and has great
practical value.



Limitations

This work mainly focuses on training the dense
retrieval models with mismatched noise. There
may be two possible limitations in our study.

1) Due to the limited computing infrastructure,
we only verified the robustness performance of
NPC based on the classical retriever training frame-
work. We leave experiments to combine NPC with
more effective retriever training methods such as
distillation (Ren et al., 2021), AR2 (Zhang et al.,
2022a), as future work.

2) Mismatched-pair noise may also exist in other
tasks, such as recommender systems. In future
work, we will consider extending NPC to more
tasks.
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A Qualitative Analysis

Table 7 lists some mismatched pairs detected by
NPC in StaQC training set. We can see that these
mismatched pairs are almost irrelevant and can be
correctly detected by NPC. These examples are
not well aligned, mainly due to the low-quality
answers of the open community (cases 2 and 4),
inappropriate data preprocessing in the collection
phase (cases 2 and 3), and other reasons. It is well
known that collecting and cleaning training data is
expensive and complex work. Automatically con-
structed datasets in real-world applications often
contain such mismatched-pair noise. Our method
can mitigate the impact caused by such noise dur-
ing training.

B Statistics of Datasets

Dataset Train Dev  Test Corpus size
StaQC  203.7K 2.6K 27K 14.6K
SO-DS 121K 09K 1.1K 12.1K
NQ 792K  8,8K 3.6K 21 M
TQ 78.8K 8.8k 11.3K 21M

Table 6: The statistics of datasets. Corpus size means
the size of document corpus for evaluation.

C Discussion about Perplexity

We calculate the perplexity between the annotated
document and easy negative documents during
noise detection. We emphasize that the negative
documents are randomly selected from the docu-
ment collection D. Unlike Eq. 2, we can not adopt
“Hard Negative” sampling strategy when calculat-
ing the perplexity. Although hard negatives are
important to train a strong dense retriever, they will
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cause trouble during noise detection. Specifically,
it is expected that the retriever is confused only
between false positive and negative documents and
can confidently distinguish true positive and nega-
tive documents. But if we adopt “Hard Negative”
when calculating the perplexity, the retriever will
also be confused between true positive and hard
negative documents, which will affect noise detec-
tion. We construct ablation experiments to verify
this, and the results are shown in Table 5.



‘ Question

Code

Split words in a nested list into letters

» [list(1[0]) for 1 in mylist]

Dictionary in python problem

» s = problem.getSuccessors( getStartState())

user Model

Find the Common first name from Django Auth

» import operator

Find all text files not containing some text string

» Ist =[1,2,4,6,3,8,0,5]
» for n in Ist[:]:

»» ifn % 2 == 0:

»»» Ist.remove(n)

» Ist

Table 7: Some noisy pairs detected by NPC in StaQC training set.

12



