
Universal Rates for Active Learning

Steve Hanneke
Purdue University

steve.hanneke@gmail.com

Amin Karbasi
Yale University

amin.karbasi@yale.edu

Shay Moran
Technion, Google Research

smoran@technion.ac.il

Grigoris Velegkas
Yale University

grigoris.velegkas@yale.edu

Abstract

In this work we study the problem of actively learning binary classifiers from
a given concept class, i.e., learning by utilizing unlabeled data and submitting
targeted queries about their labels to a domain expert. We evaluate the quality
of our solutions by considering the learning curves they induce, i.e., the rate of
decrease of the misclassification probability as the number of label queries increases.
The majority of the literature on active learning has focused on obtaining uniform
guarantees on the error rate which are only able to explain the upper envelope of the
learning curves over families of different data-generating distributions. We diverge
from this line of work and we focus on the distribution-dependent framework
of universal learning whose goal is to obtain guarantees that hold for any fixed
distribution, but do not apply uniformly over all the distributions. We provide
a complete characterization of the optimal learning rates that are achievable by
algorithms that have to specify the number of unlabeled examples they use ahead
of their execution. Moreover, we identify combinatorial complexity measures that
give rise to each case of our tetrachotomic characterization. This resolves an open
question that was posed by Balcan et al. (2010). As a byproduct of our main result,
we develop an active learning algorithm for partial concept classes that achieves
exponential learning rates in the uniform setting.

1 Introduction

The most prototypical type of learning is that of supervised learning, where an algorithm is given as
input n labeled data points sampled i.i.d. from some unknown distribution and the goal is to output a
function that has low probability of misclassifying new data from the same distribution. One caveat
with this passive model of learning is that it fails to capture the settings in which unlabeled data is
easily accessible, but obtaining their labels is costly. A natural example that fits this description is
that of webpage classification. It is easy for any web crawler to collect information about billions of
different webpages in a very short amount of time, however understanding which category a webpage
belongs to usually requires human feedback. Perhaps the most commonly used way to model this
problem is through the active learning framework in which the learner is given access to a large
stream of unlabeled data and a budget of n queries that it can submit to a domain expert in order
to obtain the label of some datapoint. The learner’s goal is to submit queries for the labels of the
most informative examples, and, as a result, eliminate some redundancy in the information content of
labeled data.

In this paper we study the optimal learning rates that are achievable by an active learning algorithm. In
the passive learning setting, it is common to measure the quality of an algorithm by its learning curve,
i.e., plotting the decay of its error rate as the number of training examples increases. In contrast, in the

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

active learning setting, the resource we are interested in is the number of label queries the algorithm
requests, so it is natural to consider the rate of decay of the misclassification probability as the
number of queries n increases. Most of the prior works on active learning have focused on obtaining
uniform guarantees on the error rate, i.e., guarantees that hold uniformly over the data-generating
distributions. In this work we follow a different path and we view the problem through the lens of
universal rates that was recently introduced by Bousquet et al. (2021). In this framework we are
aiming for guarantees that hold for all distributions, but they do not hold uniformly over them. In
other words, we allow for distribution-dependent constants in the error rate. To make the distinction
between uniform and universal rates clear, we first recall what uniform learnability of a hypothesis
class H means. We say that H is uniformly learnable at rate R(n) if there exists a learning rule ĥn

such that (
∃C, c > 0

)(
∀P ∈ RE(H)

)
it holds that E[erP(ĥn)] ≤ C ·R(c · n),∀n ∈ N .

The above expression states that there exists a learning rule ĥn and distribution-independent constants
such that for all realizable distributions the expected error rate of the classifier is at most C ·R(c · n).
The difference in the definition of universal learnability is that we swap the order of the quantifiers.
To be more precise, we say that a class H is universally learnable at rate R(n) if there exists a learning
rule ĥn such that(

∀P ∈ RE(H)
)(
∃C, c > 0

)
such that E[erP(ĥn)] ≤ C ·R(c · n),∀n ∈ N .

Note that in the above definition the constants c, C are distribution-dependent. As is evident from
our main result and from prior results in universal learning (Bousquet et al., 2021; Hanneke et al.,
2022; Kalavasis et al., 2022; Bousquet et al., 2022; Hanneke et al., 2023) this change in the definition
affects the landscape of the optimal learning rates significantly.

1.1 Related Work

Active Learning. There has been a very long line of work deriving theoretical guarantees for active
learning, both in the realizable and the agnostic setting (Cohn et al., 1994; Dasgupta, 2005; Balcan
et al., 2006; Hanneke, 2007b,a; Dasgupta et al., 2007; Hanneke, 2009; Balcan et al., 2009, 2010;
Hanneke, 2012, 2014; Wiener et al., 2015; Hanneke and Yang, 2015; Beygelzimer et al., 2016). As
we alluded to before, most of these works focus on obtaining minmax guarantees, i.e., the bounds
they provide hold in the worst case over a family of distributions. To be more precise, while many of
these results have distribution-dependent guarantees, they are typically expressed in a way that aims
to match a lower bound on the minmax performance over a family o distributions, with respect to
some parameter, like the disagreement coefficient. For these reasons the results in these works do not
capture the full spectrum of universal rates. We also remark that there are a few works that do study
universal rates, e.g. Balcan et al. (2010); Hanneke (2012); Yang and Hanneke (2013), but none of
them have derived a complete characterization of the optimal rates.

Universal Rates. The study of universal learning rates was put forth in the seminal work of Bousquet
et al. (2021) who derived a complete characterization of the optimal rates in the supervised learning
setting. Later, Kalavasis et al. (2022) extended these result to the multiclass setting, with a bounded
number of classes, and Hanneke et al. (2023) improved upon this result by characterizing multiclass
classification with an infinite number of labels. Subsequently, the work of Bousquet et al. (2022)
derived more fine-grained results for binary classification compared to Bousquet et al. (2021).
The work that is most closely related to ours is Hanneke et al. (2022) which derives a complete
characterization of the optimal learning rates in a very general interactive learning setting. In that
setting, the learner is allowed to submit arbitrary binary valued queries about the unlabeled data. We
provide a detailed comparison between our results and theirs in Section 1.5. Very recently, Attias
et al. (2024) studied universal rates in the context of regression.

Partial Concept Classes. The vast majority of the literature in learning theory has focused on total
concept classes, i.e., classes that consist of functions that are defined everywhere on the instance
domain. Recently, Alon et al. (2021) proposed a learning theory of partial concept classes, i.e., classes
that consist of functions that can be undefined on some parts of the instance domain. Later, Kalavasis
et al. (2022) extended some of the results to the multiclass setting, with a finite number of labels.
Recently, Cheung et al. (2023) studied partial concept classes in the context of online learning and

2

they showed that there are such classes that are online learnable but none of their “extensions” to
total concept classes is online learnable. The advantage of partial concepts is that they provide a
convenient way to express data-dependent constraints. En route of obtaining our main result, we
design active learning algorithms for partial concept classes. For a more detailed discussion about
partial concepts we refer the reader to Appendix A.2.

1.2 Formal Setting

Learning Model. We now present formally the learning setting that we consider in this work.
There is a domain X , which we assume to be a Polish space, and a concept class H ⊆ {0, 1}X ,
which satisfies standard measurability assumptions (see Definition A.1). We define a classifier
h : X → {0, 1} to be a universally measurable function and its error rate is defined as erP(h) :=
P [(x, y) : h(x) ̸= y], where P is the data-generating distribution over X × {0, 1}. When P is clear
from the context we might drop the subscript P in erP(h). We call P realizable with respect to the
hypothesis class H if infh∈H erP(h) = 0. We denote by PX be the marginal distribution of P on X .

Active Learning Model. We define an active learning algorithm to be a sequence of universally
measurable functions which, given access to a stream of unlabeled data points from X that are drawn
i.i.d. from PX and a label query budget n, output a classifier ĥn : X × {0, 1}. In this work we
consider a non-adaptive active learning model, with respect to the unlabeled data. In particular, the
learning algorithm needs to specify a function u : N→ N so that u(n) is the number of unlabeled
points it observes and n is the number of points for which it can request the label. The number u(n)
is specified before the execution of the algorithm and cannot be modified based on the realization of
the unlabeled sequence or the answers that it gets for the labels of the points it queries. We place no
bound whatsoever on the function u(·). Also, the algorithm can only request the labels of points it
has observed and not arbitrary points from X . We emphasize that the label requests that the algorithm
makes can be adaptive, and can depend on answers to previous label queries. To the best of our
knowledge, the active learning algorithms that have been proposed in the literature either fit into this
model or they can be modified to satisfy the non-adaptivity restriction with negligible performance
loss.

Learning Rates. We now define formally what it means for an algorithm to achieve a learning rate
R(n) in the universal learning model. We adopt the definition of Bousquet et al. (2021).

Definition 1.1 (Learning Rates (Bousquet et al., 2021)). Fix a concept class H, and let R : N →
[0, 1], R(n)

n→∞−→ 0 be a rate function, where n is the label query budget of the learner.

• H is learnable at rate R if there is a learning algorithm ĥn such that for every realizable
distribution P, there exist c, C for which E[er(ĥn)] ≤ CR(cn),∀n ∈ N.

• H is not learnable at rate faster than R if for all learning algorithms ĥn there exists a
realizable distribution P and c, C for which E[er(ĥn)] ≥ CR(cn), for infinitely many
n ∈ N.

• H is learnable with optimal rate R if it is learnable at rate R and it is not learnable at rate
faster than R.

• H admits arbitrarily fast rates if for all rate functions R, it is learnable at rate R.

• H requires arbitrarily slow rates if for all rate functions R, it is not learnable at rate faster
than R.

Combinatorial Measures. We now define some combinatorial complexity measures that our
characterization relies on. To make the presentation easier to follow, we provide informal definitions.
For the formal ones, we refer the reader to Appendix A.3. We first describe the Littlestone tree that
was introduced by Bousquet et al. (2021).

Definition 1.2 (Littlestone Tree, Informal (see Definition A.8) (Bousquet et al., 2021)). A Littlestone
tree for H ⊆ {0, 1}X is a complete binary tree of depth d ≤ ∞ whose nodes are labeled by elements
ofX and the edges to the left, right child are labeled by 0, 1. We require that for every level 0 ≤ n < d

3

and every path from the root to a node at level n there is some h ∈ H that realizes this path. We say
that H has an infinite Littlestone tree if it has a Littlestone tree of depth d =∞.

We underline that this notion can be thought of as an infinite extension of the Littlestone dimen-
sion (Littlestone, 1988) of H. Recall that the Littlestone dimension is defined to be the largest d ∈ N
for which H has a Littlestone tree of such depth and it is∞ if one can construct Littlestone trees of
arbitrary depth. Crucially, this is not the same as having a single tree whose depth is infinite, so one
can see that infinite Littlestone dimension is not the same as having an infinite Littlestone tree.

We next give the definition of the Vapnik-Chervonenkis-Littlestone tree (VCL) that was introduced
by Bousquet et al. (2021).
Definition 1.3 (VCL Tree, Informal (see Definition A.10) (Bousquet et al., 2021)). A VCL tree for
H ⊆ {0, 1}X is a complete tree of depth d ≤ ∞ such that every level 0 ≤ n < d has nodes that are
labeled by Xn+1 with branching factor 2n+1 and whose 2n+1 edges connecting a node to its children
are labeled by the elements of {0, 1}n+1. We require that for every node at any level 0 ≤ n < d, the
path from the root to this node is realized by some h ∈ H. We say that H has an infinite VCL tree if it
has a VCL tree of depth d =∞.

Intuitively, the VCL tree combines the notions of the Littlestone tree and the VC dimension (Vapnik
and Chervonenkis, 1971; Blumer et al., 1989). The differences between the Littlestone tree and the
VCL tree are that in the latter the size of the nodes increases linearly with the level and the branching
factor increases exponentially, whereas in the former all the nodes are singletons and the branching
factor is always two.

We are now ready to introduce a new combinatorial measure which we call the star tree.
Definition 1.4 (Star Tree, Informal (see Definition A.9)). A star tree for H ⊆ {0, 1}X is a complete
tree of depth d ≤ ∞ such that every level 0 ≤ n < d has nodes that are labeled by (X × {0, 1})n+1

with branching factor n+ 1 and whose n+ 1 edges connecting a node to its children are labeled
by {0, . . . , n}. The label of the edge indicates the element of the node whose label along the path
is flipped. We require that for every node at level 0 ≤ n < d, the path from the root to this node is
realized by H. We say that H has an infinite star star tree if it has a star tree of depth d =∞.

Essentially, this definition combines the structure of a Littlestone tree with the notion of the star
number (Hanneke and Yang, 2015). Every node at level n consists of n+ 1 labeled points and there
are n+ 1 edges attached to it. Each edge indicates which of the n+ 1 points of the labeled node has
its label flipped along every path that this edge is part of.

1.3 Main Results

We are now ready to state the main results of this work. Our first main result is a complete characteri-
zation of the optimal learning rates that a class H admits in the active learning setting.
Theorem 1.5. For every concept class H exactly one of the following cases holds.

• H is actively learnable at arbitrarily fast rates.

• H is actively learnable at an optimal rate e−n.

• H is actively learnable at o(1/n) rates, but requires rates arbitrarily close to 1/n.

• H requires arbitrarily slow rates for active learning.

Our next result characterizes exactly when these rates occur by specifying combinatorial complexity
measures of H that determine which case of the tetrachotomy it falls into.
Theorem 1.6. For every concept class H the following hold.

• If H does not have an infinite Littlestone tree, then it is learnable at arbitrarily fast rates.

• If H has an infinite Littlestone tree but does not have an infinite star tree, then it is learnable
at optimal rate e−n.

• If H has an infinite star tree but does not have an infinite VCL tree, then it is learnable at
optimal rate o(1/n), but requires rates arbitrarily close to 1/n.

4

• If H has an infinite VCL tree, then it requires arbitrarily slow rates.

We remark that the landscape of the optimal rates looks significantly different compared to the passive
setting (Bousquet et al., 2021) and the general interactive learning setting (Hanneke et al., 2022). Our
main result answers an open question that was posed in Balcan et al. (2010), which asks for necessary
and sufficient conditions for learnability at an exponential rate in the active learning setting.

1.4 Examples

We now present examples of classes that witness each case of our tetrachotomic characterization.

Arbitrarily-fast rates: Bousquet et al. (2021) give examples with no infinite Littlestone tree (e.g.,
thresholds on the integers, and positive halfspaces on Nd), hence learnable at arbitrarily fast rates.

