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Abstract

Time series forecasting typically needs to address non-stationary data with evolving
trend and seasonal patterns. To address the non-stationarity, reversible instance
normalization has been recently proposed to alleviate impacts from the trend with
certain statistical measures, e.g., mean and variance. Although they demonstrate
improved predictive accuracy, they are limited to expressing basic trends and are
incapable of handling seasonal patterns. To address this limitation, this paper
proposes a new instance normalization solution, called frequency adaptive normal-
ization (FAN), which extends instance normalization in handling both dynamic
trend and seasonal patterns. Specifically, we employ the Fourier transform to iden-
tify instance-wise predominant frequent components that cover most non-stationary
factors. Furthermore, the discrepancy of those frequency components between
inputs and outputs is explicitly modeled as a prediction task with a simple MLP
model. FAN is a model-agnostic method that can be applied to arbitrary predictive
backbones. We instantiate FAN on four widely used forecasting models as the
backbone and evaluate their prediction performance improvements on eight bench-
mark datasets. FAN demonstrates significant performance advancement, achieving
7.76%∼37.90% average improvements in MSE. Our code is publicly available2.

1 Introduction

Time series forecasting plays a key role in various fields such as traffic [8], finance [23] and infectious
disease [1], etc. Recent research focuses on deep learning-based methods, as they demonstrate
promising capabilities to capture complex dependencies between variables [47, 42, 46]. However,
time series with trends and seasonality, also called non-stationary time series [15], create covariate
pattern shifts across different time steps. These dynamics pose significant challenges in forecasting.

To mitigate non-stationarity issues, reversible normalization has been proposed [33, 17] which first
removes non-stationary information from the input and returns the information back to rebuild the
output. Current work focuses on removing non-stationary signals with statistical measures, e.g., mean
and variance in the time domain [10, 28]. However, while these methods have improved prediction
accuracy, these statistical measures are only capable of extracting the most prominent component,
i.e., the trend, leaving substantial room for improvement. They, we argued, can hardly measure the
characteristics of seasonal patterns, which are quite common in many time series. This significantly
limits their capability to handle the non-stationarity, especially the seasonal patterns.

We illustrate an example featuring one of the simplest non-stationary signals in Fig. 1. This graph
shows a time-variant signal with a gradually damping frequency, which is widely seen in many
passive systems, e.g., spring-mass damper systems. As depicted in Fig. 1, the three input stages
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Figure 1: A sinusoidal signal with linearly varying frequency
which is a common example of a non-stationary time series.
In the lower-left corner, we plot the Fourier spectrum for
three segments of the signal.

(highlighted in different background
colors) exhibit the same mean and
variance but differ in Fourier fre-
quencies. Previous methods that
model non-stationary information us-
ing means and variances can hardly
distinguish this type of change in the
time domain. In comparison, changes
in periodic signals can be easily iden-
tified with the instance-wise Fourier
transform (f1 ̸= f2 ̸= f3). Thus, in
this context, the principal Fourier com-
ponents provide a more effective rep-
resentation of non-stationarity com-
pared to statistical values such as mean and variance. This simple example also shows that many
existing frequency-based solutions, e.g., TimesNet [41], Koopa [27], which assume that the principal
frequencies of the input signal are constant, can not identify the evolving principal frequencies.

With this inspiration, we introduce a novel instance-based normalization method, named Frequency
Adaptive Normalization (FAN). Rather than normalizing temporal statistical measures, FAN mitigates
the impacts from the non-stationarity by filtering top K dominant components in the Fourier domain
for each input instance, this approach can handle unified non-stationary fact composed of both trend
and seasonal patterns. Furthermore, as those removed patterns might evolve from inputs to outputs,
we employ a pattern adaptation module to forecast future non-stationary information rather than
assuming these patterns remain unchanged.

In summary, our main contributions are: 1) We illustrate the limitations of reversible instance normal-
ization methods in using temporal distribution statistics to remove impacts from non-stationarity. To
address this limitation, we introduce a novel reversible normalization method, named FAN, which
adeptly addresses both trend and seasonal non-stationary patterns within time series data. 2) We
explicitly address pattern evolvement with a simple MLP that predicts the top K frequency signals
of the horizon series and applies these predictions to reconstruct the output. 3) We apply FAN to
four general backbones for time series forecasting across eight real-world popular benchmarks. The
results demonstrate that FAN significantly improves their predictive effectiveness. Furthermore, a
comparative analysis between FAN and state-of-the-art normalization techniques underscores the
superiority of our proposed solution.

2 Related Work

Time series forecasting has been a hot topic of study for many years. This section provides discussions
on related work from the following three perspectives.

2.1 Time Series Forecasting

Traditional statistical methods, such as ARIMA [2], assume the stationarity of the time series and
dependencies between temporal steps. Although these methods provide theoretical guarantees, they
typically require data with ideal properties, which is often inconsistent with real-world scenarios [42].
Besides, they can only handle a limited amount of data and features. In recent years, the field has
witnessed a significant proliferation in the application of deep learning techniques for multivariate
time series forecasting, a development ascribed to their ability in handling high-dimensional datasets.
Consequently, various methods have been proposed to model time series data. Work based on
recurrent neural networks [36, 4] preserves the current state and models the evolution of time
series as a recurrent process. However, they generally suffer from a limited receptive field, which
restricts their ability to capture long temporal dependencies [47]. Inspired by their successes in
Computer Vision (CV) and Natural Language Processing (NLP), convolutional neural networks and
the self-attention mechanism have been extensively utilized in time series forecasting [22, 19, 40, 25].
Nevertheless, those works still face difficulties in handling non-stationary data with covariate pattern
shifts. Making an accurate prediction for non-stationary time series remains challenging.
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2.2 Non-stationary Time Series Forecasting

To address non-stationarity, many methods directly model non-stationary phenomena with different
modeling techniques. Li et al. [24] utilize a domain-adaptation paradigm to predict data distributions.
Du et al. [6] propose an adaptive RNN to alleviate the impact of non-stationary factors through
distribution matching. Liu et al. [26] introduce a non-stationary Transformer with de-stationary
attention that incorporates non-stationary factors in self-attention mechanisms. To model non-linear
dynamic systems, several models based on Koopman theory [21, 29, 37, 44] have been proposed
with Fourier transform. To learn different patterns at different scales, Wang et al. [38] employs global
and local Koopman operators. Liu et al. [27] model non-stationarity identified with Fourier transform
and use Koopman operators to learn those components. However, these solutions typically select
fixed frequency components based on the whole sequence rather than frequencies based on inputs.
This time-invariant assumption can hardly be true in real-world scenarios.

2.3 Instance-wise Normalization against Non-stationarity

To mitigate the time-variant property of non-stationary time series, a set of instance-wise normaliza-
tion methods have been proposed to remove the impacts from non-stationarity. To reflect instance-wise
changes, Ogasawara et al. [31] propose the usage of normalization based on local properties rather
than global statistics. Passalis et al. [33] introduce an adaptive and learnable approach to this instance-
wise normalization paradigm. However, although these methods effectively remove non-stationary
components from inputs, they still need to predict the non-stationary time series in the output series,
which remains challenging. In response, reversible instance normalization [17] is introduced by
reintegrating the removed non-stationary components back to reconstruct the output. However, it
still assumes unchanged trends between inputs and outputs. Kim et al. [17] developed RevIN, which
mainly addresses evolving trends between input sequences. Recent works [10, 28] explore trends at a
finer granularity, e.g., at the sliced level. However, these approaches still model non-stationarity with
temporal statistical distribution parameters and fail to account for evolving seasonality, which is a
crucial aspect of non-stationarity [35, 11, 45].

3 Proposed Method: FAN

Given a multivariate time series X ∈ RN×D, where N is the total time steps and D denotes the
number of feature dimensions. We use inputs series with length L to predict outputs series within
length H . The forecast task can be formulated as: Xt−L:t → Xt+1:t+H , where Xt−L:t ∈ RL×D and
Xt+1:t+H ∈ RH×D. For a clearer notation, we denote the input and output series as Xt ∈ RL×D

and Yt ∈ RH×D respectively.

Our proposed method, FAN, consists of symmetrically structured instance-wise normalization and
denormalization layers, illustrated in Fig. 2. The normalization process removes the impacts of
non-stationary signals through frequency domain decomposition (upper left part of Fig. 2), while the
denormalization process, supported by a prediction module, addresses potential shifts in frequency
components between the input and output (lower part of Fig. 2).

3.1 Frequency-based Normalization

First, FAN removes the top K dominant components in the frequency domain for each input instance,
so the forecasting backbone can concentrate on the stationary aspects of the input. We term this
process as Frequency Residual Learning (FRL). The input at time t, Xt, is multivariate with D
dimension, and each dimension might have different frequency patterns; thus, we apply the FRL
to each dimension in a channel independence setting [30]. Here, the FRL is realized by the 1-dim
Discrete Fourier Transform (DFT) with DFT(·) towards each input Xt:

Zt = DFT(Xt) and Kt = TopK(Amp(Zt)) and Xnon
t = IDFT(Filter(Kt,Zt)) (1)

Equ. 1 shows that DFT(·) transforms an input into Fourier components in complex values, denoted
Zt ∈ CT×D. Then, TopK(·) selects the frequency set with the top K largest amplitude, which are
calculated with Amp(·) function. Filter is the operation to filter out the Kt frequency from Zt. To
mitigate the impact of non-stationary signals, FRL restores the top K components into time domain
components Xnon

t with IDFT(·).
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Figure 2: An overview of FAN which consists of normalization, frequency residual learning, denor-
malization steps, and incorporates a prior loss for non-stationary patterns.

