
A Time-Series Vision–Language Model for Predicting
Progression of Diabetic Retinopathy

Abstract

Early detection of diabetic retinopathy (DR) progression is critical for timely inter-
vention and prevention of vision loss. We present a time-series vision–language
model that integrates longitudinal clinical context with retinal fundus images to
forecast progression to referable DR at 1-, 2-, and 3-year horizons. The framework
aligns fundus photographs with structured narrative prompts that encode demo-
graphics, diabetes history, and prior screening outcomes. Training is formulated as
a contrastive objective, encouraging image embeddings to align with the correct
horizon-specific outcome hypothesis. Using a diabetic screening dataset, we show
that incorporating longitudinal information into the prompts consistently improves
predictive performance, with the best one-year configuration achieving an AUROC
of 0.707. The approach offers two key advantages: interpretability, by conditioning
predictions on explicit clinical narratives, and extensibility, by allowing prompts to
be adapted or enriched with additional timepoint information. To our knowledge,
this is the first vision–language framework for horizon-specific DR forecasting,
establishing a simple and reproducible baseline for adaptive recall scheduling,
triage, and population-level risk management in DR screening programmes.

1 Introduction

Diabetic retinopathy (DR) is a leading cause of preventable blindness worldwide, and its prevalence
continues to rise with the increasing burden of diabetes. Screening programs routinely acquire retinal
fundus photographs for early detection, and deep learning systems have achieved high accuracy for
referable DR detection from single images Gulshan et al. [2016], Ting et al. [2017]. Regulatory
milestones, including FDA authorization of an autonomous AI diagnostic system, demonstrate
that image-only models can achieve clinical-grade performance Abràmoff et al. [2018]. Yet most
current systems focus on contemporaneous diagnosis, whereas clinicians and screening programs
often require horizon-specific forecasts—whether an eye will progress within one to three years—to
optimize recall intervals and allocate resources World Health Organization, Regional Office for
Europe [2020], American Diabetes Association Professional Practice Committee [2024].

Evidence suggests fundus images contain prognostic signals beyond contemporaneous grading.
Poplin et al. showed that deep learning can infer cardiovascular risk factors from retinal photographs
Poplin et al. [2018]. Building on this, several groups proposed image-based forecasting of DR
progression, including prediction of incident DR from baseline images Bora et al. [2021], multi-
year forecasting Rom et al. [2022], and time-to-progression modeling for personalized screening
intervals Dai et al. [2024]. Nderitu et al. compared image-only, tabular, and multimodal approaches,
highlighting the value of combining clinical context with imaging Nderitu et al. [2024]. These studies
confirm feasibility but remain primarily image-centric and rarely exploit language modeling for
longitudinal context.

Meanwhile, vision–language models (VLMs) have transformed medical AI. Contrastive pretraining
on paired images and reports, as in ConVIRT Zhang et al. [2020], GLoRIA Huang et al. [2021],
and BioViL Boecking et al. [2022], yields label-efficient representations competitive with ImageNet
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pretraining. Larger biomedical VLMs such as MedCLIP, BiomedCLIP, and CheXzero scale corpora
and achieve state-of-the-art performance in radiology Wang et al. [2022], Zhang et al. [2023], Tiu
et al. [2022]. Despite these advances, most medical VLMs address present-time tasks such as labeling
findings or answering visual questions, rather than forecasting future disease states.

Ophthalmology has begun to adopt both unimodal foundation models and retina-specific VLMs.
RETFound pretrains a ViT on 1.6M unlabelled retinal images and transfers effectively across diverse
tasks Zhou et al. [2023]. FLAIR introduces expert-informed prompts for fundus understanding Silva-
Rodríguez et al. [2025], while RetiZero and EyeCLIP scale retina-specific image–text pretraining
for broad disease identification Wang and et al. [2025], Shi and et al. [2025]. Yet these models, like
their radiology counterparts, are designed for contemporaneous diagnosis rather than multi-horizon
forecasting.