Exponential rates: Famously, threshold classifiers [a,∞) over R have an infinite Littlestone tree and
are actively learnable at exponential rate (even uniformly). A more interesting example is the class
of interval classifiers [a, b] on R, which (also famously) has uniform rate 1/n for active learning (it
has infinite star number), and has an infinite Littlestone tree, but it has no infinite star tree: for any
choice of x in the root node, the edge labeling x as 1 has a version space with star number equal 4 (it
is effectively 2 disjoint threshold problems), so the depth of that subtree is bounded. Therefore, by
our theory, it is actively learnable at e−n universal rate (in stark contrast to the uniform rate 1/n).

Sublinear rates: Halfspaces on Rd have an infinite star tree but no infinite VCL tree. To construct that
star tree, the key observation is that any set in convex position is a star set (Balcan et al., 2010).

Arbitrarily slow rates: Bousquet et al. (2021) provide examples of classes with an infinite VCL tree,
such as the class of all claffisifiers, so these require arbitrarily slow rates in our setting as well.

1.5 Comparison to Supervised Learning and General Interactive Learning Setting

We now compare our characterization to the results of Bousquet et al. (2021) that prove an analogous
result in the supervised learning setting. Let us first recall their main result which shows that in this
learning model a class is universally learnable at:

• Exponential rate e−n if and only if it does not have an infinite Littlestone tree.
• Linear rate 1/n if and only if it has an infinite Littlestone tree but does not have an infinite

VCL tree.
• Arbitrarily slow rates if and only if it has an infinite VCL tree.

As one can see, our results illustrate the advantage that active learning algorithms have over their
supervised counterparts. We underline that the only case where active learning does not offer an
improvement compared to the passive setting is when H has an infinite VCL tree.

Let us now discuss the interactive learning model that was considered by Hanneke et al. (2022). In
this general model of interaction, the learner is allowed to ask arbitrary binary queries about any
subset of the unlabeled data. In particular, these queries include, but are not limited to, label queries,
comparison queries, and general membership queries. They show that the optimal rates that any class
H admits are the following:

• Arbitrarily fast if and only if it does not have an infinite Littlestone tree.
• Exponential if and only if it has an infinite Littlestone tree but not an infinite VCL tree.
• Arbitrarily slow if and only if it has an infinite VCL tree.

We underline that the algorithm by Hanneke et al. (2022) that achieves arbitrarily fast rates uses only
label queries and the number of unlabeled data u(n) that it uses can be chosen statically prior to
the execution of the algorithm. Therefore, this result applies to the setting we consider in our work.
Moreover, the lower bounds they provide also apply to our setting since (i) the queries that Hanneke
et al. (2022) consider are more general, and (ii) their lower bounds hold even when the learner knows
the marginal distribution PX . As is evident from our main result, the active learning setting provides
a richer landscape of optimal rates compared to the general interactive learning setting of Hanneke
et al. (2022). In particular, just the absence of an infinite VCL tree for H does not necessarily imply

5

that we can achieve (at least) exponential rates. To get this result, Hanneke et al. (2022) make strong
use of these general queries in order to provide an algorithm that has a binary-search flavor and can
learn partial concept classes with finite VC dimension at an exponential rate. Our main result shows
that such guarantees are not achievable by using only label queries.

1.6 Technical Challenges

The most technically innovative part of our work is the o(1/n) algorithm. Let us set up some
terminology to facilitate our discussion. The version space of a concept class, given a labeled dataset
S, is the set of concepts that classify all the elements of S correctly. Moreover, the VCL game
is a Gale-Stewart game defined by Bousquet et al. (2021) that was used in their passive learning
algorithm that achieves 1/n universal rate. The original (passive) learner from Bousquet et al. (2021)
partitions a portion of the data into some number B(n) of batches, from which they construct partial
concept classes of finite VC dimension by using the batches to play the VCL game against the
player’s winning strategy, and for each resulting partial concept class they run a separate learner
on another portion of data and return a majority vote of their resulting classifiers. The latter part
of this strategy could never work in the active learning setting, since the number of batches B(n)
must be an increasing function of n, and applying an active learner for each partial concept class
separately would require each to use (nearly) Ω(n) queries (to get the o(1/n) guarantee there), so
the total number of queries would be (nearly) Ω(B(n)n) ≫ n, violating the label budget n. To
resolve this, we ended up completely re-imagining how to use these partial concept classes. Rather
than running a separate algorithm for each class, we run a single active learning algorithm, where
individual decisions of whether to query involve voting over the partial concept classes. We first
extend an algorithm of Hanneke (2012) (for total concepts) to achieve o(1/n) rate for partial concept
VC classes (this required completely re-formulating Hanneke’s analysis). The resulting algorithm
involves estimating the probability that a random k-tuple is VC shattered by certain constrained
version spaces. We replace this with an estimated average (over a select subset of partial concept
classes) of this shattering probability, which we show composes appropriately with the analysis of the
algorithm to obtain the o(1/n) rate. Comparing our work to the general interactive learning setting
considered by Hanneke et al. (2022), the main differences are (i) we design a new algorithm that
uses only label queries and achieves exponential rates when H does not have an infinite star tree, a
combinatorial measure we introduce in our work, (ii) we prove a o(1/n) lower bound in the setting
where H has an infinite star tree, and (iii) we propose a novel active learning algorithm that achieves
sublinear rates when H does not have an infinite VCL tree.

2 Arbitrarily Fast Rates

As we explained before, the first case of the tetrachotomy in our characterization is a direct implication
of the results by Hanneke et al. (2022). To be more precise, they design an algorithm which achieves
arbitrarily fast rates using only label queries. In order to do that, they need the number of unlabeled
points u(n) to be an arbitrarily fast increasing function, that, nevertheless, can be specified in a
non-adaptive manner prior to the execution of the algorithm. The result is summarized in Theorem 2.1.
Theorem 2.1 (Hanneke et al. (2022)). If H does not have an infinite Littlestone tree it is actively
learnable with arbitrarily fast rates.

For completeness, we present their algorithm in Figure 1. Similary with the upper bound, the lower
bound is an immediate consequence of a result from Hanneke et al. (2022), since the learner can
submit more informative queries in their model.
Theorem 2.2 (Hanneke et al. (2022)). If H has an infinite Littlestone tree, then H is not actively
learnable at rate faster than exponential e−n. This holds even if PX is known to the learner.

3 Exponentially Fast Rates

In this section, we prove the second case in the tetrachotomy we have stated, i.e., that H is learnable
at an exponential rate if and only if it has an infinite Littlestone tree and it does not have an infinite
star tree. Our proof consists of two parts. First, we show that if H does not have an infinite star tree it
is learnable at an exponentially fast rate. Then, we show that whenever H has an infinite star tree, the
best achievable rate cannot exceed o(1/n). The omitted details can be found in Appendix C.

6

3.1 Exponential Rates Algorithm: High-Level Overview

The high-level approach to get the exponential rates algorithm follows the same spirit of the ap-
proaches from Bousquet et al. (2021); Hanneke et al. (2022). First, we design an appropriate
Gale-Stewart game (cf. Appendix A.2), i.e., a game between a learner and an adversary, that is
associated with H in which the learner has a winning strategy if and only if H does not have an
infinite star tree. The next step is to show that, in the limit, the winning strategy of the learner gives
rise to a partial concept class F that has finite star number (see Definition A.7). Since this result
is asymptotic, our approach is to consider several instances of this game, execute them for a finite
number of steps, and obtain a partial concept class from each one. Then, we aggregate these classes
into a majority class. The intuition is that, with high probability, most of the games will have induced
classes whose star number is bounded by a distribution-dependent constant, so then we can show
that the majority class will also have bounded star number, and this bound is distribution-dependent.
Thus, our task boils down to actively learning a partial concept class whose star number is finite. In
order to do that, we extend the approach that Hanneke and Yang (2015) used for total concept classes
to the regime of partial classes. We believe that this result could be of independent interest.

3.2 The Star Tree Game

We first outline the Gale-Stewart game we use. Recall that every node of a star tree at depth n consists
of n+ 1 points along with their labels. There are n+ 1 edges that connect the node with its children
and the label of every edge indicates the point whose label is flipped along any path that uses this
edge. Let us now describe the game G that we use in this setting. In every round τ ≥ 1 we have the
following interaction between the learner PL and the adversary PA:

• Player PA chooses points (ξ⃗τ , ζ⃗τ) = (ξ0τ , . . . , ξ
τ−1
τ , ζ0τ , . . . , ζ

τ−1
τ) ∈ X τ × {0, 1}τ .

• Player PL chooses ητ ∈ {0, . . . , τ − 1}.
• Player PL wins the game in round τ if

Hξ⃗1,ζ⃗1,η1,...,ξ⃗τ ,ζ⃗τ ,ητ
:=

{
h ∈ H :

h(ξis) = ζis, if ηs ̸= i
h(ξis) = 1− ζis, if ηs = i

, 1 ≤ s ≤ τ, 0 ≤ i < s

}
= ∅.

(1)

It is easy to see that the winning condition for PL is finitely decidable (cf. Appendix A.2), hence G
is a Gale-Stewart game. Recall that this means exactly one player between the adversary and the
learner has a winning strategy. Using a result regarding the measurability of winning strategies in
Gale-Stewart games that was shown by Bousquet et al. (2021) (see Theorem A.3) we can prove the
following connection between G and the existence of infinite star trees (see Appendix C.1 for the
proof).
Lemma 3.1. The class H does not have an infinite star tree if and only if PL has a universally
measurable winning strategy in G.

The first step in our approach, is to make use of some Θ(n) label queries in order to obtain the labels
of Θ(n) many points. The idea these labeled points in order to simulate the Gale-Stewart game we
described above (see Appendix C.3 for the details). The main technical issue we need to handle is that
we have no control over the number of rounds the game needs in order to terminate. Using ideas that
have appeared in the universal learning literature, we use a portion of these labeled points to estimate
some number t̂n so that, with at least some constant probability over the dataset, the game will
terminate within t̂n many rounds. Then, we split the remaining of the labeled dataset into batches of
size t̂n and we run the game on each batch. The outcome of each game gives us a pattern-avoidance
function, i.e., a function that takes an input tuples of arbitrarily labeled points and changes the
label of one of them so that the resulting labeled tuple is not consistent with the data-generating
distribution P. In other words, the output of this function could not have been generated by the P. A
technical complication we need to handle is that we obtain multiple such pattern avoidance functions,
some of which are incorrect, but to make the presentation cleaner we explain the idea using a single
pattern avoidance function g̃t∗ that produces inconsistent labels. The formal setting is handled in
Appendix C.4. One way to think about this function is that it provides data-dependent constraints.
Thus, it is natural to express such a constraint through a partial concept class. We define

F =
{
f : X → {0, 1, ⋆} : (x1, f(x1)), (x2, f(x2)), . . . , (xt∗ , f(xt∗)) /∈ image(g̃t∗),∀x1, . . . , xt∗ ∈ X t∗

}
.

7

Notice that the constraint we have placed on F is satisfied if f(xi) = ⋆, for some i ∈ [t∗]. We
consider the natural extension of the notion of star sets to the case of partial concept classes, i.e., we
say that a labeled set S with labels in {0, 1} is a star set if S and its adjacent sets S′, whose labels
are still restricted to be in {0, 1}, are obtainable using functions from F (see Definition A.7). A key
observation is that the star number of F is bounded by t∗−1. Another difficulty we need to overcome
is that we do not know t∗, since it is a random variable that depends on the realized sequence and its
distribution might have heavy tails. To make our approach easier to follow, let us first assume that we
do know t∗1. Then, our task boils down to actively learning a partial concept class.

3.3 Active Learning of Partial Concept Classes with Finite Star Number

We now present an algorithm that achieves exponential rates when actively learning a partial concept
class F that star number s < ∞. The idea of our approach is to reduce the problem of actively
learning a partial concept to the well-studied problem of actively learning a total concept class. The
algorithm is presented in Figure 2. Let us explain the high-level ideas of the algorithm. First, we
consider a large enough set of unlabeled data. Our goal is to find their labels using logarithmically
many queries. To do that, we consider the uniform distribution over these unlabeled examples. Then,
we use an algorithm from Hanneke and Yang (2015) (see Theorem C.1) which guarantees exponential
rates when applied to a class with finite star number. Because the underlying distribution on the
sample is uniform, with high probability, the algorithm will find the correct labels of all the points.
Finally, we feed these labeled examples to the one-inclusion graph algorithm (Theorem A.5) to get
the desired result. We are now ready to state our theorem. The proof is postponed to Appendix C.2.

Theorem 3.2. There exists an active learning algorithm A for a partial concept class F which given
a label budget n and access to unlabeled samples from a realizable distribution P∗ returns a classifier
ĥn such that EP∗ [er(ĥn)] ≤ c1de

−c2n/s, where c1, c2 are absolute numerical constants, and s,d is
the star number, VC dimension of F .

3.4 Slower than Exponential is Sublinear

The next step in the characterization is to show that if H has an infinite star tree, then it does not
admit rates faster than sublinear. The proof starts by picking a random path on the infinite star tree.
The target distribution is supported only on nodes of the selected path. Then, given some algorithm
ĥn, we distribute the mass of the target probability distribution across the path, potentially skipping
some nodes of it, in a way that creates an infinite sequence ni1 , ni2 , . . ., so that when the learner has
label budget nij , with some constant probability, it will only observe unlabeled points up to level kij .
Moreover, with at least some constant probability, it will not query the point of that level whose label
is flipped along the target path. On that event, it makes a mistake with probability at least C · pij/kij ,
where C is some absolute constant. Our choice of pij , kij guarantees that R(nj) > pij/kij , where
R(·) is the target sublinear rate function. Finally, we apply Fatou’s lemma to get the desired result.
For the full proof and the formal theorem statement, we refer the reader to Appendix C.5

4 Sublinear Rates

Our approach to achieve sublinear rates in the setting where H does not have an infinite VCL tree
shares some high-level ideas with the one in Section 3, but many technical challenges make it
significantly more involved. The main obstacle is that there is no active learning algorithm that
achieves sublinear rates for VC classes uniformly over all realizable distributions. Recall that in
the exponential rates setting, such an algorithm does exist (Hanneke and Yang, 2015). Instead, the
sublinear rates algorithm for VC classes from Hanneke (2012) depends on distribution-dependent
constants in the sample complexity. The omitted details from this section can be found in Appendix D.

Instead of the star tree Gale-Stewart game that was used to get the exponential rates guarantee, we
use the VCL Gale-Stewart game Bousquet et al. (2021) (cf. Figure 6). To be more precise, we use
⌊n/5⌋ of the label budget to get the labels of ⌊n/5⌋ unlabeled points that come i.i.d. from PX . Then,
we execute the VCL game on Θ(

√
n) different batches of size Θ(

√
n). Each of these games induces

a partial concept class. We show how to obtain a P-dependent bound on the VC dimension that

1In Appendix C.4 we show how to obtain an etimate.