With Xnon
t , we can easily normalize the inputs and get the stationary components by removing Xnon

t
from Xt, which is

Xres
t = Xt −Xnon

t (2)

Here, DFT(·) and IDFT(·) can be performed using Fast Fourier Transform (FFT) [3] with a com-
putational complexity of O(L logL). And the TopK and Filter operations both exhibit complexity
of O(L + K). It is important to note that all these operations are GPU-friendly and can be fully
paralleled. Thus, the impact of applying these operations independently on each dimension can be
largely mitigated. GPU-friendly PyTorch pseudocode is in Appendix A.2. After the normalization
step, the normalized sequences Xres

t can be more stationary and have a more consistent covariate
distribution, the theoretical proof is provided in Appendix C.

3.2 Forecast & Denormalization

As a result, the normalization layer allows the forecast backbone model gθ to focus more on the
dynamics within the inputs. Here, following the reversible instance normalization paradigm, the
forecast backbone gθ receives the transformed data Xres

t as input and forecasts only the stationary
part Yres

t of the outputs Yt. This design makes it easier for the model to forecast non-stationary time
series. Then, we apply the removed non-stationary information back to the output. We define this
process as:

Ŷres
t = gθ(X

res
t )

Ŷt = Ŷres
t + Ŷnon

t

(3)

where Ŷnon
t is the reconstruct signal of Xnon

t . We illustrate Ŷnon as follow:

Non-stationary shift forecasting. For reverse instance normalization, we need to estimate Ŷnon
t in

the outputs. As an input and its corresponding output are rather close, RevIN [17] directly adds Xnon
t

back by assuming Ynon
t with exactly the same trend as Xnon

t . However, this assumption can hardly
be true as the non-stationary information between the input and output may evolve. Furthermore,
although SAN [28] and Dish-TS [10] predict statistics to address the discrepancy between the input
and output, these statistics can only represent the most salient trend patterns.

To this end, rather than predicting statistics [10, 28], we use a simple MLP model qϕ to directly
predict future values of the composite top K frequency components for D dimensions, defined as:

Ŷnon
t = qϕ(X

non
t ,Xt) = W3 ReLU (W2 Concat(ReLU (W1X

non
t ) ,Xt)) (4)

where W1, W2, W3 are all learnable parameters. Here, since Xnon
t only contains top K frequency

information, it is difficult to capture variations in other frequencies solely relying on Xnon
t . Therefore,
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we concatenate the top K components with the original input Xt to handle potential frequency
variations.

Loss Functions. To help with the residual learning process, we incorporate a prior guidance loss for
the prediction of principal frequency components, the final loss is defined in Eq. 5. The forecast with
prior guidance can be considered a multi-task optimization problem [12], where Lnonstat

ϕ ensures qϕ
accurately predict the non-stationary principal frequency component and Lforecast

θ,ϕ guarantees that
both model optimizes along the overall forecast accuracy.

ϕ, θ = argmin
ϕ,θ

∑
t

(
Lnonstat
ϕ (Ynon

t , Ŷnon
t ) + Lforecast

θ,ϕ (Yt, Ŷt)
)

(5)

Here, the mean square error loss is used for both loss functions.

4 Experiments

4.1 Experiment Setup

Datasets. We use eight popular datasets in multivariate time series forecasting as benchmarks,
including: (1-4) ETT (Electricity Transformer Temperature) 3[47] records the oil temperature and
load of the electricity transformers from July 2016 to July 2018. Four subsets are included in
this dataset, where ETThs are sampled per hour and ETTms per 15 minutes. (5) Electricity 4

contains the electricity consumption of 321 clients from July 2016 to July 2019 per 15 minutes. (6)
ExchangeRate 5 contains the daily exchange rates of 8 countries from 1990 to 2016. (7) Traffic 6

includes the hourly traffic load of San Francisco freeways recorded by 862 sensors from 2015 to
2016. (8) Weather 7 is made up of 21 indicators of weather, including air temperature and humidity
collected every 10 minutes in 2021.

For preprocessing, we apply z-score normalization [12] on all datasets to scale different variables
to the same scale. Note that z-score normalization is unable to handle non-stationary time series
since the statistics remain unchanged for different input instances [17]. The split ratio for training,
validation, and test sets is set to 7:2:1 for all the datasets. We report datasets properties in Table 1,
including (1) Trend Variation: Differences in the means across different sections of the dataset. (2)
Seasonality Variation: We report the average variance over the Fourier spectrum to examine the
presence of evolving seasonality. Other dataset details can be found at Appendix B.

Table 1: Properties of datasets and used hyperparameter K of each dataset.
Datasets ETTh1 ETTh2 ETTm1 ETTm2 ExchangeRate Electricity Traffic Weather

Trend Variation 3.839 0.154 0.030 0.196 0.249 0.242 0.068 0.028
Seasonality Variation 3.690 1.013 3.330 1.648 0.435 2.645 14.225 0.387

K 4 3 11 5 2 3 30 2

Evaluation. We set the prediction length H ∈ {96, 168, 336, 720}, covering both short- and long-
term rediction [30]. A fixed input window length L = 96 is used for all datasets. We evaluate the
performance of baselines using mean squared error (MSE) and mean absolute error (MAE). The MSE
and MAE are computed on z-score normalized data to measure different variables on the same scale.
We report the final results on the test set for the model that performed optimally on the validation set.

Backbone Models. FAN is model-agnostic and could be applied to any prediction backbones.
To validate its effectiveness, four state-of-the-art time-series forecasting model are used: MLP-
based DLinear [46], Transformer-based Informer [47] and FEDformer[48], and convolutional neural
network-based SCINet [25]. Notably, FEDformer also employs the Fourier transform for analyzing

3https://github.com/zhouhaoyi/ETDataset
4https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
5https://github.com/laiguokun/multivariate-time-series-data
6http://pems.dot.ca.gov
7https://www.bgc-jena.mpg.de/wetter/
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Table 2: Forecasting errors with and without FAN. The bold values indicate the best performance.
Methods DLinear +FAN FEDformer +FAN Informer +FAN SCINet +FAN
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
m

2
96 0.203 0.080 0.198 0.078 0.208 0.082 0.194 0.074 0.226 0.091 0.198 0.077 0.206 0.079 0.198 0.078
168 0.220 0.093 0.219 0.093 0.249 0.116 0.220 0.093 0.251 0.112 0.219 0.092 0.226 0.094 0.218 0.093
336 0.245 0.114 0.241 0.113 0.282 0.143 0.272 0.131 0.283 0.140 0.245 0.114 0.262 0.122 0.241 0.113
720 0.270 0.142 0.264 0.139 0.308 0.174 0.275 0.145 0.347 0.212 0.287 0.154 0.297 0.153 0.264 0.139

E
le

ct
ri

ci
ty 96 0.277 0.195 0.269 0.184 0.298 0.183 0.243 0.148 0.376 0.277 0.250 0.153 0.296 0.188 0.261 0.168

168 0.272 0.183 0.268 0.178 0.305 0.191 0.251 0.154 0.371 0.269 0.257 0.156 0.306 0.196 0.258 0.163
336 0.294 0.197 0.289 0.192 0.312 0.194 0.272 0.167 0.377 0.273 0.273 0.167 0.330 0.214 0.278 0.175
720 0.333 0.233 0.325 0.227 0.330 0.213 0.300 0.189 0.401 0.311 0.306 0.194 0.352 0.240 0.312 0.204

E
xc

ha
ng

e 96 0.164 0.052 0.167 0.053 0.260 0.112 0.186 0.062 0.532 0.412 0.189 0.066 0.218 0.085 0.169 0.055
168 0.219 0.090 0.217 0.088 0.312 0.163 0.222 0.090 0.582 0.491 0.257 0.128 0.266 0.126 0.221 0.093
336 0.288 0.155 0.297 0.162 0.456 0.338 0.336 0.198 0.721 0.847 0.333 0.191 0.337 0.203 0.303 0.167
720 0.453 0.352 0.406 0.292 0.669 0.661 0.436 0.329 0.889 1.210 0.513 0.474 0.502 0.430 0.439 0.345

Tr
af

fic

96 0.387 0.504 0.334 0.403 0.348 0.383 0.326 0.371 0.350 0.428 0.314 0.364 0.399 0.471 0.344 0.393
168 0.588 0.804 0.334 0.414 0.366 0.422 0.336 0.391 0.366 0.457 0.324 0.383 0.377 0.443 0.348 0.403
336 0.380 0.504 0.346 0.437 0.383 0.452 0.348 0.414 0.414 0.555 0.356 0.427 0.384 0.459 0.360 0.426
720 0.407 0.532 0.372 0.472 0.391 0.465 0.372 0.454 0.656 1.002 0.397 0.482 0.401 0.490 0.377 0.454

W
ea

th
er

96 0.249 0.180 0.214 0.173 0.368 0.299 0.252 0.187 0.299 0.221 0.221 0.175 0.265 0.199 0.215 0.170
168 0.284 0.237 0.254 0.210 0.409 0.358 0.304 0.240 0.363 0.320 0.258 0.215 0.305 0.245 0.256 0.208
336 0.344 0.304 0.298 0.275 0.463 0.459 0.366 0.321 0.439 0.437 0.323 0.297 0.341 0.310 0.304 0.270
720 0.380 0.358 0.345 0.340 0.495 0.526 0.441 0.432 0.496 0.524 0.368 0.360 0.383 0.371 0.340 0.322

seasonality. Results later show that FAN continues to make considerable improvements over these
frequency-based solutions like FEDformer.

