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ABSTRACT

Temporal Knowledge Graph (TKG) extrapolation aims to predict future missing
facts based on historical information. While graph embedding methods based on
TKG topology structure have achieved satisfactory performance, the semantic text
information of entities and relations still needs to be fully exploited. As large lan-
guage models (LMs) such as ChatGPT sweep the entire field of natural language
processing field, considerable works about KGs augment LMs with structured
representations of world knowledge. In this paper, we proposed a method called
TKG-LM to fill the gap in the effective integration of TKG and LMs, including
historical events pruning, sampling prompt construction, and layer-wise modality
fusion. Specifically, we adopt a pruning strategy to extract valuable events from
numerous historical facts and reduce the search space for answers. Then, LMs
and time-weighted functions are adopted to score the semantic similarity of each
neighbor tuple, and the history-sampling prompt is built as the input of LMs. We
integrate the encoded representation of LMs and graph neural networks in a multi-
layer framework to enable bidirectional information flow between the modalities.
This facilitates the incorporation of structured topology knowledge into the lan-
guage context representation while leveraging linguistic nuances to enhance the
graphical representation of knowledge. Our TKG-LM outperforms state-of-the-
art (SOTA) TKG methods on five standard TKG datasets and beats the existing
LLM and LM+KG models. Further ablation experiments demonstrate the role of
our module designs and the benefits of integrating LM and GNN representation.

1 INTRODUCTION

Temporal knowledge graph (TKG) (Ji et al., 2021; Wang et al., 2023) , as a universal format for
describing facts in the real world, can record the relationships between entities and the timestamps
when these relationships are established. Most TKG data is typically represented as quadruples
(subject, relation, object, and time) and can serve as the perfect knowledge base for answering ques-
tions about when certain events occur. For example, (Barack Obama, Make a visit, France, February
10) indicates that Obama made a visit to France on February 10. In this paper, we mainly address
the extrapolation over TKGs, which requires modeling the dynamics of events along the timeline
and forecasting future incomplete facts (including missing entities and relations) based on historical
information. Extrapolation tasks have attracted widespread attention due to their enormous practical
significance and are gradually playing an important role in many natural language processing (NLP)
tasks, such as open-world knowledge completion (Shi & Weninger, 2018), crisis event forewarn-
ing (Luo et al., 2020), and financial forecasting (Cheng et al., 2022).

Due to the abundant dynamics of facts on TKG, previous works towards TKG extrapolation (Seo
et al., 2018; Jin et al., 2019; Zhu et al., 2021) mainly focus on how to mine the most valuable
historical events associated with future facts based on the connected graph topology of TKG. In
general, these approaches model structured knowledge with the evolutionary interactions of a se-
ries of graph snapshots, and predict the score of new facts based on hidden representations in the
embedding space. Despite their simplicity and effectiveness, the sufficient structured semantics of
TKG can hardly be represented by semantic-agnostic GNNs, which largely wastes the powerful
reasoning potentials of language nuances. Recently, pre-trained Language Models (LMs) have ad-
vanced the capability of natural language understanding and reasoning by a remarkable progress
from BERT (Devlin et al., 2018) to GPT-3 (Brown et al., 2020). Driven by the noteworthy success
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of language models (LMs), extensive efforts have been directed towards integrating pre-trained LMs
with diverse domains, such as dynamic graphs (Zhang, 2023), knowledge graphs (Yao et al., 2019;
Yasunaga et al., 2021), and tables (Jiang et al., 2023). Regarding the most relevant contributions to
TKG, KG-BERT (Yao et al., 2019)incorporates structured knowledge from KGs into both pretrain-
ing and fine-tuning processes to enhance semantic modeling of KGs. Nevertheless, the dynamic
nature of TKG complicates the application of these aforementioned methods designed for KGs to
the extrapolation of TKG.

To the best of our knowledge, the integration of expressive LMs with structured TKGs still remains
unexplored, which mainly faces the following three challenges: (i) Adequate utilization of the
semantic prior knowledge of LMs. Existing works usually directly utilize historical events struc-
turally related to the entity (such as static graphs (Li et al., 2021) and global histories (Li et al.,
2022)), but these events contain considerable context-free factors of the prediction. We can effec-
tively capture valuable events from numerous historical facts by using LMs. (ii) Robust temporal
reasoning. LMs trained on static corpora present a very serious defect in processing temporal ex-
trapolation tasks. Manually constructing topology-relevant prompt instructions will cause LMs to
over-rely on simple, or even spurious, patterns to find shortcuts to answers, leading to overfitting and
reducing generalization (Wang et al., 2021; Lee et al., 2023). (iii) Effectively interaction of multi-
modal information. How to effectively fuse the two modalities of graph embedding and linguistic
representation for joint reasoning is an import and opening qusetion. The modality interaction is
limited in scope and degree and is usually performed in a shallow or non-interactive manner (Either
there is no interaction or one kind of information is used to augment the other) (Yasunaga et al.,
2021; Zhang et al., 2022). In addition, LMs has a weak perception of spatial and topological factors,
and they are unable to perform precise multi-step computational reasoning on history snapshots as
GNNs can. (Lee et al., 2023)

To overcome the above three challenges and benefit from graph embedding and text encoding ad-
vantages, we propose a model that enhances the TLG extrapolation by LMs (called TKG-LM),
mutually beneficial to learning contextual semantic information and topologically structured knowl-
edge. Specifically, we propose a time-weighted LM-based function to score the gap between the
query to be predicted and its historical fact. The most relevant events are retained and retrieved as
the subgraph for subsequent inference. To alleviate the pain point of LM’s poor performance on
temporal reasoning tasks, we devise an adaptive prompt based on sampling as the input of LMs. We
then feed the pruned subgraph and the above prompt into the GNN and LM layer, respectively. The
layer-wise modality interaction is composed of an attention-based residual fusion module. It can
effectively integrate the explicit information provided by TKG semantic context with the implicit
association between knowledge to carry out powerfully structured reasoning. The optimization ob-
jective involves the loss of predicting entity and relation, as well as the loss of reconstructing target
tokens by the LM.

