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ABSTRACT

In today’s digital landscape, the intermingling of AI-generated and authentic con-
tent has heightened the importance of copyright protection and content authen-
tication. Watermarking has emerged as a crucial technology to address these
challenges, offering a general approach to safeguard both generated and real con-
tent. To be effective, watermarking methods must withstand various distortions
and attacks. While current deep watermarking techniques typically employ an
encoder–noise layer–decoder architecture and incorporate various distortions to
enhance robustness, they often struggle to balance robustness and fidelity, and re-
main vulnerable to adaptive attacks, despite extensive training. To overcome these
limitations, we propose SuperMark, a novel robust and training-free watermark-
ing framework. Our approach draws inspiration from the parallels between wa-
termark embedding/extraction in watermarking models and the denoising/noising
processes in diffusion models. Specifically, SuperMark embeds the watermark
into initial Gaussian noise using existing techniques and then applies pretrained
Super-Resolution (SR) models to denoise the watermarked noise, producing the fi-
nal watermarked image. For extraction, the process is reversed: the watermarked
image is converted back to the initial watermarked noise via DDIM Inversion,
from which the embedded watermark is then extracted. This flexible framework
supports various noise injection methods and diffusion-based SR models, allowing
for enhanced performance customization. The inherent robustness of the DDIM
Inversion process against various perturbations enables SuperMark to demonstrate
strong resilience to many distortions while maintaining high fidelity. Extensive ex-
periments demonstrate SuperMark’s effectiveness, achieving fidelity comparable
to existing methods while significantly surpassing most in terms of robustness.
Under normal distortions, SuperMark achieves an average watermark extraction
bit accuracy of 99.46%, and 89.29% under adaptive attacks. Furthermore, Super-
Mark exhibits strong transferability across different datasets, SR models, water-
mark embedding methods, and resolutions.

1 INTRODUCTION

With the rapid advancement of text-to-image (T2I) models (Saharia et al., 2022; Rombach et al.,
2022) and image-to-image (I2I) models (Brooks et al., 2023; Mokady et al., 2023), AI-generated
content (AIGC) has been increasingly prevalent and harder to be distinguished from real images. To
mitigate the challenges posed by this trend, various regulations (European Parliament, 2023; PBS
NewsHour, 2024; Reuters, 2024) have emerged that mandate the embedding of watermarks into
AI-generated images. These watermarks serve as a proactive measure for ensuring transparency,
traceability, and copyright verification. There are two emerging approaches for watermarking: em-
bedding watermarks during the image generation process (Fernandez et al., 2023; Wen et al., 2024;
Yang et al., 2024) and applying watermarks to the generated images via post-processing (Rahman,
2013; Zhang et al., 2019; Jia et al., 2021). The latter approach is more flexible and general, as it can
be applied to both AIGC and real images, which is the focus of this paper.

The performance of general watermarking is evaluated along two key dimensions: robustness and
fidelity. Robustness refers to the watermark’s ability to remain detectable and intact even when
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Figure 1: (a) The pipeline of traditional watermarking methods, which are trained in an encoder-
noise layer-decoder manner. (b) The pipeline of our proposed training-free SuperMark. Here, m
represents for the watermark information.

subjected to various distortions or attacks on the watermarked image, while fidelity means the vi-
sual consistency between the watermarked image and the cover image. Deep learning-based wa-
termarking methods typically adopt an encoder-noise layer-decoder framework, introducing various
distortions during training to enhance robustness. However, achieving a balance between strong
robustness and high fidelity remains a significant challenge for these models. Furthermore, adap-
tive attacks (Zhao et al., 2023) based on VAE (Ballé et al., 2018; Cheng et al., 2020) and diffusion
models (Brooks et al., 2023) can easily circumvent most existing watermarking methods. Although
some works have attempted to enhance robustness against such attacks, they often require extensive
training with carefully designed differentiable distortions (e.g., StegaStamp (Tancik et al., 2020),
RoSteALS (Bui et al., 2023), and Robust-Wide (Hu et al., 2024)) or they compromise fidelity (e.g.,
StegaStamp (Tancik et al., 2020) and RoSteALS (Bui et al., 2023)).

We reveal that their limitations are mostly stemmed from the disentanglement between robustness
and fidelity due to the the encoder–noise layer–decoder architecture and the joint training strat-
egy. Moreover, we have two interesting observations: 1) there exists an inherent symmetry between
the embedding/extraction of watermarks and the denoising/noising processes in diffusion models,
and 2) diffusion process holds inherent robustness against different distortions. Based on these, we
propose SuperMark to design a novel diffusion-based general watermarking framework, which can
inherently achieve robustness and fidelity in a unified manner. Briefly, the embedding and extraction
of a watermark essentially involve a reversible transformation between the watermark information
and watermarked image. Similarly, in diffusion models, the processes of denoising and noising
represent transformations between the Gaussian noise and sampled image. Leveraging this insight,
SuperMark injects the watermark information into the initial Gaussian noise, and defaultly employs
the Denoising Diffusion Implicit Model (DDIM) as the sampling method for watermark embed-
ding, this process is deterministic and exhibits strong reversibility with the denoising process. Most
importantly, its corresponding reversible process, known as DDIM Inversion, has demonstrated re-
markable robustness against various perturbations (Wen et al., 2024; Yang et al., 2024). Thus, Super-
Mark applies DDIM Inversion to cover the sampled image back into the initial watermarked noise
for inherent roboust extraction. To satisfy the fidelity requirement, we feed both the watermarked
noise and the cover image into a pretrained diffusion-based Super-Resolution (SR) model to gener-
ate the watermarked image. Moreover, this entire process can be executed without any fine-tuning of
the SR model. Figure 1 shows a comparison between SuperMark and the traditional watermarking
framework.

