
The ALCHEmist: Automated Labeling 500x CHEaper
Than LLM Data Annotators

Tzu-Heng Huang, Catherine Cao, Vaishnavi Bhargava, Frederic Sala
University of Wisconsin-Madison

{thuang273, ccao35, vbhargava3}@wisc.edu,
fredsala@cs.wisc.edu

Abstract

Large pretrained models can be used as annotators, helping replace or augment
crowdworkers and enabling distilling generalist models into smaller specialist
models. Unfortunately, this comes at a cost: employing top-of-the-line models
often requires paying thousands of dollars for API calls, while the resulting datasets
are static and challenging to audit. To address these challenges, we propose a simple
alternative: rather than directly querying labels from pretrained models, we task
models to generate programs that can produce labels. These programs can be
stored and applied locally, re-used and extended, and cost orders of magnitude less.
Our system, Alchemist, obtains comparable to or better performance than large
language model-based annotation in a range of tasks for a fraction of the cost: on
average, improvements amount to a 12.9% enhancement while the total labeling
costs across all datasets are reduced by a factor of approximately 500×. We release
our code here: https://github.com/SprocketLab/Alchemist.

1 Introduction

One of the most exciting developments in machine learning is the use of large pretrained models to act
as annotators or labelers [1, 2, 3, 4, 5, 6, 7, 8]. This includes the use of large language models (LLMs)
like GPT-4 [9] and Claude 3 [10]. This process offers multiple benefits. First, pretrained models
are an efficient way to annotate and have the potential to partially or fully replace expensive human
crowdworkers [2, 6, 11, 12]. Second, this approach allows for distilling large models into smaller,
task-specific models that can be deployed locally at lower cost [3, 13, 7, 8]. This is additionally
important in settings like healthcare and finance where privacy laws require the use of local models.

Despite this promise, pretrained model-based annotation has several drawbacks that stymie its
adoption. These drawbacks include

• High Cost: Labeling a dataset can be expensive. This is particularly so in cases where each data
point consists of many tokens. For example, we find that labeling a moderately-sized dataset [14]
with 7,569 data points using GPT-4 costs over $1,200.

• Lack of Extensibility: Making even small changes to specifications necessitates re-running the
entire pipeline to obtain new labels. This inflexibility means the resulting labels are static.

• Inability to Audit: API access to pretrained models does not permit inspecting most aspects of the
model. Users must simply accept the provided labels with only minimal additional information.
Techniques that ask the model for explanations for its decisions may not be reliable [15, 16, 17].

We address these obstacles through a simple but surprisingly powerful notion. Rather than having
pretrained models label data, we task language models to generate programs that can output labels.
These synthesized programs serve as annotators, capturing the underlying logic used by the models
when annotating. In other words, instead of distilling a powerful model to label a dataset (and

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/SprocketLab/Alchemist

Figure 1: Examples of generated programs and their prompts. These are synthesized by GPT-4 for
spam detection and cancer identification tasks. Programs use regular expressions (left program) and
keyword matching (right program) as their labeling logic to classify data points.

subsequently training a smaller model on the labeled data), we distill directly into code (Figure 1).
These resulting programs can either make predictions directly or can label training dataset then train
a downstream model using it1.

This simple notion resolves all of the challenges related to pretrained model-based annotation. First,
API calls scale with the number of programs instead of the number of data points. That is, since
we generate programs that can themselves make any number of predictions locally at no cost, we
can reduce the number of API calls by orders of magnitude. For example, for the dataset described
above [14], the number of GPT-4 calls was reduced from 7,569 (the size of the dataset) to 10 (the
number of generated programs), resulting in a massive cost reduction from $1,200 to $0.70, a 1,700-
fold decrease. Moreover, code can be easily inspected, corrected, and extended, allowing seamless
adaptation when prediction classes or labeling rules change.

While a powerful idea, distilling model into code presents several challenges. First, any particular
program may be inaccurate, fail to compile, or may otherwise be flawed, resulting in noisy program
outputs. We address this obstacle by applying weak supervision, a framework for dataset construction
from multiple noisy sources of signal [18, 19, 20, 21]. Next, operating on non-text modalities is
challenging. We handle this via a simple two-step approach that first extracts high-level concepts and
then uses them in concert with a local feature extractor to enable tractable program generation.

Contributions. We propose an alternative approach to replace expensive annotation processes that
require repetitive prompting for labels. We developed a system called Alchemist that implements
this idea. Empirically, Alchemist improves performance five out of eight datasets, with an average
enhancement of 12.9%—while reducing total costs by a factor of approximately 500×. Finally, we
introduce and validate extensions that address non-text modalities.

2 Related Work

Our work relates to LLM-based annotation, prompting, and the weak supervision framework.

Using Large Pretrained Models for Data Annotation. Large pretrained models have demonstrated
powerful capabilities using zero-shot prompting across a wide range of tasks [1]. One promising
development is their potential to serve as data labelers, which can reduce the cost and human effort in

1The latter option is preferable, as these models can often generalize beyond their source of supervision [13]

2

Figure 2: Overall workflow for Alchemist.

data labeling [1, 2, 11, 12]. Existing research in this area mainly focuses on approaches that allow
for more efficient inference, enhanced label generation, and distilling into smaller but specialized
labelers [3, 4, 5, 6, 7, 8]. However, scalability is the main limitation in these approaches, as making
inferences via querying an API for data examples can be cost-prohibitive. To tackle this challenge,
rather than prompting for labels repetitively, we propose prompting pretrained models for programs
that use synthesized labeling logic and can thus serve as alternative data labelers.

Prompt Engineering & In-Context Learning. In-context learning adapts pretrained models to new
tasks without additional fine-tuning [1]. It involves providing relevant examples as demonstrations to
solve the task, such as pairs of languages for translation [22]. By including task-specific examples,
models can better understand the task at hand. Adding a few data points as demonstrations [23] is
commonly suggested when models act as data annotators. Moreover, they can be selected [24, 25],
retrieved [26], or more efficiently, generated [27]. We explore various types of supplementary
information that can be added to Alchemist to help improve program generation and permit more
control over the labeling logic used in the programs.

Weak Supervision Framework. Weak supervision enables the rapid creation of large training
datasets by aggregating cheap-but-noisy signals derived from various labeling sources [18, 19, 21, 28].
These sources can be crafted by domain expertise, using labeling heuristics, or even trained on smaller,
weaker classifiers [29, 30, 31, 32]. Recent advancements in code generation open up the potential to
automate the heuristic design process. Frameworks such as ScriptoriumWS [33], and DataSculpt [34]
have been developed to take advantage of code-generating models [35, 9, 36] to craft weak supervision
sources through prompting. While similar in spirit to our approach, these have several drawbacks:
ScriptoriumWS requires more human effort in prompt engineering to better guide code-generation
models. Both ScriptoriumWS and DataSculpt can perform poorly in tasks requiring specific domain
expertise and, most importantly, they do not handle modalities beyond text—unlike Alchemist.