Implementation and Settings. For the non-stationary prediction module qϕ in FAN, the MLP model
has hidden sizes [64, 128, 128]. All the experiments are implemented by PyTorch [34] and are
conducted for five runs with fixed seeds {1, 2, 3, 4, 5} on NVIDIA RTX 4090 GPU (24GB). For
the different baselines, we follow the implementation and settings provided in their official code
repository. ADAM [18] as the default optimizer across all the experiments. More experiment details,
including training details and hyperparameter, can be found in Appendix A.1.

Selections of Hyperparameter K. FAN allows for K to be any integer number less than L.
Regarding the selection of K, we analyze these benchmarks and found that the main variation
frequencies of these datasets are within 10% of the maximum amplitude. Therefore, we select the
value of K based on the average maximum amplitude within 10% in the training set, the selected K
is shown in Table 1. More evidence of this selection strategy is at Sec. 4.4, and we provide a detailed
hyperparameter sensitivity analysis at Appendix D.1.

4.2 Main Results

We report MAE/MSE forecasting errors of the baselines and FAN in Table 2. Since the performance
in ETT datasets shows similar results, only results of ETTm2 are reported. The full results of the
ETT benchmarks and further discussion are in Appendix E.2.

As shown in Table 2, our proposed FAN effectively enhances the performance of all four backbone
models, by a large margin, achieving state-of-the-art performance on five datasets. Specifically, on
the ETTm2, Electricity, Exchange, Traffic, and Weather datasets, the average MSE performance
improvements are rather significant: 10.81%, 21.49%, 51.27%, 21.97%, and 21.55% respectively. It
clearly shows that frequency residual learning of FAN effectively mitigates the impacts of evolving
seasonal and trend patterns and enhances the stationarity that simplifies the prediction for backbones.

FAN demonstrates increasing performance improvements as the prediction length extends in the
Informer backbone, with MSE improvements of 9.87%, 18.87%, 36.91%, 16.26%, and 20.05%, from
96 steps to 720 steps. We believe this can be attributed to the fact that the periodicity contained
in the prediction series increases with step length, and the FAN’s pattern prediction module helps
uncover periodicity in longer step lengths, thereby enhancing long-term prediction effectiveness. It is
important to note that even in the models that utilize FFT to analyze seasonal patterns, like FEDformer,
we still observe significant performance improvements (19.81%). This conclusion underscores our
model’s advantage in handling non-stationary aspects by directly extracting non-stationary seasonality
patterns rather than learning these patterns.
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4.3 Comparison With Reversible Instance Normalization Methods

In this section, we compare FAN with three state-of-the-art normalization methods for non-stationary
time series forecasting: SAN [28], Dish-TS [10], and RevIN [17], with the same experimental setup
as Sect. 4.2. We report the average MSE over all the forecasting lengths of all backbones for all
datasets in Table 3. It is evident that FAN generally outperforms the baseline models, except for a
few cases with a close margin. Here, SAN generally ranks second as it slices the whole sequence into
sub-series which can make seasonal patterns into evolving trends that could be partially predicted with
its statistics prediction module. In comparison, RevIN and Dish-TS have much worse performance.
Detailed results of all cases and further discussions are provided in Appendix E.4.

Table 3: The MSE performance averaged across all steps. Bold values indicate the best performance.
Models DLinear FEDformer Informer SCINet
Methods FAN SAN Dish-TS RevIN FAN SAN Dish-TS RevIN FAN SAN Dish-TS RevIN FAN SAN Dish-TS RevIN

ETTh1 0.441 0.454 0.465 0.477 0.443 0.530 0.565 0.591 0.465 0.624 0.714 0.688 0.442 0.454 0.489 0.472
ETTh2 0.135 0.134 0.136 0.149 0.149 0.148 0.217 0.183 0.164 0.201 0.259 0.199 0.136 0.139 0.160 0.149
ETTm1 0.395 0.390 0.405 0.419 0.400 0.416 0.489 0.491 0.397 0.427 0.504 0.485 0.395 0.393 0.424 0.443
ETTm2 0.105 0.106 0.108 0.113 0.111 0.106 0.125 0.121 0.106 0.114 0.153 0.130 0.105 0.105 0.122 0.112

Electricity 0.193 0.200 0.201 0.207 0.164 0.169 0.181 0.180 0.167 0.191 0.219 0.190 0.177 0.175 0.207 0.164
Exchange 0.149 0.172 0.265 0.190 0.170 0.192 0.333 0.267 0.168 0.265 0.472 0.238 0.162 0.174 0.281 0.183

Traffic 0.432 0.514 0.591 0.652 0.408 0.395 0.433 0.424 0.400 0.515 0.446 0.894 0.419 0.431 0.489 0.442
Weather 0.249 0.250 0.269 0.272 0.295 0.272 0.562 0.280 0.254 0.256 0.322 0.275 0.242 0.242 0.250 0.251

Show Cases. Fig. 3 illustrates the forecasting results with DLinear backbone in Traffic to show
why FAN has performance advantages. This data has very clear evolving seasonality with daily
waveform patterns. FAN can extract trends and seasonal patterns especially the seasonal patterns
during weekends while Dish-TS and RevIN only focus on trends statistics. Furthermore, FAN can
adaptively adjust frequency pattern forecasting results based on the input main frequency signals,
capturing the evolving patterns between the input and horizon. Fig. 3(a) clears shows FAN can
identify the seasonal patterns with increasing amplitudes from hour 100∼150.

(a) FAN (d) RevIN(c) Dish-TS(b) SAN

Figure 3: Visualization of long-term 168 steps forecasting results of a test sample in Traffic dataset,
using DLinear enhanced with different normalization methods.

Stationarity Analysis. To verify our model’s effectiveness against non-stationarity, we use the
ADF test [39] to examine the stationarity of the data after normalization. The results are shown in
Fig. 4(a), smaller value (further from the center) indicates higher stationarity. Compared to previous
normalization methods, our model achieves greater stationarity across all datasets, particularly in
cases with larger seasonal patterns (Traffic, ETTh1, ETTm1). In some datasets, e.g., Weather,
Exchange, despite having less apparent seasonality, our model still enhances stationarity. We attribute
this to our method’s ability to adaptively capture the low-frequency trend signals, such as mixed-linear
changes, while other methods assume consistent distribution over a period and remove estimated
statistics, due to which they might fail to capture these intricate trend patterns.

Model Efficiency. We compare the performance, training time per iteration, and number of parameters
with SAN on Traffic with D = 862, H = 720. DLinear is used for both as the backbone. The results
are shown in Fig. 4(b). FAN and SAN have similar training iteration times, but FAN has 29.79% less
parameters. Moreover, FAN achieves a 15.56% improvement in MSE and a 15.30% improvement in
MAE. This highlights our model’s effectiveness and efficiency.

Various Input Length. In time series learning, the non-stationarity of inputs varies with the choice
and change of the time window [35], which in turn impacts the performance of deep learning
models [27]. Therefore, we compare the performance changes under different input lengths on
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Figure 4: Comparison with other normalization methods. (a) ADF test after normalization, the
smaller the value, the higher the stationarity. (b) Model efficiency comparison with SAN, including
MSE/MAE, parameters (in millions), and training time per iteration (ms/100). (c) Performance in
MSE vs. input length on the ETTm2 dataset.

ETTm2 dataset and DLinear as the backbone. Fig. 4(c) shows FAN exhibits the best performance
across all windowed data. As can be seen, compared to other models, as the input length increases,
among these normalizations, the enhancement of increases the most. The MSE enhancement with
previous SOTAs increases from 0.49% in short inputs L = 48 to 4.37% in long inputs with L = 336.
This demonstrates that the instance-wise DFT is capable of extracting more seasonal patterns from
the longer input windows.

4.4 TopK vs. Frequency Distributions

As different datasets might have different non-stationary patterns, it is crucial to select appropriate
K frequency components from inputs. We study the relations between the selected TopK and the
frequency distribution on the ExchangeRate and Traffic datasets.

Fig. 5 plots the frequency amplitude distribution for frequency 0∼32 by performing DFT towards
the different input instances with L = 96 of the whole training sequences. Here, we can see the clear
relation between the selection of K and the frequency amplitude distributions. As we can see, the
Traffic dataset contains rich seasonal signals ranging from 0∼32 while the ExchangeRate dataset
only has mainly one principal frequency component with frequency 0 (trend) in the inputs. Thus, the
prediction on the ExchangeRate dataset might not benefit from a bigger K while a bigger K indeed
helps for the Traffic dataset. Results for more datasets are in Appendix B.

Figure 5: Frequency distributions vs. forecast error in MSE with different K and output length H .

4.5 Ablation Studies

Main Components. This section aims to evaluate the effectiveness of various FAN’s designs. Three
variants are studied: “w/o predict” denotes the removal of the non-stationary pattern prediction
module and directly reconstructing Ŷnon with Xnon. “pure backbone” refers to the omission of the
reconstruction in the output or “w/o backbone” is the omission of the stationary part. We evaluate
their performance on two non-stationary datasets, ETTh1 and Weather. The experimental settings
are consistent with those described in Section 4.2. The evaluation results, along with the standard
deviations, are presented in Table 4. The results show that FAN achieves best performance across all
metrics in all variants. FAN w/o backbone ranks second as the learning model of FAN already learns
the principle changes. In comparison, the results from pure backbone is the weakest, as it cannot
handle nonstationary signals. FAN w/o predict also has poor performance. Those results clearly
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Table 4: Forecasting errors under the multivariant setting with respect to variations of FAN with
SCINet backbone. The best performances are highlighted in bold.