8

holds for most of these classes. Moreover, we show that for most of these classes the data-generating
distribution P is realizable. Finally, we design a single active learning algorithm that combines
information from all these classes and achieves sublinear learning rates. This algorithm builds upon
Hanneke (2012) but is modified to work with partial concept classes instead of total concept classes.
This requires a very different analysis and is the most technically involved part of our work.

Let us now explain the main ideas of this algorithm and the challenges behind it. As we mentioned
before, the number of queries that the algorithm from Hanneke (2012) needs to achieve the sublinear
error rate depends on the underlying data-generating distribution. Thus, we cannot just get a large
enough number of unlabeled samples, consider the uniform distribution over them and use the
algorithm on this distribution. This is because the learning rate for H would depend on the uniform
distribution US over the sample S and not on the data-generating distribution P. To illustrate the ideas
of the algorithm, we consider five different streams of i.i.d. (unlabeled) data S1, S2, S3, S4, S5. For
the purposes of the subsequent discussion, we can imagine that these streams have infinite size, but as
explained in description of the algorithm, we only need poly(n) unlabeled points. Let us first explain
the use of S5. We use n/5 of our query budget to obtain the labels of the first n/5 points and then we
use them to train a supervised learning algorithm from Bousquet et al. (2021) that achieves linear rate
O(1/n). This is used for technical reasons in our analysis and in order to ensure that the classifier we
output has, at most, linear error rate no matter how the active learning component of our algorithm
behaves. Next, we use n/5 of the query budget to obtain the labels of the first n/5 points from S1.
Then, we run the VCL game on these labeled datasets of size

√
n/5 and obtain

√
n different pattern

avoidance functions ŷi√
n/5

that take as input ℓi√
n/5

points (cf. Appendix D.2), where i ∈ [
√
n]. Let

F i√
n/5 :=

{
f : X → {0, 1, ⋆} : (f(x1), . . . , f(xℓi√

n/5
)) ̸= ŷi√n/5(x1, . . . , xℓi√

n/5
)
}
, i ∈ [

√
n] .

First, we show that for a (1 − o(1))-fraction of these partial concept classes P is a realizable
distribution. Intuitively, this means that the partial concept class we obtain by running the VCL game
on
√
n many points is the same as the class we would have obtained if we were to run the game on

infinitely many points (cf. Lemma D.4). Next, we need to estimate some number d̂n ∈ N which, as
n → ∞, converges to the 9/10-quantile d∗ of the distribution of the VC dimension of the partial
concept classes that are obtained by running the VCL game on infinitely many samples. We let

d̂n := min
d∈N

{
∃i1, i2, . . . , i9/10·√n ∈ [

√
n] : i1 < i2 < . . . < i9/10·

√
n,d

(
F ij√

n/5

)
≤ d,∀j ∈ [9/10

√
n]
}
,

where d(F) denotes the VC dimension of class F . Lemma D.5 shows that, for large enough n,
d̂n = d∗, with high probability, where d∗ ∈ N is such that with probability at least 9/10 over
the random draw2 of the partial class, its VC dimension is at most d∗. One technical complication
we need to handle is that the concept classes we have obtained are estimated from a game on√
n many points instead of infinitely many points, so a o(1)-fraction of them do not correspond

to samples from the correct distribution. To do that we use a robust version of the well-known
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (cf. Theorem D.1) for estimating the CDF.

Next, we use another n/5 of the query budget to obtain the labels of the first n/5 points of S2. We
will make two distinctions regarding this stream. For the purposes of the analysis, we consider a fixed
stream of infinitely many i.i.d. samples from P and we denote it by S∞

2 , but in the actual algorithm
we use a dataset of size Θ(n) and we denote it by Sn

2 . We define

V i
n/5 :=

{
f ∈ F i√

n/5 : f(x) = y for the first n/5 points in S∞
2

}
,

to be the version space of F i√
n/5

defined on the first n/5 examples of S∞
2 . Moreover, we let Vd∗,n/5

be a random version space that is sampled from the following process: we run the VCL game on an
infinite stream of labeled data from P to get a pattern avoidance function ỹ and then we define the par-
tial concept class F̃ in the same way as before. If the VC dimension of this class is greater than d∗ we
discard it and restart the process. Otherwise, we let Vd∗,n/5 be the version space of F̃ on the first n/5
labeled points of S∞

2 . We take d∗ to be the 9/10−quantile of P̃ as described before (cf. Lemma D.5).
Given some k ∈ N, let pn,k := E[Pk(x1, . . . , xk VC shattered by Vd∗,n/5)|S∞

2] where the expecta-
tion is over the draw of Vd∗,n/5, given the fixed S∞

2 . Let k∗ ∈ N be the largest number such that

2This random draw is induced by an execution of the VCL game on infinitely many i.i.d. points from P.

9

limn→∞ pn,k∗ ̸= 0. Notice that since, by definition, the VC dimension is bounded by d∗ such a num-
ber k∗ exists. From here on, we will only consider the version spaces V i

n/5 that are obtained from some

partial class with VC dimension at most d̂n. Let pn,k,i := Pk(x1, . . . , xk VC shattered by V i
n/5).

Notice that for every k ≤ d̂n and every i ∈ [
√
n] we can estimate this quantity to arbitrary precision

using only unlabeled examples. We denote by p̂n,k,i these estimates.

We now consider the first n2 unlabeled points of the third data stream S3. For each such point X , let
pXn,k := E[Pk(x1, . . . , xk, X VC shattered by Vd∗,n/5)|S∞

2 , X]. Moreover, for each y ∈ {0, 1} let

V
(X,y)
d∗,n/5 := {f ∈ Vd∗,n/5 : f(X) = y}, p

(X,y)
n,k := E[Pk(x1, . . . , xk VC shattered by V

(X,y)
d∗,n/5)|S

∞
2 , X], y ∈ {0, 1} .

We define the quantities pXn,k,i, p
(X,y)
n,k,i in the same way for the realized version spaces. Again,

by Hoeffding’s bound, we can estimate these quantities to arbitrary precision using unlabeled data.
Similarly as before, we denote these estimates by p̂Xn,k,i, p̂

(X,y)
n,k,i . The idea is to make use of Lemma D.4

and show that the classes which have been obtained by a VCL game that has not converged will
only affect our estimates by some o(1). This is formalized in Proposition D.6. Thus, we can use
p̂n,k,i, p̂

X
n,k,i, p̂

(X,y)
n,k,i , in order to estimate pn,k,, pXn,k, p

(X,y)
n,k . We denote these estimates by p̂n,k,, p̂Xn,k,

p̂
(X,y)
n,k . These are the key quantities we use to infer the labels of unlabeled points.

Our algorithm tries to infer the label of each unlabeled point X ∈ S3 (cf. Figure 7) in the fol-
lowing way: if p̂Xn,k ≥

p̂n,k

2 then we query the label of X, otherwise we infer the label to be

argmaxy∈{0,1} p̂
(X,y)
n,k . Lemma D.7 shows that the inferences are correct, when n is large enough.

The main ingredient of the proof that remains to be handled is to show that the number of label
queries we submit is sublinear in n. For that, it is sufficient to show that the probability that we query
the label of a point is o(1). Lemma D.8 shows that when k = k∗, this is indeed the case.

Finally, since we do not know the true value of k∗, we run the algorithm for every k ≤ d̂n. The active
learning component of the algorithm gives us d̂n + 1 different labeled datasets, which we use to train
d̂n +1 instances of a supervised learning algorithm, such as the one from Bousquet et al. (2021). Our
analysis so far has shown that for sufficiently large n, at least one of these datasets will be correctly
labeled with size ω(n). Thus, since the supervised learning algorithm has error linear in the size of its
training set, at least one of these executions will give a classifier that has error o(1/n). The last step
is to run a tournament among the dn + 2 different classifiers3 to choose the best one. This is handled
by Lemma D.9 (Hanneke, 2012). The main result of this section (cf. Theorem D.10), follows as a
corollary of the results we have discussed. All the steps are summarized in Figure 7.

Lastly, a lower bound from Hanneke et al. (2022) completes our characterization (cf. Theorem D.11).

5 Conclusion

In this work we have provided a complete characterization of the optimal learning rates in active
learning. It is an open question if it also holds when the learner knows the distribution PX .

Acknowledgments

Amin Karbasi acknowledges funding in direct support of this work from NSF (IIS-1845032), ONR
(N00014- 19-1-2406), and the AI Institute for Learning-Enabled Optimization at Scale (TILOS).
Shay Moran is a Robert J. Shillman Fellow; he acknowledges support by ISF grant 1225/20, by BSF
grant 2018385, by Israel PBC-VATAT, by the Technion Center for Machine Learning and Intelligent
Systems (MLIS), and by the the European Union (ERC, GENERALIZATION, 101039692). Views
and opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council Executive Agency. Neither the European
Union nor the granting authority can be held responsible for them. Grigoris Velegkas was supported
in part by the AI Institute for Learning-Enabled Optimization at Scale (TILOS).

3Recall that we have one more classifier from S5.

10

References
N. Alon, S. Hanneke, R. Holzman, and S. Moran. 2021. A Theory of PAC Learnability of Partial

Concept Classes. In Proceedings of the 62nd Annual Symposium on Foundations of Computer
Science.

Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, and Grigoris Velegkas. 2024. Universal
Rates for Regression: Separations between Cut-Off and Absolute Loss. In The Thirty Seventh
Annual Conference on Learning Theory. PMLR, 359–405.

M.-F. Balcan, A. Beygelzimer, and J. Langford. 2006. Agnostic Active Learning. In Proceedings of
the 23rd International Conference on Machine Learning.

M.-F. Balcan, A. Beygelzimer, and J. Langford. 2009. Agnostic Active Learning. J. Comput. System
Sci. 75, 1 (2009), 78–89.

M.-F. Balcan, S. Hanneke, and J. Wortman Vaughan. 2010. The True Sample Complexity of Active
Learning. Machine Learning 80, 2–3 (2010), 111–139.

A. Beygelzimer, D. J. Hsu, J. Langford, and C. Zhang. 2016. Search improves label for active
learning. In Advances in Neural Information Processing Systems 29.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. 1989. Learnability and the Vapnik-
Chervonenkis Dimension. Journal of the Association for Computing Machinery 36, 4 (1989),
929–965.

Olivier Bousquet, Steve Hanneke, Shay Moran, Jonathan Shafer, and Ilya Tolstikhin. 2022. Fine-
Grained Distribution-Dependent Learning Curves. arXiv preprint arXiv:2208.14615 (2022).

O. Bousquet, S. Hanneke, S. Moran, R. van Handel, and A. Yehudayoff. 2021. A Theory of Universal
Learning. In Proceedings of the 53rd Annual ACM Symposium on the Theory of Computing.

Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini. 2023. Online Learning and
Disambiguations of Partial Concept Classes. arXiv preprint arXiv:2303.17578 (2023).

D. Cohn, L. Atlas, and R. Ladner. 1994. Improving Generalization with Active Learning. Machine
Learning 15, 2 (1994), 201–221.

Donald L Cohn. 2013. Measure theory. Vol. 1. Springer.

S. Dasgupta. 2005. Coarse Sample Complexity Bounds for Active Learning. In Advances in Neural
Information Processing Systems 18.

S. Dasgupta, D. Hsu, and C. Monteleoni. 2007. A General Agnostic Active Learning Algorithm. In
Advances in Neural Information Processing Systems 20.

David Gale and Frank M Stewart. 1953. Infinite games with perfect information. Contributions to
the Theory of Games 2, 245-266 (1953), 2–16.

S. Hanneke. 2007a. A Bound on the Label Complexity of Agnostic Active Learning. In Proceedings
of the 24th International Conference on Machine Learning.

S. Hanneke. 2007b. Teaching Dimension and the Complexity of Active Learning. In Proceedings of
the 20th Conference on Learning Theory.

S. Hanneke. 2009. Theoretical Foundations of Active Learning. Ph. D. Dissertation. Machine
Learning Department, School of Computer Science, Carnegie Mellon University.

S. Hanneke. 2012. Activized Learning: Transforming Passive to Active with Improved Label
Complexity. Journal of Machine Learning Research 13, 5 (2012), 1469–1587.

S. Hanneke. 2014. Theory of Disagreement-Based Active Learning. Foundations and Trends in
Machine Learning 7, 2–3 (2014), 131–309.

Steve Hanneke, Amin Karbasi, Shay Moran, and Grigoris Velegkas. 2022. Universal Rates for
Interactive Learning. In Advances in Neural Information Processing Systems.

11

Steve Hanneke, Shay Moran, and Qian Zhang. 2023. Universal Rates for Multiclass Learning. In The
Thirty Sixth Annual Conference on Learning Theory. PMLR, 5615–5681.

S. Hanneke and L. Yang. 2015. Minimax Analysis of Active Learning. Journal of Machine Learning
Research 16, 12 (2015), 3487–3602.

D. Haussler, N. Littlestone, and M. Warmuth. 1994. Predicting {0, 1}-Functions on Randomly Drawn
Points. Information and Computation 115, 2 (1994), 248–292.

Wilfrid Hodges, Hodges Wilfrid, et al. 1993. Model theory. Cambridge University Press.

Alkis Kalavasis, Grigoris Velegkas, and Amin Karbasi. 2022. Multiclass Learnability Beyond the
PAC Framework: Universal Rates and Partial Concept Classes. arXiv preprint arXiv:2210.02297
(2022).

Alexander Kechris. 2012. Classical descriptive set theory. Vol. 156. Springer Science & Business
Media.

N. Littlestone. 1988. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning 2 (1988), 285–318.

V. Vapnik and A. Chervonenkis. 1971. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications 16, 2 (1971), 264–280.

Y. Wiener, S. Hanneke, and R. El-Yaniv. 2015. A Compression Technique for Analyzing
Disagreement-Based Active Learning. Journal of Machine Learning Research 16, 4 (2015),
713–745.

L. Yang and S. Hanneke. 2013. Activized Learning with Uniform Classification Noise. In Proceedings
of the 30th International Conference on Machine Learning.

12

A Omitted Details from Section 1

A.1 Formal Definition of Learning Setting

We recall some basic notions of measures and probabilities on Polish spaces. For a detailed treatment
the reader is referred to Kechris (2012); Cohn (2013). Our presentation follows Bousquet et al.
(2021).