3 Alchemist System

We begin by presenting a general annotation workflow in Alchemist, followed by a detailed discussion
of each key step.

General Workflow. The process is depicted in Fig. 2. First, users select an unlabeled dataset and
create simple prompts to instruct language models to generate programs that incorporate labeling
logic. These prompts can integrate relevant information and may vary in their design, allowing for
the synthesis of multiple programs. Next, given a set of generated programs and their outputs, we
apply weak supervision techniques to obtain a set of aggregated labels. Finally, the labeled points can
be used to train a distilled model that can be stored and used locally.

3.1 Prompting Strategy

We propose a general and extensible prompt template for querying language models to generate
annotator programs. This general template consists of three key components:

• Task Description: Provides the model an overview of generated program’s desired objectives.
• Labeling Instructions: Specifies classes and the expected structure of the program’s output.
• Function Signature: Describes the function’s name and the input types to be used.

3

Figure 3: Alchemist can handle rich modalities through a simple extension. First, a language model identifies
task-specific concepts (top). Then, a local multimodal model is used as a feature extractor for these concepts,
producing low-dimensional feature vectors that can be ingested by generated labeling programs.

This simple but general template allows for flexible incorporation of various types of information,
enabling the model to generate programs that are tailored to specific requirements. Two sample
prompt templates in Alchemist are displayed in Fig 1.

Using Supplementary Information. Drawing inspiration from few-shot prompting [37, 1], where
users provide demonstrations (i.e., data points with their labels) to enhance generated responses,
we explore various types of supplementary information that can be integrated to assist models in
synthesizing programs. This approach is particularly useful for scenarios where language models may
lack the expertise to generate effective programs, or where specific adaptations in labeling logic are
required. Such information can be crafted by users themselves, domain experts or, more efficiently,
generated by language models themselves. Additionally, it can be combined with retrieval-augmented
generation (RAG) systems [38, 39] to access external knowledge.

We explore various types of supplementary information to assist in code generation, starting with
high-level concepts and then progressively looking into more practical details to control programs.

Dataset and Prediction Class Description. First, supplementary information can include relevant
background details about the purpose for which the dataset was built and high-level information about
the dataset, such as definitions for each label class. By providing this context, the language model
can better understand the task at hand.

Data Exemplars. Furthermore, we recommend including a small number of labeled data examples in
the prompt. This can help language models better comprehend the specific problem. Examples act as
concrete illustrations of the task, offering a clearer understanding of the expected output. This can be
particularly beneficial when dealing with a complex problem.

Keywords. Next, labeling logic in programs can make use of keyword-searching techniques (e.g.,
Fig 1). For instance, in situations such as spam detection or topic classification, certain words or
phrases may have a strong correlation with specific classifications. Providing several keywords in
the prompt may lead models to create labeling programs that explicitly search for the presence or
absence of these keywords. This allows for more targeted and precise labeling.

Specialized Labeling Rules. Finally, more prior knowledge such as heuristics, specialized labeling
rules, guidance, and domain-specific knowledge can be integrated into the prompt. This information
can provide concrete labeling steps on how to label specific classes and offer greater control over the
logic implemented in the generated programs.

4

Figure 4: Program examples generated by GPT4o on Waterbirds dataset. The left program is synthesized by
directly asking for a labeling program when the input is an image (raw pixels), while the right program uses
Alchemist’s extension. The former labels birds using the dominant color in the image, which can be predicted
incorrectly due to spurious correlations (e.g., background).

Overall, supplementary context is provided before the task description to enhance language models’
understanding of the task. This, in turn, enables models to generate programs that are more effective
and tailored to the specific requirements of user needs.

3.2 Dataset Synthesis

While generated programs can efficiently annotate data, these programs may produce outputs that are
noisy or inaccurate. However, as such programs may employ different techniques, such as pattern-
matching, heuristic rules, or other approaches—each with its own strengths and limitations—there
may be complementary signal in their outputs. This means we can aggregate them to mitigate the
impact of noise. To do so, we apply weak supervision techniques [18, 19, 20, 21]. This process starts
by learning a model of the reliabilities of the programs. Once learned, this model enables aggregating
label outputs from different programs into high-quality pseudolabels.

Alchemist is compatible with a variety of weak supervision aggregation models, called label models,
providing flexibility in the choice of the weak supervision approach. For simplicity, in this work, we
focus on using the Snorkel framework [19], which is a standard and widely-used approach in the
weak supervision community.

3.3 Extensions: Handling Complex Modalities.

Crafting programs that operate over text is relatively easy for large language models. More complex
data modalities, however, can be far more challenging. Consider images as an illustrative example.
Even employing state-of-the-art multimodal models, e.g., GPT-4o [40] and GPT-4V [9], to seek
programs operating over sample images may not produce satisfactory results.

To address this challenge, we extend Alchemist’s pipeline to include an intermediate step. Specifically,
we convert the raw data (i.e., in our example, image pixels) into a set of features representing high-level
concepts. These concepts are obtained by prompting a language model (or, potentially, a multimodal
model) to identify task-relevant notions. For example, for a bird categorization task, models may
identify “wing shape,” “beak shape,” or “foot type” as informative concepts for distinguishing between
bird species. Next, we use any open-source local multimodal model, like CLIP [41], as a feature
extractor for the identified concepts, producing low-dimensional feature vectors that can be easily
ingested by generated programs. As such models are free, this does not increase our cost.

Fig. 3 and Fig. 4 present examples of generated high-level concepts and the corresponding programs
used for the Waterbirds dataset, where the task is to distinguish between landbird and waterbird
specices [42]. This simple approach can be applied to any data modality where we have access to a
local multimodal model (i.e., a model operating on the modality of interest and text).

5

YouTube SMS Yelp IMDb
Est. Cost Accuracy Est. Cost F1-score Est. Cost Accuracy Est. Cost Accuracy

Zero-shot Prompting 0.096 0.871 0.240 0.907 3.873 0.845 3.400 0.737
Alchemist with GPT-3.5 0.004 0.891 0.004 0.900 0.005 0.575 0.004 0.662

MedAbs Cancer Finance French
Est. Cost Accuracy Est. Cost Accuracy Est. Cost Accuracy Est. Cost Accuracy

Zero-shot Prompting 1.944 0.311 15.925 0.716 0.201 0.641 0.641 0.611
Alchemist with GPT-3.5 0.006 0.346 0.003 0.968 0.007 0.660 0.006 0.690

Table 1: Testing performance of the distilled model is reported for each combination of method
and dataset. The estimated cost is obtained by calculating the number of input and output tokens
associated with GPT-3.5’s pricing table [49]. Other models may be even more expensive.