Variations Steps FAN w/o predict pure backbone w/o backbone
Datasets Metrics MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1

96 0.427±0.000 0.362±0.001 0.517±0.001 0.582±0.001 0.527±0.022 0.549±0.071 0.457±0.001 0.392±0.001
168 0.454±0.003 0.395±0.002 0.536±0.000 0.610±0.001 0.614±0.031 0.603±0.097 0.494±0.002 0.436±0.003
336 0.487±0.004 0.439±0.003 0.557±0.001 0.654±0.001 0.621±0.022 0.622±0.079 0.524±0.002 0.474±0.004
720 0.571±0.004 0.572±0.003 0.632±0.003 0.789±0.007 0.633±0.013 0.636±0.065 0.616±0.009 0.618±0.013

Weather

96 0.215±0.002 0.170±0.001 0.293±0.002 0.271±0.001 0.335±0.007 0.332±0.008 0.246±0.000 0.195±0.000
168 0.253±0.001 0.206±0.001 0.325±0.003 0.310±0.005 0.347±0.007 0.346±0.013 0.284±0.001 0.232±0.001
336 0.299±0.001 0.268±0.002 0.368±0.002 0.376±0.003 0.376±0.010 0.370±0.005 0.329±0.001 0.296±0.001
720 0.339±0.003 0.322±0.002 0.411±0.004 0.441±0.004 0.411±0.008 0.401±0.010 0.367±0.002 0.341±0.003

show that trends and seasonal patterns do evolve and that our proposed residual frequency learning is
crucial in dealing with these changes.

Instance-wise vs. Global Fourier Analysis. This section investigates the effect from instance-wise
Fourier Analysis of FAN. Previous Fourier-based methods select predominant Fourier signals based
on fixed frequencies [41, 27, 43, 9]. However, as shown in Fig. 6, on the Traffic and Electricity
datasets, the predominant components from the input-wise view are not fixed but exhibit distinct
distribution characteristics and vary across the inputs. The assumption of fixed spectrum and the
reality of changing frequency limits their performance, supported with two additional experiments on
Fourier-based backbones at Appendix E.3.

Here, we compare the performance of FAN with fixed frequencies computed using global sequences
and original FAN with instance-specific frequencies.The results are shown in Table 5.

Figure 6: Top 10 selection propablity density on Traffic and
Electricity datasets.

Table 5: MSE Performance between
instance-wise (FAN) and global selec-
tion (Fixed) on SCINet backbone.

Electricity

Steps 96 168 336 720 Avg.Imp.

FAN 0.162 0.165 0.173 0.194 18.50%
Fixed 0.176 0.192 0.231 0.265 -

Traffic

Steps 96 168 336 720 Avg.Imp.

FAN 0.393 0.403 0.426 0.454 10.29%
Fixed 0.446 0.457 0.469 0.496 -

As shown in Table 5, by selecting instance-wise predominant frequencies, FAN achieves an average
improvement of 18.50% and 10.29% on the Electricity and Traffic datasets respectively. This
highlights instance-wise frequency selection rather than assuming fixed frequency patterns.

5 Conclusion

In this paper, we study the problem of non-stationary time series prediction. We identify the fact
that traditional statistical measurement-based instance-wise normalization can not effectively recover
the evolving seasonal patterns. We propose FAN to perform instance normalization for each input
window. The Fourier transform is used to remove the main frequency components in the inputs and
reconstruct the Fourier basis through denormalization. To address the evolving trend and seasonal
patterns between inputs and outputs, we utilize a simple MLP model to predict the changes in the
extracted non-stationary pattern. The effectiveness of FAN is verified with a set of experiments on
eight widely used benchmark datasets. Compared to other state-of-the-art normalization baselines,
FAN significantly improves the prediction performance and outperforms state-of-the-art normalization
methods. One potential avenue for improvement involves the autonomous determination of an optimal
K for the selection of principal frequency components.
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A Reproducibility

A.1 Experiment Details

We make our code publicly available 2, including the backbones and baselines; the backbones and
baselines code are based on their official public GitHub repositories and we use the default parameter
settings or the optimal parameter settings in their paper. We used a batch size of 32, a learning
rate of 0.0003, and trained each run for 100 epochs, with an early stopper set to patience as 5. For
the experimental results, K is set as the number of frequencies greater than 10% of the maximum
amplitude. For a fair comparison, other normalization methods were also tuned accordingly to
ensure optimal results, only the normalization hyperparameters were tuned, and no other experiment
parameters are tuned during the experiment phase.

A.2 Pseudocode of GPU-Friendly Normalization

1 def norm(x, k):
2 # x: (BxNxL) multivariate time series batch input
3 # k: hyper parameter selecting k largest magnitude frequencies
4

5 # applying fourier transform to each series O(Llog(L))
6 z = torch.fft.rfft(x, dim=2)
7

8 # find top k indices O(L + k)
9 ks = torch.topk(z.abs(), k, dim = 2)

10 top_k_indices = ks.indices
11

12 # top -k-pass filter O(L + k)
13 mask = torch.zeros_like(z)
14 mask.scatter_(2, top_k_indices , 1)
15 z_m = z * mask
16

17 # applying inverse fourier transform to each fourier series O(Llog
(L))

18 x_m = torch.fft.irfft(z_m , dim =2).real
19 x_n = x - x_m
20 return x_n

Listing 1: GPU-Friendly Implimentation of FRL

B Dataset Details

B.1 Fourier Amplitude Distribution

Frequency amplitude variation and composition are closely related to the non-stationary pattern
shift [20]. To analyse its effect, we use L = 96 to plot the frequency amplitude distribution of all
input windows used in our eight benchmarks in Fig. 7.

In Fig. 7, it can be clearly observed that in many datasets such as ETTh1, ETTh2, ETTm1, Traffic,
and Electricity datasets, besides the low-frequency trend patterns, the high-frequency parts also
exhibit significant variations, especially in ETTh1, ETTm1, and Traffic datasets. This may also be the
reason for our significant improvements on these datasets (with maximum improvements of 19.90%,
7.02%, and 18.65% respectively). However, in the ETTh2, ExchangeRate, and Weather datasets,
which have relatively low seasonal variation, our model’s improvement compared to state-of-the-art
methods is relatively smaller. This is naturally because these datasets do not contain much seasonal
non-stationary information for further improvement.

B.2 Main Frequency Density

FAN select top K amplitude signals, compared to previous methods based on Fourier transform, we
do not use a fixed frequency set [41, 27] or randomly select [48] the frequencies. This is aligned
with our observations in real data: the principal frequency signals may have a distinct distribution,

13



Figure 7: The distribution of the various Fourier components of the data, we display the first 30
frequencies.

rather than being composed solely of fixed or pure random frequency signals. We plot the probability
of input frequencies being selected into the top 10 signals in the input signal, as shown in Fig. 8.
Although the low-frequency trend signals dominate in amplitude, many high-frequency signals still
play a dominant role in some inputs, highlighting the importance of considering the entire spectrum,
not just the low/high or random selected frequencies. Furthermore, this analysis shows that there may
be significant differences of the main frequency components between different inputs.

However, previous methods based on the Fourier transform assumed that the main frequency signal is
constant across inputs [41, 27]. In contrast, our model can dynamically extract Fourier-based signals
from the inputs which enables better extraction of seasonal information, especially when the input
patterns vary a lot.

Figure 8: Probability density of frequencies get selected in the top 10 removal process, we use an
input length L = 96 as the analysis length.
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B.3 Variation of Main/Residual Components

We examine the relative variations of the normalized main and residual components in Fig. 9. The
quantitative results are obtained by calculating the relative amplitude variations of the Fourier compo-
nents between the input and output in the frequency domain. In particular, across all benchmarks, the
variations in the main frequency components are smaller than those in the residuals. We believe that
this is the reason why a simple MLP is effective enough to capture the main frequency variations, as
its shift is relatively small, as shown in the Appendix D.2.

Figure 9: The relative changes in amplitude of the main/residual frequency components in the time
domain. The results are evaluated using input length L = 96 and averaged across the whole dataset.

B.4 Trend/Seasonal Variation

We explain more details of how the trend and seasonal variation in Table 1 are calculated.

Trend Variation To capture global trend shifts, we calculate the mean values over different regions
of the dataset. Specifically, given a timeseries dataset X ∈ RN×D, we first chronologically split it
into X train, X val, and X test , representing the training, validation, and testing datasets, respectively.
The trend variations are then computed as follows:

Trend Variation =

∣∣∣∣MeanN (X train)−MeanN (X val,test)

MeanN (X train)

∣∣∣∣ (6)

where the subscripts indicate the dimension of mean, | · | denotes the absolute value operation, and
X val,test represents the concatenation of the validation and test sets. Note that, to obtain relative results
across different datasets, the trend variation is normalized by dividing by the mean of the training
dataset. We obtain the first dimension to be the value inthe main content Table 1.

Seasonal variations. We evaluate seasonal changes by analyzing the variations in Fourier frequencies
across all input instances. Given the inputs, X ∈ RNi×L×D where Ni is the number of inputs. We
first obtain the FFT results of all inputs, denoted as Z ∈ CNi×L×D. Then, we calculate the variance
across different inputs and normalize this variance by dividing by the mean of each input as:

Seasonal Variation =
VarNi

[Amp(Z)]

MeanL(X)
(7)

where the subscripts indicate the dimension of the operation. We sum the results across all channels
for the value in Table 1.