Extensive experimental results demonstrate that SuperMark achieves strong robustness against both
normal distortions (e.g., JPEG compression and Gaussian noise) and adaptive attacks (e.g., VAE-
based and diffusion-based attacks). It achieves high watermark extraction accuracy, with 99.46%
accuracy under normal distortions and 89.29% accuracy even under adaptive attacks on the MS-
COCO dataset. Additionally, SuperMark maintains high fidelity, with a PSNR of 32.49 and an
SSIM of 0.93. We also evaluate its transferability across different datasets, SR models, watermark
injection methods, and image resolutions.

In summary, our key contributions are as follows:

• Our research uncovers a critical insight into current deep watermarking techniques: the
encoder-noise layer-decoder architecture and joint training strategy create a trade-off be-
tween robustness and fidelity.
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• We introduce SuperMark, a novel and training-free watermarking framework based on
diffusion-based super-resolution models. SuperMark’s simplicity and effectiveness allow it
to seamlessly integrate with various watermark injection methods and pre-trained diffusion-
based SR models.

• Extensive experiments demonstrate that SuperMark offers superior robustness against both
normal distortions and adaptive attacks compared to most existing watermarking methods,
while maintaining high fidelity.

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion Models (DMs) are designed to predict and gradually remove varying levels of noise added
to images during training. During inference, they iteratively denoise randomly sampled Gaussian
noise xT ∼ N (0, 1), progressively generating high-quality images x0. Denoising Diffusion Prob-
abilistic Models (DDPMs (Ho et al., 2020)) are a widely-used implementation of DMs, but they
typically require thousands of denoising steps to produce high-quality samples. To accelerate the
sampling process, Denoising Diffusion Implicit Models (DDIMs (Song et al., 2021)) are proposed
to improve DDPMs by introducing a deterministic sampling process that reduces the number of re-
quired steps while maintaining the quality of the generated data. Besides, DDIMs can encode from
x0 to xT and reconstruct xT from the resulting x0 with low reconstruction error, a capability that
DDPMs lack due to their stochastic nature. In other words, the transformation between x0 and xT is
reversible. The reverse process xT → x0 is known as DDIM Inversion, which enables a wide range
of applications, such as image editing (Mokady et al., 2023).

Despite these improvements in the sampling speed and efficiency, generating images directly in the
pixel space remains computationally expensive in terms of both time and memory. To address it,
Latent Diffusion Models (LDMs (Rombach et al., 2022)) are designed to operate in a compressed,
lower-dimensional latent space, facilitated by the Variational Autoencoder (VAE) which could sig-
nificantly reduce the costs. Super-Resolution (SR) models, an important application within Image-
to-Image (I2I) tasks, can be also implemented using LDMs. The core idea is to concatenate a
low-resolution image with a latent variable of the same resolution for denoising. The denoised la-
tent variable is then decoded using a VAE decoder D to obtain the corresponding high-resolution
image.

2.2 IMAGE SUPER-RESOLUTION WITH LATENT DIFFUSION

In this section, we provide a detailed explanation of how the latent diffusion-based super-resolution
(SR) model M achieves image super-resolution. In general, M employs a Variational Autoencoder
(VAE) to realize image resolution, using a scaling factor fvae defined as: fvae = SI

SZ
, where SI and

SZ represent the size of the input image and its corresponding latent variable produced by the VAE
encoder E . The magnification factor fsr of M indicates the ratio by which the model increases the
input image’s resolution, which is equal to fvae.

Specifically, given a low-resolution input image Ilow with dimensions (Cpixel, Hlow,Wlow), M
performs iterative denoising as follows:

Z
0
= Denoise(M(Zconcat = Ilow ⊕ Z

T
)), (1)

where Z0 is the denoised latent variable with dimensions (Clatent, Hlow,Wlow), and ZT ∼
N (0, 1) is randomly sampled Gaussian noise of shape (Clatent, Hlow,Wlow). The input to the
SR model, Zconcat, is formed by concatenating Ilow and ZT , resulting in a shape of (Cpixel +
Clatent, Hlow,Wlow). Here, Cpixel refers to the number of pixel channels (typically 3 for RGB im-
ages), Clatent is the number of latent channels in the VAE (e.g., 4 for SD-Upscaler), and Hlow

and Wlow represent the height and width of Ilow. The super-resolved image Isr, with dimen-
sions (Cpixel, Hhigh,Whigh), is then produced by the VAE decoder D: Isr = D(Z0). Since
Hhigh = fvae ×Hlow, the magnification factor is given by fsr =

Hhigh

Hlow
= fvae.

3
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2.3 IMAGE WATERMARKING

Current image watermarking methods can mainly be divided into two categories: in-generation
watermarking and post-processing watermarking. In-generation watermarking involves embedding
watermarks during the image generation process of a target generative model and has emerged as
a key approach alongside the rise of AI-generated content (AIGC). Two notable techniques in this
field are Tree-Ring (Wen et al., 2024) and Gaussian Shading (Yang et al., 2024), both designed for
diffusion-based text-to-image (T2I) models. These methods embed watermarks into the initial Gaus-
sian noise and utilize inverted noise, obtained through DDIM Inversion, for watermark extraction.
Specifically, Tree-Ring embeds multiple rings in the frequency domain center of the Gaussian noise
and extracts the watermark from the same positions in the inverted noise’s frequency domain. In
contrast, Gaussian Shading samples Gaussian noise based on the watermark bit string and extracts
the watermark by inverse sampling of the inverted noise. Both techniques have demonstrated strong
robustness.

