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Abstract

Most dense retrieval models contain an implicit001
assumption: the training query-document pairs002
are exactly matched. Since it is expensive to003
annotate the corpus manually, most training004
pairs in real-world applications are automat-005
ically collected, which inevitably introduces006
mismatched-pair noise. In this paper, we ex-007
plore an interesting and challenging problem in008
dense retrieval, how to train an effective model009
with mismatched-pair noise. To solve this prob-010
lem, we propose Noisy Pair Corrector (NPC),011
which consists of a detection module and a012
correction module. The detection module esti-013
mates noise pairs by calculating the perplexity014
between the annotated positive and easy neg-015
ative documents. The correction module pro-016
vides a soft supervised signal via an exponen-017
tial moving average (EMA) model. We conduct018
experiments on text-retrieval benchmarks Natu-019
ral Question and TriviaQA, code-search bench-020
marks StaQC and SO-DS. Experimental results021
show that NPC achieves excellent performance022
in handling both synthetic and realistic noise.023

1 Introduction024

With the advancements in pre-trained language025

models (Devlin et al., 2019; Liu et al., 2019), dense026

retrieval has developed rapidly in recent years. It027

is essential to many applications including search028

engine (Brickley et al., 2019), open-domain ques-029

tion answering (Karpukhin et al., 2020a), and code030

intelligence (Guo et al., 2021). A typical dense031

retrieval model maps both queries and documents032

into a low-dimensional vector space, and measures033

the relevance between them by the similarity be-034

tween their respective representations (Shen et al.,035

2014). During training, the model utilizes query-036

document pairs as labeled training data (Xiong037

et al., 2021) and samples negative documents for038

each pair. Then the model learns to minimize the039

contrastive loss for obtaining a good representation040

ability (Zhang et al., 2022b; Qu et al., 2021).041

Mismatched Noise Correctly Matched

Mismatched Noise Pair

Correctly Matched Pair

Sending a Dictionary using Sockets in Python

Code：

Query：

import json
#data serialized
data_string = json.dumps(data)
#data loaded
data_loaded = json.loads(data)

Check that variable is a lambda function

Code：

Query：

def is_lambda_function(obj):
return isinstance(obj,types.LambdaType)\

and obj.__name__ == "<lambda>"

Query TP Doc TN Doc FN DocFP Doc

Push Apart Pull Together

Figure 1: Two examples from StaQC training set. In the
bottom example, the given code is mismatched with the
query, since it can not answer the query.

Recent studies on dense retrieval have achieved 042

promising results with hard negative mining (Xiong 043

et al., 2021), pretraining (Gao and Callan, 2021a), 044

distillation (Yang and Seo, 2020), and adversarial 045

training (Zhang et al., 2022a). All methods con- 046

tain an implicit assumption: each query is exactly 047

aligned with the given positive documents in the 048

training set. However, this assumption is hard to 049

satisfy in real applications. Especially when the cor- 050

pus is automatically collected from the internet, it 051

is inevitable that mismatched pairs are mixed in the 052

training data. As shown in Fig. 1, the examples are 053

from StaQC benchmark (Yao et al., 2018), which is 054

automatically collected from StackOverflow. The 055

document, i.e., code solution, can not answer the 056

query but is incorrectly annotated as a positive doc- 057

ument. Such noisy pairs are widely present in auto- 058

matically constructed datasets, which will limit the 059

performance of dense retrievers. 060

One related work is Noisy Label which mainly 061

focuses on the classification task (Wang et al., 2019; 062

Bai et al., 2021; Han et al., 2020). An important 063

difference is that, dense retrieval adopts a ranking 064

object for training which aims to push the sim- 065
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Sending a Dictionary using Sockets in Python

Code：

Query：

import json
#data serialized
data_string = json.dumps(data)
#data loaded
data_loaded = json.loads(data)

Check that variable is a lambda function

Code：

Query：

def is_lambda_function(obj):
return isinstance(obj,types.LambdaType)\

and obj.__name__ == "<lambda>"

Query TP Doc TN Doc FN DocFP Doc

Push Apart Pull Together

Figure 2: Effect of matched & mismatched pair for
training. Green objects refer to annotated pairs, while
pentagram and triangle are actually aligned pairs. In the
left case, retrieval models are required to push the query
with true-positive document (TP Doc) together and pull
the query with true-negative documents (TN Doc) apart.
In the right case, the retrieval models are misled by the
mismatched data pair, where the false-positive docu-
ment (FP Doc) and the false-negative document (FN
Doc) are wrongly pulled and pushed, respectively.