Polish Spaces. A Polish space is a separable topological space that admits a complete metric. For
example, this category includes Rn, any compact metric space, any separable Banach space, etc.

Universally Measurable Functions. Let F be the Borel σ-field on some Polish space X and let µ
be a probability measure. We denote by Fµ the completion of F under µ, i.e., the collections of all
subsets of X that differ from a Borel set on a set of zero measure. A set B ⊆ X is called universally
measurable if B ∈ Fµ for every probability measure µ. Moreover, a function f : X → Y is called
universally measurable if f−1(B) is universally measurable, for any universally measurable set B.
An important property is that universally measurable sets and functions on Polish spaces are the same
as Borel sets, from a probabilistic point of view.

We are now ready to provide the definition of measurability of a concept class H.

Definition A.1 (Measurability of H). Let X be a Polish space. We say that a concept class H ⊆
{0, 1}X , is measurable if there is a Polish space Θ and a Borel-measurable map h : X ×Θ→ {0, 1}
so that H = {h(θ, ·) : θ ∈ Θ}.

We underline that Definition A.1 is very general and its only requirement is that H can be parameter-
ized in some reasonable way.

A.2 Omitted Preliminaries

Gale-Stewart Games. We briefly discuss some basic and useful facts about Gale-Stewart games, a
concept that was recently introduced to the learning theory community by Bousquet et al. (2021).
Our discussion follows Bousquet et al. (2021); Hanneke et al. (2022). We refer to Bousquet et al.
(2021) and references therein for a more detailed presentation. Let us fix sequences of sets Xt,Yt for
t ≥ 1. We consider infinite games between two players, a learner PL and an adversary PA , where
in each round t ≥ 1, PA selects an element xt ∈ Xt, and then PL selects an element yt ∈ Yt. The
rules of the game are defined by a set W ⊆

∏
t≥1(Xt × Yt) of winning sequences for PL. This

means that after an infinite sequence of consecutive plays x1, y1, x2, y2, . . ., we say that PL wins if
(x1, y1, x2, y2, . . .) ∈ W; otherwise the winner is PA.

A strategy is a rule used by each of the players to determine their next move, given the current
state and the history of the game. Formally, a strategy for PA is a sequence of functions ft :∏

s<t(Xs × Ys) → Xt for t ≥ 1, so that PA plays xt = ft(x1, y1, . . . , xt−1, yt−1) in round t.
Similarly, a strategy for PL is a sequence of gt :

∏
s<t(Xs × Ys) × Xt → Yt for t ≥ 1, so that

PL plays yt = gt(x1, y1, . . . , xt−1, yt−1, xt) in round t. We say that a strategy for PA is winning if
playing that strategy always makes PA win the game no matter what PL plays; a winning strategy
for PL is defined similarly. The main question in these infinite games is determine conditions under
which one of the two players has a winning strategy in the game. We remark that when the game is
finite it is not hard to easy that exactly one of the two players has such a strategy. In the context of
infinite games, such a condition was introduced by Gale and Stewart (1953): aW is finitely decidable
if for every sequence of plays (x1, y1, x2, y2, . . .) ∈ W , there exists some n <∞ so that

(x1, y1, . . . , xn, yn, x
′
n+1, y

′
n+1, x

′
n+2, y

′
n+2, . . .) ∈ W

for all choices of x′
n+1, y

′
n+1, x

′
n+2, y

′
n+2, . . . In words, the condition that “W is finitely decidable”

means that if PL wins the game, then she knows that after playing a finite number of rounds.
Conversely, PA wins the game when PL does not win after any finite number of rounds.

Such a game whose setW is finitely decidable is called a Gale-Stewart game. We use the following
important result about Gale-Stewart games.
Remark A.2 (Gale and Stewart (1953); Hodges et al. (1993); Kechris (2012)). In any Gale-Stewart
game exactly one between PA and PL has a winning strategy.

13

The above result is purely existential and provides no information about the complexity of the winning
strategies. Importantly, it is unclear whether winning strategies can be chosen to be measurable. The
next result from Bousquet et al. (2021) addresses this concern.

Theorem A.3 (Theorem B.1 from Bousquet et al. (2021)). Let {Xt}t≥1 be Polish spaces and
{Yt}t≥1 be countable sets. Consider a Gale-Stewart game whose set W ⊆

∏
t≥1(Xt × Yt) of

winning strategies for PL is finitely decidable and coanalytic. Then there is a universally measurable
winning strategy.

The following remark shows that we can, equivalently, let the strategy of the the learner PL and the
adversary PA depend only on the choices of their opponent in the previous rounds.

Remark A.4 (Bousquet et al. (2021)). The strategy of PL is defined to be a sequence of functions
yt = ft(x1, y1, . . . , xt−1, yt−1) of the history of the game, where y1, . . . , yt−1 are defined similarly.
Thus, we can equivalently let yt = ft(x1, . . . , xt−1). The same holds for the strategy of PA.

Partial Concept Classes. The traditional PAC learning framework studies (mainly) total concept
classes, i.e., classes of functions h : X → {0, 1} that are defined on every point x ∈ X . The caveat
with total functions is that they do not provide a direct way to express data-dependent constraints.
For example, if the space X is high-dimensional but the data that the leaner has to classify lie in a
low-dimensional space, it is not clear how to encode this restriction through total concepts. This
is very relevant to practical application of machine learning such as classification of images; the
space X is the set of all possible values of the pixels of the image but most of these configurations of
the pixels do not even correspond to an image of an object of interest. Alon et al. (2021) proposed
and studied an extension of the PAC framework that allows one to capture such assumptions using
partial concept classes, i.e., sets of functions f : X → {0, 1, ⋆}, where f(x) = ⋆ means that f is
undefined at x. In the context of classification of images, when a classifier returns ⋆ it means that
x does not belong to the space of valid images. Alon et al. (2021) extend a lot of notions, such
as PAC learnability and the VC dimension, from the setting of total concept classes to the setting
of partial concept classes (see, e.g., Definition A.6). To show how one can use partial classes, to
express data-dependent constraints, we remark that Alon et al. (2021) illustrated how the class of
d-dimensional linear classifiers with margin γ > 0 can be formulated as a partial class: we say that a
sample (x1, y1), . . . , (xn, yn) ∈ Rd × {0, 1} is (R, γ)-separable if all the points x1, . . . , xn lie in a
(euclidean) ball of radius R, the 0-labeled examples and the 1-labeled examples are linearly separable,
and the (euclidean) distance between the 0-labeled examples and 1-labeled examples is at least 2γ.
Then, the class

FR,γ =
{
f : Rd → {0, 1⋆} :(∀x1, . . . , xn) ∈ supp(f) :

(x1, (f(x1)), . . . , (xn, (f(xn)) is (R, γ)− separable
}
,

where supp(f) is the set of all points where f(x) ̸= ⋆, expresses the set of functions that satisfy these
constraints. Remarkably, the VC dimension of F is bounded by O

(
R2

γ2

)
(Alon et al., 2021). Perhaps

surprisingly, even though the PAC learnability of partial classes is characterized by the VC dimension
(as it is the case with total classes), the ERM algorithm provably fails to learn partial classes. Thus,
the algorithmic landscape is much richer and complicated compared to total classes. Moreover, there
is no algorithmic way to extend a partial concept class to a total concept class without significantly
increasing its VC dimension. For details, we refer to (Alon et al., 2021).

One-Inclusion Graph Algorithm. We state formally the guarantees of the one-inclusion graph
algorithm (Haussler et al., 1994).

Theorem A.5 (One-Inclusion Graph Algorithm (Haussler et al., 1994)). For any (total) concept class
H whose VC dimension is bounded by d <∞, there is an algorithm A : (X ×{0, 1})∗×X → {0, 1}
such that for any n ∈ N and any sequence {(x1, y1), . . . , (xn, yn)} ∈ (X×{0, 1})n that is realizable
w.r.t. H,

1

n!

∑
σ∈Sym(n)

1{A(xσ(1), yσ(1), . . . , xσ(n−1), yσ(n−1), xσ(n)) ̸= yσ(n)} ≤
d

n
,

where Sym(n) denotes the symmetric group of permutations of {1, . . . , n}.

14

In particular, Theorem A.5 implies immediately that if (x1, y1), . . . , (xn, yn) are i.i.d. from P then
the classifier h̃n(·) := A(x1, y1, . . . , xn, yn, ·) has E[er(h̃n)] ≤ d

n+1 . We remark that Alon et al.
(2021) showed that this result also holds for partial concept classes.

A.3 Omitted Definitions

Definition A.6 (VC Dimension of Partial Concept Classes (Alon et al., 2021)). For a partial concept
class F ⊆ {0, 1, ⋆}X , the VC dimension of F is defined to be the largest number d ∈ N such
that ∃(x1, . . . , xd) ∈ X d such that {(f(x1), . . . , f(xd)) : f ∈ F} = {0, 1}d. Such a sequence
(x1, . . . , xd) is said to be shattered by F . If there is no bound on d we say that the VC dimension is
∞.

The following definition of the star number is an adaptation of the definition in (Hanneke and Yang,
2015).

Definition A.7 (Star Number of Partial Concept Classes). For a partial concept class F ⊆ {0, 1, ⋆}X ,
the star number of F is defined to be the largest number s ∈ N such that ∃(x1, . . . , xs) ∈ X s such
that ∃f0 ∈ F and ∀i ∈ [s],∃fi ∈ F : fi(xi) = 1− f0(xi), fi(xj) = f0(xj) ̸= ⋆,∀j ∈ [s] \ {i}. If
there is no bound on s we say that the star number is∞.

Definition A.8 (Littlestone Tree (Bousquet et al., 2021)). A Littlestone tree for H ⊆ {0, 1}X is a
complete binary tree of depth d ≤ ∞ whose internal nodes are labeled by X , and whose two edges
connecting a node to its children are labeled by {0, 1}, such that every path of length at most d
emanating from the root is consistent with a concept h ∈ H. Formally, a Littlestone tree is a collection⋃

0≤ℓ<d

{
xu⃗ : u⃗ ∈ {0, 1}ℓ

}
= {x∅} ∪ {x0, x1} ∪ {x00, x01, x10, x11} ∪ . . .

such that for every path y⃗ ∈ {0, 1}d and n < d, there exists h ∈ H so that h(xy⃗≤ℓ
) = yℓ+1 for

0 ≤ ℓ ≤ n. We say that H has an infinite Littlestone tree if there is a Littlestone tree for H of depth
d =∞.

Definition A.9 (Star Tree). A Star tree for H ⊆ {0, 1}X of consists of a collection⋃
0≤ℓ<d

{
(xu⃗, zu⃗) ∈

(
X ℓ+1, {0, 1}ℓ+1

)
: u⃗ ∈ {0} × {0, 1} × . . .× {0, 1, . . . , ℓ}

}
such that for every level n < d, and y⃗ ∈ {0} × {0, 1} × ... × {0, 1, . . . , n − 1}, there exists some
h ∈ H such that h(xi

y⃗≤k
) = f(ziy⃗≤k

, yk+1) for all 0 ≤ i ≤ k and 0 ≤ k ≤ n, where we denote

y⃗≤k = (y1, y2, . . . , yk), xy⃗≤k
= (x0

y⃗≤k
, . . . , xk

y⃗≤k
), zy⃗≤k

= (z0y⃗≤k
, . . . , zky⃗≤k

),

f(ziy⃗≤k
, yk+1) =

{
ziy⃗≤k

, if yk+1 ̸= i

1− ziy⃗≤k
, otherwise

.

We say that H has an infinite star tree if it has a star tree of depth d =∞.

Definition A.10 (VCL Tree Bousquet et al. (2021)). A Vapnik-Chervonenkis-Littlestone (VCL) tree
for H ⊆ {0, 1}X of depth d ≤ ∞ consists of a collection⋃

0≤ℓ<d

{xu⃗ ∈ X ℓ+1, u⃗ ∈ {0, 1} × {0, 1}2 × ...× {0, 1}ℓ}

such that for every level n < d, and y⃗ ∈ {0, 1} × {0, 1}2 × {0, 1}n+1, there exists some h ∈ H such
that h(xi

y⃗≤k
) = yik+1 for all 0 ≤ i ≤ k and 0 ≤ k ≤ n, where we denote

y⃗≤k = (y01 , (y
0
2 , y

1
2), . . . , (y

0
k, . . . , y

k−1
k)), xy⃗≤k

= (x0
y⃗≤k

, . . . , xk
y⃗≤k

).

We say that H has an infinite VCL tree if it has a VCL tree of depth d =∞.

15

Figure 1: Arbitrarily Fast Rates Algorithm (Hanneke et al., 2022)
.

Arbitrarily Fast Rates (Hanneke et al., 2022): Input is a label budget N and a rate function
R(n).

1. m1 ← ⌈2 ln(1/R(n))⌉.

2. m2 ←
⌈

ln(m12
2⌊√m1⌋+2/R(n))

R(n)

⌉
.

3. Create sets S1 = x1, . . . , xm1 , S2 = xm1+1, . . . , xm2 .
4. Split S1 into ⌊√m1⌋ batches of size ⌊√m1⌋ and consider all the labeled prefixes of

the batches in lexicographical order: bi,j denotes the i-th batch with the labeled prefix
j, 1 ≤ j ≤ 2⌊

√
m1⌋+1.

5. Let A0(·; bi,j) be the output of the ordinal SOA trained on bi,j and denote
gi,j(x) = A0(x; bi,j). See (Bousquet et al., 2021).

6. Evaluate the classifiers gi,j(·) on the points in S2.
7. Define a set F of equivalence classes: gi,j and gi′,j′ are in the same class iff they

classify S2 the same.
8. For each F ∈ F, define

rank(F) = min

{
r : ∃ 1 ≤ i1 < i2 . . . < i⌊√m1⌋/3 ≤ ⌊

√
m1⌋, k1, . . . , k⌊√m1⌋/3 ∈ [2r+1]

such that gij ,kj ∈ F, 1 ≤ j ≤ ⌊
√
m1⌋/3

}
,

or rank(F) =∞ if no such r exists.
9. Enumerate F = {F1,F2, . . .} so that rank(Fℓ) is non-decreasing in ℓ, and pick any

fℓ ∈ Fℓ for each ℓ.
10. For each distinct i, j ≤ ⌊

√
n⌋ query the label of any point in S2 on which fi, fj

disagree.
11. If there is some fℓ̂ which is correct on all the points we queried, return fℓ̂.
12. Otherwise, return any fℓ.

B Omitted Details from Section 2

C Omitted Details from Section 3

C.1 Proof of Lemma 3.1

Before we prove our main result of this section, we present an omitted proof from the main body.

