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ABSTRACT

This paper addresses the phase retrieval problem, which aims to recover a signal
vector x\ from m measurements yi = |hai,x\i|2, i = 1, . . . ,m. A standard ap-
proach is to solve a nonconvex least squares problem using gradient descent with
random initialization, which is known to work efficiently given a sufficient num-
ber of measurements. However, whether O(n) measurements suffice for gradient
descent to recover the ground truth efficiently has remained an open question.
Prior work has established that O(n poly(log n)) measurements are sufficient. In
this paper, we resolve this open problem by proving that m = O(n) Gaussian
random measurements are sufficient to guarantee, with high probability, that the
objective function has a benign global landscape. This sample complexity is op-
timal because at least ⌦(n) measurements are required for exact recovery. The
landscape result allows us to further show that gradient descent with a constant
step size converges to the ground truth from almost any initial point.

1 INTRODUCTION

We study the problem of phase retrieval, which aims to recover a complex valued vector x\ 2 Cn

from its intensity measurements

yi = |hai,x
\i|2, i = 1, . . . ,m, (1)

where ai 2 Cn, i = 1, . . . ,m, are known complex vectors and m is the number of measurements.
This problem has attracted high interest due to its broad applications in X-ray crystallography (Elser
et al., 2018), microscopy (Miao et al., 2008), astronomy (Fienup & Dainty, 1987) and optical imag-
ing (Shechtman et al., 2015).

The phase retrieval problem is NP-hard if only very few measurements, e.g. m = n + 1 (Fickus
et al., 2014), are given. However, a wide range of algorithms can recover x\ up to a global phase
shift provided enough measurements. Early methods with provable performance guarantees usually
formulate it into a convex constrained optimization problem, such as a semidefinite programming
problem (Candes et al., 2013; 2015a; Waldspurger et al., 2015) or basis pursuit problem (Goldstein
& Studer, 2018). These methods are usually computationally challenging in high-dimensional cases.
To address this issue, more recent works take nonconvex approaches, such as alternating minimiza-
tion (Wen et al., 2012; Netrapalli et al., 2013; Waldspurger, 2018; Zhang, 2020); gradient descent
type algorithms, including Wirtinger flow (Candes et al., 2015b; Chen & Candes, 2015; Ma et al.,
2020), truncated amplitude flow (Wang et al., 2017), vanilla gradient descent (Chen et al., 2019),
Riemannian gradient descent (Cai & Wei, 2024); and Newton type algorithms (Gao & Xu, 2017;
Ma et al., 2018).

Convex methods mentioned above can achieve optimal sample complexity m = O(n), but require
an initialization close enough to the ground truth x\. For nonconvex algorithms, O(n) sample com-
plexity can be achieved with a careful initialization (Chen & Candes, 2015; Wang et al., 2017; Wald-
spurger, 2018; Cai & Wei, 2024). However, such initialization can be computationally inefficient
when the dimension n is large. In practice, random initialization is more plausible. In the random
initialization regime, it is known that O(n log13 n) samples are sufficient to guarantee a nearly linear
convergence rate for vanilla gradient descent (Chen et al., 2019). To obtain a lower sample complex-
ity in this regime, a benign global landscape result was analyzed for both the intensity measurement
(1) (Sun et al., 2018b; Cai et al., 2023) and the amplitude measurement yi = |hai,x\i| (Cai et al.,
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2022b) for `2-loss function. Both the intensity and the amplitude model have no spurious local min-
ima and saddle points are strict, provided O(n log n) and O(n) samples respectively. Nevertheless,
no global convergence guarantee of gradient descent algorithm can be easily deduced because the
Lipschitz gradient assumption in the classical convergence results (Lee et al., 2016) does not hold,
and the bounded iterates assumptions are hard to verify.