ilarity between queries and positive documents066

greater than the negative documents. As shown067

in Fig. 2, the mismatched-pair noise will mislead068

the retriever to update in opposite direction. Some069

previous works focus on denoising false negatives,070

e.g., RocketQA filters the false negatives with a071

cross-encoder (Qu et al., 2021); AR2 adopts an072

adversarial framework to mitigate the effects of073

false negatives (Zhang et al., 2022a). So far, the074

mismatched-pair noise (false positive problem) in075

dense retrieval has not been well studied.076

Based on these observations, we propose Noisy077

pair corrector (NPC) framework to solve the false-078

positive problem. NPC consists of noise detection079

and correction modules. At each epoch, the detec-080

tion module estimates whether a query-document081

pair is mismatched by the perplexity between the082

annotated document and easy negative documents.083

Then the correction module provides a soft super-084

vised signal for both estimated noisy data and clean085

data via an exponential moving average (EMA)086

model. Both modules are plug-and-play, which087

means NPC is a general training paradigm that can088

be easily applied to almost all retrieval models.089

The contributions of this paper are as follows:090

1) We reveal a long-neglected problem in dense re-091

trieval, i.e., mismatched-pair noise, which is ubiq-092

uitous in the real world. 2) To address this problem,093

we propose a simple yet effective method for train-094

ing dense retrieval models with mismatched-pair095

noise. 3) Extensive experiments on four datasets096

verify the effectiveness of our method against syn- 097

thetic and realistic noise. Our method achieves 098

new state-of-the-art performance on realistic-noisy 099

dataset StaQC. 100

2 Preliminary 101

Before describing our model in detail, we first in- 102

troduce the basic elements of dense retrieval, in- 103

cluding problem definition, model architecture, and 104

model training. 105

Given a query q, and a document collection 106

D, dense retrieval aims to find document d+ rel- 107

evant to q from D. The training set consists of 108

a collection of query-document pairs, donated as 109

C = {(q1, d+1 ), ..., (qN , d+N )}, where N is the data 110

size. Typical dense retrieval models adopt a dual 111

encoder architecture to map queries and documents 112

into a dense representation space. Then the rele- 113

vance score f(q, d) of query q and document d can 114

be calculated with their dense representations: 115

fθ(q, d) = sim (E(q; θ), E(d; θ)) , (1) 116

where E(·; θ) denotes the encoder module param- 117

eterized with θ, and sim is the similarity func- 118

tion, e.g., euclidean distance, cosine distance, inner- 119

product. Based on the embeddings, existing meth- 120

ods generally utilize ANN technique (Johnson 121

et al., 2019) for efficient search. 122

For training dense retrievers, the contrastive loss 123

is widely applied (Karpukhin et al., 2020a; Zhang 124

et al., 2022b). Specifically, for each training pair 125

(qi, di) ∈ C, we sample m negative irrelevant docu- 126

ments {d−i,1, ..., d
−
i,m} from document collection D. 127

To push the similarity of positive pairs higher than 128

negative pairs, the retriever θ tends to minimize the 129

loss function : 130

Lcont = − log
eτfθ(qi,di)

eτfθ(qi,di) +
∑m

j=1 e
τfθ(qi,d

−
i,j)

,

(2) 131

where τ is a hyper-parameter to control the temper- 132

ature. Previous work (Xiong et al., 2021) has veri- 133

fied the effectiveness of negative sampling strategy. 134

The two most common strategies are “In-Batch 135

Negative” and “Hard Negative” (Karpukhin et al., 136

2020a; Qu et al., 2021). 137

The above training paradigm assumes that the 138

query-document pairs in training set C are correctly 139

aligned. We argue that this assumption is difficult 140

to satisfy. Since most training data in real-world 141

applications are collected automatically without 142
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(a) Noise Detection
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(b) Noise Correction

Figure 3: Overview of noise detection and noise correction. (a) Procedure of Noise Detection. At each epoch,
we first calculate the perplexity of all training query-document pairs using the retriever θ; next fit the perplexity
distribution with Gaussian Mixture Model to get the correctly matched probability of each pair; finally estimate
the flag set {ŷi}Ni=1 by setting the threshold. (b) Framework of Noise Correction. Given a batch of data pairs,
where d−i,1 is the hard negative of qi and {q3, d+3 } is the estimated noisy pair, the retriever θ and teacher θ∗ compute
similarity matrices Sθ and Sθ∗ for all queries and documents, respectively. The retriever learns to minimize (1)
Lcont: the negative likelihood probability of true positive documents; (2) Lcons: the KL divergence between Sθ and
the rectified soft label Sθ∗ after normalization.