However, the aforementioned in-generation watermarking methods are limited to AI-generated im-
ages and are not the focus of this paper. Instead, we focus on post-processing watermarking methods,
which can be applied to both real and generated images. Traditional robust post-processing meth-
ods, such as DwtDct (Rahman, 2013) and DwtDctSvd (Rahman, 2013), embed watermark messages
into transformed domains, offering only limited robustness. With the rise of deep learning, new
post-processing watermarking methods based on deep models have emerged to improve robustness.
Most follow the encoder-noise layer-decoder framework, where the encoder embeds watermarks,
and the decoder extracts them in the pixel space. Different methods use customized noise layers for
specific robustness. For example, MBRS (Jia et al., 2021) enhances robustness against JPEG com-
pression, while StegaStamp (Tancik et al., 2020) and PIMoG (Fang & et al., 2022) target robustness
against physical distortions. SepMark (Wu et al., 2023) focuses on inpainting, and Robust-Wide
(Hu et al., 2024) addresses instruction-driven image editing. Recently, RoSteALS (Bui et al., 2023)
showed that embedding watermarks in the latent space of a VAE significantly boosts semantic ro-
bustness. Beyond the encoder-noise layer-decoder framework, ZoDiac (Zhang et al., 2024), similar
to our approach, embeds watermarks in Gaussian noise for general robustness. However, ZoDiac
requires optimizing the initial Gaussian noise for each image to ensure the denoised result closely
matches the original. It then adds ring-shaped watermarks using the Tree-Ring method before gener-
ating the watermarked image with an unconditional diffusion model. This process adds optimization
overhead and results in lower fidelity, distinguishing it from our approach.

3 METHODOLOGY

3.1 DESIGN PRINCIPLES

As illustrated in Figure 1, we compare the design principles of our proposed SuperMark with tra-
ditional watermarking methods. Traditional watermarking models typically rely on an encoder and
decoder, both of which require extensive training to embed and extract watermarks. In contrast,
the core component of our framework is a pre-trained diffusion model, which performs these tasks
without additional fine-tuning. Furthermore, while traditional methods require an extra noise layer
during training to enhance robustness, our approach leverages the inherent robustness of the diffu-
sion process itself. Below, we discuss the considerations for selecting this diffusion model and how
our framework effectively achieves watermark embedding and extraction.

Watermark embedding stage: In the traditional pipeline, the encoder takes the original image
along with the watermark information and generates a watermarked image that closely resembles the
original. For SuperMark, the diffusion model must be image-conditioned so that the denoised output
closely matches the conditioned image. Our research indicates that diffusion-based super-resolution
(SR) models, which generate higher-resolution versions of conditioned images, effectively meet this
requirement. The Gaussian noise added to the conditioned image corresponds to the watermark in-
formation, allowing the watermark to be injected seamlessly. Techniques such as Gaussian Shading
(Yang et al., 2024) and Tree-Ring (Wen et al., 2024) have already been developed to achieve this.

Watermark extraction stage: For traditional watermarking methods, the decoder is trained jointly
with the encoder to extract the embedded watermark from the watermarked image. In contrast,
SuperMark achieves this using the same SR model employed during watermark embedding. The
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Figure 2: The end-to-end inference pipeline of SuperMark.

watermarked image is fed into the model, which performs DDIM Inversion to reconstruct the ini-
tial watermarked noise. From this reconstructed noise, the watermark can be extracted effectively,
without requiring any additional training.

The flexibility of watermark injection into Gaussian noise and the choice of SR models are key
strengths of SuperMark. These components can be interchanged and optimized, presenting exciting
opportunities for future research and development.

3.2 OVERVIEW

The complete inference pipeline of SuperMark is illustrated in Figure 2, comprising two stages:
watermark embedding and watermark extraction. Both the SR model M and the VAE operate with
frozen parameters, meaning no additional training is required. In the watermark embedding stage,
various techniques can be used to inject the watermark into the latent Gaussian noise, resulting
in the watermarked noise ZT

wm. This noise is then denoised to produce the watermarked image
Iwm. In the watermark extraction stage, the distorted watermarked image I

′

wm is processed using
DDIM inversion to reconstruct the initial watermarked noise Z

′T
wm. From this reconstructed noise,

the embedded watermark can be extracted. Below, we first present some preliminaries, followed by
a detailed description of our method.

3.3 WATERMARK EMBEDDING

We adopt an off-the-shelf strategy for watermark embedding, as used in Gaussian Shading (Yang
et al., 2024), with details provided in Appendix A.1. In general, the primary challenge of the wa-
termark embedding process is to address the size discrepancy between the original image and the
super-resolved image, while also balancing watermark robustness and image fidelity.

Due to the change in the size of the original image Iori, caused by the SR model M, the super-
resolved image Isr cannot be directly used as the watermarked image. A straightforward solution
would be to downscale Isr through interpolation to match the size of Iori, using it as the water-
marked image Iwm. However, this resizing process (e.g., downscaling by a factor of 1/4) results
in the loss of a significant portion of watermarked pixels, greatly diminishing the robustness of the
watermark. To address this issue, we downscale Iori to a smaller size before passing it through M
for upscaling. This reduces the size discrepancy between Isr and Iori, minimizing the loss of wa-
termarked pixels during resizing and enhancing watermark robustness. However, downscaling Iori
before inputting it into the model results in the loss of some original image details, which are then
regenerated by the SR model. This leads to a trade-off between the robustness and fidelity, which
we will explore in detail in Sec. 4.4.

