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Abstract

Informally, the ‘linear representation hypothesis’ is the idea that high-level concepts
are represented linearly as directions in some representation space. In this paper, we
address two closely related questions: What does “linear representation” actually
mean? And, how do we make sense of geometric notions (e.g., cosine similarity
or projection) in the representation space? To answer these, we use the language
of counterfactuals to give two formalizations of “linear representation”, one in
the output (word) representation space, and one in the input (sentence) space. We
then prove these connect to linear probing and model steering, respectively. To
make sense of geometric notions, we use the formalization to identify a particular
(non-Euclidean) inner product that respects language structure in a sense we make
precise. Using this causal inner product, we show how to unify all notions of linear
representation. In particular, this allows the construction of probes and steering
vectors using counterfactual pairs. Experiments with LLaMA-2 demonstrate the
existence of linear representations of concepts, the connection to interpretation and
control, and the fundamental role of the choice of inner product. Code is available
at github.com/KihoPark/linear_rep_geometry.

1 Introduction

In the context of language models, the “Linear Representation Hypothesis” is the idea that high-level
concepts are represented linearly in the representation space of a model [e.g. MYZ13; Aro+16;
Elh+22; Wan+23; NLW23]. In the context of language, a high-level concept might include: is the
text in French or English? Is it in the present tense or past tense? If the text is about a person, are
they male or female? The appeal of the linear representation hypothesis is that—were it true—the
tasks of interpreting and controlling model behavior could exploit linear algebraic operations on the
representation space. The goal of this paper is to formalize the linear representation hypothesis, and
clarify how it relates to interpretation and control.

The first challenge is that it is not clear what “linear representation” actually means. There are (at
least) three natural ways to interpret the idea:

1. Subspace: [e.g., Mik+13; PSM14] The first idea is that each concept is represented as a
subspace. For example, in the context of word embeddings, it has been argued empirically
that Rep(“woman”) − Rep(“man”), Rep(“queen”) − Rep(“king”), and all similar pairs
belong to a common subspace [Mik+13]. Then, it is natural to take this subspace to be a
representation of the concept of Male/Female.

2. Measurement: [e.g., NLW23; GT23] Next is the idea that the probability of a concept value
can be measured with a linear probe. For example, the probability that the output language
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is French is logit-linear in the representation of the input. In this case, we can take the linear
map to be a representation of the concept of English/French.

3. Intervention: [e.g., Wan+23; Tur+23] The final idea is that the value a concept takes on can
be changed (without changing other concepts) by adding a suitable steering vector—e.g.,
we change the output to French by adding a English/French vector. In this case, we take
this added vector to be the representation of the concept.

It is not clear a priori how these ideas relate to each other, nor which is the “right” notion of linear
representation.

Next, suppose we have somehow found the linear representations of various concepts. The appeal of
linearity is that we can now hope to use linear algebraic operations on the representation space for
interpretation and control. For example, we might compute the similarity between a representation
and known concept directions, or edit representations projected onto target directions. However,
similarity and projection are geometric notions: they require an inner product on the representation
space. The second challenge is that it is not clear what inner product is appropriate for understanding
model representations.

To address these two challenges, we make the following contributions:

1. First, we formalize the subspace notion of linear representation in terms of counterfactual
pairs, in both “embedding” (input phrase) and “unembedding” (output word) space. Using
this, we prove that the unembedding notion connects to measurement, and the embedding
notion to intervention.

2. Next, we introduce the notion of a causal inner product: an inner product with the property
that concepts that can vary freely of each other are represented as orthogonal vectors. We
show that such an inner product has the special property that it unifies the embedding and
unembedding representations. Additionally, we show how to estimate the inner product using
the LLM unembedding matrix. We develop a theory for this inner product in Appendix A.

3. Finally, we study the linear representation hypothesis empirically using LLaMA-2 [Tou+23].
Using the subspace notion, we are able to find linear representations of a variety of concepts.
Using these, we give evidence that the causal inner product respects semantic structure,
and that subspace representations can be used to construct measurement and intervention
representations.

Background on Language Models We will require some minimal background on (large) language
models. Formally, a language model takes in context text x and samples output text. This sampling
is done word by word (or token by token). Accordingly, we’ll view the outputs as single words.
To define a probability distribution over outputs, the language model first maps each context x to a
vector λ(x) in a representation space Λ ≃ Rd. We will call these embedding vectors. The model also
represents each word y as an unembedding vector γ(y) in a separate representation space Γ ≃ Rd.
The probability distribution over the next words is then given by the softmax distribution:

P(y | x) ∝ exp(λ(x)⊤γ(y)). (1.1)

2 The Linear Representation Hypothesis

We begin by formalizing the subspace notion of linear representation, one in each of the unembedding
and embedding spaces of language models, and then tie the subspace notions to the measurement and
intervention notions.

2.1 Concepts

The first step is to formalize the notion of a concept. Intuitively, a concept is any factor of variation
that can be changed in isolation. For example, we can change the output from French to English
without changing its meaning, or change the output from being about a man to about a woman without
changing the language it is written in.

Following Wang et al. [Wan+23], we formalize this idea by taking a concept variable W to be a latent
variable that is caused by the context X , and that acts as a cause of the output Y . For simplicity of
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exposition, we will restrict attention to binary concepts. Anticipating the representation of concepts
by vectors, we introduce an ordering on each binary concept—e.g., male⇒female. This ordering
will make the sign of a representation meaningful (so, e.g., the representation of female⇒male will
have the opposite sign.)

Each concept variable W defines a set of counterfactual outputs {Y (W = w)} that differ only in the
value of W . For example, for the male⇒female concept, we might have

(Y (W = 0), Y (W = 1)) ∈R {(“man”, “woman”), (“king”, “queen”), . . . } (2.1)

In this paper, we’ll assume that the value of concepts can be read off deterministically from the
sampled output (so, e.g., the output “king” implies W = 0). Then, can specify concepts by specifying
their corresponding counterfactual outputs.

We will eventually need to reason about the relationships between multiple concepts. We
say that two concepts W and Z are causally separable if Y (W = w,Z = z) is well-
defined for each w, z. That is, causally separable concepts are those that can be varied freely
and in isolation. For example, English⇒French and male⇒female are causally separable—
consider {“king”, “queen”, “roi”, “reine”}. However, English⇒French and English⇒Russian
are not because they cannot vary freely. Also, PresentTense⇒PastTense—verb tense—and
SingularNoun⇒PluralNoun—noun plurality—are not because they do not apply to the same type
of outputs.

We’ll write Y (W = w,Z = z) as Y (w, z) when the concepts are clear from context.