Proof. Assume that H has an infinite star tree. Then, the adversary can start from the root of the tree
and play (ξ⃗1, ζ⃗1) = (x⃗∅, z⃗∅) and for every strategy {ητ}τ≥1 of the learner, PA can follow the path
y⃗≤τ = (η1, η2, . . . , ητ) and play (x⃗y⃗≤τ

, z⃗y⃗≤τ
) in round τ + 1. Since the tree is infinite, there is no

τ∗ ∈ N such that Hξ⃗1,ζ⃗1η1,...,ξ⃗τ∗ ,ζ⃗τ∗ ,ητ∗ = ∅.

For the other direction, assume that the adversary has a winning strategy. Then, we can define the tree

T =
⋃

0≤ℓ<∞

{
(x⃗η⃗, z⃗η⃗) ∈

(
X ℓ+1, {0, 1}ℓ+1

)
: η⃗i ∈ {0, 1, . . . , i− 1}, 1 ≤ i ≤ ℓ

}
where (x⃗η1,...,ητ−1 , z⃗η1,...,ητ−1) = (ξ⃗τ (η1, . . . , ητ−1), ζ⃗τ (η1, . . . , ητ−1)). The tree T is infinite by
the definition of the winning strategy in G for PA. To prove the universal measurability of the winning
strategy of PL, using Lemma A.3 it suffices to show that the set of winning strategiesW of the learner

16

is coanalytic. To this end, we consider its complement

Wc =

{
(ξ⃗, ζ⃗, η⃗) ∈

∞⋃
t=1

(
X t × {0, 1}t × {0, . . . , t− 1}

)
: Hξ⃗1,ζ⃗1,η1,...,ξ⃗t,ζ⃗t,ηt

̸= ∅

}

=

∞⋂
t=1

⋃
θ∈Θ

t⋂
s=1

{
(ξ⃗, ζ⃗, η⃗) :

h(θ, ξ⃗is) = ζ⃗is, if ηs ̸= i

h(θ, ξ⃗is) = 1− ζ⃗is, if ηs = i
, 0 ≤ i < s

}

Notice that the set
{

h(θ, ξ⃗is) = ζ⃗is, if ηs ̸= i

h(θ, ξ⃗is) = 1− ζ⃗is, if ηs = i
, 0 ≤ i < s

}
is Borel by the measurability as-

sumption. Also, the intersection in the above expression are countable and the union is a projection
of a Borel set. Hence,Wc is analytic, so we have proven the claim.

C.2 Active Learning of Partial Classes with Finite Star Number: Exponential Uniform Rate

We now explain the approach to actively learn a partial concept class with finite star number at a
uniform exponential rate. We first state a result from Hanneke and Yang (2015) about active learning
of total concept classes with finite star dimension that we utilize in our construction.
Theorem C.1 (Hanneke and Yang (2015)). There exists an active learning algorithm A for a total
concept class H which given a label budget n = c · s log(1/ε), where c is an absolute numerical
constant and s is the star number of the class, and access to samples from a realizable distribution
P∗ returns a classifier ĥn such that, with probability arbitrarily close to one, P∗[ĥn(x) ̸= y] ≤ ε.

We underline that the success probability of this algorithm does not depend on the query budget.

Our algorithm for partial classes can be found in Figure 2. We now prove the main result in this
setting that we described in Theorem 3.2.

Proof of Theorem 3.2. Let F be a partial concept class whose star number s is finite. Notice that
since d ≤ s, its VC dimension is also finite. Let S = (X1, . . . , Xm) be m samples of the stream that
A has access to, where m is some value to be determined. We also let

Ĥ = {h : S → {0, 1} : ∃f ∈ F s.t. h(Xi) = f(Xi),∀i ∈ [m]} .
Now notice that Ĥ is, by definition, a total concept class and its star number, VC dimension is also at
most s, d, respectively. Moreover, since P∗ is realizable with respect to F we have that, except for a
measure-zero event, Ĥ ̸= ∅. This can be seen as follows. Since the distribution P∗ is realizable, there
exists a sequence of functions fk ∈ F so that

P∗[fk(x) ̸= y] <
1

2k
.

Let us fix m ≥ 1. We have that
∞∑
k=1

Pr[∃s ≤ m : fk(xs) ̸= ys] ≤ m

∞∑
k=1

P∗[fk(x) ̸= y] <∞ ,

where the first inequality is due to union bound. By Borel-Cantelli, with probability one, there exists
for every m ≥ 1 a hypothesis f ∈ F so that f(xs) = ys for all s ≤ m. For the rest of the proof,
we condition on this probability one event E0. We definite P̂∗ to be the uniform distribution on the
(labeled) sample. Our previous discussion shows that P̂∗ is realizable with respect to Ĥ. Now let
us run algorithm A′ from Theorem C.1 with ε = 1/(2m) and success probability 1/(2m). Let E1

be the event that the error of the output h̃ of A′ is at most 1/(2m). We condition on this event for
the rest of the proof. Notice that in this case, the algorithm will have figured out the correct label
of every Xi, 1 ≤ i ≤ m. Indeed, if for some i ∈ [m] we have that h̃(Xi) ̸= Yi, then er(h̃) ≥ 1/m.
Notice that, by the definition of Ĥ, we have that s(Ĥ) ≤ s(F). Moreover, the number of labels that
A′ requests is at most c · s log(2m), where c is some absolute numerical constant.

Since we have m labeled samples, we can use them as input to the one-inclusion graph algorithm
(see Theorem A.5). This algorithm guarantees that

E[er(ĥm)|E0, E1] ≤
d(F)
m+ 1

.

17

Thus, we get that

E[er(ĥm)] ≤ d(F)
m+ 1

+
1

m
<

d(F) + 1

m
.

It follows immediately from the definitions that d(F) ≤ s(F). The result follows by picking
m = ec·n/s

2 .

Exponential Rates for Partial Classes

1. m← ec·n/s

2 , where c is the constant in Theorem C.1.
2. Take a sample of unlabeled data S = {X1, . . . , Xm}.
3. Define Ĥ to be the total class of the concepts in F that are not undefined on S, i.e.,

Ĥ = {h : S → {0, 1} : ∃f ∈ F s.t. h(Xi) = f(Xi),∀i ∈ [m]} .

4. Let P̂ be the uniform distribution over the sample {(X1, Y1), . . . , (Xm, Ym)}, where
Yi is the true label of Xi, i ∈ [m].

5. Use the active learning algorithm from Hanneke and Yang (2015) on the distribution P̂
(see Theorem C.1).

6. The aforementioned algorithm can find the labels of these m points after making at
most O(s(Ĥ) logm) queries, where s(Ĥ) is the star number of Ĥ.

7. Use these m labeled points as input to the one-inclusion graph algorithm (Haussler
et al., 1994) and get ĥ (see Theorem A.5).

8. This algorithm guarantees linear error in m, i.e., E[er(ĥ)] ≤ d(F)
m+1 , where d(F) is the

VC dimension of F .
9. Return ĥm.

Figure 2: Exponential Rates Algorithm for Partial Classes.

Star Tree Gale-Stewart Game with Finite Sequence and Estimation: Input is a labeled
sequence {(x1, y1), . . . , (xN , yN)}

1. Use ⌊N/2⌋ of the data to estimate t̂N (cf. Lemma C.5.). Let N̂ = ⌊N/2t̂N⌋.
2. Use the remaining ⌊N/2⌋ of the data to run the star tree game (cf. Figure 5) and obtain

g̃i
t̂N
, 1 ≤ i ≤ N̂ .

3. Estimate for 1 ≤ i ≤ N̂

Fi =

{
f :X →{0, 1, ∗} : ∀(x1, . . . , xτt̂N

) ∈ X τt̂N ,
(
x1, f(x1), . . . , xτt̂N

, f(xτt̂N
)
)
/∈ image

(
g̃i
t̂N

)}
.

4. Estimate the 9/16−majority class

F N̂
m =

{
f : X → {0, 1, ⋆} : ∀ℓ ∈ N,∀(x1, . . . , xℓ) ∈ X ℓ,∃ at least (9/16)N̂ classes Fj , 1 ≤ j ≤ N̂ s.t.

∃f̂ ∈ Fj with (f̂(x1), . . . , f̂(xℓ)) = (f(x1), . . . , f(xℓ))

}
.

5. Return
{
Gℓ : (X × {0, 1})ℓ → {0, 1}

}
ℓ∈N where

Gℓ(x1, y1, . . . , xℓ, yℓ) = 1
{
∃f ∈ F N̂

m : (f(x1), . . . , f(xℓ)) = (y1, . . . , yℓ)
}
.

Figure 3: Majority Class Estimation Through Star Games.

18

Figure 4: Exponential Rates Algorithm.

Exponential Rates: Input is an unlabeled data stream {x1, x2, . . . , } and query budget n.
1. Set number of unlabeled examples un = ⌊n/2⌋+ ec·n, where c is the absolute

constant in Theorem C.1.
2. Use ⌊n/2⌋ label queries to get the labels of the first ⌊n/2⌋ unlabeled points.
3. Call the Gale-Stewart subroutine (Figure 3) with points{

(x1, y1), . . . ,
(
x⌊n/2⌋, y⌊n/2⌋

)}
.

4. Create the partial concept class

FG =
{
f : X → {0, 1, ⋆} : ∀ℓ ∈ N,∀(x1, . . . , xℓ) ∈ X ℓ, Gℓ(x1, f(x1), . . . , xℓ, f(xℓ)) = 1

}
.

5. Run Figure 2 on the partial class FG with budget ⌊n/2⌋ and return its output.

C.3 The Online Setting

To build some intuition, we first show how to use the game between the learner and the adversary
discussed in Section 3 to get an asymptotic result. We call this the online setting. Assume that there
is an infinite labeled sequence S = (x1, y1, x2, y2, . . .) that is consistent with H, i.e., for any t <∞,
there exists h ∈ H : h(xt) = yt. We use S to simulate the game G between PA and PL which gives
rise to a partial concept class F with finite star number. This approach is shown in Figure 5.

Star Gale-Stewart Game with Infinite Sequence
1. Let g1 : X × {0, 1} → {0, 1} be the function that corresponds to the strategy of PL in

the first round of G.
2. Initialize τ0 ← 1.
3. Let g̃1(x, y) = (x, 1− y) # In the first round the learner just flips the label.
4. For every t ≥ 1:

• If (xt−τt−1+1, yt−τt−1+1, . . . , xt, yt) ∈ image(g̃τt−1), witnessed by c⃗′τt−1
:

proceed to the next round in G.

– τt ← τt−1 + 1.
– gτt(·, ·) := ητt(c⃗

′
1, . . . , c⃗

′
τt−1
·, ·), where ητt(c⃗

′
1, . . . , c⃗

′
τt−1
·, ·) is the strategy

of PL in round τt of G, given its history.
– g̃τt(x0, y0, . . . , xτt−1, yτt−1) := (x0, ỹ0, . . . , xτt−1, ỹτt−1) :{

ỹi = yi, if gτt(x0, y0, . . . , xτt−1, yτt−1) ̸= i
ỹi = 1− yi, if gτt(x0, y0, . . . , xτt−1, yτt−1) = i

, 0 ≤ i < τt

}
• Else: τt ← τt−1.

Figure 5: Star Gale-Stewart Game on Infinite Sequences.

We first show as t → ∞ the game converges, i.e., there are no more realizable τt∗-tuples
(x1, y1, . . . , xτt∗ , yτt∗) that belong to the image of g̃τt∗ , for some finite number t∗. To simplify
the notation, we define g̃t∗ = g̃τt∗ . Recall that this function is defined in Figure 5.

Lemma C.2. If H does not have an infinite star tree, for any sequence x1, y1, x2, y2, . . . , that is
consistent with H, there exists some finite number t∗ ∈ N, such that for all t > t∗

(xt−τt−1+1, yt−τt−1+1 . . . , xt, . . . , yt) /∈ image(g̃t−1), τt = τt−1, g̃t = g̃t−1 .

Proof. Suppose that (xt−τt−1+1, . . . , xt, yt−τt−1+1, . . . , yt) ∈ image(g̃t−1) happens an infinite
sequence of times t1, t2, Since ητt is a winning strategy for the learner in G, we have that for
some finite t∗ it holds that Hξ⃗1,ζ⃗1,η1,...,ξ⃗t∗ ,ζ⃗t∗ ,ηt∗

= ∅ (see Equation (1)), where ξ⃗i, ζ⃗i, ηi are defined
in Figure 5. Hence, we have arrived in a contradiction.

19

Similarly as in (Bousquet et al., 2021), we remark the following about the measurability of the
functions.
Remark C.3 (Adapted from Bousquet et al. (2021)). The strategy τt depends in a universally
measurable way on x≤t, y≤t. Moreover, the functions g̃t are universally measurable with respect to
x≤t, y≤t and the arguments of their input. To be more precise, for all t ≥ 0, there exist the following
universally measurable functions

Tt : (X × {0, 1})t → {1, . . . , t+1}, G̃t : (X × {0, 1})t×

(⋃
s<t

(X × {0, 1})s
)
→ (X × {0, 1})t ,

so that
τt = Tt(x1, y1, . . . , xt, yt), g̃t(w1, z1, . . . , wτt , zτt) = G̃t(x1, y1, . . . , xt, yt, w1, z1, . . . , wτt , zτt) .

C.4 From the Online to the Statistical Setting

In this section we show how to utilize our results in the online setting to design an algorithm that
achieves exponential rates in the statistical setting. Our approach is similar in spirit as in Bousquet
et al. (2021); Hanneke et al. (2022). In particular, we adapt the approach of Hanneke et al. (2022)
from the VCL game to the star tree game. The key steps are outlined in Figure 3.

Let P be a realizable distribution with respect to H and X1, Y1, X2, Y2, . . . , be an i.i.d. sequence
from P. For the remaining of the section, we assume that H does not have an infinite star tree. Let us
now set up the notation that we use in our proof. We denote

τt := Tt(X1, Y1, . . . , Xt, Yt), g̃t(w1, z1, . . . , wtτ , ztτ) := G̃t(X1, . . . , Xt, Y1, . . . , Yt, w1, z1, . . . , wtτ , ztτ) ,

where these functions are defined in Remark C.3. For any integer k ≥ 1, we define a “flipping”
function g̃k : (X × {0, 1})k → (X × {0, 1})k to be a function that flips one of the labels of its input
from 0 to 1 or vice versa. We also define the probability of error of this function as follows:

per(g̃k) = perk(g̃k) = P
⊗

k ((x1, y1, . . . , xk, yk) : (x1, y1, . . . , xk, yk) ∈ image(g̃k)) ,

i.e., the probability that a k-tuple drawn i.i.d. from P belongs to the image of g̃k. When there is no
confusion about the domain of g̃k we will omit its dependence on k. Our first observation is that we
get an algorithm that is consistent in the statistical setting. Our proof is an adaptation of Lemma 5.7
in Bousquet et al. (2021).
Lemma C.4. It holds that P[per(g̃t) > 0]→ 0 as t→∞.