The watermark embedding process is depicted in the upper half of Figure 2. We initially down resize
Iori, with a resolution of Hori × Wori, to the image Ilow with a low resolution of Hlow × Wlow.
Subsequently, the watermark message s can be injected into the Gaussian noise in various ways to
obtain the watermarked Gaussian noise ZT

wm. Then Ilow and ZT
wm are concatenated to a tensor as

5
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M’s input for iterative denoising to obtain the denoised watermarked latent Z0
wm which is converted

to the super-resolved image Isr by the VAE decoder D: Isr = D(Z0
wm). Afterwards, Isr with the

resolution of Hhigh × Whigh is down resized to acquire I↓sr with the resolution of Hori × Wori.
Now I↓sr and Iori have the same size, and we subtract them to get the residual image Ires:

Ires = I
↓
sr − Iori, (2)

Finally, the watermarked image Iwm is acquired by:

Iwm = Iori + fs × Ires, (3)

where fs is the strength factor used to balance the fidelity and robustness.

3.4 WATERMARK EXTRACTION

The watermark extraction process is illustrated in the lower part of Figure 2. In this process, I
′

wm
represents a distorted or attacked version of the original watermarked image Iwm. We explain how
the watermark is extracted from I

′

wm using DDIM Inversion below.

To perform DDIM Inversion using the model M, the resolution of I
′

wm must match the resolution
used during the model’s inference phase. To achieve this, we first upscale I

′

wm to I
′↑
wm, ensuring it

matches the resolution of the super-resolved image, Isr. The upscaled image is then encoded into the
latent space using the VAE encoder E , resulting in the latent representation Z

′0
wm: Z

′0
wm = E(I ′↑

wm).
Additionally, we downscale I

′

wm to I
′↓
wm, matching the resolution of the original low-resolution

image, Ilow. Next, the super-resolution model M takes the concatenated tensor of the latent rep-
resentation Z

′0
wm and the downscaled image I

′↓
wm as input. It then performs DDIM Inversion to

generate the reverted latent representation of the watermarked image, Z
′T
wm. Finally, depending on

the specific watermark injection method used, the watermark is extracted from Z
′T
wm through various

extraction techniques.

3.5 EXTENSION POTENTIAL OF SUPERMARK

Other image-conditioned models. Since the SR model is a core component of our framework and
can be easily swapped out, future improvements can leverage more advanced SR models to enhance
performance. In Sec. 4.3, we will discuss how enhancing the SR model directly improves both the
robustness and fidelity of SuperMark. Beyond super-resolution models, other image-conditioned
diffusion models could also be explored, as long as the denoised and conditional images can be
closely aligned. This opens up opportunities for further enhancing the framework’s flexibility and
performance.

Different watermark injection methods. Several existing works have focused on enhancing
Gaussian Shading and Tree-Ring methods, or introducing novel techniques for watermark injec-
tion into Gaussian noise, such as Ring-ID (Ci et al., 2024) and DiffuseTrace (Lei et al., 2024). The
robustness of SuperMark is significantly influenced by the watermark injection technique employed.
In Sec. 4.3, we will explore how the watermark injection method utilized in Tree-Ring (Wen et al.,
2024) enables SuperMark to exhibit exceptional resistance to geometric distortions, such as rota-
tions. Therefore, these methods can be seamlessly integrated into our framework, leveraging their
advantages to enhance the corresponding robustness of SuperMark.

Inversion accuracy. The robustness of SuperMark is closely tied to the accuracy of the Inversion
process: improving Inversion accuracy can reduce the reconstruction error of the initial watermarked
noise, thereby enhance the watermark extraction accuracy. Several existing works are exploring
more precise Inversion techniques beyond the basic DDIM Inversion, such as those proposed in
Hong et al. (2024) and Meiri et al. (2023). Integrating these advanced methods could further bolster
the robustness of SuperMark.

Inference overhead. Since SuperMark requires multiple iterative steps of inference and inversion
to achieve watermark embedding and extraction, it results in significant inference overhead. How-
ever, numerous efforts have been made to accelerate diffusion models, such as using more efficient
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sampling methods (Salimans & Ho, 2022), model distillation (Meng et al., 2023), and consistency
models (Song et al., 2023). These approaches can reduce the number of sampling steps to just a few,
or even a single step, while maintaining image generation quality. For example, SinSR (Wang et al.,
2024) is proposed recently to achieve single-step SR generation with a student model obtained by
distillation. Additionally, SinSR has demonstrated improved Inversion accuracy, positioning it as
another effective approach for enhancing the robustness of SuperMark. In the future, SuperMark
can flexibly integrate these acceleration techniques to reduce time costs and enhance practicality.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. For our evaluation, we use a default dataset consisting of 500 randomly selected images
from the MS-COCO dataset (Lin et al., 2014), a large-scale real-world dataset containing 328K
images. Since InstructPixPix requires paired instruction-image data, we extract 500 pairs from the
official dataset 1 to assess robustness. Additionally, to further validate the effectiveness of Super-
Mark, we conduct tests on several other datasets: DiffusionDB (Wang et al., 2023), WikiArt (Phillips
& Mackintosh, 2011), CLIC (Toderici et al., 2020), and MetFACE (Karras et al., 2020), which are
commonly used in RoSteALS (Bui et al., 2023) and ZoDiac Zhang et al. (2024) benchmarks. Specif-
ically, we randomly select 500 images from DiffusionDB, WikiArt, and MetFACE, and use the entire
test set of 428 images from CLIC. All images are resized and center-cropped to a resolution of 512
× 512.