manual inspection, which will unavoidably contain143

some mismatched pairs.144

3 Method145

We propose NPC framework to learn retrievers with146

mismatched-pair noise. As shown in Fig. 3, NPC147

consists of two parts: (a) the noise detection mod-148

ule as described in Sec. 3.1, and (b) the noise cor-149

rection module as described in Sec. 3.2.150

3.1 Noise Detection151

The noise detection module is meant to detect mis-152

matched pairs in the training set. Previous works153

have shown that neural networks tend to first learn154

clean samples and then gradually fit noisy sam-155

ples (Arazo et al., 2019; Arpit et al., 2017). Moti-156

vated by this, we hypothesize that: dense retriev-157

ers will first learn to distinguish correctly matched158

pairs from easy negatives, and then gradually over-159

fit the mismatched pairs. Therefore, we determine160

whether a training pair is mismatched by the per-161

plexity between the annotated document and easy162

negative documents.163

Specifically, given a retriever θ and an uncertain164

pair (qi, di), we calculate the perplexity as follows:165

166

PPL(qi,di,θ) = − log eτfθ(qi,di)

eτfθ(qi,di)+
∑m

j=1 e
τfθ(qi,d

−
i,j

)
,

(3)167

where τ is a hyper-parameter, d−i,j is the negative168

document randomly sampled from the document169

collection D. Note that d−i,j is a random easy neg- 170

ative, not a hard negative. We discuss this further 171

in Appendix C. In practice, we adopt “In-Batch 172

Negative” strategy for efficiency. 173

After obtaining the perplexity of each pair, we 174

need an automated method to divide the noise and 175

clean data. Motivated by Li et al. (2019), we fit the 176

perplexity distribution over all training pairs by a 177

two-component Gaussian Mixture Model (GMM): 178

p (PPL | θ) =
K∑
k=1

πkϕ (PPL | k) , (4) 179

where πk and ϕ (PPL | k) are the mixture coeffi- 180

cient and the probability density of the k-th com- 181

ponent, respectively. We optimize the GMM with 182

the Expectation-Maximization algorithm (Demp- 183

ster et al., 1977). 184

Based on the above hypothesis, we treat training 185

pairs with higher PPL as noise and those with lower 186

PPL as clean data. So the estimated clean flag can 187

be calculated as follows: 188

ŷi = I
(
p(κ | PPL(qi,di,θ)) > λ

)
, (5) 189

where ŷi ∈ {1, 0} denotes whether we estimate 190

the pair (qi, di) to be correctly matched or not, κ 191

is the GMM component with the lower mean, λ 192

is the threshold. p(κ | PPL(qi,di,θ)) is the poster 193

probability over the component κ, which can be 194

intuitively understood as the correctly annotated 195

confidence. We set λ to 0.5 in all experiments. 196
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3.2 Noise Correction197

Next, we will introduce how to reduce the interfer-198

ence of noise pairs after obtaining the estimated199

flag set {ŷi}Ni=1. One quick fix is to discard the200

noise data directly, which is sub-optimal since it201

wastes the query data in noisy pairs. Motivated by202

semi-supervised methods (Tarvainen and Valpola,203

2017), we adopt a self-ensemble teacher to provide204

rectified soft labels for noisy pairs. The teacher205

is an exponential moving average (EMA) of the206

retriever, and the retriever is trained with a weight-207

averaged consistency target on noisy data.208

Specifically, given a retriever θ, the teacher θ∗209

is updated with an exponential moving average210

strategy as follows:211

θ∗t = αθ⋆t−1 + (1− α)θt, (6)212

where α is a momentum coefficient. Only the pa-213

rameters θ are updated by back-propagation.214

For a query qi and the candidate document set215

Dqi , where Dqi = {di,j}mj=1 could consist of an-216

notated documents, hard negatives and in-batch217

negatives, we first get teacher’s and retriever’s sim-218

ilarity scores, respectively. Then, the retriever θ is219

expected to keep consistent with its smooth teacher220

θ∗. To achieve this goal, we update the retriever221

θ by minimizing the KL divergence between the222

student’s distribution and the teacher’s distribution.223

To be concrete, the similarity scores between qi224

and Dqi are normalized into the following distribu-225

tions:226

pϕ(di,j |qi;Dqi) =
eτfϕ(qi,di,j)∑m
j=1 e

τfϕ(qi,di,j)
, ϕ ∈ {θ, θ∗},

(7)227

Then, the consistency loss Lcons can be written as:228

229

Lcons = KL(pθ(.|qi;Dqi), pθ∗(.|qi;Dqi)), (8)230

where KL(·) is the KL divergence, pθ(.|qi;Dqi)231

and pθ∗(.|qi;Dqi) denote the conditional probabili-232

ties of candidate documents Dqi by the retriever θ233

and the teacher θ∗, respectively.234

For the estimated noisy pair, the teacher corrects235

the supervised signal into a soft label. For the236

estimated clean pair, we calculate the contrastive237

loss and consistency loss. So the overall loss is238

formalized:239

L = ŷiLcont + Lcons, (9)240

where ŷi ∈ {1, 0} is estimated by the noise detec-241

tion module.242

Algorithm 1 Noisy Pair Corrector (NPC)