Proof. We know that P is realizable so we can pick a sequence of hypotheses hk ∈ H such that
er(hk) ≤ 2−k, k ∈ N. Taking a union bound over all t ≥ 1, we have that∑

k∈N
P[hk(Xs) ̸= Ys, for some s ≤ s] ≤ t

∑
k∈N

er(hk) <∞.

Thus, by the Borel-Cantelli lemma, it holds that h(Xs) = Ys,∀s ≤ t for some h ∈ H (with
probability one). Let

T = sup
{
s ≥ 1 : (Xs−τs−1+1, Ys−τs−1+1, . . . , Xs, Ys) ∈ image (g̃s−1)

}
.

Then, we know from Lemma C.2 that T is finite with probability one. Recall the law of large numbers
for m-dependent sequences: if Z1, Z2 . . . , is an i.i.d. sequence of random variables, then

lim
n→∞

1

n

n∑
i=1

f(Zi+1, . . . , Zi+m) =
1

m

m∑
i=1

lim
n→∞

m

n

⌊n/m⌋∑
j=0

f(Zmj+1+i, . . . , Zm(j+1)+i)+o(1) = E[f(Z1, . . . , Zm)] .

Thus, we have that

P[perτt(g̃t) = 0] = P

[
lim

S→∞

1

S

t+S∑
s=t+1

1(Xs,Ys,...,Xs+τt−1,Ys+τt−1)∈image(g̃t) = 0

]

≥ P

[
lim

S→∞

1

S

t+S∑
s=t+1

1(Xs,Ys,...,Xs+τt−1,Ys+τt−1)∈image(g̃t) = 0, T ≤ t

]
= P[T ≤ t].

We know that T is finite with probability one, so we have that P[perτt(g̃t) > 0] ≤ P[T > t]→ 0, as
t→∞.

20

Lemma C.4 guarantees that for some t∗ ∈ N, the Gale-Stewart game played on a set of t∗ points will
have converged with probability at least 7/8, i.e., Pr [per(g̃t∗) > 0] ≤ 1/8 . This number t⋆ depends
on the distribution and is unknown to the learner. We first show how the learner can estimate a similar
t̂n from the data. Our approach is an adaptation of Lemma 5.10 in Bousquet et al. (2021), but we
present the proof for completeness.
Lemma C.5 (Adaptation of Lemma 5.10 in (Bousquet et al., 2021)). For any N ∈ N, there exists a
universally measurable t̂N = t̂N (X1, Y1, ..., X⌊N/2⌋, Y⌊N/2⌋) whose definition does not depend on
P so that the following holds. Set the critical time t∗ ∈ N be such that

Pr [per(g̃t∗) > 0] ≤ 1/8 ,

where the probability is over the training set of the algorithm. There exist C, c > 0 that depend on
P, t⋆ but not N so that

Pr[t̂N ∈ T ⋆] ≥ 1− Ce−cN ,

where the probability is over the training of the estimator t̂N and T ∗ is the set

T ∗ = {1 ≤ t ≤ t⋆ : Pr [per(g̃t) > 0] ≤ 3/8} .

Proof. We split this labeled set into two parts. The idea is to use the first one to run the Gale-Stewart
game and the other one to estimate whether it has converged or not. For each 1 ≤ t ≤ ⌊N4 ⌋ and
1 ≤ i ≤ ⌊N4t⌋, we let

τ it := Tt(X(i−1)t+1, Y(i−1)t+1, . . . , Xit, Yit)

g̃it(w1, z1, . . . , wτ i
t
, zτ i

t
) := G̃t(X(i−1)t+1, Y(i−1)t+1, . . . , Xit, Yit, w1, z1, . . . , wτ i

t
, zτ i

t
) .

be the estimated quantities when we run Figure 5 on the i-th batch of the data. Next, for each t we
estimate Pr[per(g̃t) > 0] by the fraction of the g̃it for which there is a tuple on the second quarter of
the data that belongs to the image of g̃it. For every fixed t, the data that the functions

{
g̃it
}
i≤⌊N/2t⌋

are trained on are independent of each other and of the second half of the training set. This means
that we can view every

{
g̃it
}
i≤⌊N/2t⌋ as an independent draw of the distribution of g̃t. To estimate

the error of the algorithm we use the second quarter of the training set. We let

êt =
1

⌊N/4t⌋

⌊N/4t⌋∑
i=1

1{
∃s:⌊N/4⌋+1≤s≤⌊N/2⌋−τ i

t ,
(
Xs+1,Ys+1,...,Xs+τi

t
,Y

s+τi
t

)
∈image(g̃i

t)
} .

Now observe that

êt ≤ et =
1

⌊N/4t⌋

⌊N/4t⌋∑
i=1

1{per(g̃t)>0} ,

with probability one. We define

t̂N = inf{t ≤ ⌊N/4⌋ : êt < 1/4} ,
where we assume that inf ∅ =∞.

We now want to bound the probability that t̂N > t⋆. Using Hoeffding’s inequality we get that

Pr
[
t̂N > t⋆

]
≤ Pr

[
êt⋆ ≥

1

4

]
≤ Pr

[
et⋆ ≥

1

4

]
= Pr

[
et⋆ −

1

8
≥ 1

8

]
= Pr

[
et⋆ − E[et⋆] ≥

1

8

]
≤ e−⌊N/4t⋆⌋/32 .

This implies that t̂N ≤ t⋆ except for an event with exponentially small probability. Moreover, for all
1 ≤ t ≤ t⋆ that Pr [per(g̃t) > 0] > 3

8 , there is some ε > 0 such that Pr [per(g̃t) > ε] > 1
4 +

1
16 (this

holds by continuity). Now fix some 1 ≤ t ≤ t⋆ such that Pr [per(g̃t) > 0] > 3
8 (if it exists). Then,

using Hoeffding’s inequality again we get that

Pr

 1

⌊N/4t⌋

⌊N/4t⌋∑
i=1

1{per(g̃i
t)>ε} <

1

4

 ≤ e−⌊N/4t⋆⌋/128 .

Whenever g is a function such that per(g) > ε, then

Pr [{∃s : ⌊N/4⌋+ 1 ≤ s ≤ ⌊N/2⌋ − τ, (Xs+1, Ys+1, . . . , Xs+τ , Ys+τ) ∈ image(g)}] ≥ 1−(1− ε)
⌊(N−4)/4τ⌋

,

21

since there are ⌊(N − 4)/4τ⌋ disjoint intervals of length τ . As we mentioned before, {g̃it}i≤⌊N/4t⌋
are independent of (Xs, Ys)s>⌊n/4⌋. Thus, applying a union bound we get that the probability that
all g̃it that have perτ

i
t (g̃it) > ε make at least one error on the second half of the training set is

Pr

[
1{

perτ
i
t (g̃i

t)>ε
} ≤ 1{

∃s:⌊N/4⌋+1≤s≤⌊N/2⌋−τ i
t ,(Xs+1,Ys+1,...,Xs+τi

t
,Y

s+τi
t
)∈image(g̃i

t)
}]

≥ 1−
⌊
N

4t

⌋
(1− ε)⌊(N−4)/4t∗⌋ ,

where the last inequality holds since τ it ≤ t∗. Thus, we get that

Pr[t̂N = t] ≤ Pr

[
êt <

1

4

]
≤
⌊
N

4

⌋
(1− ε)⌊(N−4)/4t∗⌋ + e−⌊

N
4t⋆ ⌋/128 .

Using the previous estimates and applying a union bound, we get that

Pr[t̂N /∈ T ⋆] ≤ e−⌊N/4t⋆⌋/32 + t⋆
⌊
N

4

⌋
(1− ε)⌊(N−4)/4t∗⌋ + t⋆e−⌊N/4t⋆⌋/128 ≤ Ce−cn ,

for some constants C, c > 0.

Essentially, Lemma C.5 tells us that we can estimate a batch size t̂n, using only information from
the data, so that, with probability 1 − Ce−cn, the star tree game will have converged when we
run it on t̂ labeled points. Following the approach of Hanneke et al. (2022), the idea is to run the
game multiple times, then create the partial concept classes that are induced by each execution, and,
finally, aggregate them into a majority class (see Figure 3). We show that if most of the games have
converged, then the majority class has bounded star number. This is made formal in Lemma C.6. We
remark that Hanneke et al. (2022) showed a similar result regarding the VC dimension of the majority
class.

Lemma C.6. The majority class F N̂
m defined in Figure 3 has star number that is bounded by some

distribution-dependent constant ŝ, with probability at least 1 − e−cN̂ , for some absolute constant
c > 0.

Proof. We know that there exists some s∗ such that, with probability at least 9/10, the star of any
partial concept class Fi is at most s∗. We let Xi = 1{star number of Fi > s∗}. Notice the all the Xi’s are
i.i.d. Bernoulli random variables with p ≤ 1/10, since the data that induce the classes Fi are i.i.d..
Thus, we can use Hoeffding’s inequality to bound the probability that more than 2/10 of them have
star number greater than s∗ as follows

Pr

 N̂∑
i=1

Xi ≥ (2/10)N̂

 = Pr

 N̂∑
i=1

Xi − (1/10)N̂ ≥ (15/72)N̂

 ≤ e−N̂/50 .

We let E1 be the complement of the event above and we condition on it for the rest of the proof. So, we
know that at least 8/10N̂ of the partial concept classes Fi have star number bounded by s∗. We will
bound the size ℓ of the star set ofF N̂

m . For any star sequence S = (x1, y1, . . . , xℓ, yℓ) ∈ (X×{0, 1})ℓ

of F N̂
m it holds that

1

ℓ

ℓ∑
j=1

1

 1

N̂

N̂∑
i=1

1 {∃f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} > 9/16

 = 1 .

Using Markov’s inequality, we get that

1

ℓ

ℓ∑
j=1

1

N̂

N̂∑
i=1

1 {∃f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} > 9

16
.

22

Swapping the summation gives us

1

N̂

N̂∑
i=1

1

ℓ

ℓ∑
j=1

1 {∃f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} > 9

16
⇐⇒

1

N̂

N̂∑
i=1

1

ℓ

ℓ∑
j=1

1 {∄f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} ≤ 7

16
.

Using Markov’s inequality again, we get that

1

N̂

N̂∑
i=1

1

1

ℓ

ℓ∑
j=1

1 {∄f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} > 9/16

 ≤
16

9
· 1
N̂

N̂∑
i=1

1

ℓ

ℓ∑
j=1

1 {∄f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} .

This implies that

1

N̂

N̂∑
i=1

1

1

ℓ

ℓ∑
j=1

1 {∄f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} > 9/16

 < 7/9 ⇐⇒

1

N̂

N̂∑
i=1

1

1

ℓ

ℓ∑
j=1

1 {∃f ∈ Fi : f(xj) = 1− yj , f(xp) = yp,∀p ∈ [ℓ] \ {j}} ≥ 7/16

 ≥ 2/9 .

Thus, we have shown that at least 2/9 of the partial concept classes witness at least 7/16 of the star
patterns. By the definition of the star number, this means that all these classes have star number at
least 7/16 ·m− 1. This is because we can drop all the points from S that correspond to star patterns
that the class does not realize and the remaining set of labeled points is a star set. Since at least
one these classes’ star number is at most s∗ we have that 7/16 · m − 1 ≤ s∗, which means that
m ≤ 16/7(s∗ + 1). Thus, we have shown that the star number of F N̂

m is at most 16/7(s∗ + 1) = ŝ,
with probability at least 1− e−cN̂ .

Similarly as in Hanneke et al. (2022), we define a sequence of universally measurable functions{
Gℓ : (X × {0, 1})ℓ → {0, 1}

}
ℓ∈N where

Gℓ(x1, y1, . . . , xℓ, yℓ) = 1
{
∃f ∈ F N̂

m : (f(x1), . . . , f(xℓ)) = (y1, . . . , yℓ)
}

.

An equivalent interpretation of the previous lemma is that the star number of the partial class on
which {Gℓ}ℓ∈N returns 1 has a distribution-dependent bound, with high probability. Lemma C.7 is an
important component in the derivation of our result and it shows that {Gℓ}ℓ∈N return 1 on all finite
subsets of the correctly labeled data sequence, with high probability. This result follows similarly as
Lemma 7 in Hanneke et al. (2022).
Lemma C.7. The {Gℓ}ℓ∈N as defined above are universally measurable functions, and with proba-
bility at least 1− Ce−cN , C, c > 0, the following hold:

• The star number of the class

FG =
{
f :X →{0, 1, ⋆} : ∀ℓ∈N,∀(x1, . . . , xℓ)∈X ℓ : Gℓ(x1, f(x1), . . . , xℓ, f(xℓ)) = 1

}
has a finite distribution-dependent upper bound ŝ.

• ∀ℓ ∈ N, for (x1, y1, . . . , xℓ, yℓ) ∼ Pℓ, Gℓ(x1, y1, . . . , xℓ, yℓ) = 1 with conditional proba-
bility one (given Gℓ).

Proof. We condition on the event E0 described in Lemma C.6. Notice that, by definition, a labeled
sequence S = (x1, y1 . . . , xℓ, yℓ) ∈ (X × {0, 1})ℓ is a star set of the class FG if and only if S is a

23

star set of F N̂
m . Hence, the bound on the star number follows immediately from Lemma C.6. We

also condition on the event E1 described in Lemma C.5. We now bound the probability that at least
(13/32)N̂ of the functions g̃i

t̂N
have per

(
g̃i
t̂N

)
> 0. For any t ∈ T ∗, using Hoeffding’s inequality

we get that

Pr

 1

N̂

N̂∑
i=1

1
{
per

(
g̃i
t̂N

)
>0
}
>

13

32

 = Pr

 1

N̂

N̂∑
i=1

1
{
per

(
g̃i
t̂N

)
>0
}
− 3

8
>

1

32

≤ exp
(
−N̂/512

)
,

Since we know that t̂n ≤ t∗, taking a union bound over all 1 ≤ t ≤ t∗ we get that

Pr

 1

N̂

N̂∑
i=1

1
{
per

(
g̃i
t̂N

)
> 0
}
>

13

32
, t̂n ∈ T ∗

 ≤ ∑
t∈T∗

Pr

 1

N̂

N̂∑
i=1

1
{
per

(
g̃i
t̂N

)
> 0
}
>

13

32


≤ t∗ exp

(
−N̂/512

)
.