Implementation details. We use the SD-Upscaler 2 as our default super-resolution (SR) model.
For both sampling and inversion, the following configurations are applied: prompt = Null, guidance
scale = 1.0, noise level = 0, and steps = 25. The low-resolution image size, Slow, is set to 128, and the
strength factor, fs, is set to 0.4. For watermark injection, we configure Gaussian Shading to embed
32 bits. To evaluate robustness, we consider the following normal distortions: JPEG compression,
random cropping, Gaussian blur, Gaussian noise, and brightness adjustments. Additionally, we
examine adaptive attacks, including VAE-based methods such as Bmshj18 (Ballé et al., 2018) and
Cheng20 (Cheng et al., 2020), as well as diffusion-based attacks like Zhao23 (Zhao et al., 2023) and
InstructPix2Pix (InsP2P) (Brooks et al., 2023). Detailed configurations are provided in Appendix
A.2.

Metrics. For assessing the fidelity of watermarked images, we utilize Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM). To measure the robustness and accuracy of
watermark extraction, we use Bit Accuracy. This metric indicates the proportion of watermark bits
correctly recovered during the extraction process, providing a direct measure of the watermarking
method’s effectiveness in preserving and retrieving the embedded information.

4.2 MAIN RESULTS

Table 1: Comparison results of SuperMark and baseline methods in terms of fidelity and watermark
extraction ability. The best and the second best results are highlighted in bold and underlined,
respectively.

Method
Fidelity Watermark Extraction Ability (Accuracy ↑)

PSNR↑ SSIM↑ Identity Normal Distortions Adaptive Attacks
JPEG Crop G Blur G Noise Brightness Average Bmshj18 Cheng20 Zhao23 InsP2P Average

DwtDct 38.0227 0.9652 0.9214 0.5096 0.7881 0.5227 0.7022 0.5635 0.6172 0.5026 0.5027 0.5031 0.5011 0.5024
DwtDctSvd 38.1125 0.9730 0.9988 0.9623 0.8040 0.9917 0.8368 0.5691 0.8328 0.5060 0.5034 0.5006 0.4950 0.5013
RivaGAN 40.5255 0.9788 0.9988 0.9624 0.9967 0.9963 0.9088 0.9490 0.9626 0.5669 0.5618 0.6399 0.5905 0.5898

StegaStamp 28.6922 0.8957 0.9987 0.9981 0.9753 0.9958 0.9236 0.9657 0.9717 0.9979 0.9981 0.9260 0.9209 0.9607
MBRS 43.2538 0.9874 1.0000 0.9965 0.8605 0.7104 0.8035 0.9316 0.8605 0.5607 0.5547 0.5291 0.5296 0.5435

CIN 41.7388 0.9789 1.0000 0.6274 1.0000 0.9130 0.9178 0.9966 0.8910 0.5084 0.5128 0.5026 0.5020 0.5065
PIMoG 37.4647 0.9772 0.9989 0.7804 0.9918 0.9871 0.7078 0.9191 0.8772 0.6336 0.6015 0.5483 0.5191 0.5756

SepMark 35.9085 0.9520 0.9997 0.9985 0.9932 0.9889 0.9667 0.9760 0.9847 0.8312 0.8511 0.7466 0.7394 0.7921
RoSteALS 28.3445 0.8396 0.9947 0.9745 0.8500 0.9908 0.9231 0.9412 0.9359 0.9074 0.9034 0.8469 0.8412 0.8747
SuperMark 32.4978 0.9322 1.0000 0.9976 1.0000 1.0000 0.9810 0.9946 0.9946 0.9293 0.9310 0.8718 0.8396 0.8929

1https://huggingface.co/datasets/timbrooks/instructpix2pix-clip-filtered
2https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler
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We compare SuperMark with nine open-source baselines, and the results are presented in Table 1.
The watermarked images generated by SuperMark exhibit relatively high fidelity, comparable to
other baselines. Notably, SuperMark demonstrates significantly stronger robustness than most of
the watermarking methods tested. Against normal distortions, SuperMark achieves the highest av-
erage watermark extraction accuracy of 99.46%. Even in the face of adaptive attacks, which render
most watermarking methods ineffective, SuperMark maintains a high robustness with an accuracy of
89.29%. Although this accuracy is slightly lower than StegaStamp, which may have state-of-the-art
robustness, SuperMark outperforms in terms of fidelity, with visual results and analyses provided in
Appendix A.3.

4.3 TRANSFERABILITY

Table 2: Test results of SuperMark on different
datasets. The gray cell denotes the default setting.

Dataset
Fidelity Watermark Extraction Ability↑

PSNR↑ SSIM↑ Identity Normal Adaptive
Distortions Attacks

DiffusionDB 32.5958 0.9318 1.0000 0.9942 0.8751
WikiArt 32.1425 0.9126 1.0000 0.9950 0.9064

CLIC 33.0314 0.9387 1.0000 0.9939 0.8870
MetFACE 37.2351 0.9363 1.0000 0.9952 0.8330

COCO 32.4978 0.9322 1.0000 0.9946 0.8929

Transfer to different datasets. To evaluate
the universality of SuperMark across data with
different distributions, we conduct additional
experiments on four datasets: DiffusionDB,
WikiArt, CLIC, and MetFACE. As shown in
Table 2, SuperMark performs effectively across
these diverse data distributions. Notably, in the
MetFACE dataset, watermarked images exhibit
superior fidelity, particularly in terms of PSNR.
This may be due to the SR model’s proficiency
in enhancing details for facial images, allowing
the generated images to closely approximate the originals. These results further support the idea that
the stronger the SR model, the higher the fidelity achieved. Visualizations of the results for different
datasets are provided in Appendix A.3.