We evaluate the performance of our TKG-LM on five commonly used TKGs: the ICEWS series
dataset in the crisis warning domain (Trivedi et al., 2017), the global event dataset GDELT (Leetaru
& Schrodt, 2013), and the dataset YAGO (Mahdisoltani et al., 2013) about Wikipedia and knowl-
edge. TKG-LM outperforms methods from four different domains: existing state-of-the-art (SOTA)
TKG embedding baselines, fine-tuned LM, Graph+LM, and KG+LM models. Further ablation ex-
periments demonstrate the role of our module designs and the benefits of integrating LM and GNN
representation.

2 RELATED WORK

TKG Extrapolation Learning In this section, we review the existing methods for TKG extrapo-
lation tasks. TTransE (Leblay & Chekol, 2018) incorporates temporal constraints and encodes this
information into a translation similar to RNN relations. CyGNet (Zhu et al., 2021) proposes a copy-
generation mechanism that uses repeated patterns in historical facts to predict future facts while
ignoring higher-order semantic dependencies between concurrent entities. RE-NET (Li et al., 2021)
models the long-term relationship of the entities to be predicted as a sequence and combines RNN to
replenish temporal and structural dependencies. xERTE (Han et al., 2020) designs a representation
update mechanism that iteratively propagates attention along sampled edges to mimic human rea-
soning behavior. RE-GCN (Li et al., 2021) focuses on evolutionary dynamics in TKG and generates
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entity embeddings by modeling a sequence of historical graph snapshots. TiRGN (Li et al., 2022)
proposes a local-global history pattern time-guided recurrent graph network to consider different
laws of historical facts comprehensively. The above methods ignore the large amount of textual
information inherent in historical facts of TKGs and do not absorb the advantages of multi-modal
KG reasoning models.

LM-Enhanced Models In recent years, Language Models (LMs) especially GPT-3 (Brown et al.,
2020), have achieved impressive performance on natural language processing tasks. Their exten-
sions are gradually used to solve problems with data from different modalities. KG-Bert (Yao et al.,
2019) is the first to utilize a pre-trained language model for knowledge graph reasoning tasks. Kg-
S2S (Cheng et al., 2022) will unify the representation of facts in KG as flat texts to handle different
linguistic graph structures. Graph-BERT (Zhang et al., 2020) integrates graph structure into BERT-
style models, allowing them to learn graph representations effectively. It leverages self-attention
mechanisms for learning on both textual and graph data. GraphToolFormer (Zhang, 2023) hand-
craftes instructions and a few hint templates for graph reasoning tasks and allowes LMs to call ap-
propriate external API functions to augment the dataset of reasoning statements. StructGPT (Jiang
et al., 2023) utilizes external interfaces to accurately access and filter structured data and further
iterates this step using LM’s reasoning capabilities. However, the modality interaction of the above
works is limited in scope and degree and is usually performed in a shallow or non-interactive manner
(either there is no interaction or one kind of information is used to augment the other). In the paper,
we explore deeper integrations of both topological and semantic modality.

3 PROPOSED METHOD: TKG-LM

In this section, we discuss new approaches to incorporating textual data into temporal knowledge
graph embeddings. As for the extrapolation over TKGs, we detail our TKG-LM from the following
four aspects: 1) Scoring and Pruning (§3.1). To handle the vast amount of historical facts in TKG,
we utilize the language model’s prior knowledge to filter out irrelevant events, thereby decreasing
the search space for answers. The relevance measure is a scoring function that combines semantic
and temporal information. 2) Sampling Prompt Construction (§3.2). To improve the robustness of
LMs on TKG extrapolation prediction, we construct adaptive and variable sampling prompt instruc-
tions as the input of LMs. 3) Layer-wise Modality Fusion §3.3. Our method integrates the encoded
representation of LMs and graph neural networks in a multi-layer attention-based module to enable
bidirectional information flow between two modalities, while leveraging linguistic nuances to en-
hance the graphical representation of knowledge. Finally, the embedding of entities and relations
learned by the model are decoded into probabilities, and the optimization objective is calculated.

Definitions A TKG is formalized as a directed multi-relational dynamic graph G = {E ,R, T ,F}
with a set of entities E , relations R, timestamps T , and facts (edges) F . Each fact f ∈ F that
occurs at time t is described as a quadruple (s, r, o, t), where o, s ∈ E are head and tail entities
respectively while r ∈ R is their relation. The inverse quadruple (o, r−1, s, t) will be appended to
F , and the TKG G is split into a sequence of time-stamped snapshots G = {G1, ...,GT }. The TKG
extrapolation aims to forecast a future missing object, subject, or relation according to previous
historical subgraphs. Formally, given queries (s, r, ?, t), (?, r, o, t) and (s, ?, o, t) ∈ Gt, we learn a
function f(·) that predicts the conditional probability p of all entities and relations:

G1:t−1 = {G1, ...,Gt−1}
f(·)−→ p(o | s, r, t), p(s | o, r, t), and p(r | s, o, t). (1)