4 Experiments

We study the capability of Alchemist empirically. Our goals are to validate the following claims:

• Cost Reduction and Improved Performance (Sec. 4.1): Alchemist can reduce cost by orders of
magnitude, while producing labels of similar or better accuracy.

• Extendibility to Other Modalities (Sec. 4.2): Alchemist can operate with modalities beyond text.

• Use of Supplementary Information (Sec. 4.3): Incorporating relevant information into prompts
enables the generation of better programs, yielding more accurate pseudolabels.

• More Diverse Programs Can Help (Sec. 4.4): Increasing the diversity of generated programs
created by different labeling logic enables better pseudo labels.

• Comparing to Human-crafted Programs (Sec 4.5): Synthesized programs may be more effective
in comparison to human-crafted ones.

Datasets. We include diverse datasets covering text and image modalities. For text, we include eight
datasets that span three different types of language tasks. These include the YouTube [43], SMS [44]
datasets for spam classification, IMDb [45], Yelp [45], Finance [46], and French [47] datasets for
sentiment analysis, and the MedAbs [48] and Cancer [14] datasets for topic classification. We note
that the Finance, French, MedAbs, and Cancer datasets are relatively challenging, with points that
require a degree of domain expertise for accurate labeling. For example, the French dataset requires a
good understanding of the language. These may pose challenges for pretrained models.

For our extensions to richer modalities, we focus on image tasks. Our evaluation uses the Waterbirds
dataset [42]. This dataset is designed to assess models’ robustness to spurious correlations and ability
to handle distribution shifts. More details are in Appendix A.

4.1 Cost Reduction and Improved Performance

Setup. We open our evaluation of Alchemist with text domain datasets and use GPT-3.5 to generate
programs. For each dataset, we input pure prompts without supplementary information into GPT-3.5
and generate 10 programs to use. We construct training datasets by aggregating the programs’ outputs
into pseudolabels with the weak supervision framework Snorkel [19]. We then train a two-layer
MLP as a distilled model. We run five times with different random seeds and report their average
performance. As our main baseline, we directly use language models to produce annotations per
point. The resulting labels are used to train a distilled model for comparison. The prompt template
used in our baseline approach and our training settings are provided in Appendix A.

Expected Results. We anticipate that Alchemist can generate programs that can produce accurate
labels while substantially reducing the expense of API calls.

Results. Table 1 presents the distilled model’s performance on each testing dataset. We observe that
label accuracy is improved on five out of eight datasets, particularly in challenging settings such as
the MedAbs, Cancer, and French datasets, outperforming the baseline zero-shot prompting approach.
We also report the estimated costs of building training datasets. The costs for zero-shot prompting
depend on the number of tokens for the dataset. In contrast, Alchemist only prompts 10 programs for

6

Feature Extractor Method Average Accuracy (↑) Worst Group Accuracy (↑) Gap (↓)
— Vanilla Alchemist with GPT4o 0.395 0.367 0.028

Vanilla Alchemist with Claude 3 0.781 0.022 0.759

CLIP ViT-B/32 Zero-shot Prompting 0.820 0.318 0.502
Group Prompting 0.823 0.383 0.440

Alchemist with GPT4o 0.805 0.283 0.522
Alchemist with Claude 3 0.774 0.463 0.410

CLIP ViT-L/14 Zero-shot Prompting 0.904 0.335 0.569
Group Prompting 0.791 0.240 0.551

Alchemist with GPT4o 0.802 0.467 0.335
Alchemist with Claude 3 0.737 0.346 0.391

Table 2: Alchemist on non-text modalities. We experiment with standard Alchemist (top), our
proposed extension with two CLIP-based local models as feature extractors, and CLIP prompting
baselines. Alchemist achieves comparable performance on average accuracy while improving
robustness to spurious correlations.

each task, resulting in a significant reduction in the costs—by orders of magnitude. This efficiency is
the main advantage of Alchemist, as it allows for the creation of high-quality datasets with minimal
expense. We include ablation studies with other weak supervision models within the Alchemist
framework in Appendix C. They successfully demonstrate the flexibility and robustness of using
Alchemist.

4.2 Extending Alchemist to Other Modalities

Setup. Next, we validate the extension of Alchemist to richer modalities. We consider our approach,
where we prompt a multimodal model such as GPT4o and Claude 3, to generate high-level task-
specific concepts. We extract features for these concepts by employing CLIP as our local feature
extractor. This converts raw pixels into feature vectors for the extracted high-level concepts, producing
a set of similarity scores. Armed with these scores, we describe scores associated with their concepts
in prompts and ask GPT4o and Claude 3 for 10 programs. As before, we use Snorkel as our
aggregation procedure.

Baselines. We study two baselines. The first is the vanilla version of Alchemist, where we directly
ask GPT4o and Claude 3 to produce code that can operate on images (see left program in Fig. 4). The
second is simple zero-shot prompting using CLIP, along with a variant, a group prompting approach
that assumes access to spurious information and adds it to the given prompt2.

Expected Results. We expect employing our two-step process can enable tractable program genera-
tion. In addition, we hypothesize that programs generated in this way are beneficial in targeting salient
concepts and reducing the impact of irrelevant or shortcut features, thereby enhancing robustness.

Results. We present results in Table 2. Our evaluation focuses on three key metrics: average accuracy,
worst group accuracy, and the gap between these two measures. Ideally, a robust model should
achieve high average accuracy and high worst group accuracy while minimizing the disparity between
the two. First, we see that directly asking programs to use may have very low performance (GPT4o)
or may hugely suffer from spurious correlations, destroying worst group performance (Claude 3,
CLIP zero-shot). Our method addresses both cases. Compared to baseline methods, Alchemist
demonstrates increased worst group accuracy and a reduced gap between the average and worst group
accuracies. This is a key strength of Alchemist: targeting salient concepts to be used as features
may help move models away from spurious shortcuts found in the data. This validates Alchemist’s
ability to handle complex modalities while improving robustness.