LDM-SR as the SR model. Given the flexible selection of the SR model in SuperMark, we also
test it with another SR model, LDM-SR 3 for transferability assessment, to demonstrate SuperMark’s
versatility. As the VAE used in LDM-SR has 3 latent channels, it is not possible to configure a 32-
bit watermark. To ensure a fair comparison, we use 16 embedding bits for both super-resolution
models (fc = 3 for LDM-SR and fc = 4 for SD-Upscaler). As shown in Table 3, SuperMark
with LDM-SR achieves comparable performance in both fidelity and robustness against normal
distortions. However, SD-Upscaler, an SR model with superior performance compared to LDM-
SR, may provide SuperMark with greater robustness against adaptive attacks. This confirms that
improving the capabilities of the SR model used in SuperMark can enhance its overall robustness.
We also provide some visual examples in Appendix A.3.

Table 3: Test results of SuperMark using different SR models.

SR Model
Fidelity Watermark Extraction Ability↑

PSNR↑ SSIM↑ Identity Normal Distortions Adaptive Attacks
JPEG Crop G Blur G Noise Brightness Average Bmshj18 Cheng20 Zhao23 InsP2P Average

LDM-SR 32.3906 0.9332 1.0000 0.9972 1.0000 1.0000 0.9632 0.9930 0.9907 0.9300 0.9297 0.9411 0.8716 0.9181
SD-Upscaler 32.4747 0.9306 1.0000 0.9998 1.0000 1.0000 0.9883 0.9945 0.9965 0.9626 0.9628 0.9511 0.9066 0.9458

Adoption of Tree-Ring’s watermark injection method. We also utilize the watermark injection
method employed in Tree-Ring (Wen et al., 2024) to further assess the transferability of SuperMark.
The configurations of Tree-Ring are: the watermark ring radius r is set to 30 and the threshold τ
is set to 0.9, which means the watermark is detected if p falls below this value. As ZoDiac is not
open source, we apply the same distortions and attack configurations as described in their paper for
comparison (see Appendix A.2 for details). Since Tree-Ring is a 0-bit watermark method, we use
the Watermark Detection Rate (WDR) to evaluate the performance aligned with ZoDiac.

The test results of applying Tree-Ring to SuperMark are presented in Table 4 and we also pro-
vide some visual results in Appendix A.3. Due to the ring-shaped watermark embedded with the
Tree-Ring method, SuperMark demonstrates superior robustness against spatial distortions, such as
rotation. Furthermore, compared to ZoDiac, SuperMark maintains better fidelity and exhibits sig-

3https://huggingface.co/CompVis/ldm-super-resolution-4x-openimages
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nificantly stronger robustness against rotation, while offering comparable robustness against other
distortions and attacks.

Table 4: Comparison results of ZoDiac and SuperMark adopting Tree-Ring’s watermark injection
method. The corresponding results of ZoDiac are those presented in their paper.

Method
Fidelity Watermark Extraction Ability↑

PSNR↑ SSIM↑ Identity Normal Distortions Adaptive Attacks
JPEG G Blur G Noise Brightness Rotation Average Bmshj18 Cheng20 Zhao23 Average

ZoDiac 29.41 0.92 0.998 0.992 0.996 0.996 0.998 0.538 0.904 0.992 0.986 0.988 0.989
SuperMark 32.65 0.94 1.000 0.998 1.000 0.962 0.998 0.978 0.987 0.968 0.990 0.952 0.970

Table 5: SuperMark’s test results on images of dif-
ferent resolutions.

Resolution Bits
Fidelity Watermark Extraction Ability↑

PSNR↑ SSIM↑ Identity Normal Adaptive
Distortions Attacks

256 8 29.5828 0.8929 1.0000 0.9963 0.9091
384 18 31.5776 0.9239 1.0000 0.9957 0.9014
512 32 32.4978 0.9322 1.0000 0.9946 0.8929
640 50 33.6769 0.9392 1.0000 0.9936 0.9002
768 72 34.5080 0.9408 1.0000 0.9938 0.9012

Transfer to different resolutions. Water-
marks can be injected into Gaussian noise of
varying sizes, enabling SuperMark to embed
and extract watermarks for images of different
resolutions. As higher-resolution images offer
more capacity for watermark embedding, it be-
comes feasible to embed more bits. To maintain
consistency, we keep fc and fhw constant, en-
suring the same copy count of each bit, which
will also change the length of the embedded
bits. Besides, we maintain fs unchanged to
control the watermark strength added to the original image. This setup allows us to evaluate the
impact of resolution on SuperMark’s performance.

The results, shown in Table 5, indicate that SuperMark improves fidelity as image resolution in-
creases while maintaining robustness against both normal distortions and adaptive attacks with more
bits embeded. This improvement is due to SR models being more effective at upscaling higher-
resolution images, whereas upscaling lower-resolution images requires adding more details and
involves a larger generative space, which is more challenging. As a result, the generated high-
resolution image differs more significantly from the corresponding watermarked image, leading to
lower fidelity. This also suggests that enhancing the SR model’s capabilities can improve the fidelity.