3.1 SCORING AND PRUNING

Given a query q = (s, r, ?, t) ∈ Gt to be predicted, let Ns
(m) be all the m-hop neighbors of the entity

s which are retrieved from the historical snapshots G1:t−1. We define the m-hop subgraph of q as
the induced subgraph of s ∪Ns

(m), i.e. Gq
(m) = G1:t−1[s ∪Ns

(m)], then the fact set of Gq
(m) is:

Fq
(m) = {f : (u, rf , v, tf ) | u, v ∈ s ∪Ns

(m), tf < t, f ∈ F1:t−1 ⊂ G1:t−1}, (2)

where f is a fact quadruple, F1:t−1 is the fact set of G1:t−1, and Fq
(m) represents the set of historical

events topologically related to q. Existing works usually directly utilize Fq
(m) for representation
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Figure 1: Framework of our TKG-LM. The fact f in the m-hop subgraph Gq
(m) of the query q is

scored by a pre-trained LM and pruned to Gq
sub. The darker the red edge, the more relevant q and

the historical facts are, and the higher the probability of being sampled as the prompt Cϕ(q,LM).
The two modality information represented by RGAT and LM-Layer will interact layer-by-layer by
a residual attention module. The optimization object includes the loss for entity prediction Lq

ent,
relation prediction Lq

rel, and target token reconstruction Lq
lm.

learning, such as building the static graph of snapshots (Li et al., 2021) or considering global histo-
ries of entities (Li et al., 2022)). However, Fq

(m) contains considerable interference events irrelevant
to the query. Confounding multiple related and irrelevant factors together without effective extrac-
tion may lead to overfitting and introduce uncertainty.

Considering the above limitations, we innovatively propose a time-aware pruning strategy based on
LMs, which can extract valuable historical events from Fq

m. It is known that LMs learn to implicitly
encode extensive knowledge about the world after being trained on a common text anticipation
library. To make fully use of the semantic prior knowledge of LMs and accurately infer future facts,
our strategy adopts a pre-trained LM such as BERT or RoBERTa to score the semantic gap between
each historical fact and the query. In a manner akin to the training method used for masked language
models (MLMs), we treat historical facts as the masked text and the query q as their surrounding
text. Formally, the probability vector P q of all tokens in the vocabulary is predicted by q:

P q = Head (LM-Encoder (Tokenizer ([Text(t);Text(s);Text(r)]))) ∈ Rvocab-size, (3)
where LM-Encoder(·) denotes the LM encoder consisting of multiple transformers, producing con-
textualized representation for the sentence [Text(t);Text(s);Text(r)]. Head(·) is an MLP classifica-
tion layer that takes the hidden representation from the LM encoder to predict each token’s proba-
bility, and vocab-size is the size of the vocabulary.

For each historical fact f = (u, rf , v, tf ) ∈ Fq
(m), we concatenate the text

[Text(u);Text(rf );Text(v)] and tokenize the combined sequence into masked token indices X =
{x1, ..., xL}. The time-weighted semantic gap between f and q is calculated by:

g(f | q,LM) = (1− ri) · LMLM = (1− exp (−(t− tf ))) ·
−1

|X|
∑
x∈X

logP q
x , (4)

where ri is the time-weighted coefficient, which exponentially increases in the negative direction
as the time difference increases. LMLM is the cross-entropy loss for masked token reconstruction,
and its value measures the semantic gap between each historical fact and the query. The larger
g(f | q, LM) is, the larger is the gap between f and q, so we pick n historical facts with the smallest
g(f | q, LM) to build a pruned subgraph of Gq

(m) called Gq
sub.

The process of pruning irrelevant historical facts aims to decrease candidate entities and relations.
This improves the training process’s efficiency and enhances prediction performance, which is ver-
ified in the ablation experiments. For example, considering the 2-hop subgraph of the quadruple
(Barack Obama, Host a visit, François Hollande, Feb 10) in the ICEWS14 dataset, its number of
historical events is close to 3000. As shown in Figure 1, “China” and “Poland” are irrelevant enti-
ties, which may introduce unnecessary difficulties in inference.
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3.2 SAMPLING PROMPT CONSTRUCTION

There are two inherent drawbacks to LMs: (i) have a weak perception of spatial and topologi-
cal structure, and (ii) unable to perform accurate multi-step computational reasoning. To alleviate
the above drawbacks, existing works manually construct topology-relevant instructions to fine-tune
LMs (Zhang, 2023; Jiang et al., 2023). However, when it comes to the temporal extrapolation tasks,
directly using the fixed prompt template will present a very serious defect. It causes LMs to over-
rely on simple, or even spurious, patterns to find shortcuts to answers, leading to overfitting and
reducing generalization (Wang et al., 2021; Lee et al., 2023).

In order for LMs to learn a robust representation of the underlying relationships between facts, we
construct sampling prompts based on the prior scoring function of §3.1. Specifically, we normalize
the gap g(f | q, LM) of each fact f on the pruned subgraph Gq

sub by the softmax function:

Φ(q,LM) : φ(f | q,LM) ≜ 1− softmax
f∈Fq

sub

{g(f | q,LM)}, (5)

where Fq
sub is the fact set of Gq

sub, φ(f | q, LM) is the relevent probability between f and q, and
Φ(q, LM) is the corresponding probability distribution. During each training iteration, k historical
events in Fq

sub are sampled according to Φ(q, LM):

Ff∼Φ(q,LM) := {fi | fi ∼ Φ(q,LM), fi ∈ Fq
sub ⊂ Gq

sub}
k
i=1. (6)

Then the context of the sampling prompt of q = (s, r, ?, t) is buid as:

CΦ(q,LM) = Text
(
[Ff∼Φ(q,LM); q]

)
= Text ([tf1 , u1, rf1 , v1; . . . ; tfk , uk, rfk , vk; t, s, r, ?]) . (7)

Our method strives to answer time-sensitive questions, explore knowledge graphs, infer time infor-
mation from questions, and help models find answers.