This study addresses that gap by proposing a time-series vision–language model for DR risk prediction.
Our contributions are threefold: 1. We present the first vision–language framework for forecasting
diabetic retinopathy progression across 1-, 2-, and 3-year horizons. 2. We introduce a novel time-
series VLM that integrates fundus images with structured longitudinal clinical prompts and trains
using a symmetric contrastive objective. 3. We demonstrate, on a large screening dataset, that
incorporating longitudinal information consistently improves predictive performance and establish a
reproducible baseline for adaptive recall scheduling and population-level risk management.

2 Methods

2.1 Dataset

We used a development cohort of 20,900 patients (41,650 eyes) with 302,950 images drawn from
a diabetic eye screening programme, of which all patients had sufficient longitudinal follow-up
to construct horizon outcomes. Independent evaluation was performed on one held-out internal
test set comprising 8,400 eyes from the same regional programme. Each eye–session consisted of
a two-field color fundus photograph paired with structured clinical metadata, including routinely
captured risk factors such as patient age, sex, duration of diabetes, and baseline DR/Maculopathy
status. In this study, we only used the macular images. For each of the three forecast horizons (1, 2,
and 3 years), binary outcome labels were constructed indicating whether the patient was referable. A
patient was considered referable if either one of the conditions below was met: referable DR (e.g.,
R2+) or maculopathy (e.g., M1). Otherwise, it was categorized as non-referable. We applied strict
patient-level partitioning across development and internal test splits to ensure no patient appeared
in both sets. This dataset supports robust evaluation of image-only, tabular-only, and multimodal
models across multi-horizon prognostic tasks.

2.2 Text Prompt Construction

We designed a structured narrative prompt to encode patient demographics, diabetes history, and
session-level metadata alongside hypothesized outcomes. The base template followed a fixed schema.
To increase linguistic diversity and reduce overfitting to a single phrasing, we employed ChatGPT-4o
to automatically generate 20 semantically equivalent variations of each prompt template, differing in
word order, synonyms, and sentence style. At training time, a random version was sampled for each
image–text pair, ensuring exposure to diverse formulations. In addition, a random seed determined
how many years of longitudinal information were included, simulating real-world variability in
follow-up histories and encouraging robustness to incomplete temporal records. If longitudinal
information from prior screening years was available, additional sentences were appended to describe
the best visual acuity and retinopathy grade observed at the most recent prior visit. This allowed the
model to incorporate temporal dynamics of disease progression. Figure 1 illustrates how longitudinal
demographic, clinical, and ophthalmic features are aligned along a patient timeline and encoded into
a structured narrative prompt paired with the current fundus image. Each image was paired with
two alternative prompts: one ending with a hypothesis that the eye would remain healthy within
the prediction interval, and the other ending with a hypothesis that the eye would develop referable
diabetic retinopathy. Only one of the pair corresponded to the ground-truth label, allowing the
training objective to be framed as contrastive alignment between images and the correct outcome
hypothesis.
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Figure 1: Illustration of the time-series prompt construction. Longitudinal demographic, clinical,
and ophthalmic features (e.g., diabetes type, duration, visual acuity, and DR grading) are aligned
along a patient timeline. These elements are then encoded into a structured narrative prompt, which is
paired with the current fundus image and used by the model to predict future progression to referable
diabetic retinopathy.

2.3 Training Strategy

We trained our framework end-to-end to align fundus photographs with structured narrative prompts
in a shared embedding space. A Vision Transformer (ViT-B/16) served as the image encoder, while
medical pretrained encoders were used as the text encoder. Both modalities were projected into a
d-dimensional space and optimized jointly.

Symmetric contrastive alignment. Training followed a contrastive learning setup, where each
image was aligned with its horizon-specific outcome prompt and contrasted against negatives from
alternative hypotheses and other patients. This yielded a multimodal embedding space suitable for
horizon-specific classification.

Temporal encoding. To incorporate longitudinal information, prompts concatenated structured
summaries of up to K previous visits along the patient timeline. Let Hi = {h(1)

i , h
(2)
i , . . . , h

(K)
i }

denote historical descriptors for patient i (e.g., age, diabetes duration, prior DR grade). Each
descriptor is mapped to an embedding e(h

(k)
i ), and the temporal context vector is

ci =
1

K

K∑
k=1

e(h
(k)
i ),

which is then injected into the narrative prompt paired with the current fundus image. This averaging
formulation acts as a simple temporal memory that captures disease trajectory without requiring
explicit interval modeling.