4.4 ABLATION STUDY

Impact of low image size Slow and strength factor fs. Two important hyperparameters, Slow and
fs, play a key role in balancing the fidelity of watermarked images and the bit accuracy of watermark
extraction. We conduct a series of comprehensive experiments to explore different combinations of
these parameters, and the results are displayed in Figure 3. When fs is fixed, increasing Slow

enhances the fidelity but reduces robustness. This is consistent with our previous analysis: larger
Slow leads to fewer pixel losses in the original image during watermark embedding, but more pixel
losses in the watermarked image during extraction. Moreover, for a given Slow, increasing fs, which
amplifies the strength of the added watermark residual, improves the robustness of the watermark. It
is also worth noting that smaller Slow values reduce the memory and time overhead required for both
inference and inversion. In practical use, we can configure Slow and fs to maintain both fidelity and
robustneelatively high levels. By default, we set Slow = 128 and fs = 0.4, as this reduces memory
usage during inference and improves inference speed.

Impact of inference and inversion steps. We evaluate SuperMark’s performance under varying
inference and inversion steps, with results presented in Figure 4. Our observations show that differ-
ent inversion steps have minimal impact on both the fidelity and robustness of SuperMark. However,
increasing the number of inference steps results in a slight decrease in fidelity while significantly
improving robustness, especially in scenarios involving adaptive attacks. We hypothesize that more
inference steps prompt the SR model to generate more detailed features, which increases the dis-
crepancy between the watermarked and original images, leading to a decline in fidelity. Conversely,
these generated details provide more reversible pixels during the inversion process, thereby enhanc-
ing watermark extraction accuracy.

Impact of watermark bits length. We can embed bits of varying lengths by adjusting different
values of fc and fhw and the results are shown in Figure 5. The fidelity of the watermarked image is
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Figure 3: The impact of varying the low image size Slow and strength factor fs on the fidelity and
robustness. Robustness is measured by the watermark extraction accuracy on watermarked images
subjected to normal distortions and adaptive attacks. Lines of different colors represent different
values of Slow.
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Figure 4: Effects of SuperMark on fidelity and robustness with varying inference and inversion
steps.

maintained across different bit lengths, as it has been shown that in Gaussian Shading, the sampling
of Gaussian noise based on bits does not affect the model’s denoising performance. Consequently,
the SR model generates images with consistent fidelity, irrespective of the bit length employed.
However, embedding more bits leads to a corresponding decrease in SuperMark’s robustness, par-
ticularly when faced with adaptive attacks. This is expected, as embedding more bits requires a
larger number of successfully inverted pixels for extraction, while the proportion of invertible pixels
in a corrupted image remains fixed. Consequently, the accuracy of watermark extraction diminishes
as the bit length increases.
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Figure 5: Fidelity and robustness when embedding watermark bits of different lengths.

5 CONCLUSION

In this paper, we propose a training-free and robust image watermarking framework, named Su-
perMark, which leverages a diffusion-based SR model to achieve effective watermark embedding
and extraction. Thanks to the inherent resilience of DDIM Inversion to various distortions, Su-
perMark demonstrates superior robustness compared to nearly all existing watermarking methods
while maintaining high fidelity. Extensive experiments highlight its outstanding performance across
different datasets, watermark injection methods, SR models, and image resolutions.
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A APPENDIX

A.1 PRELIMINARY

A.1.1 GAUSSIAN SHADING

The watermark is a bit string s consisting of 0s and 1s, with a length defined as c
fc

· h
fhw

· w
fhw

, where
c, h, and w represent the channels, height, and width of the Gaussian noise used for watermark
injection, and fc, fhw are scaling factors for expansion. The string s is then replicated fc · f2

hw

times and reshaped into its diffused version sd with the shape (c, h, w). To preserve the distribution
and obtain the corresponding watermarked Gaussian noise ZT

wm, sd is transformed into a uniformly
distributed randomized watermark m through encryption (e.g., ChaCha20 (Bernstein et al., 2008))
using a stream key K. The watermarked Gaussian noise ZT

wm is sampled as follows:

p(ZT
wm|y = i) =

{
2 · f(ZT

wm) ppf
(
i
2

)
< ZT

wm ≤ ppf
(
i+1
2

)
0 otherwise

,

where y ∈ {0, 1} is the bit in sd. Since m follows a uniform distribution, it can be shown that ZT
wm

preserves the Gaussian distribution, ensuring that the fidelity of the image denoised from ZT
wm is

not affected.

After performing DDIM inversion, the inverted Gaussian noise Z
′T
wm is obtained, and the diffused

watermark s
′d is extracted by:

i
′
= ⌊2 · cdf(Z

′T
wm)⌋,

where i
′

is the extracted bit in m
′
. The decrypted version of m

′
using K yields s

′d, which consists
of fc · f2

hw copies of the watermark. The extracted watermark s
′

is then reconstructed using a voting
mechanism: if a bit is set to 1 in more than half of the copies, the corresponding bit in s

′
is set to 1;

otherwise, it is set to 0.
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A.1.2 TREE-RING

The watermark is a key k∗ composed of multiple rings, with a constant value along each ring.
The key k∗ is injected into the Fourier transform of the initial Gaussian noise ZT to obtain the
watermarked Gaussian noise ZT

wm. Specifically, a circular mask M with radius r centered on the
low-frequency modes is chosen, and the injection process is described as:

F(ZT
wm) ∼

{
k∗i i ∈ M

N (0, 1) otherwise
,

For watermark extraction, let y = F(Z
′T
wm), and the score µ is defined as:

µ =
1

σ2

∑
i∈M

|k∗i − y|2,

where σ2 = 1
M

∑
i∈M |yi|2. An interpretable P-value p is computed as:

p = Pr(χ2
|M |,λ ≤ µ | H0) = Φχ2(z),

where Φχ2(z) is a standard statistical function. The watermark is ”detected” when p falls below a
chosen threshold α.