3.3 LAYER-WISE MODALITY FUSION

An important and opening question is how to effectively fuse the two modalities of graph embedding
and linguistic representation for joint reasoning. The modality interaction of previous works is
limited in scope and degree and is usually performed in a shallow or non-interactive manner (either
there is no interaction or one kind of information is used to augment the other) (Yasunaga et al., 2021;
Zhang et al., 2022). On the one hand, LMs has a weak perception of spatial and topological factors,
and they are unable to perform precise multi-step computational reasoning on history snapshots
as GNNs can. On the other hand, LMs can enhance the ability to capture valuable free text. It
also augments the text encoding paradigm by modeling contextual knowledge, which is crucial for
graph-related tasks.

To enhance the mutual interactions between text and TKGs, we utilize a residual attention-based
module to fuse modalities. This process involves taking in text tokens and TKG node embeddings
and exchanging information between them by layer-wise encoders to create a fused representation
for each token and the query. Specifically, the sampling prompt CΦq,LM is mapped into initial token
embeddings [x0[cls];X

0
[Ff∼Φ(q,LM)]

;X0
[q]] by an LM-Embedding layer:

[x0[cls];X
0
[Ff∼Φ(q,LM)]

;X0
[q]] = LM-Embedding

(
Tokenizer

(
CΦ(q,LM)

))
. (8)

And N layers of the LM are adopted to update the textual modality representations:

[x̃ℓ[cls];X
ℓ
[Ff∼Φ(q,LM)]

;Xℓ
[q]] = LM-Layerℓ

(
[xℓ−1

[cls] ;X
ℓ−1
[Ff∼Φ(q,LM)]

;Xℓ−1
[q] ]

)
, ℓ = 1, · · · , N. (9)

Then we extract topological modality representations on q’s pruned graph Gq
sub by performing the

attention mechanism (Vaswani et al., 2017). The l-th layer attention coefficient αℓ
u,r,v,t between

each subject u ∈ Gq
sub and its triple neighbor tuples (r, v, t) ∈ Nu is denoted as:

αℓ
u,r,v,t = softmax

(r,v,t)∈Nu⊂Gq
sub

{ReLU
(
aTW ℓ

1 [h
ℓ−1
u ∥ hℓ−1

v ∥ zr ∥ ψ(t+ − t)]
)
}, (10)

ψ(∆t) = [cos(w1∆t+ b1), . . . , cos(wd∆t+ bd)] ∈ Rd, (11)

5



Under review as a conference paper at ICLR 2024

where ReLU is the activation function, T is the transposition, and ∥ is the concatenation. a ∈ R3d

and W ℓ
1 ∈ R3d×3d are learnable parameters. ψ(∆t) is a time encoding function and t+ is the

maximum over all times in Nu. zr ∈ Rd is the embedding of relation r, and hℓu ∈ Rd is the l-th
layer embedding of u, which is updated by the previous layer:

h̃ℓu =
∑

(r,v,t)∈Nu⊂Gq
sub

αℓ
u,r,v,tW

ℓ
2 (h

ℓ−1
v + zr) +W ℓ

3h
ℓ−1
u , ℓ = 1, . . . ,M, (12)

where W ℓ
2 and W ℓ

3 are learnable parameters, M is the number of GNN layers. As for the LM-
GNN fusion branch, When the layer number is N-M to N: The first N layers of LM extract hidden
representations of the prompt, the representation corresponding to the first token [cls] is fused with
the node embeddings of GNN, and after concatenating, an attention-based module is used for fusion:

ρℓs = softmax{tanh(W4x̃
ℓ
s)a3, tanh(W5h̃

ℓ
s)a2} ∈ R2 (13)

hℓs = σ
(
ρℓs0W4x̃

ℓ
[cls] + ρℓs1W5h̃

ℓ
s

)
+ h̃ℓs (14)

xℓ[cls] = σ
(
ρℓs0W4x̃

ℓ
[cls] + ρℓs1W5h̃

ℓ
s

)
+ x̃ℓ[cls] (15)

where W4 ∈ Rd×d and W5 ∈ Rd×d are two learnable matrices for translating the original rep-
resentations of two modalities into the same embedding space. ρ is the adaptive fusion ratio for
representations, which is normalized by the softmax function. Residual connections are introduced
so that deeper modality representations can learn additional information from the original features
obtained from earlier layers. It facilitates capturing more abstract and complex pattern interactions,
enabling our layer-wise fusion to create richer representations.

Let o is the target object of q, then the language model’s loss Lq
lm is defined as the probability of

predicting o’s text Text(o) using the N -th layer contextual representation [xN[cls];X
N
[Ff∼Φ(q,LM)]

;XN
[q]]:

Lq
lm = − 1

|W |
∑

w∈W
log p

(
wi | [xN[cls];X

N
[Ff∼Φ(q,LM)]

;XN
[q]]

)
, (16)

where W = {w1, · · · , wL} is the tokens of Text(o). The intuition is that Lq
lm enables the model to

jointly use structured knowledge in the text and TKG to reason about masked tokens in the text.