Require: Retriever θ; Noisy Training dataset C.
1: Warmup the retriever θ on noisy dataset C by

optimizing Eq.2;
2: Initial EMA model θ∗ with θ;
3: for i = 1 : num_epoch do
4: Calculate PPL of training pairs with random

negatives using Eq.3;
5: Fit PPL distribution with GMM;
6: Get the estimated flag set {ŷi} using Eq.5;
7: for i = 1 : num_batch do
8: Sample negatives with “In-Batch Nega-

tive” or “Hard Negative” strategy;
9: Calculate rectified soft labels with EMA

model θ∗;
10: Train θ by optimizing Eq.9;
11: Update EMA model θ∗ using Eq.6;
12: end for
13: end for

3.3 Overall Procedure 243

NPC is a general training framework that can be 244

easily applied to almost all retrieval methods. Un- 245

der the classical training process of dense retrieval, 246

we add the noise detection module before training 247

each epoch and the noise correction module during 248

training. The detail is presented in Algorithm 1. 249

4 Experiments 250

4.1 Datasets 251

To verify the effectiveness of NPC in robust 252

dense retrieval, we conduct experiments on four 253

commonly-used benchmarks, including Natural 254

Questions (Kwiatkowski et al., 2019), Trivia 255

QA (Joshi et al., 2017), StaQC (Yao et al., 2018) 256

and SO-DS (Heyman and Van Cutsem, 2020). 257

StaQC (Stack Overflow Question-Code pairs)is 258

a large dataset that collects real query-code pairs 259

from Stack Overflow1. The dataset has been widely 260

used on code summarization (Peddamail et al., 261

2018) and code search (Heyman and Van Cutsem, 262

2020). SO-DS mines query-code pairs from the 263

most upvoted Stack Overflow posts, mainly focuses 264

on the data science domain. Following previous 265

works (Heyman and Van Cutsem, 2020; Li et al., 266

2022), we resort to Recall of top-k (R@k) and 267

Mean Reciprocal Rank (MRR) as the evaluation 268

metric. StaQC and SO-DS are mined automatically 269

1https://stackoverflow.com/
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StaQC SO-DS
Methods

R@3 R@10 MRR R@3 R@10 MRR
BM25desc (Heyman and Van Cutsem, 2020) 8.0 13.3 7.5 23.8 32.3 21.6
NBOW (Heyman and Van Cutsem, 2020) 10.9 16.6 9.5 27.7 38.0 24.7
USE (Heyman and Van Cutsem, 2020) 12.8 20.3 11.7 33.3 48.5 30.4
CodeBERT (Feng et al., 2020) - - 23.4 - - 23.1
GraphCodeBERT (Guo et al., 2021) - - 24.1 - - 25.2
CodeRetriever (In-Batch Negative) (Li et al., 2022) - - 25.5 - - 27.1
CodeRetriever (Hard Negative) (Li et al., 2022) - - 24.6 - - 31.8
UniXcoder (In-Batch Negative) (Guo et al., 2022) 29.98 47.47 28.04 31.90 51.21 28.29
UniXcoder (Hard Negative) (Guo et al., 2022) 31.18 48.38 28.63 33.42 53.37 29.97
NPC (In-Batch Negative) 33.07 50.35 30.39 35.58 54.54 30.96
NPC (Hard Negative) 34.38 52.20 31.36 38.00 56.51 32.49

Table 1: Retrieval performance on StaQC and SO-DS, which are realistic-noisy datasets. The results of the first
block are borrowed from published papers (Heyman and Van Cutsem, 2020; Li et al., 2022). If the results are not
provided, we mark them as “-”.