2.2 Unembedding Representations and Measurement

We now turn to formalizing the idea of linear representation of a concept. The first observation is
that there are two distinct representation spaces in play—the model representation space Λ, and the
unembedding representation space Γ. A concept could be linearly represented in either space. We
begin with the unembedding space. Defining the cone of vector v as Cone(v) = {αv : α > 0},

Definition 1 (Unembedding Representation). We say that γ̄W is an unembedding representation of
concept W if γ(Y (1))− γ(Y (0)) ∈ Cone(γ̄W ) almost surely.

This definition captures the idea of linear representation that relies on γ(“king”) − γ(“queen”) is
parallel to γ(“man”)−γ(“woman”) and so forth. We use a cone instead of subspace because the sign
of the difference is significant—i.e., the difference between “king” and “queen” is in the opposite
direction as the difference between “woman” and “man”. The unembedding representation (if it
exists) is unique up to positive scaling, consistent with the linear subspace hypothesis that concepts
are represented as directions. In other words, the unembedding representation is the unique direction
that the counterfactual pairs point to in the unembedding space.

Connection to Measurement The first result is that the unembedding representation is closely tied
to the measurement notion of linear representation:

Theorem 2 (Measurement Representation). Let W be a concept, and let γ̄W be an unembedding
representation of W . Then, given any context embedding λ ∈ Λ,

logitP(Y = Y (1) | Y ∈ {Y (1), Y (0)}, λ) = αλ⊤γ̄W , (2.2)

where α > 0 a.s. is a function of {Y (1), Y (0)}.

All proofs are given in Appendix C.

In words: if we know the output token is either “king” or “queen” (say, the context was about a
monarch), then the probability that the output is “king” is logit-linear in the language model representa-
tion with regression coefficients γ̄W . The random scalar α is a function of the particular counterfactual
pair {Y (1), Y (0)}—e.g., it may be different for {“king”, “queen”} and {“roi”, “riene”}. However,
the direction used for prediction is the same for all counterfactual pairs demonstrating the concept.

Theorem 2 shows a connection between the subspace representation and the linear representation
learned by fitting a linear probe to predict the concept. Namely, in both cases, we get a predictor that
is linear on the logit scale. However, the unembedding representation differs from a probe-based
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representation in that it does not incorporate any information about correlated but off-target concepts.
For example, if French text were disproportionately about men, a probe could learn this information
(and include it in the representation), but the unembedding representation would not. In this sense,
the unembedding representation might be viewed as an ideal probing representation.

2.3 Embedding Representations and Intervention

The next step is to define a linear subspace representation in the embedding space Λ. We’ll again go
with a notion anchored in demonstrative pairs. In the embedding space, each λ(x) defines a distribu-
tion over concepts. We consider pairs of sentences such as λ0 = λ[“He is the monarch of England,”]
and λ1 = λ[“She is the monarch of England,”] that induce different distributions on the target con-
cept, but the same distribution on all off-target concepts. A concept is embedding-represented if the
difference in all such pairs belongs to a common subspace. Formally,

Definition 3 (Embedding Representation). We say that λ̄W is an embedding representation of concept
W if for any context embeddings λ0, λ1 ∈ Λ that satisfy

P(W = 1 | λ1)

P(W = 1 | λ0)
> 1 and

P(W,Z | λ1)

P(W,Z | λ0)
=

P(W | λ1)

P(W | λ0)
, (2.3)

for each concept Z that is causally separable with W , we have λ1 − λ0 ∈ Cone(λ̄W ).

The first condition ensures that the direction is relevant to the target concept, and the second condition
ensures that the direction is not relevant to off-target concepts.

Connection to Intervention It turns out that the embedding representation is closely tied to the
intervention notion of linear representation. To get there, we’ll need the following lemma relating
embedding representations to unembedding representations.

Lemma 4 (Unembedding-Embedding Relationship). Let λ̄W be the embedding representation of a
concept W , and let γ̄W and γ̄Z be the unembedding representations for W and any concept Z that is
causally separable with W . Then, we have

λ̄⊤
W γ̄W > 0 and λ̄⊤

W γ̄Z = 0. (2.4)

Conversely, if a representation λ̄W satisfies (2.4) and there exist concepts {Zi}d−1
i=1 such that each

concept is causally separable with W and {γ̄W } ∪ {γ̄Zi
}d−1
i=1 is the basis of Rd, then λ̄W is the

embedding representation for the concept W .

We can now give the connection to the intervention notion of linear representation.

Theorem 5 (Intervention Representation). Let λ̄W be the embedding representation of a concept W .
Then, for any concept Z that is causally separable with W ,

P(Y = Y (W, 1) | Y ∈ {Y (W, 0), Y (W, 1)}, λ+ cλ̄W ) is constant in c ∈ R, (2.5)
and

P(Y = Y (1, Z) | Y ∈ {Y (0, Z), Y (1, Z)}, λ+ cλ̄W ) is increasing in c ∈ R. (2.6)

In words: adding λ̄W to the language model representation of the context changes the probability of
the target concept, but not the probability of off-target concepts.

In Appendix A, we further show how we can unify the unembedding and embedding representations
by defining the causal inner product, which requires that causally separable concepts are represented
as orthogonal vectors. We also provide a simple scheme for estimating this inner product in practice.

3 Experiments

We now turn to empirically validating the existence of linear representations, the technique for finding
the causal inner product, and the predicted relationships between the subspace, measurement, and inter-
vention notions of linear representation. Code available at github.com/KihoPark/linear_rep_geometry.

We use the LLaMA-2 model with 7 billion parameters [Tou+23] as our testbed. This is a decoder-only
Transformer LLM [Vas+17; Rad+18], trained using the forward LM objective and a 32K token
vocabulary.
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Figure 1: Projecting counterfactual pairs onto their corresponding concept direction shows a clear
strong right skew, as we expect if the linear representation hypothesis holds. The projections of the
counterfactual pairs, ⟨γ̄W,(−i), γ(yi(1))−γ(yi(0))⟩C, are shown in red. For reference, we also project
100K randomly sampled word differences γ(Yi1) − γ(Yi0) onto the estimated concept direction,
shown in blue. Each concept W (the title of each plot) is explained in Table 2.