In this paper, we aim at showing the global convergence of vanilla gradient descent algorithm with
arbitrary initialization for general phase retrieval problem with O(n) intensity measurements. We
propose a new tensor based criterion to show that O(n) Gaussian samples of intensity measurements
(1) are sufficient to guarantee a benign global landscape for phase retrieval problem. Furthermore,
we show that such objective function has bounded gradient trajectories, which give us the certificate
to apply the general global convergence result in (Josz, 2023). By combining the global benign
landscape result and global convergence result, we conclude that given O(n) Gaussian samples,
with high probability, vanilla gradient descent initialized almost everywhere converge to the ground
truth of phase retrieval problem.

1.1 CONTRIBUTIONS

The main contributions of this paper can be summarized as follows.

1. We propose a new simple deterministic criterion and use it to verify the global benign
landscape of intensity-based phase retrieval problem. In particular, with this simple crite-
rion, we prove at once that the objective function admits restricted strong convexity near
the ground truth, has Hessian with a negative eigenvalue near the origin, and has nonzero
gradient elsewhere.

2. We utilize a new concentration inequality for random tensor to prove that O(n) Gaussian
samples are sufficient to satisfy our proposed criterion. This new technique circumvents the
main challenge in literature that the objective and its gradient are heavy-tailed and hence
reduce the logarithmic factor of the sample complexity.

3. We establish the boundedness of any gradient trajectories for intensity-based phase retrieval
problem by revealing that its gradient trajectory only moves inside a linear subspace. This
useful fact allows us to invoke a general global convergence result of gradient descent.
Together with the global landscape results, our main result follows immediately.

Notation: Denote R and C as the real and complex fields respectively. Denote kxk as the `2-
norm of vector x 2 Cn. For a, b 2 Cn, denote ha, bi =

Pn
i=1 aibi, where bi is the complex

conjugate of bi. We denote a ⌦ b as the tensor product of a and b and a⌦r as the tensor product
of r vectors a. Denote In as the n ⇥ n identity matrix and On as the n ⇥ n zero matrix. We call
T = u1 ⌦ · · · ⌦ up a tensor of rank 1 and order p. Denote kTk = ku1k · · · kupk and kTkop =
supkx1⌦···⌦xpk=1hT,x1 ⌦ · · ·⌦xpi as its operator norm. Denote Hf (x) the Hessian of a function
f at a point x. We write f(n) = O(g(n)) if f(n)  C1g(n), f(n) = ⌦(g(n)) if f(n) � C2g(n),
and f(n) = ⇥(g(n)) if C2g(n)  f(n)  C1g(n) for some constants C1, C2 > 0.

2 PROBLEM FORMULATION AND RELATED WORK

We first present the problem formulation for phase retrieval and the algorithm to solve it, and then
review related work and provide a comparative overview of state-of-the-art convergence results and
our new result.

2.1 PROBLEM FORMULATION

We denote x\ 2 Cn as the ground truth vector we want to recover. Intensity-based phase retrieval
problem aims at minimizing the empirical `2-loss of m intensity measurements yi = |hai,x\i|2,

min
x2Cn

f(x) :=
mX

i=1

�
|hai,xi|2 � yi

�2
, (2)

2
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Since all vectors of the form e
i✓x\ are global minimizers of f , we can only expect to recover x\ up

to a phase shift by solving (2). For the purpose of comparison, we also recall the amplitude-based
formulation mentioned in the introduction,

min
x2Cn

mX

i=1

(|hai,xi|�
p
yi)

2
.

It is easy to see that the intensity-based formulation has a smooth objective function while the
amplitude-based formulation has a nonsmooth one.

In order to apply vanilla gradient descent to solve (2) as it is applied in the real case (Chen et al.,
2019), we introduce the following mapping for any v 2 Cn:

v 7! v+ :=


Re(v)
Im(v)

�
, v 7! v� := Mv+ =


�Im(v)
Re(v)

�
where M :=


On �In
In On

�
. (3)

By using (3), we can define a+
i , a�

i , x+, x�, x\+ and x\�. Then, with a little abuse of notation
over f , we can obtain a equivalent form of f in terms of x+ as

f(x) =
mX

i=1

�
|hai,xi|2 � yi

�2
=

mX

i=1

�
hAix

+
,x+i � yi

�2
:= f(x+), (4)

where Ai = a+
i (a

+
i )