7

YouTube SMS Yelp IMDb

GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3

General Prompt 0.92 0.92 0.66 0.64 0.62 0.75 0.65 0.82 0.78 0.71 0.77 0.77

+ Dataset Description 0.64 0.93 0.71 0.63 0.63 0.76 0.72 0.82 0.79 0.70 0.79 0.73
+ 5 Data Exemplars 0.91 0.86 0.76 0.46 0.66 0.62 0.72 0.82 0.82 0.68 0.75 0.73
+ Keywords 0.76 0.93 0.53 0.40 0.42 0.64 0.69 0.81 0.78 0.69 0.78 0.72
+ Labeling Rules 0.74 0.82 0.56 0.67 0.67 0.58 0.75 0.81 0.79 0.71 0.77 0.74

MedAbs Cancer Finance French

GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3

General Prompt 0.52 0.53 0.55 0.71 0.73 0.59 0.66 0.49 0.56 0.65 0.55 0.56

+ Dataset Description 0.49 0.50 0.51 0.59 0.62 0.60 0.61 0.63 0.62 0.39 0.58 0.67
+ 5 Data Examples 0.53 0.54 0.55 0.55 0.57 0.63 0.60 0.50 0.60 0.40 0.69 0.44
+ Keywords 0.55 0.55 0.55 0.55 0.55 0.46 0.66 0.62 0.65 0.69 0.66 0.67
+ Labeling Rules 0.52 0.55 0.56 0.61 0.59 0.63 0.66 0.56 0.67 0.65 0.66 0.33

Table 3: Testing performance of the label model is reported for each combination of prompting
strategy and dataset. We observe that GPT-4 and Claude 3 (that may possess better comprehension
capabilities) exhibit greater enhancements when provided with supplementary information.

16 20 24 28 32 36
Number of Collected Progams

0.62

0.64

0.66

0.68

0.70

F1
-s

co
re

SMS

16 20 24 28 32 36
Number of Collected Progams

0.785

0.790

0.795

0.800

0.805

0.810

Ac
cu

ra
cy

Yelp

16 20 24 28 32 36
Number of Collected Progams

0.720

0.725

0.730

0.735

0.740

0.745

0.750

Ac
cu

ra
cy

IMDb

Figure 5: Performance is reported using their average performance and standard deviations. Results
indicate that the label model is improved when the number of diverse programs increases.

4.3 Use of Supplementary Information

Setup. We test how integrating relevant information into the prompt context can augment generated
programs. Instead of manually crafting supplementary information, we harness the power of language
models to generate and integrate. This approach is useful for challenging datasets where users may
not have the necessary knowledge or expertise to start. We evaluate the effectiveness of this approach,
by comparing label model performance using programs generated by two different methods: pure
prompting and in-context prompting. In-context prompting involves supplementary information,
while pure prompting relies solely on the task description without any additional guidance. We
employ GPT-3.5, GPT-4 and Claude 3 as our program sources and synthesize ten for each strategy.

Expected Results. We hypothesize that providing supplementary information can enhance task
understanding, demonstrate specific labeling logic, and offer concrete steps, ultimately leading to
better programs for use.

Results. Table 3 presents this comparative analysis on label model performance using different type
of information. We observe that by incorporating supplementary information into pure prompts,
Alchemist can guide language models to generate more effective programs, which in turn produce
more accurate pseudolabels. Improvements are particularly evident in the challenging datasets such as
Finance and French. Moreover, this approach can be combined with RAG systems to include external
knowledge bases and customize the relevant information. Such flexibility compared to zero-shot
prompting is another key strength of Alchemist, as programs can easily be adapted, augmented, and
specialized.

4.4 More Diverse Programs Can Help

Setup. As shown in Table 3, incorporating different supplementary information results in varying
degrees of additional improvement. Potentially, certain sets of supplementary information allow the

2the group prompts are “waterbird on water background”, “waterbird on land background”, “landbird on
water background”, and “landbird on land background”.

8

YouTube SMS Yelp IMDb

Human
crafted

Synthesized
Programs Human

crafted

Synthesized
Programs Human

crafted

Synthesized
Programs Human

crafted

Synthesized
Programs

GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3 GPT-3.5 GPT-4 Claude 3

Num. of Programs 10 10 10 10 73 10 10 10 8 10 10 10 5 10 10 10
Coverage 0.89 1.00 1.00 1.00 0.41 1.00 1.00 1.00 0.83 0.78 0.99 0.88 0.88 0.89 1.00 0.98
Performance 0.85 0.89 0.89 0.72 0.89 0.90 0.93 0.89 0.76 0.57 0.82 0.83 0.73 0.66 0.75 0.70

Table 4: Analysis showing that Alchemist can achieve comparable or better accuracy and higher
coverage while using fewer programs to label the data.

model to specialize better on certain data points than others. We seek to achieve these performance
improvements without the need to re-prompt the model with each set of supplementary information.
Instead, we collect previously generated programs to obtain a set of programs with greater diversity.
We ask: can Alchemist achieve better performance by modeling more diverse programs?

We randomly select a set of programs from each category, collect them, and train the label model
with their program outputs. Additionally, we increase the number of sampled programs in each
category from 4 to 9. We test this approach on the datasets where Alchemist gives comparable or
lower performance than zero-shot prompting in our initial experiments in Table 1, namely the SMS,
Yelp, and IMDb datasets.

Expected Results. By obtaining more diverse programs to use, Alchemist can capture a wider range
of perspectives and labeling logic, potentially leading to more accurate pseudolabels.

Results. Fig. 5 visualizes the effect on the label model’s performance when we increase the diversity
in collected programs. It demonstrates a trend and indicates that involving a more diverse set of
programs can help to mitigate the impact of individual strategy biases or limitations, leading to the
production of better labels.

Overall, results in Sec. 4.3 and in Sec. 4.4 underscore that the use of supplementary information
and involving diverse types of programs can help achieve better performance.

4.5 Comparing to Human-crafted Programs

Setup. Lastly, we compare synthesized programs in Alchemist and manually crafted labeling
functions in WRENCH [50], which is a widely-used benchmark for evaluating weak supervision
methods. We focus on the datasets that overlap between Alchemist and WRENCH. For each dataset,
we use pure prompts to query GPT-3.5, GPT-4, and Claude 3 for 10 programs. We then evaluate the
performance of the distilled model for both methods. We also include the label model’s coverage in
our comparison. Higher coverage means that label model can produce more pseudolabels, yielding a
larger size of training dataset to use.

Expected Results. We expect that synthesized programs may offer some advantages in terms of
efficiency and effectiveness compared to human-designed ones.