3.1 Concepts are represented as directions in the unembedding space

We start with the hypothesis that concepts are represented as directions in the unembedding represen-
tation space (Definition 1). This notion relies on counterfactual pairs of words that vary only in the
value of the concept of interest. We consider 22 concepts defined in the Big Analogy Test Set (BATS
3.0) [GDM16], which provides such counterfactual pairs.1 We also consider 4 additional language con-
cepts: English⇒French, French⇒German, French⇒Spanish, and German⇒Spanish, where
we use words and their translations as counterfactual pairs. Additionally, we consider the concept
frequent⇒infrequent capturing how common a word is—we use pairs of common/uncommon
synonyms (e.g., “bad” and “terrible”) as counterfactual pairs. In Appendix D, we list all 27 concepts
we consider and example pairs.

If the subspace notion of the linear representation hypothesis holds then all counterfactual token
pairs should point to a common direction in the unembedding space. In practice, this will only hold
approximately for real pairs because each word can have multiple meanings (e.g., “Queen” is a
female monarch, a chess piece, and a rock band). However, if the linear representation hypothesis
holds, we still expect that γ(“King”)− γ(“Queen”) will significantly align with a male⇒female
direction. So, for each concept W , we look at how the direction defined by each counterfactual
pair γ(yi(1))− γ(yi(0)) is geometrically aligned with a common direction γ̄W (the unembedding
representation). We estimate γ̄W as the mean2 among all counterfactual pairs:

γ̄W :=
γ̃W√

⟨γ̃W , γ̃W ⟩C
, with γ̃W =

1

nW

nW∑
i=1

γ(yi(1))− γ(yi(0)), (3.1)

where ⟨·, ·⟩C denotes the causal inner product defined in (A.7).

Figure 1 presents histograms of each γ(yi(1)) − γ(yi(0))) projected onto γ̄W with respect to the
causal inner product. Because γ̄W is computed using γ(yi(1))−γ(yi(0)), we compute each projection
using a leave-one-out (LOO) estimate γ̄W,(−i) of the concept direction that excludes (yi(0), yi(1)).
Across the four concepts shown (and 22 others shown in Appendix E), the differences between
counterfactual pairs are substantially more aligned with γ̄W than those between random pairs. The
sole exception is thing⇒part, which does not appear to have a linear representation.

The results are consistent with the linear representation hypothesis: the directions computed by each
counterfactual pair point (up to some noise) to a common direction representing a linear subspace.
Further, γ̄W is a reasonable estimator for that direction.

3.2 Concept directions act as linear probes

Next, we check the connection to the measurement notion of linear representation. We consider the
concept French⇒Spanish. To construct a dataset of French/Spanish contexts, we sample contexts

1We throw away any pair where one of the words is encoded as multiple tokens.
2Previous work on word embeddings [DGM16; FDD20] motivate taking the mean to improve the consistency

of the concept direction.
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Figure 2: The subspace representation γ̄W acts as a linear probe for W . The histograms show
γ̄⊤
Wλ(xfrj ) vs. γ̄⊤

Wλ(xesj ) (left) and γ̄⊤
Z λ(xfrj ) vs. γ̄⊤

Z λ(xesj ) (right) for W = French⇒Spanish
and Z = male⇒female, where {xfrj } are random contexts from French Wikipedia, and {xesj } are
random contexts from Spanish Wikipedia. We also see that γ̄Z does not act as a linear probe for W ,
as expected.

of random lengths from Wikipedia pages in each language. (Note: these are not counterfactual
pairs.) Following Theorem 2 we expect γ̄⊤

Wλ(xfrj ) < 0 and γ̄⊤
Wλ(xesj ) > 0. Figure 2 confirms

this expectation, showing that γ̄W is a linear probe for the concept W in Λ. We also see that the
representation of an off-target concept Z does not have any predictive power for this task.

3.3 Concept directions map to intervention representations

Theorem 5 says that we can construct an intervention representation by constructing an embedding
embedding representation. Doing this directly requires finding pairs of prompt that vary only on the
distribution they induce on the target concept. In preliminary experiments, we found it was difficult
to construct such pairs in practice.

Here, we will instead use the isomorphism between embedding and unembedding representations
(Theorem 7) to construct intervention representations from unembedding representations. Specifically,
following the explicit form derived in equation (A.7), we take

λ̄W := Cov(γ)−1γ̄W . (3.2)

Theorem 5 predicts that adding λ̄W to a context representation should increase the probability of W ,
while leaving the probability of all causally separable concepts unaltered.

To test this for a given pair of causally separable concepts W and Z, we first choose a quadruple
{Y (w, z)}w,z∈{0,1}, and then generate contexts {xj} such that the next word should be Y (0, 0). For
example, if W = male⇒female and Z = lower⇒upper, then we choose the quadruple (“king”,
“queen”, “King”, “Queen”), and generate contexts using ChatGPT-4 (e.g., “Long live the”). We then
intervene on λ(xj) using λ̄C via

λC,α(xj) = λ(xj) + αλ̄C , (3.3)

where α > 0 and C can be W , Z, or some other causally separable concept (e.g., French⇒Spanish).
For different choices of C, we plot the changes in logitP(W = 1 | Z, λ) and logitP(Z = 1 |W,λ),
as we increase α. We expect to see that, if we intervene in the W direction (C = W ), then the
intervention should linearly increase logitP(W = 1 | Z, λ), while the other logit should stay constant;
if we intervene in a direction C that is causally separable with both W and Z, then we expect both
logits to stay constant.

Figure 3 shows the results of one such experiment, confirming our expectations. We see, for example,
that intervening in the male⇒female direction raises the logit for choosing “queen” over “king” as
the next word, but does not change the logit for “King” over “king”.

A natural follow-up question is to see if, e.g., the intervention in the male⇒female direction pushes
the probability of “queen” being the next word to the largest among all tokens. We expect to see
that, as we increase the value of α, the target concept (female) should eventually be reflected in
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Figure 3: Adding αλ̄C to λ changes the target concept C without changing off-target concepts. The
plots illustrate change in log(P(“queen” | x)/P(“king” | x)) and log(P(“King” | x)/P(“king” | x)),
after changing λ(xj) to λC,α(xj) (α ∈ [0, 0.4]) and C = male⇒female (left), lower⇒upper
(center), French⇒Spanish (right). The two ends of the arrow are λ(xj) and λC,0.4(xj), respectively.
Each context xj is presented in Table 4.

Table 1: Adding the intervention representation αλ̄W changes the probability over completions
in the expected way. As the scale of intervention increases, the probability of seeing Y (W = 1)
(“queen”) increases while the probability of seeing Y (W = 0) (“king”) decreases. We show the
top-5 most probable words after the intervention (3.3) in the W = male⇒female direction, i.e.,
λW,α(x) = λ(x) + αλ̄W , for α ∈ {0, 0.1, 0.2, 0.3, 0.4}. The original context x is a sentence
fragment that ends with the word Y (W = 0) (“king”). The most likely words reflect the concept,
with “queen” being (close to) top-1.