T + a�
i (a

�
i )

T. Now we can treat f as a function from R2n to R w.r.t. x+.

The gradient descent algorithm to minimize f is given by

x+
k+1 = x+

k � ↵krx+f(x+
k ), 8 k 2 N, (5)

where x+
0 2 R2n is any given initial point and ↵k > 0 is any step size. The goal of this paper is to

study the global convergence and sample complexity of gradient descent algorithm (5) for f defined
in (4). As we did in (5), all gradient and Hessian in the rest of this paper will be taken w.r.t. x+.

2.2 RELATED WORK

Global benign landscape results usually refer to properties that all local minima of a function are
global minima and all saddle points are strict, i.e., Hessian matrix having a negative eigenvalue at
the saddle point. For phase retrieval problem, existing results obtain O(n) sample complexity when
the objective function is quadratic-like far from the origin, including amplitude model (piecewise
quadratic) (Cai et al., 2022b), quotient intensity model (quartic divided by quadratic) (Cai et al.,
2022a), and perturbed amplitude model (truncated quartic) (Cai et al., 2021). For purely quartic
objective function, like intensity model, people usually require O(n poly(log n)) samples to obtain
the global benign landscape result (Sun et al., 2018b; Cai et al., 2023). Table 1 summarizes the
above results.

Work Objective function Sample complexity Probability

Sun et al. (2018a) quartic O(n log3 n) 1�⇥(1/m)
Cai et al. (2021) truncated quartic O(n) 1�O(1/m2)
Cai et al. (2022a) quartic over quadratic O(n) 1� exp(�⇥(m))
Cai et al. (2022b) piecewise quadratic O(n) 1� exp(�⇥(m))
Cai et al. (2023) quartic O(n log n) 1�⇥(1/m)
Our work quartic O(n) 1� exp(�⇥(m))

Table 1: Global benign landscape results of different objective functions and sample complexity in
literature. Here “quartic” and “quadratic” means 4th order and 2nd order polynomial respectively.

Convergence results for gradient descent type algorithms to solve phase retrieval problem either
requires special initialization that are usually already close a ground truth (Candes et al., 2015b;
Chen & Candes, 2015; Wang et al., 2017; Cai & Wei, 2024) or suboptimal sample complexity
O(n log13 n) (Chen et al., 2019), as summarized in Table 2. In the former case, the iterates start
nearby a ground truth, where a desirable local landscape occurs and is enough to guarantee a con-
traction property of the distance of iterates towards ground truth. In the latter case, a careful analysis
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of some nonlinear approximate dynamics and complicated concentration results are required to show
that after a short period of time, the iterates will enter the neighborhood with contraction property.
Contrary to the existing proof idea, we develop a new and concise proof of global convergence re-
sults for phase retrieval problem by connecting global benign landscape results and continuous time
gradient dynamics results.

Work Algorithm Initialization Sample complexity

Candes et al. (2015b) WF spectral O(n log n)
Chen & Candes (2015) TWF spectral O(n)
Wang et al. (2017) TAF orthogonality-promoting O(n)
Chen et al. (2019) GD N (0, n�1In) O(n log13 n)
Cai & Wei (2024) TRGrad close to ground truth O(n)
Our work GD a.e. on R2n O(n)

Table 2: Global convergence results of gradient descent type algorithms with different initializa-
tion and sample complexity in literature. Here “GD” stands for vanilla gradient descent, “WF” for
Wirtinger flow, “TWF” for truncated Wirtinger flow, “TAF” for truncated amplitude flow, “TRGrad”
for truncated Riemannian gradient descent.

3 MAIN RESULTS

We introduce tensors T,S 2
�
R2n

�⌦4 that will be useful to formulate our main results. Define T as

T :=
1

c

X

i

(a+
i )

⌦4
,

where c = m�
4 and �

2 = Var((a+
i )1). We also define S as

Si1,i2,i3,i4 := 1i1=i2,i3=i4 + 1i1=i3,i2=i4 + 1i1=i4,i2=i3 ,

where (1i1=i2,i3=i4)i1,i2,i3,i4 = 1 if i1 = i2 and i3 = i4 and 0 else (and similarly for other tensors).