Results. Table 4 presents their comparison. By leveraging the knowledge and capabilities of language
models, we find that generated programs offer several advantages, including better coverage (i.e., the
ability to label more data points) and comparable, or even better, performance. Generated programs
can reduce the need for laborious engineering, which can be time-consuming and often requires
a tedious design process to fine-tune labeling logic, such as thresholds and keyword usage. This
design process may lead to many undiscovered rules, resulting in lower performance on coverage and
potentially limiting the effectiveness of the labeling functions—unlike synthesized programs.

This is particularly evident in the SMS dataset, where WRENCH requires 73 manually crafted
labeling functions to obtain high-quality labels, while Alchemist only needs 10 generated programs
to obtain comparable performance and higher coverage. This significant reduction highlights the
potential of Alchemist to assist humans in designing labeling functions and make it more accessible
to users without extensive domain expertise.

9

5 Conclusion

We propose an alternative approach to costly annotation procedures that require repeated API requests
for labels. Our solution introduces a simple notion of prompting programs to serve as annotators.
We developed an automated labeling system called Alchemist to embody this idea. Empirically, our
results indicate that Alchemist demonstrates comparable or even superior performance compared to
language model-based annotation, improving five out of eight datasets with an average enhancement
of 12.9%. Notably, Alchemist reduces total costs by a factor of approximately 500. Furthermore,
we showcase the system’s extensibility to handle more complex modalities while enhancing the
robustness of predicted labels. Finally, we confirm that incorporating relevant information can
generate better programs, and increasing diversity leads to obtaining higher-quality labels.

6 Acknowledgments

We are grateful for the support of the NSF under CCF2106707 (Program Synthesis for Weak
Supervision) and the Wisconsin Alumni Research Foundation (WARF). We thank Dyah Adila, Albert
Gu, Harit Vishwakarma, and Nicholas Roberts, for their helpful feedback and valuable discussion.

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[2] Shuohang Wang, Yang Liu, Yichong Xu, Chenguang Zhu, and Michael Zeng. Want to reduce
labeling cost? gpt-3 can help. arXiv preprint arXiv:2108.13487, 2021.

[3] Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and
Lingpeng Kong. Zerogen: Efficient zero-shot learning via dataset generation. arXiv preprint
arXiv:2202.07922, 2022.

[4] Jiacheng Ye, Jiahui Gao, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Progen:
Progressive zero-shot dataset generation via in-context feedback. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages 3671–3683, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics.

[5] Jiahui Gao, Renjie Pi, LIN Yong, Hang Xu, Jiacheng Ye, Zhiyong Wu, WEIZHONG ZHANG,
Xiaodan Liang, Zhenguo Li, and Lingpeng Kong. Self-guided noise-free data generation for
efficient zero-shot learning. In International Conference on Learning Representations, 2023.

[6] Xingwei He, Zhenghao Lin, Yeyun Gong, Alex Jin, Hang Zhang, Chen Lin, Jian Jiao, Siu Ming
Yiu, Nan Duan, Weizhu Chen, et al. Annollm: Making large language models to be better
crowdsourced annotators. arXiv preprint arXiv:2303.16854, 2023.

[7] Ruoyu Zhang, Yanzeng Li, Yongliang Ma, Ming Zhou, and Lei Zou. Llmaaa: Making large
language models as active annotators. arXiv preprint arXiv:2310.19596, 2023.

[8] Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang, Tarek Abdelzaher, and Jiawei Han. Tuning
language models as training data generators for augmentation-enhanced few-shot learning. In
International Conference on Machine Learning, 2023.

[9] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[10] Anthropic. Introducing the next generation of claude, Mar 4, 2024.

[11] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120,
2023.

10

[12] Xiaohuan Pei, Yanxi Li, and Chang Xu. Gpt self-supervision for a better data annotator. arXiv
preprint arXiv:2306.04349, 2023.

[13] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

[14] Tetsuya Sasaki, Firoz Chowdhury, and Sunil Thite. Medical text dataset: Cancer doc classifica-
tion, 2023.

[15] Shiyuan Huang, Siddarth Mamidanna, Shreedhar Jangam, Yilun Zhou, and Leilani H Gilpin.
Can large language models explain themselves? a study of llm-generated self-explanations.
arXiv preprint arXiv:2310.11207, 2023.

[16] Andreas Madsen, Sarath Chandar, and Siva Reddy. Can large language models explain them-
selves? arXiv preprint arXiv:2401.07927, 2024.

[17] Chirag Agarwal, Sree Harsha Tanneru, and Himabindu Lakkaraju. Faithfulness vs. plausi-
bility: On the (un) reliability of explanations from large language models. arXiv preprint
arXiv:2402.04614, 2024.

[18] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data
programming: Creating large training sets, quickly. Advances in neural information processing
systems, 29, 2016.

[19] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher
Ré. Snorkel: Rapid training data creation with weak supervision. In Proceedings of the VLDB
Endowment. International Conference on Very Large Data Bases, volume 11, page 269. NIH
Public Access, 2017.

[20] Alexander Ratner, Braden Hancock, Jared Dunnmon, Frederic Sala, Shreyash Pandey, and
Christopher Ré. Training complex models with multi-task weak supervision. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 4763–4771, 2019.

[21] Daniel Fu, Mayee Chen, Frederic Sala, Sarah Hooper, Kayvon Fatahalian, and Christopher
Ré. Fast and three-rious: Speeding up weak supervision with triplet methods. In International
Conference on Machine Learning, pages 3280–3291. PMLR, 2020.

[22] Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke Zettlemoyer, and Marjan Ghazvininejad.
In-context examples selection for machine translation. arXiv preprint arXiv:2212.02437, 2022.

[23] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9):1–35, 2023.

[24] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen.
What makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021.

[25] Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching models to express their uncertainty in
words. arXiv preprint arXiv:2205.14334, 2022.

[26] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633, 2021.

[27] Hyuhng Joon Kim, Hyunsoo Cho, Junyeob Kim, Taeuk Kim, Kang Min Yoo, and Sang-goo
Lee. Self-generated in-context learning: Leveraging auto-regressive language models as a
demonstration generator. arXiv preprint arXiv:2206.08082, 2022.

[28] Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian, and Christo-
pher Ré. Fast and three-rious: Speeding up weak supervision with triplet methods. In Pro-
ceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org,
2020.

11

[29] Paroma Varma and Christopher Ré. Snuba: Automating weak supervision to label training data.
In Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases,
volume 12, page 223. NIH Public Access, 2018.

[30] Nilaksh Das, Sanya Chaba, Renzhi Wu, Sakshi Gandhi, Duen Horng Chau, and Xu Chu.
Goggles: Automatic image labeling with affinity coding. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 1717–1732, 2020.