Thus, except for an event with exponentially small probability, at least 19/32 of the functions g̃i
t̂N

have

per
(
g̃i
t̂N

)
, with probability one. Notice that, by definition, if the partial class Fi that corresponds

to such a function cannot produce a labeling y⃗ℓ ∈ {0, 1}ℓ of some tuple x⃗ℓ ∈ X ℓ where x⃗ℓ ∼ Pℓ
X ,

we can infer that this y⃗ℓ is not the correct labeling, and this inference will be valid with probability
one over the draw of x⃗ℓ. Thus, with probability one, if the 9/16-majority cannot produce some
labeling we have that at least one such partial class Fj that corresponds to a correct g̃j

t̂N
cannot

produce this labeling, so it is not the correct one. As a result, with probability one, if F N̂
m cannot

produce y⃗ℓ for x⃗ℓ we know that this is not the correct labeling. The measurability of {Gℓ}ℓ∈N

follows by the measurability of all the
{
g̃i
t̂N

}
i∈N̂

. The proof of the lemma follows by noticing that

the probability of all the events we have conditioned on can be bounded by 1− C ′e−c′N̂ and that
N̂ = ⌊N/2t̂N⌋ ≥ ⌊N/2t∗⌋.

We are now ready to prove the result about active learning at exponential universal rates. Our approach
is summarized in Figure 4.

Theorem C.8. Assume that H ⊆ {0, 1}X does not have an infinite star tree. Then, H admits an
active learning algorithm that achieves exponential rates.

Proof. First, notice that the Gale-Stewart subroutine Figure 3 uses ⌊n/2⌋ points and the exponential
rates algorithm for partial classes uses at most ⌊ec·n⌋ points. This is because we define a uniform
distribution over these points during its execution. To prove the learning rate guarantees, we first
condition on the event E0 described in Lemma C.7. Then, we have some partial concept class FG

whose star number is finite by some distribution-dependent number ŝ and has the property that
∀ℓ ∈ N, for (x1, y1, . . . , xℓ, yℓ) ∼ Pℓ, f(x1) = y1, . . . , f(xℓ) = yℓ for some f ∈ FG. Thus, the
conditions of Theorem C.1 are satisfied and the conditional error rate of the output of our algorithm
is E[er(ĥn)|E0] ≤ c1d̂e

−c2n/ŝ. Since E0 happens with probability at least 1 − C̃e−c̃n, we see that
the unconditional error of the output is E[er(ĥn)] ≤ c1d̂e

−C2n/ŝ + C̃e−c̃n ≤ Ce−cn, for some
distribution-dependent constants c, C > 0.

C.5 Sublinear Rates Lower Bound

Theorem C.9. Assume that H ⊆ {0, 1}X has an infinite star tree and let R(n) be a rate function
with R(n) = o(1/n). Then, H requires rate R(n).

Proof. Let

t⃗ =
⋃

0≤ℓ<∞

{
(xu⃗, zu⃗) ∈

(
X ℓ+1, {0, 1}ℓ+1

)
: u⃗ ∈ {0} × {0, 1} × . . .× {0, 1, . . . , ℓ}

}
,

24

be an infinite star tree. We also fix the learning algorithm ĥn. Recall that {u(n)}n∈N denotes the
number of unlabeled samples that ĥn uses.

We first pick a path on the tree uniformly at random. To be more precise, let y⃗ = (y1, y2, . . .) be a
sequence of independent random variables where yi is uniformly distributed in {0, . . . , i− 1}. The
idea is that y⃗ specifies a random path on the tree. We define the target distribution Py⃗ in an inductive
way by specifying sequences {ki, pi, ni}i≥1 and putting mass pi on the node of the random path
at level ki. Conditional on the given node, we distribute the mass among its points uniformly. Let
us now be formal. For the base of the induction, we let p2 = 1/2 and k1 = 1. We will specify the
value of p1 later. For the inductive step, for any i ≥ 2, given the value of pi, ki−1, we will specify
ki, pi+1. We let ki be the smallest integer so that ki > ki−1 and R(⌊ki/8⌋) < pi/ki. Notice that
since R(n) = o(1/n), ki <∞. We let ni = ⌊ki/8⌋ and

pi+1 = min

{
1

4uni

,
pi
4

}
.

Notice that since {pi > 0}i≥2,
∑

i≥2 pi < 14, by setting p1 = 1 −
∑

i≥2 pi the sequence {pi}i≥1

can be used as a probability distribution. We are now ready to define Py⃗ on X × {0, 1}. To make the
notation simpler, for any y⃗ and for k ≥ 1

wj
y⃗≤k−1 =

{
1− zjy⃗≤k−1, if j = yk
zjy⃗≤k−1, otherwise

.

For i ≥ 1, let

Py⃗

(
xj
y⃗≤ki−1, w

j
y⃗≤ki−1

)
=

pi
ki
, 1 ≤ j ≤ ki − 1 .

Notice that, by the definition of pi, this is indeed a probability distribution. We now show that Py⃗ is
realizable. Since t⃗ is a star tree, there exists some h ∈ H such that

h
(
xj
y⃗≤k

)
= wj

y⃗≤k−1 ,

for all 0 ≤ j ≤ k, and 1 ≤ k ≤ n. Thus, for the probability of error of h we have that

ery⃗(h) := Py⃗ [(x, y) ∈ X × {0, 1} : h(x) ̸= y] ≤
∑
k>n

pk ,

so by taking n→∞ we see that Py⃗ is realizable for every y⃗. Moreover, we note that the mapping
y⃗ → Py⃗ is measurable.

We now let (X,Y), (X1, Y1), (X2, Y2), . . . be i.i.d. samples drawn from Py⃗ . We can draw them as

X = xJ
y⃗≤T−1, Y = wJ

y⃗≤T−1, Xj = x
Jj

y⃗≤Tj−1, Yj = w
Jj

y⃗≤Tj−1 ,

where (T, J), (T1, J1), (T2, J2), . . . are i.i.d. random variables, independent of the path y⃗, with

Pr[T = ki, J = j] =
pi
ki

,

for all i ≥ 1, 0 ≤ j ≤ ki − 1.

For all i ∈ N, let us define the event Ei
0 =

{
T1 ≤ ki, T2 ≤ ki, . . . , Tuni

≤ ki
}

under which the
algorithm has not received any unlabeled points from any level kj , j > i. Let us also call Ei

1 the event
that ĥni

does not query the point whose label is flipped, i.e., the point x
yki

y⃗≤ki−1. Also, we denote Ei
2

the event that the learner classifies at least one point of level ki incorrectly. Then, we have that

Pr[Ei
2|Ei

1, E
i
0] ≥

(
1− 1

(7/8 · ki)

)
≥ 6

7
,

since there are at least (7/8) · ki points on this level that the learner has not queried, and under the
events we have conditioned on the flipped point along the path is chosen uniformly at random among
these points. We now bound Pr[Ei

0]. Notice that∑
j≥i+1

pj ≤
4

3
pi+1 ≤

pi
3
≤ 1

12 · uni

.

4This is because pi+1 ≤ pi/4.

25

Thus,

Pr[Ei
0] ≥

1−
∑

j≥i+1

pj

uni

≥
(
1− 1

12 · uni

)uni

≥ 9

10
.

Finally, we need to bound Pr[Ei
1|Ei

0]. Notice that

Pr[Ei
1|Ei

0] ≥
7

8
,

since the learner has n label queries and there are at least 8n points. Putting it together, we can bound
Pr[Ei

2] = Pr[Ei
2|Ei

1, E
i
0] · Pr[Ei

1|Ei
0] · Pr[Ei

0]

≥ 6

7
· 7
8
· 9
10

=
27

40
,

which using reverse Markov’s inequality implies that

Pr
y⃗

[
Pr[Ei

2|y⃗] ≥
9

40

]
≥ 18

31
.

Moreover, notice that

Pr[ĥni
(X) ̸= Y |y⃗] ≥ pi

ki
· Pr[Ei

2|y⃗] ≥ R(ni) · Pr[Ei
2|y⃗] .

Thus, we can see that

Pr
y⃗

[
Pr[ĥni ̸= Y |y⃗] ≥ 9

40
·R(ni)

]
≥ 18

31
.

Using Fatou’s lemma, we have that

E
[
lim sup
i→∞

1

R(ni)
Pr[ĥni(X) ̸= Y |y⃗]

]
≥ E

[
lim sup
i→∞

1

R(ni)
·min

{
Pr[ĥni(X) ̸= Y |y⃗], 9/40 ·R(ni)

}]
≥ lim sup

i→∞

1

R(ni)
E
[
min

{
Pr[ĥni

(X) ̸= Y |y⃗], 9/40 ·R(ni)
}]

≥ lim sup
i→∞

1

R(ni)
Pr
y⃗

[
Pr[ĥni

(X) ̸= Y |y⃗] ≥ 9/40 ·R(ni)
]
· 9
40
·R(ni)

≥ 9

40
· 18
31

=
81

620
,

where the first inequality is by the definition of min, the second inequality follows from Fatou’s
lemma, and the third inequality follows from Markov’s inequality. We remark that Fatou’s lemma
can be applied here since

1

R(ni)
min

{
Pr
[
ĥni

(X) ̸= Y |y⃗
]
, 9/40 ·R(ni)

}
≤ 9/40 .

Thus, there must exist a realization of y⃗ such that

E[ery⃗(ĥn)|y⃗] ≥ C ·R(n) ,

infinitely often, where C is some absolute constant. Choosing P = Py⃗ for this realization of y⃗
concludes the proof.

D Omitted Details from Section 4

D.1 Useful Tools

Theorem D.1 (Dvoretzky–Kiefer–Wolfowitz (DKW) Inequality). Let F be the CDF of some distri-
bution D supported on R, n ∈ N and Fn be the empirical CDF obtained from n i.i.d. samples from
D. Then, ∀ε > 0 we have that

Pr

[
sup
x∈R
|Fn(x)− F (x)| > ε

]
≤ 2e−2nε2 .

26

Figure 6: The VCL Game (Bousquet et al., 2021).

VCL Game Subroutine (Bousquet et al., 2021): Input is a labeled sequence
{(x1, y1), . . . , (xN , yN)}

1. Let τ0 ← 0.

2. In every step t ≥ 1 :

• If ητt−1(ξ1, . . . , ξτt−1−1, xt−τt−1+1, . . . , xt) = (yt−τt−1+1, . . . , yt) :

– Let ξτt−1
← (xt−τt−1+1, . . . , xt) and τt ← τt−1 + 1.

• Else, τt ← τt−1.

D.2 The VCL Game

For completeness, we provide various algorithms and results that appeared in Bousquet et al. (2021);
Hanneke et al. (2022), which we utilize in our approach to get sublinear learning rates. It is instructive
to start with an informal description of a pattern avoidance function g : X k → {0, 1}k. Intuitively,
this function takes as input a k-tuple of unlabeled data generated by a realizable distribution PX and
it returns a labeling of these data that is not the true labeling by P. They define

per(g) = Pk[x1, . . . , xk : g(x1, . . . , xk) = (y1, . . . , yk)] .

Bousquet et al. (2021) provide a way to obtain such a pattern avoidance function for any realizable
distribution. This is obtained by a VCL game in Figure 6 which returns a function ˆ⃗yτt . Their following
result shows that as the number of points N used in the VCL game grows, the probability that we
obtain a pattern avoidance function that is incorrect goes to zero.
Lemma D.2 (Correct Pattern Avoidance Function (Restatement of Lemma 5.7 (Bousquet et al.,
2021))). Consider the VCL game in Figure 6. Then, Pr[per(ˆ⃗yτt) > 0]→ 0, as N →∞.

Finally, we remark that Bousquet et al. (2021) showed the following result.
Theorem D.3 (Supervised Learning Linear Rates (Bousquet et al., 2021)). If H does not have an
infinite VCL tree there exists a supervised learning algorithm that can learn H at linear rate.

D.3 Omitted Details of the Sublinear Rates Algorithm

Lemma D.4. Let F i√
n/5

, i ∈ [
√
n] be the partial concept classes that are obtained by playing

the VCL game on
√
n/5 examples that are generated i.i.d. from P. Then, with probability at

least 1 − e−C·n1/4

, where C > 0 is some absolute constant, P is a realizable distribution for a
(1− o(1))−fraction of these classes.

Proof. Let ̂⃗yi√n/5 be the pattern avoidance function that is obtained from the i−th batch of
√
n/5

i.i.d. samples from P. Since we know that Pr[per(̂⃗yi√n/5) > 0]→ 0 as n→∞ (cf. Lemma D.2), for

any ε > 0 there is some bε such that if the batch size b =
√
n/5 is at least bε, then Pr[per(̂⃗yi√n/5) >

0] < ε. Hence, for every n there is some εn = o(1) so that when the batch size is
√
n/5 we have that

Pr[per(̂⃗yi√n/5) > 0] < εn. Notice that whenever per(̂⃗yi√n/5) = 0 the distribution P is realizable
with respect to the corresponding class F i√

n/5
. Let us set δn = n−1/8. Using Hoeffding’s inequality

we have that with probability at least 1−e−C·δ2n·
√
n = 1−eC·n1/4

, where C is some absolute constant,

at least (1− εn − δn)−fraction of the ̂⃗yi√n/5 will have per(̂⃗yi√n/5) = 0. Since δn + εn = o(1) we
have shown the claim.

Lemma D.5. Let P̃ be the distribution of the VC dimension of the partial concept classes that are
obtained by playing the VCL game on infinitely many i.i.d. samples from P. Let d∗ be the 9/10-
quantile of P̃. Then, for n ≥ nP, where nP is some P-dependent constant we have that d̂n = d∗,
with probability at least 1− 3e−CP·n1/4

, where CP is a constant the depends on the data-generating
distribution P.

27

Proof. Consider the following experiment. We sample an infinite sequence of labeled points from P
and we run the VCL game (cf. Figure 6) on this sequence. Let ŷ be the pattern avoidance function
that is obtained from that game defined over ℓ̂ many points and let

F̂ :=
{
f : X → {0, 1, ⋆} : (f(x1), . . . , f(xℓ̂)) ̸= ŷ(x1, . . . , xℓ̂)

}
.

Let d∗ ∈ N be the smallest number such that

Pr[d(F̂) ≤ d∗] > 9/10 .