The main results of this paper are given in Theorem 1 and Theorem 2. Theorem 1 gives a tensor
based criterion for global benign landscape of f .
Theorem 1. Assume kT � Skop  �0 for some constant �0 > 0 small enough. The only local

minima of f defined in (4) are global minima x\
e
i✓

and all saddle points of f are strict
1
.

The proof of Theorem 1 is available in Section 3.2. The main idea is to show that when kT � Skop
is small, the objective function f is restricted strongly convex near the ground truth, has indefinite
Hessian near the origin, and has nonzero gradient elsewhere.

With Theorem 1 at hand, we can derive our global convergence result in Theorem 2.
Theorem 2. Assume kT � Skop  �0 for some constant �0 > 0 small enough. For almost ev-

ery initial point x+
0 2 R2n

, there exists ↵̄ > 0 such that for any step sizes (↵k)k2N satisfyingP1
k=0 ↵k = 1 and ↵k 2 (0, ↵̄], 8k 2 N, the gradient descent algorithm (5) converges to a global

minimizer of f defined in (4).

The proof of Theorem 2 is available in Section 3.3. The main idea is to show that f has bounded
gradient trajectories, and then use the general convergence result (Josz, 2023) together with Theo-
rem 1 to conclude the global convergence of gradient descent with random initialization for phase
retrieval problem.

Finally, by using a concentration result, we verify the criterion in Theorem 1 and Theorem 2 when
{ai}mi=1 are i.i.d. random vectors distributed as N (0,�2I2n), which yields the following application
Corollary 1. Let {a+

i }mi=1 be i.i.d. random vectors distributed as N (0,�2I2n). There exist K,� >

0 such that if m � Kn, then with at least 1 � e
��m

probability, the conclusions in Theorem 1 and

Theorem 2 hold.

1A strict saddle point is a critical point at which the Hessian has a strictly negative eigenvalue.
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The rest of this section will be organized as follows. In Section 3.1, we introduce an equivalent for-
mulation of f as an inner product of some tensors. In Section 3.2, we provide necessary ingredients
for proving Theorem 1. In Section 3.3, we show that f has bounded gradient trajectories and deduce
Theorem 2. In Section 3.4, we apply a tensor concentration result and Theorems 1 and 2 to obtain
Corollary 1.

3.1 EQUIVALENT FORMULATION OF THE PROBLEM

In this section, we provide an equivalent tensor based formulation for f . We write Hermitian product
as a function of real vectors x+ and x�:

|hai,xi|2 = ha+
i ,x

+i2 + ha+
i ,x

�i2. (6)

To make use of tensors, for u,v 2 R2n, we develop the following product of scalar products as:

ha+
i ,ui

2ha+
i ,vi

2 =
X

i1,i2,i3,i4

(a+
i )i1(a

+
i )i2(a

+
i )i3(a

+
i )i4ui1ui2vi3vi4

= h(a+
i )

⌦4
,u⌦2 ⌦ v⌦2i. (7)

Combining (6) and (7), we obtain an alternative expression of f as in Proposition 1.
Proposition 1. f can be written as

f(x+) =

*
X

i

(a+
i )

⌦4
,U(x+)

+
= chT,U(x+)i,

where U(x+) is a tensor defined by

U(x+) :=
X

k

"kx
⌦2
1,k ⌦ x⌦2

2,k

with x1,k,x2,k 2 {x+
,x�

,x\+
,x\�} and "k = ±1.

The proof of Proposition 1 is in Appendix A.1.1. We regard U as a function of x+ even if it
involves x�, because x� = Mx+ is also a function of x+. With the above alternative form of f ,
the assumption kT � Skop  �0 allows us to the landscape of f by studying the landscape of its
approximation chS,U(x+)i. A detailed analysis of this approximation is given in Section 3.2.