without human annotation. Therefore, there are270

numerous mismatched pairs in training data.271

Natural Questions (NQ) collects real queries272

from the Google search engine. Each question273

is paired with an answer span and golden passages274

from the Wikipedia pages. Trivia QA (TQ) is a275

reading comprehension corpus authored by trivia276

enthusiasts. In NQ and TQ, the goal of the retrieval277

stage is to find positive passages given queries278

from a large collection. Following Karpukhin et al.279

(2020a), we report Recall of top-k (R@k) as the280

evaluation metric. As NQ and TQ are well anno-281

tated by humans, we simulate the mismatched-pair282

noise with reference to the setting in the noisy clas-283

sification task (Natarajan et al., 2013). Specifically,284

we randomly select a specific percentage of training285

queries and pair random documents to them.286

4.2 Implementation Details287

NPC is a general training paradigm that can be di-288

rectly applied to almost all retrieval models. For289

StaQC and SO-DS, we adopt UniXcoder (Guo290

et al., 2022) as our backbone, which is the SoTA291

model for code representation. Following Guo et al.292

(2022), we adopt the cosine distance as similarity293

function and set temperature λ to 20. We update294

model parameters using the Adam optimizer and295

perform early stopping on the development set. The296

learning rate, batch size, warmup epoch, and train-297

ing epoch are set to 2e-5, 256, 5, and 10, respec-298

tively. In the “Hard Negative” setting, we adopt the299

same strategy as Li et al. (2022). For a fair com-300

parison, we implement UniXcoder with the same301

hyperparameters.302

For NQ and TQ, we adopt BERT (Devlin et al., 303

2019) as our initial model. Following Karpukhin 304

et al. (2020a), we adopt inner-product as the sim- 305

ilarity function and set temperature λ to 1. The 306

max sequence length is 16 for query and 128 for 307

passage. The learning rate, batch size, warmup 308

epoch, and training epoch are set to 2e-5, 512, 10, 309

and 40, respectively. We adopt “BM25 Negative” 310

and “Hard Negative” strategies as described in the 311

DPR toolkit 2. For a fair comparison, we imple- 312

ment DPR (Karpukhin et al., 2020a) with the same 313

hyperparameters. 314

All the experiments are run on 8 NVIDIA Tesla 315

A100 GPUs. The implementation code of NPC is 316

based on Huggingface (Wolf et al., 2020). 317

4.3 Results 318

Results on StaQC and SO-DS: Table 1 shows 319

the results on the realistic-noisy datasets StaQC 320

and SO-DS. Both datasets contain a large num- 321

ber of real noise pairs. The first block shows the 322

results of previous SoTA methods. BM25desc is 323

a traditional sparse retriever based on the exact 324

term matching of queries and code descriptions. 325

NBOW is an unsupervised retriever that leverages 326

pretrained word embedding of queries and code 327

descriptions for retrieval. USE is a simple dense re- 328

triever based transformer. CodeBERT, GraphCode- 329

BERT are pretrained models for code understand- 330

ing using large-scale code corpus. CodeRetriever 331

is a pretrained model dedicated to code retrieval, 332

which is pretrained with unimodal and bimodal 333

2https://github.com/facebookresearch/
DPR
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Noisy Methods
Natural Questions Trivia QA

R@1 R@5 R@20 R@100 R@1 R@5 R@20 R@100

0

BM25∗ - - 59.1 73.7 - - 66.9 76.7
DPR∗ - - 78.4 85.4 - - 79.4 85.0
DPR (BM25 Negative) 45.02 66.95 79.61 86.08 53.14 71.31 79.79 85.19
NPC (BM25 Negative) 45.55 68.22 80.20 86.62 52.37 70.91 79.43 84.86
DPR (Hard Negative) 51.88 73.56 82.96 87.74 56.58 73.10 80.85 85.74
NPC (Hard Negative) 51.94 73.64 83.08 88.11 56.36 73.22 80.74 85.68

20

DPR (BM25 Negative) 27.07 47.79 63.36 75.69 35.73 52.88 64.05 74.16
DPR-C (BM25 Negative) 43.69 66.62 79.07 86.12 52.10 70.52 79.05 85.08
NPC (BM25 Negative) 45.22 68.42 79.76 86.56 52.34 70.22 79.10 84.86
DPR (Hard Negative) 37.61 60.73 71.68 79.56 43.39 60.67 70.34 77.88
DPR-C (Hard Negative) 51.66 72.40 81.50 87.80 55.35 72.36 80.33 85.34
NPC (Hard Negative) 51.85 73.06 82.47 87.80 56.03 72.54 80.59 85.58

50

DPR (BM25 Negative) 16.12 33.88 49.70 63.38 20.09 34.63 47.42 61.04
DPR-C (BM25 Negative) 41.29 65.21 78.48 85.70 49.61 68.81 78.00 84.23
NPC (BM25 Negative) 42.87 65.65 78.37 85.76 50.80 68.98 78.21 84.43
DPR (Hard Negative) 23.87 42.34 55.12 67.06 28.47 45.12 56.88 67.62
DPR-C (Hard Negative) 48.87 70.52 81.44 87.17 53.07 70.36 79.02 84.69
NPC (Hard Negative) 48.81 70.60 81.17 87.20 53.09 70.27 79.31 84.96