A.2 MORE IMPLEMENTATION DETAILS

Configurations of normal distortions. The default configurations of different normal distortions
are: JPEG (Q=50), Random Crop (ratio=0.8), Gaussian Blur (r=2), Gaussian Noise (std=0.05),
Brightness (factor=2). When testing on Tree-Ring, the configurations are: JPEG (Q=50), Gaussian
Blur (r=5), Gaussian Noise (std=0.05), Brightness (factor=0.5), Rotation (degrees=90).

Configurations of adaptive attacks. For Bmshj18 and Cheng20, we use the models from Com-
pressAI 4 (bmshj2018 hyperprior and cheng2020 anchor) with compression factor=3. For Zhao23,
we use the model 5 with noise&denoise steps=20 by default and steps=60 when testing on Tree-
Ring. For InstructPix2Pix, we use the model 6 with text guidance=7.5, image guidance=1.5 and
inference steps=25.

A.3 VISUAL RESULTS

Fidelity comparison with StegaStamp, RoSteALS and SuperMark. Figure 7 compares the fi-
delity distribution of StegaStamp, RoSteALS and SuperMark, which have comparable robustness.
SuperMark demonstrates the best performance in both PSNR and SSIM, with stability only slightly
behind StegaStamp. While StegaStamp shows relatively consistent results, its fidelity lags behind
SuperMark. On the other hand, RoSteALS exhibits significant variability in both PSNR and SSIM,
resulting in lower and less stable fidelity. Figure 8 showcases some examples where SuperMark
produces relatively low fidelity, primarily due to the complex composition and detailed content of
the original images. The SR model adopted in SuperMark may face challenges with these intricate
contents and have more generative freedom, leading to lower fidelity. However, we believe that
future advancements in more powerful SR models will further enhance the fidelity for such images.

We also select some watermarked images generated by StegaStamp, RoSteALS and SuperMark
which can be found in Figure 9 and Figure 10. From the residual images, we can see that the
watermarks embedded by our method are more concentrated at the edges of objects, that is, at
places with strong semantic correlation, thus ensuring both fidelity and strong robustness. However,
StegaStamp embeds more watermarks in both objects and backgrounds, which improves robustness
but sacrifices more fidelity.

4https://github.com/InterDigitalInc/CompressAI/tree/master
5https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
6https://huggingface.co/timbrooks/instruct-pix2pix
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Jpeg: 1.00 Crop: 1.00 G Blur: 1.00 G Noise: 1.00 Brightness: 1.00 Bmshj18: 0.97 Cheng20: 1.00 Zhao23: 0.97 Insp2p: 1.00

Figure 6: Some visual results from the default COCO dataset. The last row marks the distortion or
attack type of each column and the corresponding watermark extraction accuracy.
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Figure 7: Fidelity distribution of watermarked images generated by StgeaStamp, RoSteALS and
SuperMark on the default COCO dataset.

Watermarked images generated by SuperMark on different datasets. See Figure 11, Fig-
ure 12, Figure 13 and Figure 14. It can be observed that for different types of images from var-
ious datasets, SuperMark is able to achieve high-fidelity watermarked image generation, with the
watermark embedded at the edges of semantically relevant objects.

Watermarked images generated by SuperMark using LDM-SR as the SR model and Tree-
Ring as the watermark injection method. See Figure 15 and Figure 16. It can be observed that,
despite using different SR models and watermark injection methods, SuperMark consistently shows
similar embedding patterns on the same original image, leading to comparable fidelity. This further
reinforces the strong transferability of our method.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

27.24/0.87                       26.55/0.90                       23.29/0.88 

Figure 8: Some watermarked images with relatively low fidelity generated by SuperMark. From the
first row to the fourth row are: original image, residual image, watermarked image and PSNR/SSIM.
Same for the following Figures.
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          30.47/0.93                       33.47/0.96                       34.56/0.97 

         StegaStamp                     RoSteALS                     SuperMark 

Figure 9: Comparison of watermarked images generated by StegaStamp, RoSteALS and Super-
Mark.
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          29.90/0.89                       30.35/0.92                       34.95/0.94 

         StegaStamp                     RoSteALS                     SuperMark 

Figure 10: Comparison of watermarked images generated by StegaStamp, RoSteALS and Super-
Mark.
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          34.22/0.95                       35.76/0.95                       36.43/0.95                        33.79/0.95

Figure 11: Some watermarked images generated by SuperMark with the original images sampled
from the DiffusionDB dataset.

32.78/0.92                       41.57/0.98                       39.99/0.97                        39.13/0.99

Figure 12: Some watermarked images generated by SuperMark with the original images sampled
from the WikiArt dataset.
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          33.39/0.98                       32.55/0.94                       34.31/0.97                        40.15/0.99

Figure 13: Some watermarked images generated by SuperMark with the original images sampled
from the CLIC dataset.

          43.44/0.98                       36.63/0.96                       39.11/0.95                         36.79/0.94    

Figure 14: Some watermarked images generated by SuperMark with the original images sampled
from the MetFACE dataset.
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34.72/0.93                       34.58/0.95                       34.90/0.94 

Figure 15: Comparison of watermarked images generated by SuperMark with default setting, LDM-
SR as the SR model and Tree-Ring as the watermark injection method. The first column is the default
setting, the second column is using LDM-SR, and the third column is using Tree-Ring. Same as
Figure 16.

32.41/0.92                       32.89/0.93                       32.84/0.93 

Figure 16: Comparison of watermarked images generated by SuperMark with default setting, LDM-
SR as the SR model and Tree-Ring as the watermark injection method.
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