3.2 LANDSCAPE RESULTS

In this subsection, we prove that all critical points of f are either global minimizers or strict sad-
dles. Given the fact that T is close to S, we can expect that f = chT,Ui is close to chS,Ui in
some sense. Therefore, our landscape analysis of f is inspired by the landscape information of this
approximation. Proposition 2 gives an equivalent formula for this approximation function.
Proposition 2. We have

g(x+) := chS,U(x+)i = 8c
�
kxk4 + kx\k4 � |hx,x\i|2 � kxk2kx\k2

�
.

The proof of Proposition 2 is in Appendix A.2.1. Local minimizers of g are global minimizers and
other critical points of g are strict saddles (see the analysis in Appendix A.2.7). Motivated by this,
we prove that similar geometrical properties also hold for f . We define the following 3 regions:

R1
�0 :=

⇢
x

���� (kxk+ kx\k)3  krg(x+)k
C1�0c

�
, (8)

R2
�0 :=

⇢
x

���� 8
|hx,x\i|2

kx\k4 +

✓
4 +

1

4
�0C2

◆
kxk2

kx\k2 
✓
4� 1

4
�0C2

◆�
, (9)

R3
�0 :=

⇢
x

���� d(x,G) 
16� 5C2�0

192 + 4C2�0

�
, (10)

where c, �0, C1, C2 are constants and G is the set of global minimizers of f .

Our goal is to show that

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

• R1
�0

contains no critical points of f ,

• R2
�0

only contains strict saddles of f ,

• R3
�0

only contains global minimizers.

If we write x+ = y+µx\++⌫x\� with y 2 R2n orthogonal to x\+
,x\�, we can represent regions

R2
�0
,R3

�0
on a 3-d plot with coordinates (kyk, hx+

,x\+i, hx+
,x\�i) as shown in Figure 1.

Figure 1: Overview of the regions considered in the proof

First we prove that R1
�0

has no critical points. We bound the entries of the gradient of U and use
the concentration result kT � Skop  �0 to lower bound hrf(x+),rg(x+)i by krg(x+)k2 �
C1krg(x+)k(kxk+ kx\k)3 and deduce Proposition 3.
Proposition 3. Assuming kT � Skop < �0, we have for some absolute constant C1,

krg(x+)k � C1�0c(kxk+ kx\k)3 =) rf(x+) 6= 0.

The proof of Proposition 3 is in Appendix A.2.2. This means that as long as the gradient of g is large
enough at x+, then x+ is not a critical point and of f and thus R1

�0
does not contain any critical

point of f .

To show that the critical points in R2
�0

and R3
�0

are either strict saddles or global minima respectively,
we need to bound the distance between the Hessian of f and g. We control the Hessian of the entries
of U and use the concentration kT � Skop  �0 to bound uTHfu� uTHgu in Proposition 4.
Proposition 4. Assume kT � Skop < �0. For all vectors u and for some absolute constant C2,

|uTHf (x
+)u� uTHg(x

+)u| < C2�0ckuk2(kxk+ kx\k)2. (11)

The proof of Proposition 4 is in Appendix A.2.3. To derive geometrical properties for f , we need an
explicit formula for the Hessian of g, which can be easily deduced from Proposition 2. The result is
given in Proposition 5.
Proposition 5. For all x+

we have

Hg(x
+) = 8c(8x+(x+)T + 4kx+k2In � 2x\+(x\+)T � 2x\�(x\�)T � 2kx\+k2In). (12)

The proof of Proposition 5 is in Appendix A.2.4. Combining Proposition 4 and Proposition 5, if
Hg(x+) has a sufficiently negative eigenvalue along some direction, then Hf (x+) will also have
a negative eigenvlaue along the same direction. In region R2

�0
, we find that Hg(x+) indeed has a

sufficiently negative eigenvalue along x\+, which yields Proposition 6.