3.4 OBJECT OPTIMIZATION

We utilize ConvTransE (Li et al., 2021; Shang et al., 2019) as a decoder to predict probabilities of
entity prediction and relation prediction task. Their loss is calculated by Cross-Entropy:

Lq
ent = − log p (o | s, r, t,G1:t−1) = − log σ (MLP (Conv([hs ∥ zr ∥ ψt])) · ho) , (17)

Lq
rel = − log p(r | s, o, t,G1:t−1) = − log σ (MLP (Conv ([hs ∥ ho ∥ ψt])) · zr) , (18)

where MLP is a multi-layer perceptron and Conv is a convolution. h ∈ R|E|×d and z ∈ R|R|×d are
the embedding of all entities and relations after the fusion of LM and GNN layers. The optimization
objective L is the sum of Lq

ent,L
q
ent and Lq

ent for each query q on the snapshot Gt at each time t:

L =
∑T

t=1

∑
q∈Gt

α · Lq
ent + (1− α) · Lq

rel + β · Lq
lm, (19)

where α and β are two hyper-parameters to represent the weight of different tasks.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. Five public TKG datasets are adopted to verify the effectiveness of our proposed TKG-
LM, including GDELT (Leetaru & Schrodt, 2013), ICEWS14 (Trivedi et al., 2017), ICEWS05-
15 (Garcı́a-Durán et al., 2018), ICEWS18 (Boschee et al., 2015) and YAGO (Mahdisoltani et al.,
2013). Following extensive previous work (Li et al., 2021; 2022), we split the datasets into training,
validation, and testing set with ratios 8:1:1 chronologically. The detailed information about the
involved datasets is in Appendix 5.

6



Under review as a conference paper at ICLR 2024

Table 1: MRR (%) and Hit rate (%) (H for short) comparison of TKG embedding methods and our
TKG-LM on five commonly used datasets for the TKG extrapolation task. The best results are in
bold, and the second-best results are underlined.

Model
GDELT ICEWS14 ICEWS05-15 ICEWS18 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
DistMult 8.68 5.58 9.96 17.13 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33 13.86 5.61 15.22 31.26 44.05 25.06 49.70 61.63
ConvE 16.55 11.02 18.88 31.60 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96 22.81 13.63 25.83 41.43 41.22 22.27 47.03 59.90

ComplEx 16.96 11.25 19.52 32.35 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31 15.45 8.04 17.19 30.73 44.09 24.78 49.57 59.64
ConvTransE 16.20 10.85 18.38 30.86 31.50 22.46 34.98 50.03 30.28 20.79 33.80 49.95 23.22 14.26 26.13 41.34 46.67 26.16 52.22 62.52

RotatE 13.45 6.95 14.09 25.99 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92 14.53 6.47 15.78 31.86 42.08 15.68 46.77 59.39
TTransE 5.50 0.47 4.94 15.25 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26 8.44 1.85 8.95 22.38 26.10 6.59 36.28 47.73
RGCRN 19.37 12.24 20.57 33.32 38.48 28.52 42.85 58.10 44.56 34.16 50.06 64.51 28.02 18.62 31.59 46.44 62.76 48.25 67.56 71.69
RE-NET 19.55 12.38 20.80 34.00 39.86 30.11 44.02 58.21 43.67 33.55 48.83 62.72 29.78 19.73 32.55 48.46 61.93 48.59 70.48 80.84
CyGNet 20.22 12.35 21.66 35.82 37.65 27.43 42.63 57.90 40.42 29.44 46.06 61.60 27.12 17.21 30.97 46.85 62.98 50.97 70.60 80.98
xERTE 19.45 11.92 20.84 34.18 40.79 32.70 45.67 57.30 46.62 37.84 52.31 63.92 29.31 21.03 33.51 46.48 53.62 48.53 58.42 60.53

RE-GCN 19.69 12.46 20.93 33.81 42.00 31.63 47.20 61.65 48.03 37.33 53.90 68.51 32.62 22.39 36.79 52.68 62.30 48.53 59.27 78.58
TITer 18.19 11.52 19.20 31.00 41.73 32.74 46.46 58.44 47.60 38.29 52.74 64.86 29.98 22.05 33.46 44.83 61.28 49.35 68.30 79.77

TiRGN 21.67 13.63 23.27 37.60 43.81 33.49 48.90 63.50 49.84 39.07 55.75 70.11 33.58 23.10 37.90 54.20 62.95 50.34 69.37 80.92
TKG-LM 21.94 13.76 24.16 37.81 46.50 34.32 53.15 70.26 50.72 39.70 55.83 70.81 33.99 23.24 38.02 56.84 63.10 51.85 70.74 81.19

Baselines. The compared baselines include existing methods of multiple fields. (1) Static model-
ing methods: DistMult (Yang et al., 2014), ConvE (Dettmers et al., 2018), ComplEx (Trouillon et al.,
2016), ConvTransE (Shang et al., 2019), RotatE (Sun et al., 2019). (2) SOTA Graph-based TKG
methods:TTransE (Leblay & Chekol, 2018), RGCRN (Seo et al., 2018), RE-NET (Jin et al., 2019),
CyGNet (Zhu et al., 2021), xERTE (Han et al., 2020), RE-GCN (Li et al., 2021), TITer (Sun et al.,
2021), and TiRGN (Li et al., 2022). (3) Fine-tuned LLMs:T5 (Raffel et al., 2020), LLaMA (Zheng
et al., 2023), ChatGLM (Zeng et al., 2022): 4) Graph+LM methods: Graph-Bert (Zhang et al.,
2020), GraphToolFormer (Zhang, 2023). (5) KG+LM methods:StructGPT (Jiang et al., 2023), KG-
BERT (Yao et al., 2019), KGS2S (Cheng et al., 2022).