[31] Benedikt Boecking, Willie Neiswanger, Eric Xing, and Artur Dubrawski. Interactive weak
supervision: Learning useful heuristics for data labeling. In International Conference on
Learning Representations, 2021.

[32] Nicholas Roberts, Xintong Li, Tzu-Heng Huang, Dyah Adila, Spencer Schoenberg, Cheng-Yu
Liu, Lauren Pick, Haotian Ma, Aws Albarghouthi, and Frederic Sala. AutoWS-bench-101:
Benchmarking automated weak supervision with 100 labels. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

[33] Tzu-Heng Huang, Catherine Cao, Spencer Schoenberg, Harit Vishwakarma, Nicholas Roberts,
and Frederic Sala. Scriptoriumws: A code generation assistant for weak supervision. ICLR
Deep Learning for Code Workshop, 2023.

[34] Naiqing Guan, Kaiwen Chen, and Nick Koudas. Can large language models design accurate
label functions?, 2023.

[35] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[37] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, and Zhifang Sui. A survey on in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[38] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented
generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33:9459–9474, 2020.

[39] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun,
and Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

[40] Open AI. Hello gpt-4o, Mar 13, 2024.

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[42] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[43] Túlio C Alberto, Johannes V Lochter, and Tiago A Almeida. Tubespam: Comment spam
filtering on youtube. In 2015 IEEE 14th international conference on machine learning and
applications (ICMLA), pages 138–143. IEEE, 2015.

[44] Tiago A Almeida, José María G Hidalgo, and Akebo Yamakami. Contributions to the study of
sms spam filtering: new collection and results. In Proceedings of the 11th ACM symposium on
Document engineering, pages 259–262, 2011.

12

[45] Wendi Ren, Yinghao Li, Hanting Su, David Kartchner, Cassie Mitchell, and Chao Zhang.
Denoising multi-source weak supervision for neural text classification. arXiv preprint
arXiv:2010.04582, 2020.

[46] P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala. Good debt or bad debt: Detecting
semantic orientations in economic texts. Journal of the Association for Information Science
and Technology, 65, 2014.

[47] Abir ELTAIEF. french book reviews, 2023.

[48] Tim Schopf, Daniel Braun, and Florian Matthes. Evaluating unsupervised text classification:
Zero-shot and similarity-based approaches. In Proceedings of the 2022 6th International
Conference on Natural Language Processing and Information Retrieval, NLPIR ’22, page 6–15,
New York, NY, USA, 2023. Association for Computing Machinery.

[49] OpenAI. Openai pricing table.

[50] Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner.
Wrench: A comprehensive benchmark for weak supervision. arXiv preprint arXiv:2109.11377,
2021.

[51] Dyah Adila, Changho Shin, Linrong Cai, and Frederic Sala. Zero-shot robustification of
zero-shot models with foundation models. arXiv preprint arXiv:2309.04344, 2023.

[52] A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer error-rates using the
em algorithm. Applied Statistics, 28(1):20–28, 1979.

[53] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE
engineering in medicine and biology magazine, 20(3):45–50, 2001.

[54] Ron Kohavi. Census Income. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5GP7S.

[55] Jason A Fries, Paroma Varma, Vincent S Chen, Ke Xiao, Heliodoro Tejeda, Priyanka Saha,
Jared Dunnmon, Henry Chubb, Shiraz Maskatia, Madalina Fiterau, et al. Weakly supervised
classification of aortic valve malformations using unlabeled cardiac mri sequences. Nature
communications, 10(1):3111, 2019.

13

The appendix is organized as follows. First, we provide details about datasets, training settings,
and computation resources in Appendix A. Next, in Appendix B we list prompts that we use to
query language models. Then, we present ablation studies in Appendix C using other models in
weak supervision to work with Alchemist. We include two additional modalities in Appendix D. We
incorporate other work [51] for enhancing robustness into Alchemist and present in E. Lastly, we
discuss limitations and broader impacts of our work in Appendix F.

A Datasets and Implementation Details

Dataset Task Type Prediction Classes # of Classes # of Train

YouTube [43] spam comment detection {“spam”, “ham”} 2 1686
SMS [44] spam text detection {“spam”, “ham”} 2 4571
Yelp [45] restaurant review sentiment classification {“postive”, “negative”} 2 30400
IMDb [45] movie review sentiment classification {“postive”, “negative”} 2 20000

MedAbs [48] medical abstract topic classification {“neoplasms”, “digestive system diseases”, “nervous system diseases”,
“cardiovascular diseases”, “general pathological conditions”} 5 10395

Cancer [14] biomedical document topic classification {“colon cancer”, “lung cancer”, “thyroid cancer”} 3 5450
Finance [46] finance news sentiment classification {“positive”, “neutral”, “negative”} 3 3488
French [47] book review sentiment classification {“positive”, “neutral”, “negative”} 3 6953
Waterbirds [42] bird species classification {“landbird”, “waterbird”} 2 5794

Table 5: Dataset Table.

We place more details about our datasets and experimental setups here. First, in Table 5 we show task
type, prediction classes, and number of training data points in each dataset. MedAbs, Cancer, Finance,
and French are considered to be more challenging settings, where these datasets typically need
domain expertise to provide labels. Waterbirds is considered to test for a more complex modality.

We employ Snorkel as our label model to aggregate program outputs and report results in the main
paper. We show more results using different choices of label model in Appendix C. All the distilled
models use the MLP model that is trained with 2 hidden layers, each comprising 32 units, using
ReLU activations between layers and no normalization. We run 5 times with different random seeds
and report their average performance. We use a A6000 NVidia GPU to run all experiments.

B Used Prompts

Dataset Zero-shot Prompting (Baseline)

YouTube what is the category of this youtube comment: [text]
SMS what is the category of this sms text: [text]
Yelp what is the sentiment of this restaurant review: [text]
IMDb what is the sentiment of this movie review: [text]
MedAbs what is the topic of this abstract: [text]
Cancer what is the topic of this document: [text]
Finance what is the sentiment of this news: [text]
French what is the sentiment of this book review: [text]

Table 6: Prompts for baseline approach are presented.

Dataset Task Description (Alchemist)

YouTube Write a bug-free and executable function in python to label comment on Youtube as spam or ham.
SMS Write a bug-free and executable function in python to label SMS text as spam or ham.
Yelp Write a bug-free and executable function in python to label the sentiment of restaurant review on Yelp as postive or negative.
IMDb Write a bug-free and executable function in python to label the sentiment of movie review on IMDB as postive or negative
MedAbs Write a bug-free and executable function in python to label the topic of medical abstract.
Cancer Write a bug-free and executable function in python to label the topic of biomedical document.
Finance Write a bug-free and executable function in python to label the sentiment of financial news as postive, neutral, or negative
French Write a bug-free and executable function in python to label the sentiment of book review written in French as postive, neutral, or negative.