6
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Proposition 6. Assuming kT � Skop < �0, we have

8
|hx,x\i|2

kx\k4 +

✓
4 +

1

4
�0C2

◆
kxk2

kx\k2 
✓
4� 1

4
�0C2

◆
=) (x\+)THf (x

+)x\+
< 0.

The proof of Proposition 6 is in Appendix A.2.5. It shows that all possible critical points in the
region R2

�0
are strict saddles.

Finally we study the critical points in R3
�0

. We prove that all possible critical points in this region
are global minimizers. To do so, we use the concept of restricted strong convexity similar to Sun
et al. (2018b). The set of global minimizers is the circle G = {x\

e
i✓ : ✓ 2 [0, 2⇡)}, so we cannot

expect f to be strongly convex in this region. However, we can expect to have strong convexity in
the directions orthogonal to Tx+(G) (the line tangent to the circle of global minimizers at x+ where
x 2 G). Again, we combine Proposition 4 and Proposition 5 to prove that we indeed have restricted
convexity and deduce that there are no critical points near G in Proposition 7.
Proposition 7. Assume kT � Skop < �0. If

d(x,G)  16� 5C2�0

192 + 4C2�0

then x is a critical point if and only if x is a global minimizer.

The proof of Proposition 7 is in Appendix A.2.6. To conclude the landscape result, the last step is
prove that R1

�0
[R2

�0
[R3

�0
= R2n for �0 small enough.

The key idea is that R1
�0

is increasing in the sense of set inclusion as �0 gets smaller. The only points
in the complementary of R1

�0
are those close to critical points. As R2

�0
and R3

�0
contain an open

neighbourhood of the critical points, the complementary of R1
�0

is strictly included in R2
�0
[R2

�0
for

small enough �0. Therefore, we can finally conclude the landscape result for f in Proposition 8.
Proposition 8. For �0 small enough, we have

R1
�0 [R2

�0 [R3
�0 = R2n

.

The proof of Proposition 8 is in Appendix A.2.7. Combining Propositions 3 and 6 to 8, the result in
Theorem 1 follows immediately.

3.3 CONVERGENCE OF GRADIENT DESCENT

In this subsection, we prove Theorem 2 by using the fact that f has bounded gradient trajectories
and our landscape results in Theorem 1.

We say that f has bounded gradient trajectories if for every x+
0 2 R2n, the solution x+(·) to the

following initial value problem
(x+)0(t) = �rf(x+(t)), x+(0) = x+

0 (13)

satisfies that kx+(t)k  cx+
0

for all t � 0, where cx+
0

is a constant dependent on x+
0 .

The following Proposition 9 verifies that f has bounded gradient trajectories for general positive
semidefinite matrices {Ai}mi=1, not necessarily of the form a+

i (a
+
i )

T + a�
i (a

�
i )

T.
Proposition 9. Let Ai 2 R2n⇥2n

be symmetric positive semidefinite and yi 2 R for all i =
1, . . . ,m. Then (4) has bounded subgradient trajectories.

The proof of Proposition 9 is in Appendix A.3.1. Therefore, we are certified to apply results in Josz
(2023, Corollary 1) and Theorem 1 to conclude Theorem 2.

3.4 CONCENTRATION RESULTS

The proof of Corollary 1 is mainly based on a concentration result of the tensor T. We prove that
E(T) = S and then use the concentration result from (Even & Massoulié, 2021) to control the
deviation of T from its mean.

Noticing that (a+
i )

⌦4
i1,i2,i3,i4

= (a+
i )i1(a

+
i )i2(a

+
i )i3(a

+
i )i4 , we can easily deduce Proposition 10.

7
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Proposition 10.

E
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The proof of Proposition 10 is in Appendix A.4.1. Using the result in (Even & Massoulié, 2021), if
T1, . . .Tm are 4-th order Kronecker product of normally distributed random vectors, then
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Applying this result to the normalized tensors Ti =
�
ai
�

�⌦4, we verify the concentration assumption
of Theorems 1 and 2 in Proposition 11.
Proposition 11. Let {a+

i }mi=1 be i.i.d. random vectors distributed as N (0,�2I2n). There exists

some absolute constants K,� > 0, such that for all m � Kn, with probability at least 1� e
��m

,

kT � Skop < �0.