C Theoritical Analysis

This section discusses the effect of FAN on stationarity and temporal distribution in a theoretical
perspective. We conclude that FAN enhances the stationarity of the input and mitigates distribution
in the time domain.

C.1 Preliminary

Discrete Fourier Transform. Given a multivariate time series input X, we independently apply the
1-dim Fourier transform to each dimension x(i), hence, we illustrate in vector settings. For a discrete
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time series vector x ∈ RL with L time steps, it is transformed into Fourier domain by applying the
1-dim DFT, and can be transformed back using 1-dim IDFT, which can be defined as:

DFT : z[w] =

L−1∑
t=0

x[t] · e−i2πwt
L

IDFT : x[t] =
1

L

T−1∑
w=0

z[w] · ei2πwt
L

(8)

where w is current frequency, t is current time step, and z represents the Fourier transformation
results which is a complex vector with real and imaginary parts, the amplitude and phase can be
calculated as:

Mag : a[w] =

√
Re(z[w])2 + Im(z[w])2

L
Pha : p[w] = atan 2(Im(z[w]),Re(z[w]))

(9)

where Im(z[m]) and Re(z[m]) indicate imaginary and real parts of a complex number, and atan2 is
the two-argument form of arctan.

Distribution Of Fourier Components. The distributions of Fourier amplitude and phase can be
modeled as Rayleigh distribution and uniform distribution respectively [14], thus the probabilistic
density function can be represented as:

f(a, p) = Rayleigh (a | σ) ·U(p | 0, 2π)

=
a

2πσ2
· exp

(
− a2

2σ2

)
(a ≥ 0, 0 ≤ p ≤ 2π).

(10)

where a and p denotes a amplitude and phase scalar variable, σ is the scale parameter of the distribution.
Thus, the frequency domain distribution (T non-identically-distributed variables) can be modeled as
a joint Rayleigh distribution with different scale parameters:

f(a,p) = Rayleigh (a | σ) ·U(p | 0, 2π) (11)

C.2 Variance Over Spectrum

Along with the time series spectral theory [35], a time series with smaller variance in the spectrum
is more stationary, in this section, we try to prove the proposed FAN can reduce the variance over
spectrum, thus enhance the stationarity of the input data. Hence, we prove that, given an univariate
time series real value vector x ∈ RT , after removing main frequency components z[k] ∈ K, the
variance on spectrum can be reduced Var (ares) < Var (a).

Here, the marginal distribution of the amplitude vector (the spectrum) a is represented as a joint
Rayleigh distribution with different scale parameters:

f(a) =

∫
f(a,p)dp

=

L∏
i=1

a

σ2
i

· exp
(
− a2

2σ2
i

) (12)

Note that although we assume that the frequency components are independent with each other, this
assumption is actually widely used [16] since it is quite possible that a specific component changes
independently, e.g., the daily weekly changes while the monthly periodicity stays the same. Following
the principle of additivity of variance for independent variables [13], the variance of the amplitude
vector a can be expressed as follows:

Var (a) =

L∑
i

4− π

2
σ2
i (13)
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after removing frequencies k ∈ K, the joint distribution actually becomes:

f(ares) =

L∏
i=1,i/∈K

a

σ2
i

· exp
(
− a2

2σ2
i

)
(14)

thus, the variance of the whole distribution after removing top K-amplitude signals reduces to a
smaller number, since the independent variance of of each dimension is positive, which is:

Var (ares) =

L∑
i=1,i/∈K

4− π

2
σ2
i < Var (a) (15)

C.3 Influence On Temporal Distribution

Relation with Temporal Statistics. The zero frequency of the Fourier transform divided by L is
actually the mean of the statistical measure, and the energy of the Fourier transform of frequency
components above zero is equivalent to the variance of the input scaled by L, proved as follow:

E[x] =
1

L

L−1∑
t=0

x[t] =
1

L
z[0] (16)

According to Parseval theorem [5], for a discrete signal x, its energy is identical in both the time and
frequency domain:

L−1∑
t=0

|x[t]|2 =

L−1∑
w=0

|z[w]|2 = LE[x2] (17)

Thus the variance of the input signal can be defined as the energy of Fourier components with
frequency above zero.

Var[x] = E[x2]− E2[x]

=
1

L

L−1∑
w=0

|z[w]|2 − 1

L2
|z[0]|2

(18)

(19)

Influence On Mean. Since the mean is equal to the zero frequency component in time domain and
for any other components, the expectation is zero since they are all number of periodic sin/cos signals,
after removing the zero frequency component, the expectation is then equal to zero. Due to this
property, this is also known as the ’detrending’ in traditional signal processing [32], proved as:

E[xres] = E[x− IDFT(z[0])] = E[x− 1

L
z[0]] = E[x− E[x]] = 0 (20)

Influence On Variance. Since the The normalization step select and remove top K amplitude Fourier
components, the Fourier spectrum energy will be significantly diminished, defined as:

L−1∑
w=0,w/∈K

|z[w]|2 ≪
L−1∑
w=0

|z[w]|2 (21)

thus, the input variance then can be largely reduced, which is:

Var[xres] ≪ Var[x] (22)

In summary, our method can effectively reduce the range of data distribution, which is crucial for
enhancing the performance of the backbone model and minimizing the risk of overfitting [12].
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C.4 Fourier Spectrum Empirical Analysis

The variance in the Fourier spectrum is an important indicator reflecting stationarity [20]. The closer
the frequency components are to each other, the smaller the variance between the components, thus the
stronger the stationarity [35]. Therefore, we compare the changes in frequency domain components
for different methods and present the results in Fig. 10. In Fig. 10, after FAN’s normalization step,
the distribution exhibits alignment of the input and output, and the range of the distribution mean has
decreased to 8, compared with previous methods which are round 80, 70, 70 respectively for SAN,
Dish-TS and RevIN. However, other methods still show significant differences between the input and
output distributions, with the range of the frequency domain amplitude distribution reaching up to
80, indicating the presence of strong non-stationary signals. This highlights the effectiveness of our
method in handling non-stationarity, especially for seasonal periodic signals, which previous methods
have not successfully considered.

(b) SAN(a) FAN (d) RevIN(c) Dish-TS

Figure 10: Fourier spectrum on polar axis of ETTm2 dataset with L = 96 after various normalization
methods. Each point indicates one frequency component averaged across the dataset. The blue dots
indicate the input Fourier components, the orange dots represent the output Fourier components. FAN
remove top 5 Fourier components, and SAN slice in 12.

D Ablation Study

D.1 Hyperparameter Analysis

Our model incorporates a hyperparameter K, which represents the maximum frequency count
selection. In this section, we provide a sensitivity analysis for this parameter in Fig. 11. We observe
that our proposed FAN achieves stable performance across various parameter settings.

Figure 11: Sensitivity analysis of hyper-parameter K, and we select dataset-specific K across the
experiments. The purple line denote the selected K through our 10% of largest magnitude selection
rule. We use DLinear as backbone with and use MSE as the evaluation metric, other settings are
identical with the main results settings.

Moreover, from Fig. 11, we note the following observations: (1) As the prediction length increases,
the need for a larger K becomes more apparent, significantly enhancing performance. This is likely
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due to the increased prediction steps that bring more frequency information into the model. For
example, in the ExchangeRate dataset, when the prediction length is 720, K = 16 outperforms
using only 3 and 6 frequencies. (2) In datasets with higher sampling rates, such as Traffic and
ETTm2, larger K values enhance performance at all prediction steps. This could be attributed to
the finer granularity of sampling in these datasets (minute-level) compared to yearly sampling in
ExchangeRate and hourly in ETTh2, resulting in richer frequency signals in ETTm2 and Traffic,
thereby enhancing FAN’s performance on these datasets.

D.2 Pattern Prediction Module

To justify our rather simple MLP structure for predicting the future main frequency component, we
extended the basic MLP with three additional layers to observe the results. These layers include

• +MLP: adding an additional MLP layer on top of the basic MLP.
• +GRU [4]: adding a GRU layer, which is a recurrent neural network, mitigates the problem

of gradient vanishing through the gating mechanism.
• +TSMixer [7]: adding a TSMixer layer, which is a state-of-the-art lightweight model that

also considers inter-dimensional relationships.

We perform ablation on ETTh1, ExchangeRate, Weather datasets, under experiment settings of
Section 4.2, we report the MAE/MSE evaluation metrics, and the result is shown at Table 6.

In Table 6, the three-layer MLP of FAN performed best overall on three datasets and more complex
models tend to perform worse. We believe this is due to the following reasons: (1) The main frequency
signal provides a baseline position for the backbone model, leading to more robust predictions and
thus to greater model robustness. (2) The main frequency signal is subject to underlying physical
characteristics, resulting in relatively slower changes. This has been verified by observations in
Appendix B.3, showing that the main frequency signal changes at least 40.27% more slowly compared
to the residual frequency signal. Therefore, a simple three-layer MLP is sufficient to provide effective
and somewhat more robust predictions. However, a four-layer MLP and a GRU also achieved the
best performance in some metrics, indicating that there is still room for improvement in future work.

Table 6: Multivariate Forecasting MAE/MSE results mean and standard deviation, the bold letter
indicates the best performance.