Table 7: Task descriptions in Alchemist’s prompt are presented.

Next, we present the prompts used to query language models in the baselines and Alchemist.

14

Youtube SMS Yelp IMDB

Est. Cost Accuracy Est. Cost F1-score Est. Cost Accuracy Est. Cost Accuracy

Zero-shot Prompting 0.096 0.871 0.240 0.907 3.873 0.845 3.400 0.737
Weighted Majority Vote 0.004 0.874 0.004 0.886 0.005 0.705 0.004 0.520
Dawid-Skene 0.004 0.864 0.004 0.895 0.005 0.682 0.004 0.507
FlyingSquid 0.004 0.863 0.004 0.915 0.005 0.678 0.004 0.500
Snorkel 0.004 0.891 0.004 0.900 0.005 0.575 0.004 0.662

MedAbs Cancer Finance French

Est. Cost Accuracy Est. Cost Accuracy Est. Cost Accuracy Est. Cost Accuracy

Zero-shot Prompting 1.944 0.311 15.925 0.716 0.201 0.641 0.641 0.611

Weighted Majority Vote 0.006 0.354 0.003 0.968 0.007 0.650 0.006 0.221
Dawid-Skene 0.006 0.262 0.003 0.957 0.007 0.661 0.006 0.221
FlyingSquid 0.006 0.323 0.003 0.967 0.007 0.661 0.006 0.690
Snorkel 0.006 0.346 0.003 0.968 0.007 0.660 0.006 0.690

Table 8: Testing performance of the distilled model is reported for each combination of label model
and dataset.

First, we show the prompts used for the baseline approach of zero-shot prompting on text datasets in
Table 6. In these prompts, the placeholder “[text]” is replaced with individual data points and sent via
API calls to obtain labels for each data point.

Next, we present the prompts used in Alchemist in Table 7. The table displays the task description
component of each prompt. These descriptions outline the objective of the generated program and are
associated with the prediction classes. For the labeling instructions, we directly map the prediction
classes to their corresponding class indices and query the language models to output the appropriate
class index.

For the image task, we use the prompts [“an image of landbird”, “an image of waterbird”] to perform
zero-shot prompting using CLIP. In Alchemist, we first query high-level concepts and then combine
them with computed scores to prompt LLMs to generate programs. The first step involves the
following prompt: “What are the visual primitive concepts to classify “landbird” and “waterbird”?
Please organize the primitive concepts by name and use comparisons for the classes. Parse the results
into JSON format.”

Once we have obtained a set of similarity scores, we use the following prompt: “I have measured
similarity scores for the following descriptions as float numbers. If a score is close to 1, it is highly
related to the description. If a score is close to 0, it is less related to the description. The descriptions
are: [“A bird’s foot type is toed, grasping”]; [“A bird’s foot type is paddling, swimming”]. Generate a
labeling function with input scores to classify landbirds and waterbirds. If it cannot be determined,
the function should return -1, but use this cautiously.” Descriptions will be replaced by different
generated concepts.

C Ablation Studies

Alchemist is compatible with a variety of weak supervision aggregation approaches. We report
additional results with different choices of label models. Besides Snorkel, we consider three more
widely-used label models: Weighted Majority Vote, Dawid-Skene [52], and FlyingSquid (FS) [28].
We reuse our experimental setup from Sec. 4.1 and in Sec. 4.5 and present the performance of the
distilled models in Table 8 and in Table 9, respectively.

In Table 8, we observe that the label accuracy is enhanced or achieves comparable performance with
different label models, showcasing Alchemist’s flexibility in working with various label models. In
Table 9, we include compare them with human-crafted labeling functions developed in WRENCH [50].
Similarly, Alchemist obtains higher coverage and achieves comparable or even better label accuracy
while reducing the need to craft a large number of programs manually.

Next, we conduct an experiment by varying the temperature in our query APIs and running Alchemist
on four different datasets. We train the end model five times with different random seeds and
computed the average performance and the variance. Results are shown in Table 10. We observe

15

Number of Programs Coverage Weighted Majority Vote Dawid-Skene FlyingSquid Snorkel

Youtube

Human-crafted 10 0.89 0.88 0.84 0.87 0.85

GPT-3.5 10 1.00 0.87 0.86 0.86 0.89
GPT-4 10 1.00 0.85 0.88 0.87 0.89

Claude 3 10 1.00 0.77 0.71 0.73 0.72

SMS

Human-crafted 73 0.41 0.90 0.86 0.00 0.89

GPT-3.5 10 1.00 0.89 0.90 0.90 0.90
GPT-4 10 1.00 0.91 0.90 0.92 0.93

Claude 3 10 1.00 0.91 0.92 0.92 0.89

Yelp

Human-crafted 8 0.83 0.75 0.83 0.77 0.76

GPT-3.5 10 0.78 0.70 0.68 0.68 0.57
GPT-4 10 0.99 0.73 0.81 0.72 0.82

Claude 3 10 0.88 0.77 0.78 0.81 0.83

IMDb

Human-crafted 5 0.88 0.72 0.73 0.68 0.73

GPT-3.5 10 0.89 0.52 0.51 0.50 0.66
GPT-4 10 1.00 0.54 0.55 0.54 0.75

Claude 3 10 0.98 0.59 0.64 0.60 0.70

Table 9: We offer a comparison between a wider range of label model options for synthesized
programs and those designed by humans.

YouTube SMS French Cancer

Label Model End Model Label Model End Model Label Model End Model Label Model End Model

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

Temperature
0.0 0.755 0.020 0.795 0.005 0.589 0.000 0.866 0.014 0.550 0.001 0.690 0.000 0.729 0.000 0.935 0.009
0.5 0.898 0.002 0.870 0.005 0.603 0.013 0.854 0.019 0.519 0.000 0.690 0.001 0.733 0.000 0.940 0.010
1.0 0.817 0.004 0.803 0.017 0.667 0.022 0.930 0.012 0.555 0.001 0.690 0.000 0.731 0.000 0.938 0.006

Table 10: We varied the temperature in GPT-4 API calls, showing consistent performance across
four datasets. We also trained the end model five times, displaying the average performance and the
variance. These results confirm the stability of Alchemist.

consistent labeling performance across different temperatures (0.0, 0.5, and 1.0), demonstrating
Alchemist’s stability. Additionally, the stability of generated programs highlights the significance
of including aggregation models to handle noisy and diverse outputs, resolve conflicts, and produce
final labels.