Table 2: Retrieval performance on Natural Questions and Trivia QA under the noise ratio of 0%, 20%, and 50%,
respectively. The results of BM25∗ and DPR∗ are borrowed from Karpukhin et al. (2020a). If the results are not
provided, we mark them as “-”.

contrastive learning on a large-scale corpus. The334

second block shows the results of UniXcoder with335

two negative sampling strategies. UniXcoder is336

also a pretrained model that utilizes multi-modal337

data, including code, comment, and AST, for better338

code representation. The results are implemented339

by ourselves for a fair comparison with NPC. The340

bottom block shows the results of NPC using two341

negative sampling strategies.342

From the results, we can see that our proposed343

NPC consistently performs better than the evalu-344

ated models across all metrics. Compared with345

the strong baseline UniXcoder which ignores the346

mismatched-pair problem, NPC achieves a signif-347

icant improvement with both “in-batch negative”348

and “hard negative” sampling strategies. It indi-349

cates that the mismatched-pair problem greatly lim-350

its the performance of dense retrieval models, and351

NPC, a general training paradigm, can mitigate this352

negative effect.353

Results on NQ and TQ: Table 2 shows the re-354

sults on the synthetic-noisy datasets NQ and TQ355

under the noise ratio of 0%, 20%, and 50%. We356

compare NPC with BM25 (Yang et al., 2017) and357

DPR (Karpukhin et al., 2020a). BM25 is an un-358

supervised sparse retriever that is not affected by359

noisy data. DPR (Karpukhin et al., 2020a) is a360

widely used method for training dense retrievers.361

We implement NPC and DPR using two negative 362

sampling strategies. Besides, we evaluate DPR 363

on clean datasets by discarding the synthetic-noisy 364

pairs, denoted by DPR-C. DPR-C is a strong base- 365

line that is not affected by mismatched pairs. 366

We can observe that (1) With the increase of 367

the noise ratio, DPR shows severe performance 368

degradation. When the noise rate is 50%, the 369

performance of supervised DPR is lower than un- 370

supervised BM25. (2) Under the noise-free set- 371

ting, NPC achieves competitive results compared 372

to DPR, even though NPC is designed to combat 373

mismatched-pair noise. (3) When the training data 374

contains noisy pairs, NPC outperforms the DPR 375

method by a large margin, with only a slight per- 376

formance drop when the noise increases. Even 377

comparing DPR-C, which is trained on clean data, 378

NPC still achieves competitive results. 379

4.4 Analysis 380

In this section, we conduct a set of detailed exper- 381

iments on analyzing the proposed NPC training 382

framework to help understand its pros and cons. 383

Ablations of Noise Detection and Noise Cor- 384

rection: To get a better insight into NPC, we con- 385

duct ablation studies on the realistic-noisy dataset 386

StaQC and the synthetic-noisy dataset NQ under 387

the noise ratio of 50%. The result are shown in 388
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Methods NQ StaQC
De Co HN R@1 R@5 R@20 R@100 R@1 R@3 R@5 MRR
- - - 16.84 33.06 48.22 62.31 18.08 31.09 47.94 27.93
- ✓ - 21.66 40.83 55.90 69.33 18.51 31.01 48.98 28.34
✓ - - 39.08 62.18 75.19 83.31 20.05 32.71 51.14 30.09
✓ ✓ - 42.57 65.47 77.50 84.79 20.70 33.55 52.71 30.66
- - ✓ 23.46 42.42 54.63 65.54 18.66 31.74 48.63 28.64
- ✓ ✓ 25.42 46.07 58.63 69.06 19.35 32.09 49.71 29.21
✓ - ✓ 44.55 66.49 77.59 85.03 20.93 33.55 51.52 30.86
✓ ✓ ✓ 50.07 69.93 80.07 85.89 21.93 34.51 52.87 31.91

Table 3: Ablation studies on StaQC dev set and NQ dev set under noise ratio of 50%.

Setting R@1 R@5 R@20 R@100

n=5 50.03 69.64 80.17 85.76
n=10 50.07 69.93 80.07 85.89
n=20 38.09 60.31 72.00 80.07
n=40 32.98 55.89 68.50 77.67

Table 4: Performance of NPC on NQ dev set with dif-
ferent warmup epoch number n.