(a) Context: “Long live the ”

Rank α = 0 0.1 0.2 0.3 0.4

1 king Queen queen queen queen
2 King queen Queen Queen Queen
3 Queen king _ lady lady
4 queen King lady woman woman
5 _ _ king women women

(b) Context: “In a monarchy, the ruler is usually a ”

Rank α = 0 0.1 0.2 0.3 0.4

1 king king her woman woman
2 monarch monarch monarch queen queen
3 member her member her female
4 her member woman monarch her
5 person person queen member member

the most likely output words according to the LM. In Table 1, we show two illustrative examples in
which W is the concept male⇒female and the context x is a sentence fragment that can end with
the word Y (W = 0) (“king”). In the first example (x = “Long live the ”), as we increase the scale
α on the intervention, we see that the target word Y (W = 1) (“queen”) becomes the most likely
next word, while the original word Y (W = 0) drops below the top-5 list. This illustrates how the
intervention can push the probability of the target word high enough to make it the most likely word
while decreasing the probability of the original word. The second example (x = “In a monarchy, the
ruler usually is a ”) further shows that, even when the target word does not become the most likely
one, the most likely words reflect the concept direction (“woman”, “queen”, “her”, “female”).

4 Discussion

The idea that high-level concepts are encoded linearly is appealing because—if it is true—it may
open up simple methods for interpretability and controllability of LLMs. In this paper, we have
formalized ‘linear representation’, and shown that all natural variants of this notion can be unified.
This equivalence already suggests some approaches for interpretation and control—e.g., we show
how to use collections of pairs of words to define concept directions (Section 3.1), and then use these
directions to predict what the model’s output will be (Section 3.2), and to change the output in a
controlled fashion (Section 3.3). A major theme is the role played by the choice of inner product,
which we discuss in Appendix A. We include a discussion of the related work in Appendix B.
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ҧ𝛾male⇒female
≈ 𝛾 "queen" − 𝛾("king")

ҧ𝑔male⇒female
= ҧ𝑙male⇒female ҧ𝑔English⇒French

= ҧ𝑙English⇒French

Causal Inner Product

ҧ𝛾English⇒French
≈ 𝛾 "roi" − 𝛾("king")

ҧ𝜆English⇒French
≈ 𝜆 "Il est le" − 𝜆("He is the")

ҧ𝜆male⇒female
≈ 𝜆 "She is the" − 𝜆("He is the")

Figure 4: The geometry of linear representations can be understood in terms of a causal inner
product that respects the semantic structure of concepts. We show that this inner product induces
a unified linear representation of concepts. Generally, each concept has a representation λ̄ in the
embedding (input phrase) space and γ̄ in the unembedding (output word) space. The left figure
shows representations of concepts W and Z induced by a non-causal inner product (e.g., Euclidean).
The right figure shows the representation induced by a causal inner product (a linear transformation
of the representation space such that the causal inner product becomes Euclidean). In this space,
the embedding and unembedding representations are unified, and causally separable concepts are
represented by orthogonal vectors.

A Inner Product for Language Model Representations

Given linear representations, we would like to make use of them by doing things like measuring the
similarity between different representations, or editing concepts by projecting onto a target direction.
Similarity and projection are both notions that require an inner product. We now consider the question
of which inner product is appropriate for understanding language model representations.

Preliminaries We define Γ̄ to be the space of differences between elements of Γ. Then, Γ̄ is
a d-dimensional real vector space.3 We consider defining inner products on Γ̄. Unembedding
representations are naturally directions (unique only up to scale). Once we have an inner product, we
define the canonical unembedding representation γ̄W to be the element of the unembedding cone
with ⟨γ̄W , γ̄W ⟩ = 1. This lets us define inner products between unembedding representations.

Unidentifiability of the inner product We might hope that there is some natural inner product that
is picked out (identified) by the model training. It turns out that this is not the case. To understand the
challenge, consider transforming the embedding and unembedding spaces according to

g(y)← Aγ(y) + β, l(x)← A−⊤λ(x), (A.1)

where A ∈ Rd×d is some invertible linear transformation and β ∈ Rd is a constant. It’s easy to see
that this transformation preserves the softmax distribution P(y | x):

exp(λ(x)⊤γ(y))∑
y′ exp(λ(x)⊤γ(y′))

=
exp(l(x)⊤g(y))∑
y′ exp(l(x)⊤g(y′))

∀x, y. (A.2)

However, the objective function used to train the model depends on the representations only through
the softmax probabilities. Thus, the representation γ is identified (at best) only up to some invertible
affine transformation.

This also means that the concept representations γ̄W are identified only up to some invertible linear
transformation A. The problem is that, given any fixed inner product,

⟨γ̄W , γ̄Z⟩ ≠ ⟨Aγ̄W , Aγ̄Z⟩, (A.3)

3Note that the unembedding space Γ is only an affine space, since the softmax is invariant to adding a
constant.
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in general. Accordingly, there is no obvious reason to expect that algebraic manipulations based on,
e.g., the Euclidean inner product, should be preferred to manipulations using any other inner product.

A.1 Causal Inner Products

We require some additional principles for choosing an inner product on the representation space.
The intuition we follow here is that causally separable concepts should be represented as orthogonal
vectors. For example, French⇒English and Male⇒Female, should be orthogonal. We define an
inner product with this property:

Definition 6 (Causal Inner Product). A causal inner product ⟨·, ·⟩C on Γ̄ ≃ Rd is an inner product
such that

⟨γ̄W , γ̄Z⟩C = 0, (A.4)
for any pair of causally separable concepts W and Z.

This choice turns out to have the critical property that it gives a natural unification of the unembedding
and embedding representations:

Theorem 7 (Unification of Representations). Suppose that, for any concept W , there exist concepts
{Zi}d−1

i=1 such that each concept is causally separable with W and {γ̄W }∪{γ̄Zi
}d−1
i=1 is a basis of Rd.

If ⟨·, ·⟩C is a causal inner product, then the Riesz isomorphism γ̄ 7→ ⟨γ̄, ·⟩C maps the unembedding
representation γ̄W of each concept W to its embedding representation λ̄W :

⟨γ̄W , ·⟩C = λ̄⊤
W . (A.5)

To understand this result intuitively, notice we can represent embeddings as row vectors and unembed-
dings as column vectors. If the causal inner product was the Euclidean inner product, the isomorphism
would simply be the transpose operation. The theorem is the (Riesz isomorphism) generalization of
this idea: Each linear map on Γ̄ corresponds to some λ ∈ Λ according to λ⊤ : γ̄ 7→ λ⊤γ̄. So, we can
map Γ to Λ by mapping each γ̄W to a linear function according to γ̄W → ⟨γ̄W , ·⟩C. The theorem
says this map sends each unembedding representation of a concept to the embedding representation
of the same concept.