D Richer Modalities

We run Alchemist in two additional modalities in Table 11: time-series (ECG heartbeat classifica-
tion [53]) and tabular (Census income classification [54]). For ECG heartbeat classification, we
generated 10 labeling programs from GPT-4o. For the Census income dataset, we generated program
codes for each attribute (e.g., gender, education, age, race). We used Snorkel as our label model. The
results demonstrate Alchemist’s capability to handle more complex modalities and produce satisfac-
tory performance. We compared Alchemist with human-crafted labeling functions from WRENCH.
Alchemist uses fewer labeling functions (programs) and reaches higher labeling performance.

In general, Alchemist will work well with any of these modalities as long as we have access to any
cheap local feature extractor. This includes medical imaging tasks: [55] showed manually-crafted
simple labeling functions were able to identify heart problems in MRI sequences based on very
simple primitives, which could act as the feature extractors for Alchemist.

E Improving Robustness

We integrate advancements from existing robustness techniques into Alchemist to further improve
accuracy and reduce spurious correlations. Specifically, we consider RoboShot [51], which prompts
LLMs for spurious and correct correlation features, then calibrates image embeddings by projecting
them to reject or accept concepts. In our setup, we use GPT-4o to identify spurious correlations for

16

ECG Heartbeat Classification Census Income Classification

Human Crafted Synthesized by GPT4o Human Crafted Synthesized by GPT4o

Modality Time-Series Tabular
of Train Set / # of Test Set 87554 / 21892 30162 / 15060

of Classes 5 2

of Programs — 10 83 13
Label Model Accuracy — 0.827 0.681 0.725

Table 11: We included two new modalities in our evaluation: time-series and tabular data. Both
performed well using a few generated programs. In the Census dataset, Alchemist outperformed
human-crafted labeling functions in WRENCH.

Feature Extractor Method Average Accuracy (↑) Worst Group Accuracy (↑) Gap (↓)

CLIP ViT-B/32 Zero-shot Prompting 0.820 0.318 0.502
Group Prompting 0.823 0.383 0.440

Alchemist with GPT4o 0.805 0.283 0.522
RoboShot + Alchemist with GPT4o 0.700 0.375 0.325

CLIP ViT-L/14 Zero-shot Prompting 0.904 0.335 0.569
Group Prompting 0.791 0.240 0.551

Alchemist with GPT4o 0.802 0.467 0.335
RoboShot + Alchemist with GPT4o 0.803 0.569 0.234

Table 12: We integrate Roboshot into Alchemist by querying GPT-4 for spurious correlation features
and rejecting them, then reusing the generated programs in Alchemist. This integration improves
average accuracy and worst-group performance, enhancing robustness to spurious correlations.

classifying waterbirds and landbirds, then project image embeddings onto these concept embeddings
to reject spurious correlations through subtraction. We compute cosine similarity using the calibrated
embeddings to obtain score sets, which are then fed into Alchemist’s generated programs. The
spurious correlations identified by GPT-4o are [“water background”, “land background”, “aquatic
plants”, “trees and bushes”]. Results are displayed in Table 12. This integration using GPT-4o
successfully enhances robustness to spurious correlations by improving worst-group accuracies.

F Discussion

Techniques to Evaluate Generated Programs. There are many ways to evaluate the quality of
generated programs in advance. Expert users can quickly determine whether key problem properties
are being used by looking at the code. Besides human inspection, Alchemist includes several
automated measurement tools to diagnose generated programs. First, we analyze program outputs to
compute coverage, polarity, conflict, and overlap (see 3 for definitions). For example, if coverage (the
fraction of data points with at least one label) is below 10%, we discard the program and ask users to
generate a new one. Moreover, if a validation dataset is available, Alchemist can run diagnostics to
empirically compare accuracy with ground truth, offering more insight into the program’s reliability.
This data-driven feedback loop ensures tractable program generation. Notably, these tools are not
typically accessible with model-based annotation methods.

Limitations. There are two primary limitations in Alchemist. First, the performance of the datasets
we test is still dependent on the capabilities of the language model. If the language model’s ability to
comprehend the given task and generate effective programs is subpar, the labeling performance may
suffer. The second limitation arises when dealing with extremely complex tasks. As the complexity
of the task increases, the generated code may become longer, more intricate, and harder to understand,
posing challenges for developers who take time to validate correctness.

3https://snorkel.readthedocs.io/en/v0.9.3/packages/_autosummary/labeling/snorkel.
labeling.LFAnalysis.html

17

https://snorkel.readthedocs.io/en/v0.9.3/packages/_autosummary/labeling/snorkel.labeling.LFAnalysis.html
https://snorkel.readthedocs.io/en/v0.9.3/packages/_autosummary/labeling/snorkel.labeling.LFAnalysis.html

Broader Impacts. We do not see explicit negative impacts in Alchemist’s annotation process.
However, generated programs from language models may contain biased labeling logic, toxic content,
or malicious functions. To mitigate this, auditing and guardrails may be necessary.

18

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes. Our claims are accurately reflect our contributions in data annotation and
its scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

19

Justification: Yes. We discuss the limitations of the work in Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is an empirical work. It does not apply to this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes. We report our training settings, and used prompts in the Appendix (See
Appendix A and Appendix B).

Guidelines:

20

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. We release our code and data here: :https://github.com/
SprocketLab/Alchemist..

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

21

: https://github.com/SprocketLab/Alchemist.
: https://github.com/SprocketLab/Alchemist.
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss training and testing details in our experiment sections and in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Re-prompting labels for data points may create a huge expense.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We place the information about computer resources in the Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.

22

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: It follows NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss them and place in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This doesn’t apply to this paper.

23

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes. We properly credit data, paper, and ideas that we used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We document well about the asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

24

paperswithcode.com/datasets

Answer: [NA]
Justification: This doesn’t apply to this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper doesn’t involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

25

	Introduction
	Related Work
	Alchemist System
	Prompting Strategy
	Dataset Synthesis
	Extensions: Handling Complex Modalities.

	Experiments
	Cost Reduction and Improved Performance
	Extending Alchemist to Other Modalities
	Use of Supplementary Information
	More Diverse Programs Can Help
	Comparing to Human-crafted Programs

	Conclusion
	Acknowledgments
	Datasets and Implementation Details
	Used Prompts
	Ablation Studies
	Richer Modalities
	Improving Robustness
	Discussion