Implementation. The architecture of the pre-trained LM in our TKG-LLM is the same in the step
of scoring and modality fusion, defaults to Bert (Devlin et al., 2018) and can be extended to any
multi-layer LMs such as RoBERTa (Li et al., 2021), GPT2 (Radford et al., 2019), etc. The number
of layers of our GNN and Bert-Base is 3 and 12, and the hidden layer dimension d is 200. As for
the pruning and sampling prompt construction, the hop of neighbors m is 2, the number of nodes
on the pruned graph Gq

sub is 2000, and the number of sampling historical facts k is 5. The two-loss
terms α and β are set to 0.7 and 0.1, respectively. The Adam optimizer (Kingma & Ba, 2014) and a
multi-step learning rate scheduler are adopted for model training. The learning rate and the number
of epochs are set to 1e−3 and 50. The evaluation metrics are the mean reciprocal rank (MRR) and
hit rate (H@1, H@3 and H@10).

4.2 MAIN RESULTS

Static and Temporal KG Baselines. Table 1 reports the average performance of the TKG embed-
ding baselines and the proposed TKG-LM on five standard TKG datasets. Most static modeling
methods perform poorly as they neglect the critical and rich temporal information. Our TKG-LM
achieves competitive results to state-of-the-art (SOTA) graph-based TKG methods. For example,
on the ICEWS14 dataset, our method’s MRR performance improves by 11.43% over TiTer, and
6.14% over the prior best graph-based TKG method, TiRGN. The boost confirms that TKG extrapo-
lation tasks require the use of temporal information of facts and the semantic context of entities and
relations.

Fine-tuned LLMs. As shown in Table 2, our TKG-LM shows consistent improvements over three
popular large language models, including T5 (Raffel et al., 2020), LLaMa (Zheng et al., 2023), and
ChatGLM (Zeng et al., 2022). These LLMs are fine-tuned using TKG-based prompt instructions
that are manually constructed. Directly finetuning LLMs to TKG extrapolation scenarios generally
results in sub-optimal performance because of the lack of fusion modules for extra multi-modal
information. On the one hand, LMs are pre-trained on static corpora and less sensitive to time-
aware questions. The same question at different times leads to conflicting facts. For example, the
US President in 2016 could be both Barack Obama and Donald Trump. On the other hand, LMs
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Table 2: Performance comparison (%) between LLMs,
LM-enhanced methods and our TKG-LM using differ-
ent LM encoders.

Dataset ICEWS14 YAGO
Type Method H@1 H@10 H@1 H@10

LLMs
FastChat-T5-3B 2.32 16.82 6.14 26.14
LLaMa-Vicuna-6B 3.03 18.77 7.42 27.42
ChatGLM-6B-Int4 3.14 19.02 7.93 27.93

Graph+LM Graph-BERT 13.77 37.56 24.75 61.10
GraphToolFormer 11.98 33.75 18.17 53.75

KG+LM
KG-BERT 12.62 34.29 21.08 58.78
KG-S2S 19.74 53.10 39.56 67.16
StructGPT 26.45 55.90 44.91 72.47

Ours
TKG-BERT-Base 34.32 70.26 51.25 80.23
TKG-BERT-Large 34.68 70.61 51.85 82.11
TKG-RoBERTa-Base 34.44 70.96 51.70 81.19

Table 3: Ablation study on how MRR changes
in various components of our TKG-LM (The last
line) on ICEWS14 dataset.

Scoring Prompt Fusion Loss MRR

w/o Purning 43.67(-2.83)
w/o ri 46.40(-0.10)
w/o LMLM 44.75(-1.75)

w/ Fixed 46.05(-0.45)
w/ Uni 46.11(-0.39)
w/ ∆t 46.22(-0.28)

w/ MLP 46.39(-0.11)
w/o Res 46.25(-0.25)
w/o ψ 45.95(-0.55)

w/o Llm 44.07(-2.43)

w/ g w/ Φ w/ Attn w/ L 46.50 (Ours)

have a weak perception of spatial and topological factors, and they are unable to perform precise
multi-step computational reasoning on history snapshots as GNNs can (Lee et al., 2023), which
further degrades their performance on the extrapolation task.

LM-Enhanced Models. To further evaluate our method’s performance, we compare our TKG-LM
with the LM-Enhanced models, including Graph+LM and KG+LM. Our TKG-LM is superior to
the methods of both fields on the ICEW14 dataset and YAGO dataset, as they neglect temporal
information or edge relations, making them unsuitable for TKG extrapolation task. In addition, we
compare the performance of different LM-encoder architectures, such as BERT-Base, BERT-Large,
and RoBERTa-Base. Compared to BERT-Base, BERT-Large and RoBERTa-Base can bring more
performance gains. As the number of parameters in the pre-trained LM increases, our method’s
performance improves, indicating that more prior knowledge is adequately utilized by our TKG-LM
to obtain better results.

4.3 ABLATION STUDY

In this section, we analyze how various components of our TKG-LLM contribute to the final perfor-
mance. Table 3 shows four parts of our method, including the scoring function (Scoring), the way
of prompt construction (Prompt), the layer-wise fusion of modalities (Fusion), and the optimization
object (Loss). w and w/o are short for with and without, respectively.