In the experiments, we will make use of this result to construct embedding representations from
unembedding representations. In particular, this allows us to find interventional representations of
concepts. This is important because it is difficult in practice to find pairs of prompts that directly
satisfy Definition 3.

A.2 An Explicit Form for Causal Inner Product

The next problem is: if a causal inner product exists, how can we find it? In principle, this could be
done by finding the unembedding representations of a large number of concepts, and then finding
an inner product that maps each pair of causally separable directions to zero. In practice, this is
infeasible because of the number of concepts required to find the inner product, and the difficulty of
estimating the representations of each concept.

We now turn to developing a more tractable approach. Our technique is based on the following
insight: knowing the value of concept W expressed by a randomly chosen word tells us little about
the value of that word on a causally separable concept Z. For example, if we learn that a randomly
sampled word is French (not English), this does not give us significant information about whether it
refers to a man or woman.4 Following Theorem 5, we formalize this idea as follows:

Assumption 1. Suppose W,Z are causally separable concepts and that γ is an unembedding vector
sampled uniformly from the vocabulary. Then, λ̄⊤

W γ ⊥⊥ λ̄⊤
Zγ for any embedding representations λ̄W

and λ̄Z for W and Z, respectively.

This assumption lets us connect causal separability with something we can actually measure: the
statistical dependency between words. The next result makes this precise.

4Note that this assumption is about words sampled randomly from the vocabulary, not words sampled
randomly from natural language sources. In the latter, there may well be non-causal correlations between
causally separable concepts (e.g., if French text is disproportionately about men).
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Theorem 8 (Explicit Form of Causal Inner Product). Suppose a causal inner product, repre-
sented as ⟨γ̄, γ̄′⟩C = γ̄⊤Mγ̄′ for some symmetric positive definite matrix M , exists. If there
are mutually causally separable concepts {Wk}dk=1, such that their canonical representations
G = [γ̄W1

, · · · , γ̄Wd
] form a basis for Γ̄ ≃ Rd, then under Assumption 1,

M−1 = GG⊤ and G⊤Cov(γ)−1G = D, (A.6)

for some diagonal matrix D with positive entries, where γ is the unembedding vector of a word
sampled uniformly at random from the vocabulary.

Notice that causal orthogonality only imposes d(d − 1)/2 constraints on the inner product, but
there are d(d− 1)/2 + d degrees of freedom in defining a positive definite matrix (hence, an inner
product)—thus, we expect d degrees of freedom in choosing a causal inner product. Theorem 8 gives
a characterization of this class of inner products, in the form of (A.6). Here, D is a free parameter
with d degrees of freedom. Each D defines the inner product. We do not have a principle for picking
out a unique choice of D (and thus, a unique inner product). In our experiments, we will work with
the choice D = Id. Then, we have a simple closed form for the corresponding inner product:

⟨γ̄, γ̄′⟩C := γ̄⊤Cov(γ)−1γ̄′, ∀γ̄, γ̄′ ∈ Γ̄. (A.7)

Notice that although we don’t have a unique inner product, we can rule out most inner products. E.g.,
the Euclidean inner product is not a causal inner product if M = Id does not satisfy (A.6) for any D.

Canonical representation The choice of inner product also be viewed as defining a canonical
choice of representations g, l in (A.1). Namely, we define

g(y) = Cov(γ)−1/2γ(y) and l(x) = Cov(γ)1/2λ(x), (A.8)

for some square root of the inverse covariance matrix. It is easy to see that this choice makes the
embedding and unembedding representations of concepts the same, ḡW = l̄W , and that ⟨γ̄, γ̄′⟩C =
ḡ⊤ḡ′. That is, g is a representation where the Euclidean inner product is a causal inner product. So,
we can view a choice of inner product as instead being a choice of representation. This is illustrated
in fig. 4. This is convenient for experiments, because it allows the use of standard Euclidean tools on
the transformed space.

A.3 The estimated inner product respects causal separability

Finally, we turn to directly examining whether the estimated inner product chosen from Theorem 8,

⟨γ̄, γ̄′⟩C := γ̄⊤Cov(γ)−1γ̄′, ∀γ̄, γ̄′ ∈ Γ̄, (A.9)

is indeed approximately a causal inner product. In fig. 5, we plot a heatmap of the inner products
between all pairs of the 27 estimated concepts. If the estimated inner product is a causal inner product,
then we expect values near 0 between causally separable concepts (and large values between causally
related concepts).

The first observation is that most pairs of concepts are nearly orthogonal with respect to this inner
product. Interestingly, there is also a clear block diagonal structure. This arises because the concepts
are grouped by semantic similarity. For example, the first 10 concepts relate to verbs, and the
last 4 concepts are language pairs. The additional non-zero structure also generally makes sense.
For example, lower⇒upper (capitalization, concept 19) has non-trivial inner product with the
language pairs other than French⇒Spanish. This may be because French and Spanish obey
similar capitalization rules, while English and German each have different conventions (e.g., German
capitalizes all nouns, but English only capitalizes proper nouns).

In fig. 5, we also plot the similarities induced by the Euclidean inner product (M = Id) and an
arbitrarily chosen inner product (M = A⊤A, where Ai,j = |ai,j | and ai,j

iid∼ N(0, 1)). We see
that the arbitrary inner product does not respect the semantic structure at all. Surprisingly, the
Euclidean inner product somewhat does! This may due to some initialization or implicit regularizing
effect that favors learning unembeddings with approximately isotropic covariance. Nevertheless,
the estimated causal inner product clearly improves on the Euclidean inner product. For example,

14



3 6 9 12 15 18 21 24 27

verb 3pSg (1)
verb Ving (2)
verb Ved (3)

Ving 3pSg (4)
Ving Ved (5)
3pSg Ved (6)

verb V + able (7)
verb V + er (8)

verb V + tion (9)
verb V + ment (10)

adj un + adj (11)
adj adj + ly (12)

small big (13)
thing color (14)
thing part (15)

country capital (16)
pronoun possessive (17)

male female (18)
lower upper (19)
noun plural (20)

adj comparative (21)
adj superlative (22)

frequent infrequent (23)
English French (24)

French German (25)
French Spanish (26)

German Spanish (27)

M = Cov( ) 1 M = Id

Random M

0.2

0.4

0.6

0.8

1.0

Figure 5: Causally separable concepts are approximately orthogonal under the estimated causal inner
product. The heatmaps show |⟨γ̄W , γ̄Z⟩| for the estimated unembedding representations of each
concept pair (W,Z). The plot on the left shows the estimated inner product based on (A.7). We
also consider two reference inner products by varying the choice of the symmetric positive definite
matrix M . The upper-right plot represents Euclidean inner product (M = Id); the lower-right plot
represents an arbitrary inner product (M = A⊤A, where Ai,j = |ai,j | and ai,j

iid∼ N(0, 1)). The
detail for the concepts is given in Table 2. See main text for a discussion of the interpretation.

frequent⇒infrequent (concept 23) has high Euclidean inner product with many separable con-
cepts, and these are much smaller for the causal inner product. Conversely, English⇒French
(24) has low Euclidean inner product with the other language concepts (25-27), but high causal
inner product with French⇒German and French⇒Spanish (while being nearly orthogonal to
German⇒Spanish, which does not share French.).

