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Abstract

Model inversion, which aims to reconstruct the
original training data from pre-trained discrimina-
tive models, is especially useful when the original
training data is unavailable due to privacy, us-
age rights, or size constraints. However, existing
dense inversion methods attempt to reconstruct
the entire image area, making them extremely in-
efficient when inverting high-resolution images
from large-scale Vision Transformers (ViTs). We
further identify two underlying causes of this in-
efficiency: the redundant inversion of noisy back-
grounds and the unintended inversion of spurious
correlations—a phenomenon we term “hallucina-
tion” in model inversion. To address these limita-
tions, we propose a novel sparse model inversion
strategy, as a plug-and-play extension to speed up
existing dense inversion methods with no need for
modifying their original loss functions. Specifi-
cally, we selectively invert semantic foregrounds
while stopping the inversion of noisy backgrounds
and potential spurious correlations. Through both
theoretical and empirical studies, we validate the
efficacy of our approach in achieving significant
inversion acceleration (up to ×3.79) while main-
taining comparable or even enhanced downstream
performance in data-free model quantization and
data-free knowledge transfer. Code is available at
https://github.com/Egg-Hu/SMI.
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Figure 1. The inefficiency of dense inversion (e.g., DeepInversion
(Yin et al., 2020)) arises from (a) redundant inversion of noisy
backgrounds, and (b) unintended inversion of spurious correlations
between foregrounds (green) and backgrounds (red), which are
improperly memorized in pre-trained models.

1. Introduction
Given a discriminative model f : x → y, model inversion
aims to reconstruct inputs x from a target output y. This
technique can be utilized to synthesize surrogate data when
the original dataset is unavailable due to constraints like pri-
vacy concerns, usage rights, or dataset size. An illustrative
application is data-free model quantization, which enables
the quantization of a full-precision model to a low-precision
one for lightweight deployment by using surrogate data in-
verted from the full-precision model (Li et al., 2023d; 2022b;
Xu et al., 2020; Qin et al., 2023). Another application is data-
free knowledge transfer, which enables knowledge transfer
from a teacher model to a student model by using surro-
gate data inverted from the teacher model (Yin et al., 2020;
Fang et al., 2021; Chundawat et al., 2023; Zhu et al., 2021).
Overall, model inversion provides a practical solution in
data-constrained scenarios by synthesizing surrogate data
directly from the model itself.

However, existing inversion methods (Zhu et al., 2021; Fang
et al., 2022; Zhang et al., 2022c; Yu et al., 2023; Braun
et al., 2023; Patel et al., 2023) share a “dense” characteristic,
meaning they attempt to reconstruct the entire image area.
This becomes extremely inefficient when inverting high-
resolution images from large-scale ViTs (see Tab. 1). As
shown in Fig. 1, we further reveal two underlying causes,
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including the redundant inversion of noisy backgrounds
and the unintended inversion of spurious correlations—a
phenomenon we term “hallucination” in model inversion.

Based on our observations, we propose a novel strategy
called sparse model inversion, as a plug-and-play extension
to speed up existing dense inversion methods with no need
for modifying their original loss functions. Our sparse in-
version strategy enables efficient inversion from large-scale
ViTs with less inversion of noisy backgrounds and potential
spurious correlations. Specifically, we selectively invert se-
mantic foregrounds while stopping the inversion of uninfor-
mative backgrounds. This is achieved by two components:
semantic patch identification, utilizing attention weights
from the preceding iteration to determine which patches
to invert in the current iteration, and early inversion stop-
ping, stopping the inversion of uninformative background
patches in the early iterations. We implement “stopping” by
discarding these background patches, no longer processing
them forward or computing their backward gradients, thus
excluding them from inversion. This stopping can be done
progressively as the inversion process progresses, ensuring
only the most informative foreground patches are retained.

To validate the efficacy of our approach, we perform a com-
bination of theoretical and empirical studies. Empirically,
we verify that our approach can achieve significant inversion
acceleration up to 3.79×, while maintaining comparable or
improved downstream performance in data-free model quan-
tization and data-free knowledge transfer. In Sec. 4.4, we
theoretically analyze that utilizing sparsely inverted data can
effectively reduce the required number of training samples
and iterations when training ViTs for downstream classifica-
tion tasks (Li et al., 2023b), thereby stabilizing and acceler-
ating convergence. In summary, our main contributions are
outlined as follows:

• We reveal the limitations and underlying causes of
existing dense inversion methods, i.e., inefficiency of
inverting high-resolution images from large-scale ViTs.

• We propose the sparse inversion strategy, as a plug-and-
play extension of existing dense inversion, to achieve
efficient inversion of ViTs with less inversion of noisy
backgrounds and potential spurious correlations.

• We empirically and theoretically verify the efficacy of
our sparse inversion strategy in achieving significant
inversion acceleration while maintaining comparable
or even enhanced downstream performance in data-free
model quantization and data-free knowledge transfer.