During training, K was sampled randomly from {0, 1, 2} to mimic variable follow-up lengths and
encourage robustness to incomplete histories. Predictions are thus conditioned not only on the current
fundus image but also on an aggregated summary of prior visits, making the model sensitive to
temporal disease progression.

Inference. At test time, predictions are obtained by computing cosine similarities between the
fundus embedding vi and the two horizon-specific hypothesis prompts augmented with ci. A softmax
over these similarity scores produces probabilities for remain healthy versus progress, with the
higher-probability class returned as the model’s prediction.
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Table 1: Prediction performance versus history length across different horizons.
Horizon History length AUC F1 Accuracy Sensitivity Specificity

3-year
Demographics only 0.671 0.382 0.610 0.595 0.543

+1 prior visit 0.674 0.384 0.623 0.608 0.515
+2 prior visits 0.676 0.362 0.616 0.622 0.609

2-year
Demographics only 0.674 0.357 0.611 0.609 0.591

+1 prior visit 0.680 0.402 0.624 0.603 0.522
+2 prior visits 0.681 0.398 0.625 0.625 0.573

1-year
Demographics only 0.691 0.365 0.631 0.725 0.535

+1 prior visit 0.705 0.407 0.639 0.653 0.642
+2 prior visits 0.707 0.418 0.638 0.647 0.581

3 Results and Discussion

3.1 Overall Performance

The time-series vision–language model achieved consistent discrimination for forecasting referable
DR across clinically relevant intervals. For the one-year horizon, the best configuration attained
an AUROC of 0.707, an F1-score of 0.418, and an accuracy of 0.638 when two prior visits were
included in the prompts. For the two-year horizon, the corresponding values were AUROC 0.680,
F1-score 0.402, and accuracy 0.624. For the three-year horizon, performance decreased slightly,
reaching AUROC 0.676, F1-score 0.362, and accuracy 0.616. As expected, shorter horizons yielded
stronger results, reflecting the greater challenge of predicting longer-term outcomes. Across horizons,
sensitivity was generally higher than specificity, indicating that the model prioritizes recall of true
progressors at the cost of more false positives, which is often acceptable in the context of population-
level screening.

Across all horizons, performance improved when prior visit information was incorporated into the
text prompts. At one year, adding two prior visits increased AUROC from 0.691 to 0.707, F1-score
from 0.365 to 0.418, and accuracy from 0.631 to 0.638. At two years, AUROC rose from 0.674 to
0.680, F1-score from 0.357 to 0.402, and accuracy from 0.611 to 0.624. At three years, AUROC
increased from 0.671 to 0.676, F1-score changed from 0.382 to 0.362, and accuracy from 0.610 to
0.616. These trends indicate that incorporating longitudinal clinical context consistently helps—most
notably at the one-year horizon where recent history is most informative—while at three years the
gains are modest and trade off slightly against F1.

3.2 Limitations

This work has several limitations. Temporal information was incorporated through narrative prompts
rather than explicit modeling, which may limit the ability to capture exact intervals or continuous
disease trajectories. The reliance on manually designed and LLM-augmented templates also raises
the possibility of prompt sensitivity. In addition, the dataset was derived from a single country
screening programme, which may restrict generalizability to other populations, devices, or grading
standards. Labels of progression were based on program follow-up and may contain noise from
delayed attendance or unobserved care. Finally, while the model achieved consistent gains over
baselines, absolute performance remained modest; larger and more diverse datasets, along with further
external validation, calibration, and prospective evaluation, are required before clinical deployment.

4 Conclusion

We introduced a time-series vision–language model that integrates fundus images with structured
clinical prompts to forecast diabetic retinopathy progression at 1-, 2-, and 3-year horizons. Condition-
ing on longitudinal history yielded consistent gains over image-only and tabular baselines, with best
performance at shorter horizons. Beyond accuracy, the framework provides interpretability through
clinical narratives and extensibility to richer temporal contexts.
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