B Related Work

Linear subspaces in language representations The linear subspace hypotheses was originally ob-
served empirically in the context of word embeddings [e.g., Mik+13; LG14; GL14; Vyl+16; GDM16;
CCCP20; FDD20]. Similar structure has been observed in cross-lingual word embeddings [MLS13;
Lam+18; RVS19; Pen+22], sentence embeddings [Bow+16; ZM20; Li+20; Ush+21], representation
spaces of Transformer LLMs [Men+22; MEP23; Her+23], and vision-language models [Wan+23;
Tra+23; Per+23]. These observations motivate Definition 1. The key idea in the present paper is
providing formalization in terms of counterfactual pairs—this is what allows us to connect to other
notions of linear representation, and to identify the inner product structure.

Measurement, intervention, and mechanistic interpretability There is a significant body of
work on linear representations for interpreting (probing) [e.g., AB17; Kim+18; nos20; RKR21;
Bel22; Li+22; Gev+22; NLW23] and controlling (steering) [e.g., Wan+23; Tur+23; MEP23; Tra+23]
models. This is particularly prominent in mechanistic interpretability [Elh+21; Men+22; Her+23;
Tur+23; Zou+23; Tod+23; HGG23]. With respect to this body of work, the main contribution of
the present paper is to clarify the linear representation hypothesis, and the critical role of the inner
product. However, we do not address interpretability of either model parameters, nor the activations
of intermediate layers. These are main focuses of existing work. It is an exciting direction for future
work to understand how ideas here—particularly, the causal inner product—translate to these settings.

Geometry of representations There is a line of work that studies the geometry of word and
sentence representations [e.g., Aro+16; MT17; Eth19; Rei+19; Li+20; HM19; Che+21; CTB22;
JAV23]. This work considers, e.g., visualizing and modeling how the learned embeddings are
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distributed, or how hierarchical structure is encoded. Our work is largely orthogonal to these, since
we are attempting to define a suitable inner product (and thus, notion of distance) that respects the
semantic structure of language.

Causal representation learning Finally, the ideas here connect to causal representation learn-
ing [e.g., Hig+16; HM16; Hig+18; Khe+20; Zim+21; Sch+21; Mor+21; Wan+23]. Most obviously,
our causal formalization of concepts is inspired by Wang et al. [Wan+23], who establish a characteri-
zation of latent concepts and vector algebra in diffusion models. Separately, a major theme in this
literature is the identifiability of learned representations—i.e., to what extent they capture underlying
real-world structure. Our causal inner product results may be viewed in this theme, showing that an
inner product respecting semantic closeness is not identified by the usual training procedure, but that
it can be picked out with a suitable assumption.

C Proofs

C.1 Proof of Theorem 2

Theorem 2 (Measurement Representation). Let W be a concept, and let γ̄W be an unembedding
representation of W . Then, given any context embedding λ ∈ Λ,

logitP(Y = Y (1) | Y ∈ {Y (1), Y (0)}, λ) = αλ⊤γ̄W , (2.2)

where α > 0 a.s. is a function of {Y (1), Y (0)}.

Proof. The proof involves writing out the softmax sampling distribution and invoking Definition 1.

logitP(Y = Y (1) | Y ∈ {Y (1), Y (0)}, λ) (C.1)

= log
P(Y = Y (1) | Y ∈ {Y (1), Y (0)}, λ)
P(Y = Y (0) | Y ∈ {Y (1), Y (0)}, λ)

(C.2)

= λ⊤ {γ(Y (1))− γ(Y (0))} (C.3)

= α · λ⊤γ̄W . (C.4)

In (C.3), we simply write out the softmax distribution, allowing us to cancel out the normalizing
constants for the two probabilities. Equation (C.4) follows directly from Definition 1; note that the
randomness of α comes from the randomness of (Y (1), Y (0)).

C.2 Proof of Lemma 4

Lemma 4 (Unembedding-Embedding Relationship). Let λ̄W be the embedding representation of a
concept W , and let γ̄W and γ̄Z be the unembedding representations for W and any concept Z that is
causally separable with W . Then, we have

λ̄⊤
W γ̄W > 0 and λ̄⊤

W γ̄Z = 0. (2.4)

Conversely, if a representation λ̄W satisfies (2.4) and there exist concepts {Zi}d−1
i=1 such that each

concept is causally separable with W and {γ̄W } ∪ {γ̄Zi}d−1
i=1 is the basis of Rd, then λ̄W is the

embedding representation for the concept W .

Proof. Let λ0, λ1 be a pair of embeddings such that

P(W = 1 | λ1)

P(W = 1 | λ0)
> 1 and

P(W,Z | λ1)

P(W,Z | λ0)
=

P(W | λ1)

P(W | λ0)
, (C.5)

for any concept Z that is causally separable with W . Then, by Definition 3,

λ1 − λ0 ∈ Cone(λ̄W ). (C.6)

The condition (C.5) is equivalent to

P(W = 1 | λ1)

P(W = 1 | λ0)
> 1 and

P(Z = 1 |W,λ1)

P(Z = 1 |W,λ0)
= 1. (C.7)
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These two conditions are also equivalent to the following pair of conditions, respectively:

P(Y = Y (1) | Y ∈ {Y (1), Y (0)}, λ1)

P(Y = Y (1) | Y ∈ {Y (1), Y (0)}, λ0)
> 1 (C.8)

and
P(Y = Y (W, 1) | Y ∈ {Y (W, 0), Y (W, 1)}, λ1)

P(Y = Y (W, 1) | Y ∈ {Y (W, 0), Y (W, 1)}, λ0)
= 1 (C.9)

The reason is that, conditional on Y ∈ {Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)}, conditioning on W is
equivalent to conditioning on Y ∈ {Y (W, 0), Y (W, 1)}. And, the event Z = 1 is equivalent to the
event Y = Y (W, 1). (In words: if we know the output is one of “king”, “queen”, “roi”, “reine” then
conditioning on W = 1 is equivalent to conditioning on the output being “king” or “roi”. Then,
predicting whether the word is in English is equivalent to predicting whether the word is “king”.)