Table 3. “De” and “Co” refer to noise detection389

and noise correction, respectively. “HN” indicates390

whether to perform “Hard Negative” strategy. For391

both synthetic noise and realistic noise, we can see392

that the noise detection module brings a significant393

gain, no matter which negative sampling strategy394

is used. Correction also enhances the robustness of395

the retriever since it provides rectified soft labels396

which can lead the model output to be smoother.397

The results show that combining the two obtains398

better performance compared with only using the399

detection module or correction module.400

Impact of Warmup Epoch: According to the401

foregoing, NPC first warms up the retriever on the402

noisy dataset for initialization. In table 4, we show403

the performance of NPC with different warmup404

epoch number n. In this experiment, we adopt405

“Hard Negative” sampling strategy. We observe the406

performance degradation when increasing n from407

5 to 30. According to the memorization effect of408

neural networks, we believe that warming up too409

long can cause the retriever overfits noisy pairs.410

Even if iterative detection is used in NPC, it is411

difficult to eliminate this effect.412

Impact of Iterative Detection: In the training413

of NPC, we perform iterative noise detection ev-414

ery epoch. A straightforward approach is to detect415

the noise only once after warmup and fix the esti-416

mated flag set {ŷi}. To study the effectiveness of417

(a) Before warmup (b) After warmup

(c) DPR (d) NPC

Figure 4: Perplexity distribution of training pairs under
different settings.

Setting R@1 R@5 R@20 R@100

NPC 50.07 69.93 80.07 85.89
-w/o iterative detection 47.29 68.39 78.79 85.38
-ppl with HN 42.81 65.06 75.22 83.09

Table 5: Ablation studies of iterative noise detection
and perplexity variants

iterative detection, we conducted an ablation study. 418

The results are shown in Table 5. We can see that 419

the model performance degrades after removing 420

iterative detection. 421

Ablations of PPL: We distinguish noise pairs 422

according to the perplexity between the annotated 423

positive document and easy negatives. When cal- 424

culating the perplexity, “Hard Negative” will cause 425

trouble for detection. We construct ablation exper- 426

iments to verify this, and the results are shown in 427

Table 5. We can see that the perplexity with “Hard 428

Negative” results in performance degradation. 429

Visualization of Perplexity Distribution: In 430

Fig. 4, we illustrate the perplexity distribution of 431
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(a) w/o Hard Negative (b) w/ Hard Negative

Figure 5: Retrieval performance of DPR and NPC on
NQ dev set under different noise ratios.