Methods FAN +MLP +GRU +TSMixer
Dataset Steps MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1

96 0.427±0.000 0.362±0.001 0.427±0.000 0.362±0.001 0.482±0.005 0.424±0.008 0.463±0.009 0.403±0.012
168 0.454±0.003 0.395±0.002 0.465±0.001 0.417±0.001 0.506±0.006 0.457±0.010 0.519±0.021 0.496±0.044
336 0.487±0.004 0.439±0.003 0.491±0.003 0.445±0.006 0.560±0.009 0.543±0.018 0.602±0.013 0.647±0.038
720 0.571±0.004 0.572±0.003 0.587±0.002 0.592±0.006 0.643±0.017 0.680±0.026 0.717±0.010 0.875±0.006

ExchangeRate

96 0.169±0.001 0.054±0.001 0.180±0.001 0.061±0.001 0.184±0.006 0.062±0.003 0.330±0.039 0.190±0.054
168 0.220±0.005 0.092±0.002 0.214±0.002 0.086±0.002 0.223±0.005 0.091±0.007 0.439±0.069 0.320±0.090
336 0.303±0.000 0.165±0.002 0.306±0.000 0.170±0.001 0.313±0.007 0.175±0.006 0.544±0.067 0.507±0.139
720 0.437±0.007 0.338±0.012 0.435±0.020 0.329±0.022 0.610±0.072 0.589±0.118 0.642±0.088 0.648±0.173

Traffic

96 0.344±0.001 0.393±0.001 0.323±0.001 0.389±0.001 0.322±0.005 0.375±0.006 0.354±0.004 0.405±0.004
168 0.348±0.002 0.403±0.001 0.327±0.001 0.404±0.001 0.333±0.002 0.397±0.002 0.356±0.006 0.416±0.010
336 0.360±0.002 0.426±0.002 0.341±0.000 0.429±0.000 0.348±0.003 0.424±0.002 0.371±0.005 0.443±0.005
720 0.377±0.000 0.454±0.002 0.385±0.001 0.472±0.001 0.379±0.002 0.470±0.003 0.390±0.006 0.477±0.006

E Full Results And Discussions

E.1 Experiment On Synthetic Data

To fully demonstrate the effectiveness of our method on signals with varying non-stationary fre-
quencies, we generated a synthetic multidimensional time-series dataset using composite sinusoidal
signals [32] to verify the effectivenss of FAN on evolving non-stationary time series. Each dimension
is composed of i superimposed sinusoidal signals with linearly changing amplitude, generated as
X (i)

t =
∑i

j=1 at sin
2π
Tj
t, i = 1, . . . , D. where at is the signal amplitude, Ti are the periodicities,

for example, daily periodicity in hour Ti = 24, and t is the current time step.
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In the synthetic dataset, each synthetic signal is a combination of multiple sinusoidal signals with
linear changes and fixed periods, and varies in the training, validation, and test sets. In Table 7,
we list the settings of these signals, every synthetic signal is a composition of these signals, e.g.,
Syn-5 contains Sig1-5, Syn-9 contains Sig1-9, the generation code can also be found in our code
repository2.

Table 7: Synthetic signal settings, the amplitude changes linearly in train/val/test sets.
Signal Sig1 Sig2 Sig3 Sig4 Sig5 Sig6 Sig7 Sig8 Sig9

Periodicity 12 16 24 36 48 60 72 84 96
Amplitude Change (0,1,2,4) (1,3,5,6) (3,4,6,8) (1,2,4,5) (1,3,5,6) (1,3,5,6) (1,3,5,6) (1,3,5,6) (1,3,5,6)

We conduct a 720-step multivariate forecasting experiment on synthetic data using DLinear as the
backbone model and compared with other reversible normalization methods. Results are shown in
Table 8. We observe averaged improvements ranging from 19.75% to 47.04%. As the number of
composite frequencies increases (from Syn-5 to Syn-9), the prediction difficulty escalates. Previous
normalization methods failed to make further improvements as probably because they can not address
seasonality patterns shift. Conversely, our model’s enhancements steadily increase. The MAE/MSE
improvements ranges from 19.75% to 32.45% and from 23.76% to 41.75%. This underscores the
effectiveness of FAN in handling intricate seasonality patterns.

Table 8: Forecasting errors under the multivariate setting. The bold values indicate best performance.
Methods FAN SAN Dish-TS RevIN Improvement
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Syn-5 0.252 0.138 0.314 0.181 0.321 0.207 0.372 0.284 19.75% 23.76%
Syn-6 0.224 0.113 0.291 0.163 0.287 0.177 0.326 0.227 21.95% 30.67%
Syn-7 0.235 0.117 0.341 0.206 0.296 0.187 0.321 0.223 31.09% 43.20%
Syn-8 0.279 0.152 0.413 0.287 0.391 0.315 0.428 0.371 32.45% 47.04%
Syn-9 0.329 0.212 0.461 0.364 0.441 0.394 0.475 0.448 25.40% 41.75%

We compare the performance of different normalization methods in Fig. 12. Beyond performance,
FAN also surpasses other models in performance on synthetic datasets, requiring only three epochs
to achieve a smaller test loss compared to ten epochs required by other normalizations. This
demonstrates that varying periodic signals indeed affect the predictive performance of models and
the non-stationarity that normalization methods must counteract, with our model proving effective in
handling these challenges.

(a) Syn-5 (b) Syn-7 (c) Syn-9
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Figure 12: Performance comparison with different normalization baselines, where FAN clearly
outperforms others in this varying frequencies condition.

E.2 Full results of ETT benchmarks

We present the full results of ETT benchmarks in Table 9. In the entire ETT benchmarks, FAN
demonstrates improvements over the original models in 114 out of 128 metrics. Specifically, our
model exhibits average enhancements of, 18.43%, 31.64%, and 12.04% for FEDformer, Informer,
and SCINet respectively. It’s worth noting that despite FEDformer’s utilization of Fourier transform
for seasonality analysis, it still struggles with handling changing seasonality patterns, thus leaving
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room for our 31.64% improvement. However, FAN fails to enhance the DLinear backbone in the
ETTm1 dataset. We attribute this to the inherently higher stationarity of the ETTm1 dataset and its
fewer trend changes (Table 1), which may not align well with the DLinear model which is based on
the moving average.

Table 9: Full results on ETT benchmarks. The bold values indicate best performance.
Methods DLinear +FAN FEDformer +FAN Informer +FAN SCINet +FAN
Metrics MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.424 0.368 0.426 0.362 0.520 0.485 0.444 0.378 0.598 0.646 0.434 0.367 0.461 0.409 0.427 0.362
168 0.449 0.398 0.452 0.393 0.549 0.523 0.468 0.406 0.694 0.863 0.465 0.407 0.518 0.489 0.454 0.395
336 0.485 0.448 0.484 0.435 0.576 0.570 0.493 0.443 0.738 0.950 0.507 0.467 0.574 0.582 0.487 0.439
720 0.561 0.558 0.572 0.574 0.687 0.781 0.559 0.546 0.823 1.106 0.602 0.617 0.645 0.707 0.572 0.575

E
T

T
h2

96 0.237 0.110 0.238 0.112 0.312 0.176 0.263 0.126 0.298 0.160 0.256 0.124 0.264 0.128 0.239 0.112
168 0.254 0.127 0.253 0.129 0.339 0.199 0.275 0.140 0.331 0.191 0.269 0.138 0.292 0.156 0.255 0.130
336 0.271 0.138 0.267 0.142 0.334 0.194 0.294 0.157 0.347 0.208 0.300 0.162 0.305 0.167 0.269 0.142
720 0.316 0.179 0.281 0.158 0.360 0.238 0.304 0.174 0.413 0.291 0.378 0.256 0.339 0.201 0.284 0.159

E
T

T
m

1

96 0.380 0.310 0.394 0.334 0.481 0.443 0.396 0.335 0.514 0.520 0.389 0.322 0.421 0.355 0.394 0.333
168 0.408 0.354 0.416 0.364 0.510 0.475 0.424 0.371 0.563 0.600 0.417 0.362 0.446 0.399 0.415 0.363
336 0.446 0.416 0.456 0.423 0.544 0.530 0.461 0.425 0.612 0.690 0.462 0.425 0.489 0.464 0.456 0.423
720 0.488 0.471 0.493 0.476 0.595 0.617 0.507 0.482 0.697 0.849 0.506 0.483 0.553 0.563 0.495 0.477

E
T

T
m

2

96 0.203 0.080 0.198 0.078 0.208 0.082 0.194 0.074 0.226 0.091 0.198 0.077 0.206 0.079 0.198 0.078
168 0.220 0.093 0.219 0.093 0.249 0.116 0.220 0.093 0.251 0.112 0.219 0.092 0.226 0.094 0.218 0.093
336 0.245 0.114 0.241 0.113 0.282 0.143 0.272 0.131 0.283 0.140 0.245 0.114 0.262 0.122 0.241 0.113
720 0.270 0.142 0.264 0.139 0.308 0.174 0.275 0.145 0.347 0.212 0.287 0.154 0.297 0.153 0.264 0.139

E.3 FAN for Fourier-based Bakcbones

To demonstrate the effectiveness of our method in extracting non-stationary seasonal patterns, we
select two other models based on the Fourier transform and perform additional experiments, including:
(1) TimesNet [41], which generates 2D variations of time series data using Fourier Transform; (2)
Koopa [27], which employs Fourier Transform for dynamic time series modeling based on koopman
theory. It is important to note that although both models extract the top k signals, their main frequency
selection is based on the average dimensions of the training set rather than the input-specific, which
may limit their models’ ability to handle varying dimensions and inputs. Furthermore, they internally
use RevIN [17] in their model implementation, for a fair comparison, we remove this part or replace
it with FAN, we present the experiment results in Table 10.