By Theorem 2, the two conditions (C.8) and (C.9) are respectively equivalent to

α(Y (0), Y (1))(λ1 − λ0)
⊤γ̄W > 0 and α(Y (W, 0), Y (W, 1))(λ1 − λ0)

⊤γ̄Z = 0, (C.10)

where α’s are positive a.s. These are in turn respectively equivalent to

λ̄⊤
W γ̄W > 0 and λ̄⊤

W γ̄Z = 0. (C.11)

Conversely, if a representation λ̄W satisfies (C.11) and there exist concepts {Zi}d−1
i=1 such that each

concept is causally separable with W and {γ̄W } ∪ {γ̄Zi
}d−1
i=1 is the basis of Rd, then λ̄W is unique

up to positive scaling. If there exists λ0 and λ1 satisfying (C.5), then the equivalence between (C.5)
and (C.10) says that

(λ1 − λ0)
⊤γ̄W > 0 and (λ1 − λ0)

⊤γ̄Z = 0. (C.12)

In other words, λ1 − λ0 also satisfies (C.11), implying that it must be the same as λ̄W up to positive
scaling. Therefore, for any λ0 and λ1 satisfying (C.5), λ1 − λ0 ∈ Cone(λ̄W ).

C.3 Proof of Theorem 5

Theorem 5 (Intervention Representation). Let λ̄W be the embedding representation of a concept W .
Then, for any concept Z that is causally separable with W ,

P(Y = Y (W, 1) | Y ∈ {Y (W, 0), Y (W, 1)}, λ+ cλ̄W ) is constant in c ∈ R, (2.5)

and
P(Y = Y (1, Z) | Y ∈ {Y (0, Z), Y (1, Z)}, λ+ cλ̄W ) is increasing in c ∈ R. (2.6)

Proof. By Theorem 2,

logitP(Y = Y (W, 1) | Y ∈ {Y (W, 0), Y (W, 1)}, λ+ cλ̄W ) (C.13)

= α · (λ+ cλ̄W )⊤γ̄Z (C.14)

= α · λ⊤γ̄Z + αc · λ̄⊤
W γ̄Z (C.15)

Therefore, we have (2.5) since λ̄⊤
W γ̄Z = 0 by Lemma 4.

Also, by Theorem 2,

logitP(Y = Y (1, Z) | Y ∈ {Y (0, Z), Y (1, Z)}, λ+ cλ̄W ) (C.16)

= α · (λ+ cλ̄W )⊤γ̄W (C.17)

= α · λ⊤γ̄Z + αc · λ̄⊤
W γ̄W (C.18)

Therefore, we have (2.6) since λ̄⊤
W γ̄W > 0 by Lemma 4.
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C.4 Proof of Theorem 7

Theorem 7 (Unification of Representations). Suppose that, for any concept W , there exist concepts
{Zi}d−1

i=1 such that each concept is causally separable with W and {γ̄W }∪{γ̄Zi
}d−1
i=1 is a basis of Rd.

If ⟨·, ·⟩C is a causal inner product, then the Riesz isomorphism γ̄ 7→ ⟨γ̄, ·⟩C maps the unembedding
representation γ̄W of each concept W to its embedding representation λ̄W :

⟨γ̄W , ·⟩C = λ̄⊤
W . (A.5)

Proof. The causal inner product defines the Riesz isomorphism ϕ such that ϕ(γ̄) = ⟨γ̄, ·⟩C. Then,
we have

ϕ(γ̄W )(γ̄W ) = ⟨γ̄W , γ̄W ⟩C > 0 and ϕ(γ̄W )(γ̄Z) = ⟨γ̄W , γ̄Z⟩C = 0, (C.19)

where the second equality follows from Definition 6. By Lemma 4, ϕ(γ̄W ) expresses the unique
unembedding representation λ̄W (up to positive scaling); specifically, ϕ(γ̄W ) = λ̄⊤

W where λ̄⊤
W :

γ̄ 7→ λ̄⊤
W γ̄.

C.5 Proof of Theorem 8

Theorem 8 (Explicit Form of Causal Inner Product). Suppose a causal inner product, repre-
sented as ⟨γ̄, γ̄′⟩C = γ̄⊤Mγ̄′ for some symmetric positive definite matrix M , exists. If there
are mutually causally separable concepts {Wk}dk=1, such that their canonical representations
G = [γ̄W1

, · · · , γ̄Wd
] form a basis for Γ̄ ≃ Rd, then under Assumption 1,

M−1 = GG⊤ and G⊤Cov(γ)−1G = D, (A.6)

for some diagonal matrix D with positive entries, where γ is the unembedding vector of a word
sampled uniformly at random from the vocabulary.

Proof. Since ⟨·, ·⟩C is a causal inner product,

0 = γ̄⊤
WMγ̄Z (C.20)

for any causally separable concepts W and Z. Also, Mγ̄Wi
is an embedding representation for each

concept Wi for i = 1, · · · , d by the proof of Lemma 4 and Theorem 7. Thus, by Assumption 1,

0 = Cov(γ̄⊤
Wi

Mγ, γ̄⊤
Wj

Mγ) (C.21)

= γ̄⊤
Wi

MCov(γ)Mγ̄Wj
. (C.22)

for i ̸= j. By applying (C.20) to the basis G = [γ̄W1 , · · · , γ̄Wd
], we have

I = G⊤MG (C.23)

as well as
D−1 = G⊤MCov(γ)MG, (C.24)

for some diagonal matrix D with positive entries. Then, M = G−⊤G−1 and

Cov(γ) = GD−1G⊤. (C.25)

Therefore, we have (A.6).

D Experiment Details

The LLaMA-2 model We utilize the llama-2-7b variant of the LLaMA-2 model [Tou+23], which
is accessible online (with permission) via the huggingface library.5 Its seven billion parameters are
pre-trained on two trillion sentencepiece [KR18] tokens, 90% of which is in English. This model
uses 32,000 tokens and 4,096 dimensions for its token embeddings.