training pairs before and after warmup, after train-432

ing with DPR, and after training with NPC. The433

experiment is on NQ under the noise ratio of 50%.434

We can see that the perplexity of most noisy pairs is435

larger than the clean pairs after warmup, which veri-436

fies our hypothesis in Sec. 3.1. Comparing Fig. 4(c)437

and Fig. 4(d), we find that the retriever trained with438

DPR will overfit the noise pairs. However, NPC en-439

ables the retriever to correctly distinguish clean and440

noisy pairs because it avoids the dominant effect of441

noise during network optimization.442

Visualization of Generalizability Fig. 5 shows443

the performance of DPR and NPC under the noise444

ratio ranging from 0% to 80%. We can see that as445

the noise ratio increases, the performance degrada-446

tion of DPR is much larger than that of NPC, which447

demonstrates the generalizability of NPC.448

5 Related Work449

5.1 Dense Retrieval450

Dense retrieval has shown better performance than451

traditional sparse retrieval methods (Lee et al.,452

2019; Karpukhin et al., 2020a). The studies of453

dense retrieval can be divided into two categories,454

(1) unsupervised pre-training to get better initializa-455

tion (2) more effective fine-tuning on labeled data.456

In the first category, Some researchers focus on how457

to generate contrastive pairs automatically from a458

large unsupervised corpus (Lee et al., 2019; Chang459

et al., 2019; Ma et al., 2022; Li et al., 2022). An-460

other line of research enforces the model to produce461

an information-rich CLS representation (Gao and462

Callan, 2021a,b; Lu et al., 2021). As for effective463

fine-tuning strategies, recent studies show that neg-464

ative sampling techniques are critical to the perfor-465

mance of dense retrievers. DPR (Karpukhin et al.,466

2020b) adopts in-batch negatives and BM25 nega-467

tives; ANCE (Xiong et al., 2021), RocketQA (Qu468

et al., 2021), and AR2 (Zhang et al., 2022a) im-469

prove the hard negative sampling by iterative re-470

placement, denoising, and adversarial framework,471

respectively. Several works distill knowledge from 472

ranker to retriever (Izacard and Grave, 2020; Yang 473

and Seo, 2020; Ren et al., 2021; Zeng et al., 2022). 474

Although the above methods have achieved 475

promising results, they are highly dependent on 476

correctly matched data, which is difficult to satisfy 477

in real scenes. When the corpus is automatically 478

mined, some mismatched pairs will inevitably be 479

mixed in the training set. Previous works about 480

denoising dense retrieval mainly focus on the false- 481

negative problem (Qu et al., 2021; Zhang et al., 482

2022a), while the mismatched-pair noise problem 483

has seldom been considered. 484

5.2 Denoising Techniques 485

Label noise is a common problem in real-world 486

applications. Numerous methods have been pro- 487

posed to solve this problem, and almost all of them 488

focus on the classification task (Han et al., 2020). 489

Some works design robust loss functions to learn 490

models under label noise (Ghosh et al., 2017; Ma 491

et al., 2020). Another line of work aims to identify 492

noise from the training set with the memorization 493

effect of neural networks (Arazo et al., 2019; Han 494

et al., 2018; Bai et al., 2021), i.e., the deep neural 495

network always learns clean samples before fitting 496

noisy samples (Arpit et al., 2017). 497

The studies mentioned above mainly focus on 498

classification. This paper studies the mismatched 499

noise problem in dense retrieval, i.e., the mis- 500

matched errors in paired data rather than the errors 501

in category annotations, which is more complex to 502

handle. Different from classifiers the training tar- 503

get of dense retrievers aims to bring representations 504

of positive pairs closer together and negative pairs 505

further apart. It is challenging to adopt denoising 506

methods in classification tasks directly. 507

6 Conclusion 508

This paper explores a neglected problem in dense 509

retrieval, i.e., mismatched-pair noise. To solve this 510

problem, we propose NPC, which iteratively de- 511

tects noisy pairs per epoch and then provides rec- 512

tified soft labels via an EMA model. We conduct 513

experiments on four benchmarks. Experimental 514

results show the excellent performance of NPC in 515

handling synthetic and realistic mismatched-pair 516

noise. We believe this work points out the long- 517

neglected problems in dense retrieval and has great 518

practical value. 519
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Limitations520

This work mainly focuses on training the dense521

retrieval models with mismatched noise. There522

may be two possible limitations in our study.523

1) Due to the limited computing infrastructure,524

we only verified the robustness performance of525

NPC based on the classical retriever training frame-526

work. We leave experiments to combine NPC with527

more effective retriever training methods such as528

distillation (Ren et al., 2021), AR2 (Zhang et al.,529

2022a), as future work.530

2) Mismatched-pair noise may also exist in other531

tasks, such as recommender systems. In future532

work, we will consider extending NPC to more533

tasks.534
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A Qualitative Analysis748

Table 7 lists some mismatched pairs detected by749

NPC in StaQC training set. We can see that these750

mismatched pairs are almost irrelevant and can be751

correctly detected by NPC. These examples are752

not well aligned, mainly due to the low-quality753

answers of the open community (cases 2 and 4),754

inappropriate data preprocessing in the collection755

phase (cases 2 and 3), and other reasons. It is well756

known that collecting and cleaning training data is757

expensive and complex work. Automatically con-758

structed datasets in real-world applications often759

contain such mismatched-pair noise. Our method760

can mitigate the impact caused by such noise dur-761

ing training.762

B Statistics of Datasets763

Dataset Train Dev Test Corpus size
StaQC 203.7K 2.6K 2.7K 14.6K
SO-DS 12.1K 0.9K 1.1K 12.1K
NQ 79.2K 8,8K 3.6K 21 M
TQ 78.8K 8.8k 11.3K 21 M

Table 6: The statistics of datasets. Corpus size means
the size of document corpus for evaluation.

C Discussion about Perplexity764

We calculate the perplexity between the annotated765

document and easy negative documents during766

noise detection. We emphasize that the negative767

documents are randomly selected from the docu-768

ment collection D. Unlike Eq. 2, we can not adopt769

“Hard Negative” sampling strategy when calculat-770

ing the perplexity. Although hard negatives are771

important to train a strong dense retriever, they will772

cause trouble during noise detection. Specifically, 773

it is expected that the retriever is confused only 774

between false positive and negative documents and 775

can confidently distinguish true positive and nega- 776

tive documents. But if we adopt “Hard Negative” 777

when calculating the perplexity, the retriever will 778

also be confused between true positive and hard 779

negative documents, which will affect noise detec- 780

tion. We construct ablation experiments to verify 781

this, and the results are shown in Table 5. 782
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Question Code

1 Split words in a nested list into letters » [list(l[0]) for l in mylist]
2 Dictionary in python problem » s = problem.getSuccessors( getStartState())

3
Find the Common first name from Django Auth
user Model

» import operator

4 Find all text files not containing some text string

» lst = [1,2,4,6,3,8,0,5]
» for n in lst[:]:
»» if n % 2 == 0:
»»» lst.remove(n)
» lst

Table 7: Some noisy pairs detected by NPC in StaQC training set.
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