As in Table 10, Even with state-of-the-art models based on Fourier-transform, our model still
demonstrates performance improvements across almost all datasets. Specifically, for long inputs, our
model consistently shows performance enhancements. In particular, on the Exchange dataset, our
model achieves a maximum improvement of 84.85% in TimesNet and 26.10% in Koopa. We believe
the significant improvement in TimesNet is due to its lack of handling seasonal non-stationarity
compared to Koopa. However, Although Koopa explicitly handle non-stationarity, we still observe
improvements in Koopa. For the ETTm2, Electricity, Traffic, and Weather datasets, our model shows
stable MSE performance large improvements for short-term 96 steps and long-term 720 steps inputs
by 4.71%/6.09%, 1.30%/8.57%, -1.96%/2.57%, and -1.78%/2.43%, respectively. This improvement
is likely due to our model’s approach of learning directly from the changes in primary frequency
components and our instance-wise and dimension-specific frequency analysis.

E.4 Full Results of Baselines Comparison

In Table 11, we provide the detailed experimental results of the comparison between FAN and
state-of-the-art normalization methods for non-stationary time series normalization: RevIN [17],
Dish-TS [10], and SAN [28].

The table clearly shows that FAN outperforms existing approaches in most cases, particularly in the
ExchangeRate dataset, our long-term 720-step prediction significantly outperforms other baselines,
highlighting the importance of handling seasonal non-stationary information in long-term predictions.
However, we fail to make further improvement on Weather and ETTh2 dataset. Considering that in
these two datasets, the seasonal variation is very small (as in Appendix B.1), the limited seasonal
non-stationary information might have led to the inability to further optimization.
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Table 10: Mulltivariate long-term forecasting for Fourier-transform based backbones. The bold letter
indicates the best result.

Models TimesNet +FAN Improvements Koopa +FAN Improvements
Datasets MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
h1

96 0.519 0.482 0.428 0.362 17.53% 25.00% 0.442 0.382 0.428 0.364 3.20% 4.72%
168 0.588 0.586 0.461 0.403 21.64% 31.29% 0.470 0.418 0.455 0.396 3.31% 5.38%
336 0.694 0.838 0.507 0.467 26.87% 44.25% 0.498 0.471 0.489 0.442 1.78% 6.01%
720 0.771 0.995 0.591 0.588 23.37% 40.94% 0.582 0.621 0.576 0.579 0.99% 6.79%

E
T

T
h2

96 0.354 0.228 0.240 0.112 32.26% 50.81% 0.248 0.121 0.241 0.114 2.76% 5.72%
168 0.364 0.238 0.275 0.144 24.68% 39.58% 0.262 0.137 0.255 0.131 2.72% 4.94%
336 0.400 0.284 0.343 0.218 14.27% 23.36% 0.275 0.150 0.269 0.143 2.03% 4.10%
720 0.509 0.519 0.415 0.309 18.49% 40.57% 0.294 0.176 0.283 0.159 3.61% 9.75%

E
T

T
m

1 96 0.491 0.471 0.388 0.326 20.89% 30.63% 0.407 0.353 0.395 0.336 2.84% 4.71%
168 0.528 0.530 0.411 0.353 22.25% 33.39% 0.430 0.384 0.415 0.363 3.51% 5.44%
336 0.592 0.595 0.454 0.414 23.27% 30.39% 0.474 0.451 0.465 0.434 1.93% 3.76%
720 0.710 0.865 0.498 0.474 29.79% 45.22% 0.519 0.516 0.502 0.485 3.29% 6.09%

E
T

T
m

2 96 0.237 0.096 0.194 0.075 18.16% 22.35% 0.207 0.083 0.203 0.079 1.94% 4.66%
168 0.283 0.144 0.215 0.090 23.87% 37.73% 0.226 0.099 0.219 0.093 2.89% 5.76%
336 0.313 0.175 0.245 0.115 21.92% 34.06% 0.249 0.122 0.242 0.114 2.84% 6.64%
720 0.344 0.211 0.283 0.155 17.90% 26.52% 0.280 0.158 0.268 0.140 4.18% 11.46%

E
le

ct
ri

ci
ty 96 0.359 0.256 0.248 0.154 31.05% 39.90% 0.278 0.181 0.264 0.179 5.08% 1.30%

168 0.370 0.264 0.253 0.157 31.67% 40.60% 0.283 0.189 0.272 0.181 3.80% 4.15%
336 0.382 0.272 0.268 0.165 29.85% 39.31% 0.304 0.209 0.294 0.196 3.28% 6.30%
720 0.400 0.292 0.288 0.180 27.79% 38.53% 0.341 0.251 0.331 0.230 2.93% 8.57%

E
xc

ha
ng

e 96 0.507 0.380 0.174 0.058 65.64% 84.85% 0.169 0.055 0.170 0.055 -0.27% 0.50%
168 0.596 0.523 0.223 0.095 62.57% 81.91% 0.216 0.088 0.217 0.089 -0.21% -1.19%
336 0.703 0.723 0.307 0.169 56.30% 76.61% 0.317 0.182 0.299 0.162 5.68% 10.82%
720 0.749 0.810 0.442 0.341 40.96% 57.84% 0.514 0.414 0.418 0.306 18.70% 26.10%

Tr
af

fic

96 0.350 0.418 0.306 0.349 12.65% 16.47% 0.352 0.420 0.351 0.428 0.37% -1.96%
168 0.353 0.434 0.315 0.375 10.84% 13.54% 0.359 0.442 0.352 0.436 1.82% 1.42%
336 0.356 0.446 0.322 0.383 9.55% 14.16% 0.371 0.467 0.363 0.458 2.22% 1.84%
720 0.372 0.475 0.344 0.416 7.62% 12.42% 0.392 0.499 0.383 0.486 2.48% 2.57%

W
ea

th
er

96 0.464 0.436 0.223 0.174 51.92% 60.15% 0.198 0.169 0.214 0.172 -8.00% -1.78%
168 0.528 0.543 0.263 0.214 50.22% 60.58% 0.233 0.211 0.255 0.213 -9.41% -0.75%
336 0.589 0.663 0.338 0.308 42.67% 53.60% 0.284 0.286 0.299 0.275 -5.51% 3.79%
720 0.703 0.950 0.426 0.426 39.42% 55.19% 0.344 0.349 0.324 0.340 5.64% 2.43%

F Limitations

Though FAN shows promising performance, there are still some limitations. First, we removed a
significant amount of non-stationary trend and seasonal information. While this is effective in most
baselines, it may lead to an over-stationary issue, causing a decline in the backbone’s performance.
Second, we largely select the frequency counts K in a search-based manner or based on dataset priors.
This approach may lead to incorrect K value selection, resulting in an under-stationary issue or
more severe over-stationary issue. Additionally, our non-stationary pattern extraction is based on the
Fourier transform, and a finite number of Fourier signals cannot represent all periodic signals, which
may hinder our ability to handle some waveforms, e.g. square waves. Therefore, future work can
focus on more effective instance-specific K value selection, strict dynamic control of non-stationarity
elimination, and other methods for extracting non-stationary waveforms.
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Table 11: Forecasting errors under the multivariate setting. The bold values indicate best performance.
Models DLinear FEDFormer Informer SCINet
Methods FAN SAN Dish-TS RevIN FAN SAN Dish-TS RevIN FAN SAN Dish-TS RevIN FAN SAN Dish-TS RevIN

E
T

T
h1

96 MAE 0.426 0.432 0.433 0.428 0.444 0.491 0.509 0.523 0.434 0.498 0.556 0.521 0.427 0.431 0.438 0.438
MSE 0.362 0.370 0.375 0.375 0.378 0.453 0.477 0.495 0.367 0.466 0.549 0.517 0.362 0.370 0.382 0.380

168 MAE 0.452 0.460 0.454 0.464 0.468 0.511 0.531 0.554 0.465 0.514 0.601 0.539 0.454 0.459 0.476 0.470
MSE 0.393 0.404 0.405 0.416 0.406 0.486 0.505 0.548 0.407 0.485 0.642 0.531 0.395 0.404 0.430 0.425

336 MAE 0.484 0.504 0.505 0.501 0.493 0.551 0.575 0.568 0.507 0.627 0.662 0.642 0.487 0.502 0.539 0.490
MSE 0.435 0.463 0.475 0.476 0.443 0.549 0.583 0.575 0.467 0.702 0.753 0.735 0.439 0.461 0.522 0.462

720 MAE 0.572 0.584 0.590 0.598 0.559 0.603 0.646 0.653 0.602 0.689 0.739 0.763 0.572 0.579 0.604 0.584
MSE 0.574 0.579 0.603 0.641 0.546 0.633 0.695 0.747 0.617 0.845 0.914 0.968 0.575 0.580 0.622 0.620

E
T

T
h2

96 MAE 0.234 0.237 0.237 0.239 0.263 0.264 0.291 0.285 0.256 0.272 0.330 0.309 0.239 0.238 0.265 0.241
MSE 0.108 0.112 0.111 0.117 0.126 0.132 0.163 0.155 0.124 0.138 0.196 0.178 0.112 0.113 0.132 0.115

168 MAE 0.251 0.252 0.255 0.255 0.275 0.270 0.312 0.296 0.269 0.296 0.361 0.317 0.255 0.252 0.281 0.263
MSE 0.126 0.128 0.129 0.135 0.140 0.141 0.185 0.166 0.138 0.159 0.234 0.189 0.130 0.127 0.152 0.140

336 MAE 0.263 0.264 0.269 0.273 0.294 0.303 0.361 0.325 0.300 0.310 0.375 0.334 0.269 0.263 0.297 0.275
MSE 0.132 0.137 0.138 0.152 0.157 0.174 0.247 0.198 0.162 0.176 0.254 0.205 0.142 0.136 0.165 0.151