Let F be the CDF of the distribution of the VC dimension ofF , let d1 < d∗ < d2 be the largest, small-
est number5 such that F (d1) ̸= F (d∗), F (d2) ̸= F (d∗) and let CP = min{F (d∗)−F (d1), F (d2)−
F (d∗)}/4. Let F√

n be the empirical CDF of the distribution obtained on
√
n i.i.d. samples. Notice

that whenever we estimate F with accuracy CP the empirical 9/10-quantile will the same as the
true 9/10-quantile. The DKW inequality (Theorem D.1) shows that this happens with probability
1− 2e−2C2

Pk. Let us call this even E1 and condition on it.

Next, we need to handle the fact that we do not obtain samples from partial concept classes that are
generated from VCL games on infinitely many i.i.d. samples from P but merely on

√
n many such

samples. Let us consider the following experiment. We run the VCL game on k streams of infinitely
many i.i.d. samples from P and if the game has not terminated within the first

√
n rounds, we rewind

the pattern avoidance function to the one that is obtained in that round. Then, Lemma D.4 shows
that, with probability at least 1− e−C·n1/4

, we will only rewind the pattern avoidance function of a
o(1)−fraction of these games will have converged. We call this event E2 and we condition on it. Let
us denote by F̂k the empirical CDF of the VC dimension of the partial concept classes obtained by
this experiment. Under E2, we have that supx∈N |Fk(x)− F̂k(x)| = o(1). Thus, by taking n large
enough so that the o(1) << CP, we see that the estimation of d̂n using the samples that are obtained
from the truncated VCL game also converges to d∗. The bound on the probability of error follows
from a union bound over E1, E2.

Proposition D.6. For n > nP, where nP is some distribution-dependent constant, given m = O(n3)

unlabeled samples we can estimate pn,k, p
X
n,k, p

(X,y)
n,k with accuracy o(1), with probability at least

1− CP · e−C′
Pn1/4

, where CP, C
′
P > 0, are distribution-dependent constants.

Proof. As we alluded to before, using O(n3) unlabeled samples in total we can estimate the quan-
tities pn,k,i, pXn,k,i, p

(X,y)
n,k,i with accuracy 1/n for each version space V i

n/5, with probability at least

1 − C1
√
ne−C2

√
n, where C1, C2 > 0, are absolute constants. Let us denote these estimates

p̂n,k,i, p̂
X
n,k,i, p̂

(X,y)
n,k,i We condition on this event for the rest of the proof.

Assume that n is large enough and condition on the events of Lemma D.4, Lemma D.5. Let us
denote by i1, . . . , ik the indices of the partial concept classes whose VC dimension is bounded by
d̂n = d∗. By definition, k ≥ 9/10

√
n. Consider the following statistical experiment. We run the

VCL game on infinitely many i.i.d. samples from P, we define the partial concept class obtained
from the pattern avoidance function of the game, if the class has VC dimension at most d∗ we keep
the sample, otherwise we discard it. Then, we define its version space on the first n/5 samples
of S∞

2 . Let us call Ṽ i the version space obtained by the i-th sample of this experiment. Then,
Pk(x1, . . . , xk VC shattered by Ṽ i) is an unbiased sample from the distribution whose expected
value pn,k we are trying to estimate. Similarly for the rest of the quantities we have defined. Let us
call these samples p̃n,k,i, p̃Xn,k,i, p̃

(X,y)
n,k,i and denote by S̃n, S̃

X
n , S̃

(X,y)
n their empirical estimates over

9/10
√
n many samples. Hoeffding’s inequality gives us that |S̃n − pn,k| = o(1), |S̃X

n − pXn,k| =
o(1), |S̃(X,y)

n − p
(X,y)
n,k | = o(1), with probability at least 1−Ce−C′·n1/4

, for some absolute constants
C,C ′ > 0. We condition on this event.

Notice that, under the events we have conditioned on, the samples pn,k,i, pXn,k,i, p
(X,y)
n,k,i we obtain

from running the VCL game on O(
√
n) many samples, differ from the samples p̃n,k,i, p̃Xn,k,i, p̃

(X,y)
n,k,i

5If only one these number exists, then we ignore the one that does not exist in the definition of CP. If none
of these numbers exist then the estimation task is trivial.

28

on a sublinear number of terms. Moreover, the absolute difference on the terms they disagree on
is bounded by 1. Thus, if we denote by Sn, S

X
n , S

(X,y)
n the average of these values we have that

|S̃n − Sn| = o(1), |S̃X
n − SX

n | = o(1), |S̃(X,y)
n − SX

n | = o(1). Finally, let Ŝn, Ŝ
X
n , Ŝ

(X,y)
n be the

averages of p̂n,k,i, p̂Xn,k,i, p̂
(X,y)
n,k,i . Since |p̂n,k,i − pn,k,i| = o(1), |p̂Xn,k,i − pXn,k,i| = o(1), |p̂(X,y)

n,k,i −
p
(X,y)
n,k,i | = o(1), using the triangle inequality on all the previous estimations we see that |Ŝn−pn,k| =

o(1), |ŜX
n −pXn,k| = o(1), |Ŝ(X,y)

n −p
(X,y)
n,k | = o(1), with probability at least 1−CP · e−C′

Pn
1/4

.

Lemma D.7. Let n > CS∞
2
, where CS∞

2
is some constant that depends on S∞

2 ,P. Then, with proba-

bility at least 1−CP · e−C′
Pn

1/4

, for every k ≤ k∗, if p̂Xn,k <
p̂n,k

2 then y = argmaxy∈{0,1} p̂
(X,y)
n,k is

the correct label of X.

Proof. Let n > CS∞
2

be large enough so that for all k ≤ k∗ we have that:

•
pn,k ≤ 100/99 · lim

n→∞
pn,k ,

• the guarantee from Proposition D.6 gives us that

p̂Xn,k <
p̂n,k
2

=⇒ pXn,k <
3

4
· pn,k ,

• and

p
(X,y)
n,k ≥ 99

100
pn,k =⇒ p̂

(X,y)
n,k ≥ 95

100
p̂n,k

p
(X,y)
n,k <

80

100
pn,k =⇒ p̂

(X,y)
n,k <

90

100
p̂n,k .

We condition on these events for the rest of the proof. Since pn,k ≤ 100/99 · limn→∞ pn,k for the
correct label y∗ we have that p(X,y∗)

n,k ≥ 99/100 ·pn,k. Moreover, since pXn,k < 3/4 ·pn,k for the other

label ȳ = 1 − y∗ it holds that p(X,ȳ)
n,k < 80/100 · pn,k. Thus, under the event we have conditioned

on we have that argmaxy∈{0,1} p̂
(X,y)
n,k will indeed be the correct label. The correctness probability

follows directly from Proposition D.6.

Lemma D.8. For k = k∗ we have that Pr
[
p̂Xn,k∗ ≥ p̂n,k∗

2

]
= o(1).

Proof. Essentially, the proof of this result follows by Markov’s inequality. Let us consider some
large enough n and condition on the event described in Proposition D.6. Then, p̂Xn,k∗ ≥ p̂n,k∗

2 =⇒
pXn,k∗ ≥ pn,k∗

4 , so it suffices to bound

Pr
[
pXn,k∗ ≥

pn,k∗

4

]
.

Using Markov’s inequality, we have that

Pr
[
pXn,k∗ ≥

pn,k∗

4

]
≤

4E[pXn,k∗]

pn,k∗

=
4pn,k∗+1

pn,k∗

= o(1) .

where we have used the fact that E[pXn,k∗] = pn,k∗+1 and that pn,k∗ is bounded below by a constant.

29

We now state the guarantees of ActiveSelect (Hanneke, 2012). We note that the original statement of
the result did not specify the size of the unlabeled dataset that the algorithm uses, but a straightforward
adaptation of it shows that with O(n3) many unlabeled data its error guarantee changes increases by
O(1/n2).

Lemma D.9 (Hanneke (2012)). A call to ActiveSelect (cf Figure 8) with N classifiers {h1, . . . , hN},
a query budget of m, and O(N2/n3) unlabeled points makes at most m label queries and if hk̂

is the classifier it returns, then with probability at least 1 − C1 · Ne−C2·m/(N2 log(N)), we have
er(hk̂) ≤ 2mink∈[N] er(hk) +O(1/n2).

We are now ready to prove the main result in this section. The algorithm is summarized in Figure 7.
Theorem D.10. Assume that H ⊆ {0, 1}X does not have an infinite VCL tree. Then, H admits an
active learning algorithm that achieves sublinear rates.

Proof. We have all the main ingredients we need to prove our result. Let us fix some S∞
2 whose

elements are i.i.d. from P. Conditioning on the results of Lemma D.7, Lemma D.8, we have that
for large enough n, which depends on S∞

2 , we can obtain a labeled dataset Ln whose size is ω(n).
Feeding this dataset into the supervised learning algorithm from Bousquet et al. (2021) gives as a
classifier h̃n that, conditioned on S∞

2 and the events E we have described, has error

E[er(h̃n)|S∞
2 , E] = o(1/n) .

Moreover, the probability of E is also o(1/n), so we get

E[er(h̃n)|S∞
2] = o(1/n) .

Similarly, for the output ĥn of ActiveSelect, we have that

E[er(ĥn)|S∞
2] = o(1/n)

E[er(ĥn)] = O(1/n) ,

where the second bound comes from the fact that we feed into ActiveSelect the output of the passive
learning algorithm ĥp

n from Bousquet et al. (2021) (cf. Theorem D.3), whose bound does not not
depend on S∞

2 .

Let us call R(n) the error rate of our algorithm. To show that E[R(n)] = o(1/n) it suffices to prove
that lim supn→∞ E[n ·R(n)] = 0. Fatou’s lemma gives us that

lim sup
n→∞

n · E[·R(n)] = lim sup
n→∞

n · E[·R(n)]

= lim sup
n→∞

E
S∞
2

[E[n ·R(n)|S∞
2]]

≤ E
S∞
2

[lim sup
n→∞

n · E[R(n)|S∞
2]]

= 0 ,

where Fatou’s lemma applies since E[n ·R(n)|S∞
2] ≤ CP where CP is some P−dependent constant.

This is because, almost surely over S∞
2 , the expected error of ĥp

n is bounded by C ′
P/n.

D.4 Arbitrarily Slow Rates Lower Bound

Theorem D.11 (Hanneke et al. (2022)). If H has an infinite VCL tree, no active learning algorithm
can achieve rates that are faster than arbitrarily slow.

D.5 Omitted Figures

30

Figure 7: Sublinear Rates Algorithm.

Sublinear Rates Algorithm [Adaptation from Hanneke (2012)] Input is a label budget N and
a passive learning algorithm Ap

1. Let S1, S2, S3, S4, S5, U be sets of O(N3) unlabeled points that are i.i.d. from PX .

2. Request the labels of the first N/5 points of S5 and run Ap on this set. Let ĥp
N be its

output.
3. Request the labels of the first N/5 points of S1, split them into batches of size

O(
√
N) and run the VCL game on them (cf. Figure 6).

4. Let ŷi√
N/t

, i ∈ [
√
N], be the pattern avoidance functions from the previous step and

for every i ∈ [
√
N] define

F i√
N/5

:=

{
f : X → {0, 1, ⋆} : (f(x1), . . . , f(xℓi√

N/5
)) ̸=

ŷi√
N/5

(x1, . . . , xℓi√
N/5

)

}
.

5. Let

d̂N := min
d∈N

{
∃i1, i2, . . . , i9/10·√N ∈ [

√
N] :

i1 < i2 < . . . < i9/10·
√
N ,d(F ij√

N/5
) ≤ d, ∀j ∈ [9/10

√
N]

}
.

6. Request the labels of the first N/5 points of S2 and let

V i
N/5 :=

{
f ∈ F i√

N/5
: f(x) = y for these N/5 point

}
.

7. For k = 0, . . . , d̂N :
(a) Let S̃3 be the next n2 examples in S3 and m̃N = N/(5(d̂N + 1)) be the label

budget.
(b) Let Ŝ = {}
(c) For each point X ∈ S̃3, y ∈ {0, 1}:

i. Estimate p̂N,k, p̂
X
N,k, p̂

(X,y)
N,k using V i

N/5 and fresh unlabeled points from U as
described in Proposition D.6.

ii. If p̂XN,k ≤ p̂N,k/2 infer y∗ = argmaxy∈{0,1} p̂
(X,y)
N,k , otherwise request the

label y∗ of X .
iii. Append (X, y∗) to Ŝ and update the label budget m̃N . If m̃N = 0 jump to

Step (d).
(d) Run Ap on Ŝ and let ĥk be its output.

8. Return ActiveSelect
({

ĥ0, . . . , ĥk, ĥ
p
N

}
, N/5, S4

)
(cf. Figure 8).

31

Figure 8: ActiveSelect Algorithm (Hanneke, 2012).

ActiveSelect (Hanneke, 2012) Input is a set of classifiers {h1, . . . , hL}, label budget m,
sequence of unlabeled examples U .

1. For each j, k ∈ {1, . . . , N} s.t. j < k:

(a) Let Rjk be the first
⌊

m
j(L−j) ln(eL)

⌋
points in U ∩ {x : hj(x) ̸= hk(x)} (if such

value exists).
(b) Request the labels for Rjk and let Qjk be the set of labeled examples.
(c) Let mkj = erQjk

(hk).

2. Return hk̂, where k̂ = max {k ∈ {1, . . . , L} : maxj<k mkj ≤ 7/12} .

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main body and supplementary material of the submission provide proofs
for all the claims.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We formally define the mathematical model our results hold for.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

33

Justification: We present full proofs in the main body and the supplementary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

34

Answer: [NA]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work is primarily theoretical and does not have any immediate sociatal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

36

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

37

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	Introduction
	Related Work
	Formal Setting
	Main Results
	Examples
	Comparison to Supervised Learning and General Interactive Learning Setting
	Technical Challenges

	Arbitrarily Fast Rates
	Exponentially Fast Rates
	Exponential Rates Algorithm: High-Level Overview
	The Star Tree Game
	Active Learning of Partial Concept Classes with Finite Star Number
	Slower than Exponential is Sublinear

	Sublinear Rates
	Conclusion
	Omitted Details from sec:intro
	Formal Definition of Learning Setting
	Omitted Preliminaries
	Omitted Definitions

	Omitted Details from sec:arbitrarily-fast-rates
	Omitted Details from sec:exponentially-fast
	Proof of lemma:infinite-star-tree-iff-game
	Active Learning of Partial Classes with Finite Star Number: Exponential Uniform Rate
	The Online Setting
	From the Online to the Statistical Setting
	Sublinear Rates Lower Bound

	Omitted Details from sec:sublinear-rates
	Useful Tools
	The VCL Game
	Omitted Details of the Sublinear Rates Algorithm
	Arbitrarily Slow Rates Lower Bound
	Omitted Figures