Impact of the Gap Function. Our TKG-LM adopts a time-weighted semantic gap g in Equation
4 to score and prune historical facts. When irrelevant facts are kept (w/o Pruning), there will be a
performance degradation of up to 2.83%. As more candidates usually mean more difficult learning
problems, our pruning strategy is beneficial to reduce the search space for candidate entities and re-
lations. When using the gap function for pruning, we ablate the two-term composition of the scoring
function, i.e., only using the time-weighted ratio (w/o LMLM ) or only using the semantic gap (w/o
ri ). As shown in Table 3, their performance decreases by 1.75% and 0.1%, respectively, reflecting
that semantics contributes much more to the results than the time difference. It demonstrates that
pre-trained LMs’ prior knowledge can adaptively capture valuable historical events based on diverse
queries.

Impact of the way of Prompt Construction. When the language model uses the most recent
historical events as input, with a fixed prompt instruction (w/ Fixed) for each query, its performance
decreases by 0.45%. Regarding the sampling prompt, we compare the proposed distribution Φ of
Equation 5 to two naive distributions: the uniform (w/ Uni) and exponential time difference (w/ ∆t)
distributions. The latter works’ performance is slightly better than the former because more recent
times may be more likely to be important for the query. Also, our distribution works best because
it incorporates both temporal and semantic context. Its additional information allows the training
procedure to learn entity representations that simultaneously reflect facts from the knowledge base
and associated history.

Impact of the Modality Fusion Modules. (Zhang et al., 2022) propose a fusion scheme that obtains
the fusion embedding by concatenating two modality representations and translating them using an
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Table 4: Top-5 ranking results of candidate entities for different methods. The first column includes the query
for inference and their target entity.

Query & Target ChatGLM-6B-Int4 RE-GCN TKG-LM

(159, Barack Obama, Host a
visit) → François Hollande

5, Barack Obama, Xi Jinping,
Angela Merkel, Benjamin Ne-
tanyahu, François Hollande

4, Japan, South Korea, France,
François Hollande, China

1, François Hollande, France,
Adbel fattah al sisi, China,
Poland

(152, Activist Thailand , Make
statement) → Thailand

4, Activist Thailand, Mili-
tary Thailand, Citizen Thailand,
Thailand, iran

3, National united front for
democracy against dicta-
torship, Military Thailand,
Thailand,Leader Thailand, Iron

1, Thailand, National united
front for democracy against
dictatorship,Military thai-
land, Leader thailand, Citizen
thailan,

MLP (w/ MLP). According to Table 3, the performance of MLP is not as good as our attention fu-
sion module. w/o Res represents no residual connection in Equation 14 and 15, and w/o ψ means we
do not use the time encoding function in Equation 10. Their performance is all sub-optimal because
residual connections allow deeper layers to learn additional information on top of earlier layer fea-
tures, capturing more abstract and complex patterns to improve model accuracy. The time-encoding
function can Capture Temporal Patterns for the representation and modeling of temporal patterns in
sequential data. They can encode chronological information, such as time steps or timestamps, into
continuous representations that capture the relationship between different points in time.

4.4 CASE STUDY

In this section, we present several examples to show how our TKG-LLM can produce better predic-
tions on TLG extrapolation tasks. Table 4 shows the Top-5 ranking results of candidate entities for
two baselines, including the fined-tuned LLM ChatGLM, the classical TKG method RE-GCN, and
our method. For the query q =(Barack Obama, Host a visit, Nov 11), q’s subgraph visualization
displays on Figure 1. On the one hand, the LM model ChatGLM tends to predict person names,
such as Barack Obama, Xi Jinping, Angela Merkel, etc. One possible reason is that the text ”host a
visit” is usually semantically related to people. On the other hand, RE-GCN ranks Japan and South
Korea at the top for the reason that Japan and South Korea have the most interactions with Obama.
Due to the lack of pruning, the message propagation of RE-GCN will naturally be biased towards
high-frequency neighbors, thus misleading the prediction.

As for our TKG-LM, it outperforms the other two methods on three different query examples and
makes correct and accurate ranking predictions From the visualization of q’s subgraph in Figure 1
and the events’ scores in Appendix B.1, it can be seen that both France and Hollande have similar
interaction histories with Obama. The GNN layer of TKG-LM tends to predict entities with similar
topological structures, which partly explains why the first two predictions of our method are Hol-
lande and France. In addition, the LM -layer of TKG-LM can identify the semantic relationship
between France and Hollande, that is, after Obama visits France, it is very likely to host a visit with
Hollande. The prior knowledge and reasoning ability of LMs helps the model find the final answer.

5 CONCLUSION AND FUTURE WORK

In the paper, we introduce TKG-LM, a new model that incorporate textual data into temporal knowl-
edge graph embeddings. We utilize the language model’s prior knowledge to filter out irrelevant
events, thereby decreasing the search space for answers. To improve the robustness of LMs on
TKG extrapolation prediction, we construct adaptive and variable sampling prompt instructions as
the input of LMs. Our method integrates the encoded representation of LMs and graph neural
networks in a multi-layer attention-based module to enable bidirectional information flow between
two modalities. In both TKG extrapolation and LM-enhanced domains, our method outperforms
state-of-the-art(SOTA) TKG embedding methods, classical fine-tuned LLMs, existing Graph+LM
methods and KG+LM models on various datasets. Extensive experiments on ablation demonstrate
that our TKG-LLM considerably improves the TKG extrapolation performance.