5https://huggingface.co/meta-llama/Llama-2-7b-hf
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Table 2: Concept names, one example of the counterfactual pairs, and the number of the used pairs

# Concept Example Count

1 verb⇒ 3pSg (accept, accepts) 32
2 verb⇒ Ving (add, adding) 31
3 verb⇒ Ved (accept, accepted) 47
4 Ving⇒ 3pSg (adding, adds) 27
5 Ving⇒ Ved (adding, added) 34
6 3pSg⇒ Ved (adds, added) 29
7 verb⇒ V + able (accept, acceptable) 6
8 verb⇒ V + er (begin, beginner) 14
9 verb⇒ V + tion (compile, compilation) 8

10 verb⇒ V + ment (agree, agreement) 11
11 adj⇒ un + adj (able, unable) 5
12 adj⇒ adj + ly (according, accordingly) 18
13 small⇒ big (brief, long) 20
14 thing⇒ color (ant, black) 21
15 thing⇒ part (bus, seats) 13
16 country⇒ capital (Austria, Vienna) 15
17 pronoun⇒ possessive (he, his) 4
18 male⇒ female (actor, actress) 11
19 lower⇒ upper (always, Always) 34
20 noun⇒ plural (album, albums) 63
21 adj⇒ comparative (bad, worse) 19
22 adj⇒ superlative (bad, worst) 9
23 frequent⇒ infrequent (bad, terrible) 32
24 English⇒ French (April, avril) 46
25 French⇒ German (ami, Freund) 35
26 French⇒ Spanish (année, año) 35
27 German⇒ Spanish (Arbeit, trabajo) 22

Counterfactual pairs Tokenization impedes using the meaning of an exact word. First, a word can
be tokenized to more than one token. For example, a word “princess” is tokenized to “prin” + “cess”,
and γ(“princess”) does not exist. Thus, we cannot obtain the meaning of the exact word “princess".
Second, a word can be used as one of the tokens for another word. For example, the French words
“bas” and “est” (“down” and “east” in English) are in the tokens for the words “basalt”, “baseline”,
“basil”, “basilica”, “basin”, “estuary”, “estrange”, “estoppel”, “estival”, “esthetics”, and “estrogen”.
Therefore, a word can have another meaning other than the meaning of the exact word.

When we collect the counterfactual pairs to identify γ̄W , the first issue in the pair can be handled by
not using it. However, the second issue cannot be handled, and it gives a lot of noise to our results.
Table 2 presents the number of the counterfactual pairs for each concept and one example of the pairs.
The pairs for 13, 17, 19, 23-27th concepts are generated by ChatGPT-4 [Ope23], and those for 16th
concept are based on the csv file6). The other concepts are based on The Bigger Analogy Test Set
(BATS) [GDM16], version 3.07, which is used for evaluation of the word analogy task.

Context samples In Section 3.2, for a concept W (e.g., English⇒French), we choose several
counterfactual pairs (Y (0), Y (1)) (e.g., (house, maison)), then sample context {x0

j} and {x1
j} that the

next token is Y (0) and Y (1), respectively, from Wikipedia. These next token pairs are collected from

6https://github.com/jmerullo/lm_vector_arithmetic/blob/main/world_capitals.csv
7https://vecto.space/projects/BATS/
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Table 3: Concepts used to investigate measurement notion

Concept Example Count

English⇒ French (house, maison) (209, 231)
French⇒ German (déjà, bereits) (278, 205)
French⇒ Spanish (musique, música) (218, 214)
German⇒ Spanish (guerra, Krieg) (214, 213)

Table 4: Contexts used to investigate intervention notion

j xj

1 Long live the
2 The lion is the
3 In the hierarchy of medieval society, the highest rank was the
4 Arthur was a legendary
5 He was known as the warrior
6 In a monarchy, the ruler is usually a
7 He sat on the throne, the
8 A sovereign ruler in a monarchy is often a
9 His domain was vast, for he was a

10 The lion, in many cultures, is considered the
11 He wore a crown, signifying he was the
12 A male sovereign who reigns over a kingdom is a
13 Every kingdom has its ruler, typically a
14 The prince matured and eventually became the
15 In the deck of cards, alongside the queen is the

the word2word bilingual lexicon [CPK20], which is a publicly available word translation dictionary.
We take all word pairs between languages that are the top-1 correspondences to each other in the
bilingual lexicon and filter out pairs that are single tokens in the LLaMA-2 model’s vocabulary.

Table 3 presents the number of the contexts {x0
j} and {x1

j} for each concept and one example of the
pairs (Y (0), Y (1)).

In the experiment for intervention notion, for a concept W,Z, we sample texts which Y (0, 0) (e.g.,
“king”) should follow, via ChatGPT-4. We discard the contexts such that Y (0, 0) is not the top 1 next
word. Table 4 present the contexts we use.

Validation for Assumption 1 In Figure 6, we check that λ̄⊤
W γ and λ̄⊤

Zγ are independent for the
causally separable concepts where λ̄W is estimated by (3.2). On the other hand, Figure 7 shows that
λ̄⊤
W γ and λ̄⊤

Zγ are not independent for the non-causally separable concepts.

E Additional Results

E.1 Histograms of random and counterfactual pairs for all concepts

In Figure 8, we include the analog of Figure 1, where we check the causal inner product of the
differences between the counterfactual pairs and an LOO estimated unembedding representation
for each of the 27 concepts. While the most of the concepts are encoded in the unembedding
representation, some concepts, such as thing⇒part, are not encoded in the unembedding space Γ.
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Figure 6: λ̄⊤
W γ and λ̄⊤

Zγ are independent for the causally separable concepts W =male⇒female
and Z =English⇒French. The plot of γ̄⊤

W γ and γ̄⊤
Z γ shows that the independence is not common.

Figure 7: λ̄⊤
W γ and λ̄⊤

Zγ are not independent for the non-causally separable concepts
W =verb⇒3pSg and Z =verb⇒Ving.

E.2 Additional results from the measurement experiment

We include the analog of Figure 2, where we use each of the 27 concepts as a linear probe on either
French⇒Spanish (Figure 9) or English⇒French (Figure 10) contexts.

E.3 Additional results from the intervention experiment

In Figure 11, we include the analog of Figure 3, where we add the embedding representation αλ̄C

(3.2) for each of the 27 concepts to λ(xj) and see the change in logits.
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estimated concept direction (blue). Each concept W (the title of each plot) is explained in Table 2.
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Figure 11: Change in log(P(“queen” | x)/P(“king” | x)) and log(P(“King” | x)/P(“king” | x)),
after changing λ(xj) to λC,α(xj) for α ∈ [0, 0.4] and any concept C. The starting point and ending
point of each arrow correspond to the λ(xj) and λC,0.4(xj), respectively.
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