720 MAE 0.281 0.286 0.288 0.303 0.304 0.297 0.374 0.335 0.378 0.416 0.436 0.354 0.284 0.304 0.321 0.305
MSE 0.158 0.159 0.165 0.193 0.174 0.174 0.274 0.214 0.256 0.332 0.350 0.223 0.159 0.179 0.190 0.190

E
T

T
m

1

96 MAE 0.394 0.386 0.407 0.383 0.396 0.418 0.467 0.473 0.389 0.401 0.457 0.446 0.394 0.389 0.415 0.436
MSE 0.334 0.311 0.356 0.317 0.335 0.371 0.443 0.460 0.322 0.330 0.445 0.420 0.333 0.321 0.357 0.423

168 MAE 0.416 0.416 0.421 0.435 0.424 0.439 0.502 0.506 0.417 0.443 0.496 0.470 0.415 0.422 0.442 0.454
MSE 0.364 0.354 0.373 0.390 0.371 0.387 0.493 0.501 0.362 0.393 0.496 0.457 0.363 0.367 0.414 0.430

336 MAE 0.456 0.458 0.459 0.480 0.461 0.473 0.532 0.537 0.462 0.492 0.536 0.524 0.456 0.454 0.481 0.490
MSE 0.423 0.415 0.433 0.463 0.425 0.437 0.536 0.550 0.425 0.460 0.552 0.525 0.423 0.415 0.467 0.486

720 MAE 0.493 0.497 0.501 0.530 0.507 0.521 0.579 0.571 0.506 0.545 0.608 0.597 0.495 0.498 0.515 0.525
MSE 0.476 0.468 0.492 0.534 0.482 0.507 0.608 0.594 0.483 0.552 0.659 0.678 0.477 0.473 0.510 0.536

E
T

T
m

2

96 MAE 0.198 0.197 0.207 0.202 0.194 0.195 0.218 0.210 0.198 0.201 0.238 0.210 0.198 0.197 0.206 0.197
MSE 0.078 0.077 0.082 0.080 0.074 0.077 0.095 0.084 0.077 0.079 0.105 0.086 0.078 0.077 0.083 0.077

168 MAE 0.219 0.217 0.222 0.224 0.220 0.219 0.231 0.227 0.219 0.221 0.261 0.235 0.218 0.217 0.227 0.220
MSE 0.093 0.092 0.094 0.097 0.093 0.093 0.103 0.099 0.092 0.094 0.133 0.105 0.093 0.093 0.099 0.094

336 MAE 0.241 0.242 0.246 0.250 0.272 0.244 0.266 0.270 0.245 0.249 0.302 0.275 0.241 0.240 0.258 0.250
MSE 0.113 0.114 0.114 0.121 0.131 0.116 0.139 0.137 0.114 0.120 0.169 0.142 0.113 0.113 0.126 0.122

720 MAE 0.264 0.268 0.274 0.277 0.275 0.267 0.293 0.287 0.287 0.293 0.336 0.314 0.264 0.262 0.303 0.277
MSE 0.139 0.142 0.144 0.155 0.145 0.140 0.164 0.162 0.154 0.162 0.207 0.186 0.139 0.137 0.181 0.155

E
le

ct
ri

ci
ty

96 MAE 0.266 0.284 0.278 0.273 0.243 0.258 0.277 0.270 0.248 0.280 0.303 0.275 0.258 0.269 0.289 0.251
MSE 0.181 0.189 0.189 0.198 0.148 0.154 0.170 0.168 0.152 0.171 0.195 0.172 0.165 0.164 0.185 0.151

168 MAE 0.267 0.281 0.273 0.267 0.251 0.270 0.285 0.277 0.252 0.288 0.320 0.279 0.258 0.272 0.301 0.254
MSE 0.177 0.183 0.181 0.184 0.154 0.164 0.176 0.173 0.155 0.178 0.211 0.177 0.163 0.168 0.200 0.155

336 MAE 0.288 0.301 0.296 0.289 0.272 0.282 0.294 0.289 0.272 0.312 0.335 0.299 0.278 0.287 0.312 0.266
MSE 0.191 0.198 0.197 0.201 0.167 0.172 0.181 0.180 0.167 0.197 0.222 0.192 0.175 0.177 0.207 0.162

720 MAE 0.322 0.333 0.340 0.329 0.300 0.299 0.312 0.308 0.304 0.332 0.357 0.326 0.312 0.307 0.336 0.296
MSE 0.224 0.231 0.239 0.244 0.189 0.184 0.198 0.200 0.194 0.217 0.249 0.218 0.204 0.193 0.237 0.188

E
xc

ha
ng

e

96 MAE 0.167 0.166 0.202 0.164 0.186 0.166 0.273 0.207 0.182 0.168 0.278 0.223 0.169 0.166 0.220 0.170
MSE 0.053 0.054 0.070 0.053 0.062 0.054 0.138 0.082 0.061 0.055 0.183 0.096 0.054 0.054 0.087 0.057

168 MAE 0.217 0.213 0.277 0.216 0.222 0.216 0.366 0.267 0.239 0.238 0.364 0.295 0.220 0.213 0.303 0.218
MSE 0.088 0.087 0.127 0.088 0.090 0.089 0.221 0.130 0.105 0.110 0.279 0.157 0.092 0.087 0.186 0.089

336 MAE 0.297 0.304 0.332 0.312 0.336 0.301 0.415 0.364 0.329 0.406 0.566 0.375 0.303 0.305 0.439 0.314
MSE 0.162 0.171 0.190 0.178 0.198 0.166 0.274 0.231 0.184 0.305 0.603 0.252 0.165 0.171 0.318 0.183

720 MAE 0.406 0.466 0.628 0.526 0.436 0.498 0.680 0.647 0.431 0.599 0.730 0.503 0.437 0.474 0.583 0.496
MSE 0.292 0.375 0.674 0.440 0.329 0.461 0.699 0.625 0.322 0.591 0.822 0.448 0.338 0.386 0.534 0.403

Tr
af

fic

96 MAE 0.334 0.374 0.403 0.556 0.326 0.315 0.344 0.336 0.314 0.323 0.351 0.372 0.340 0.358 0.391 0.371
MSE 0.403 0.443 0.513 0.738 0.371 0.350 0.389 0.377 0.364 0.365 0.415 0.455 0.393 0.409 0.458 0.434

168 MAE 0.334 0.517 0.585 0.598 0.336 0.324 0.360 0.351 0.319 0.340 0.355 0.506 0.346 0.348 0.392 0.356
MSE 0.414 0.654 0.796 0.803 0.391 0.376 0.421 0.410 0.383 0.400 0.423 0.746 0.403 0.412 0.468 0.418

336 MAE 0.346 0.371 0.394 0.379 0.348 0.336 0.372 0.370 0.333 0.403 0.376 0.636 0.357 0.356 0.403 0.366
MSE 0.437 0.463 0.511 0.520 0.414 0.406 0.454 0.446 0.406 0.518 0.459 1.048 0.426 0.437 0.498 0.444

720 MAE 0.372 0.395 0.420 0.403 0.372 0.364 0.387 0.381 0.397 0.563 0.402 0.786 0.377 0.375 0.423 0.382
MSE 0.472 0.497 0.541 0.548 0.454 0.449 0.469 0.463 0.482 0.778 0.489 1.327 0.454 0.465 0.533 0.473

W
ea

th
er

96 MAE 0.214 0.228 0.247 0.216 0.252 0.255 0.406 0.217 0.217 0.219 0.251 0.203 0.215 0.219 0.234 0.196
MSE 0.173 0.175 0.190 0.195 0.187 0.198 0.380 0.191 0.172 0.170 0.190 0.173 0.170 0.164 0.175 0.164

168 MAE 0.254 0.258 0.285 0.242 0.304 0.269 0.438 0.269 0.247 0.253 0.303 0.248 0.253 0.257 0.270 0.232
MSE 0.210 0.206 0.226 0.231 0.240 0.217 0.450 0.255 0.208 0.206 0.255 0.228 0.206 0.203 0.213 0.207

336 MAE 0.297 0.312 0.342 0.290 0.366 0.419 0.556 0.299 0.315 0.316 0.376 0.306 0.299 0.309 0.314 0.288
MSE 0.274 0.277 0.293 0.301 0.321 0.393 0.672 0.310 0.287 0.279 0.364 0.314 0.268 0.269 0.275 0.285

720 MAE 0.345 0.358 0.400 0.327 0.441 0.469 0.625 0.445 0.368 0.379 0.454 0.350 0.340 0.355 0.355 0.356
MSE 0.339 0.338 0.366 0.359 0.432 0.479 0.746 0.486 0.360 0.368 0.479 0.386 0.322 0.331 0.336 0.348
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”
provided a proper justification is given (e.g., ”error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading ”NeurIPS paper checklist”,

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper proposes a novel normalization method for non-stationary time
series forecasting that could handle both evolving trend and seasonal patterns.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitation of proposed method, FAN, at Appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All assumptions and proofs are clearly stated in our manuscript and are detailed
in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental settings are detailed in Sec. 4.2 and Appendix A.1. All
experiments can be easily reproduced with our code.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We make our code publicly available at 2, including data and detail documen-
tation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental settings and hyperparameter selection details are in Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See the results with standard deviation in Table 4, 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the experiments compute resources at Sec. 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this paper conform the the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is a foundational research and has no direct negative social impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data and methods are explicitly mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All data, code, and documentation are given in the Supplementary Material
and our public repository 2.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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