One limitation is that our method has a higher time and space complexity. In the future, we will
explore work on a wider range of knowledge graphs combined with large language models.
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A EXPERIMENTAL SETUP

A.1 DATASET

We use five public TKG datasets to evaluate the effectiveness of the proposed TKG-LM. They are
GDELT (Leetaru & Schrodt, 2013), ICEWS14 (Trivedi et al., 2017), ICEWS05-15 (Garcı́a-Durán
et al., 2018), ICEWS18 (Boschee et al., 2015) and YAGO (Mahdisoltani et al., 2013). ICEWS14,
ICEWS05-15, and ICEWS18 datasets, is from the Integrated Crisis Early Warning System. The
YAGO is supplemented with time information based on the traditional static KGs YAGO3. GDELT
is from the Global Database of Events, Language, and Tone. The statistics of four TKG datasets are
summarized in Table 5.

A.2 BASELINES

Table 5: Detailed Information about the five involved datasets.
Datasets #Entities #Relations Time Interal #Train #Valid #Test

GDELT 7691 240 1 Day 1734399 238765 305241
ICEWS14 7128 230 1 Day 74845 8514 7371

ICEWS05-15 10488 251 1 Year 368868 46302 46159
ICEWS18 23033 256 1 Day 373018 45995 49545
YAGO 10623 10 1 Year 161540 19523 20026

The static KG reasoning models com-
pared with our work are shown as fol-
lows: DisMult (Yang et al., 2014), a
model that proposes a simplified bi-
linear formulation to capture relational
semantics. ConvE (Dettmers et al.,
2018), a model that adopts a 2D con-
volutional neural network to model the interactions between entities and relations. ComplEx (Trouil-
lon et al., 2016), a model that converts the embedding into complex vector space to handle symmet-
ric and antisymmetric relations. RotatE (Sun et al., 2019), a model that defines each relation as a
rotation from the subject entity to the object entity in the complex vector space.

We compare e compare the performance of our proposed TKG-LM model with that of multiple
static and dynamic modeling methods (including interpolation and extrapolation). Note that the
static methods are trained without 7 the time dimension and the interpolation methods are trained
with both historical and future data; thus, they are not good at future event forecasting when provided
with only historical

A.3 IMPLEMENTATION

The parameters of model architectures are fixed: all methods’ structural encoder layers are 2, and the
hidden layer dimension is 128. For a fair comparison, the downstream classifier for all methods is
a trainable two-layer perceptron. The Adam optimizer (Kingma & Ba, 2014) and an early-stopping
strategy are adopted for model training. Except for the above data augmentations, the two students
and HWM also accept random horizontal flipping, Cutout (?), and Random Augment (?), respec-
tively. The SGD optimizer (?) is adopted with a learning rate of 0.1 and a weight decay of 5e−4.
The number of epochs and the batch size are set to 300 and 128, respectively. For the settings of Im-
ageNet, we employ the standard ResNet18 (?) as the backbone and train 100 epochs with a learning
rate of 0.1.

The evaluation metrics use the mean reciprocal rank mrr and hit rate, since prediction usually in-
volves ranking the scores of missing graph elements at future times. For our encoder, we use the
exact same architecture as GreaseLM (19 LM layers followed by 5 text-KG fusion layers; 360M pa-
rameters in total). We initialize parameters in the LM component with the RoBERTa-Large release
and initialize the KG node embeddings with pre-computed ConceptNet entity embeddings. For the
link prediction objective, we use DistMult for KG triplet scoring, with a negative exampling of 128
triplets and a margin of.

B DETAILS

B.1 EXAMPLES

We show two kinds of queries with their corresponding historical events and scoring function values.
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Table 6: Example for the query, part of historical facts and the corresponding gap.
Query q 159, Barack Obama, Host a visit, ? g(f | q, LM)

Historical Facts 156, barack obama, express intent to meet or negotiate, abdel fattah al sisi, 9.97 9.97
f ∈ F q

sub 156, françois hollande, express intent to meet or negotiate, barack obama, 10.08 10.08
156, france, make a visit inversely, barack obama, 10.39 10.39
156, france, host a visit, barack obama, 10.48 10.48
155, barack obama, express intent to meet or negotiate, france, 13.64 13.64
155, françois hollande, express intent to meet or negotiate, barack obama, 13.79 13.79
155, barack obama, express intent to meet or negotiate, françois hollande, 14.06 14.06
155, barack obama, criticize or denounce, france, 14.18 14.18
155, barack obama, make an appeal or request, china, 14.2 14.2
155, barack obama, engage in negotiation, france, 14.46 14.46
155, barack obama, make an appeal or request, china, 14.47 14.47
155, barack obama, express intent to meet or negotiate, france, 14.57 14.57
155, barack obama, make statement, france, 14.67 14.67
156, barack obama, make a visit france, 14.71 14.71
156, barack obama, consult, françois hollande, 14.96 14.96
154, barack obama, express intent to meet or negotiate, abdel fattah al sisi, 15.01 15.01
155, barack obama, make pessimistic comment, france, 15.15 15.15
154, françois hollande, express intent to meet or negotiate, barack obama 15.19
154, barack obama, express intent to provide economic aid, poland 15.35

Query q 152 activist thailand make statement ?

Historical Facts 149, activist thailand refuse to de escalate military engagement inversely thailand 14.56
93, activist thailand make an appeal or request inversely national united front for democracy against dictatorship 14.60
149, activist thailand refuse to de escalate military engagement military thailand 14.81
149, activist thailand criticize or denounce inversely activist thailand 14.91
148, activist thailand praise or endorse coup d etat leader thailand 15.05
9, activist thailand appeal for diplomatic cooperation such as policy support citizen thailand 15.13
148, activist thailand use tactics of violent repression inversely coup d etat leader thailand 15.13
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