The proof of Proposition 11 can be found in Appendix A.4.2. Corollary 1 then follows naturally.

4 EXPERIMENTS

In this section, we first show the concentration of tensor T and that m = O(n) is enough to ensure
kT � Skop small numerically. Then, we show the convergence of the loss function for gradient
descent with a fixed n versus different m and that all trajectories do converge at a linear rate when
m is large enough even for large initializations.

We generate a sample of ` = 5 sets of m vectors {a+
i }mi=1 i.i.d and distributed as N (0, I2n) for

various m,n and computed an approximation of supku1k=ku2k=ku3k=ku4k=1hT,u1⌦u2⌦u3⌦u4i
to estimate kT�Skop and averaged the result over the ` samples. The result is displayed in Figure 2.

We can observe the concentration of T around S when m is large enough for fixed n. Moreover,
the boundary of the region kT � Skop  �0 for some �0 is approximately linear: for �0 = 0.4, the
values of m such that kT�Skop  �0 are approximately m � 2000n. This validates that m = O(n)
samples are sufficient to ensure kT � Skop is small enough. However, in practice, we don’t need
as much samples as m = 2000n. As we will see in the next experiment, in practice the number of
samples needed to recover the ground truth is about m ⇡ 10n for almost all initial points.

Figure 2: Values of kT � Skop for different values of m and n

In Figure 3, we plot the values f̃ = f
m at each iteration of vanilla gradient descent for n = 4

and m 2 {10, 20, 30, 40}. We normalize the function f by 1
m to have comparable magnitude

for different values of m. For each value of m, we chose {a+
i }mi=1,x

\+ i.i.d and distributed as

8
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N (0, I2n). To study the influence of potentially large initializations, we select ` = 20 initial points
following a uniform distribution on [�10, 10]n, a learning rate ⌘ = 5·10�5 and N = 5000 iterations.

As we may expect, some trajectories do not converge to a global minimum when m is relatively
small: for m = 10 and m = 20, there are 5 and 1 trajectories not converging to a global minimum
respectively. However, when m is large enough (for m = 30 and m = 40 in our experiment), all
initializations converge to a global minimum of f̃ with a linear rate. Note that the rate of convergence
also seems to be better when the number of samples increases.

This suggests that the effective K with which we have convergence of trajectories with high prob-
ability for m � Kn should be around K ⇡ 10 as a rough estimate. Note that from Fickus et al.
(2014) theoretically there are at least m = 4n� 2 measurements needed to recover the ground truth
vector, and using m ⇡ 10n measurements is close to optimal.

Figure 3: Loss of 20 trajectories for n = 4 and m 2 [10, 20, 30, 40]

5 CONCLUSION AND DISCUSSIONS

In this paper, we provided a tensor based criterion that guarantees global convergence of vanilla gra-
dient descent with random initialization for phase retrieval problem. We first showed that the objec-
tive function has a benign global landscape. Then we proved that given the number of measurements
m � Kn, the criterion is satisfied with high probability. We also showed that the objective function
has bounded gradient trajectories, which allows us to utilize the proposed landscape results and a
general convergence result in literature to conclude our main convergence result.

Finally, we discuss the limitation of our paper, which also leads to a potential future direction. From
our proof, only a local linear convergence rate can be obtained once the iterates enter the region R3

�0
,

but there is no information on how long the gradient descent algorithm will take to enter R3
�0

starting
from almost every point in R1

�0
or R2

�0
. A more detailed analysis is needed for how long the iterates

will stay in R1
�0

and R2
�0

. For R1
�0

, the analysis is relatively simple. Since the gradient norm is
lower bounded, the objective value will drop by a constant for every iteration. The key challenge is
to ensure the iterates will not revisit R2

�0
once leaving it. With the global landscape result provided

in this paper, we expect to obtain a nearly linear iteration complexity result with only O(n) samples
in a following paper.

9
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