2. Related Work
Model inversion aims to reconstruct the inputs given the
outputs of a discriminative model. Research on model inver-
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Figure 2. Recipe for model inversion and applications. Our ap-
proach selectively inverts semantic foreground patches while pro-
gressively stopping the inversion of uninformative background
ones. When utilizing sparsely inverted data for downstream appli-
cations, we feed forward only the retained foreground patches.

sion is initially in the security community. Fredrikson et al.
(2015) introduce model inversion attack to reconstruct pri-
vate inputs. Subsequent works broaden this approach to new
attack scenarios (He et al., 2019; Yang et al., 2019). More
recently, model inversion has been used in data-inaccessible
scenarios for tasks like data-free knowledge transfer (Lopes
et al., 2017; Zhu et al., 2021; Fang et al., 2022; Zhang
et al., 2022c; Yu et al., 2023; Braun et al., 2023; Patel et al.,
2023; Shao et al., 2023) and data-free model quantization
(Choi et al., 2021; Xu et al., 2020; Li et al., 2023d; Hu
et al., 2023c). More applications of model inversion are
introduced in App. C. However, previous inversion meth-
ods suffer from extreme inefficiency when inverting high-
resolution images from large-scale ViTs. They typically
employ model inversion as a tool to synthesize surrogate
data, while our work is the first to enhance the scalability of
model inversion for inverting high-resolution images from
large-scale ViTs.

Token sparsification. Recent advancements in token sparsi-
fication methods have proven effective in boosting the infer-
ence speed of ViTs, as seen in works of Wang et al. (2021);
Rao et al. (2021); Meng et al. (2022); Xu et al. (2022); Liang
et al. (2022); Bolya et al. (2023); Chang et al. (2023); Kim
et al. (2024); Haurum et al. (2023); Chen et al. (2023a).
These methods point out that uninformative patches occupy
a significant portion of processing bandwidth but have mini-
mal impact on the final prediction. However, the potential
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benefits of incorporating sparsity into the inversion process
of ViTs still remain unexplored.

Spurious correlation refers to the statistical connection be-
tween foregrounds and non-predictive backgrounds, which
is not necessarily causal (Bica et al., 2021; Hu et al., 2022;
Ye et al., 2023; Kim et al., 2023; Ghosal & Li, 2023; Liu
et al., 2022a). For example, the waterbird may spuriously
correlate to the ocean background. This may cause a model
to base its predictions on the background non rather than
on the true relevant foreground, damaging its generalization
during deployment when such correlation no longer holds.
However, the potential risk that model inversion could unin-
tentionally invert these spurious correlations from the pre-
trained model is still unexplored. Our research is the first
to identify and analyze this phenomenon in the context of
model inversion.

3. Rethinking Dense Model Inversion
3.1. Problem Setup

Case study of dense inversion: DeepInversion (Yin et al.,
2020). Given a classification model fu, a randomly initial-
ized input XI ∈ RH×W×C (height, width, and number
of channels) and a target label y, the inversion process is
optimizing a classification loss with a regularization term:

min
XI

Linv = Lcls

(
fu(X

I), y
)
+ αRR(XI), (1)

where Lcls(·) is a classification loss (e.g., cross-entropy loss)
to ensure the label-conditional inversion, which desires XI

could be predicted as y and exhibit discriminative features
of y. R(·) is an image regularization term widely used to
penalize the total variance for local consistency (Braun et al.,
2023; Hatamizadeh et al., 2022), with αR as the coefficient.

R(XI) =

H∑
i=2

W∑
j=2

(∥∥∥XI
i,j −XI

i−1,j

∥∥∥
2
+

∥∥∥XI
i,j −XI

i,j−1

∥∥∥
2

+
∥∥∥XI

i,j −XI
i−1,j−1

∥∥∥
2

)
+

H∑
i=2

W−1∑
j=1

∥∥∥XI
i,j −XI

i−1,j+1

∥∥∥
2
,

(2)
where XI

i,j refers to a 3-dimensional vector containing the
values of the pixel at position (i, j) across all channels.
We omit the feature distribution regularization term due
to the absence of batch normalization in ViTs. The main
differences among various dense inversion methods (Yin
et al., 2020; Li et al., 2023d; Hatamizadeh et al., 2022)
mainly lie in the design of the regularization terms, which
can be added to Eq. (1) compatibly.

3.2. Limitation & Cause

Limitation: Inefficiency of inverting high-resolution im-
ages from large-scale ViTs. Existing dense inversion meth-

ods (Lopes et al., 2017; Zhu et al., 2021; Fang et al., 2022;
Zhang et al., 2022c; Yu et al., 2023; Braun et al., 2023;
Patel et al., 2023; Shao et al., 2023) are mainly designed
for small-scale convolutional networks. As indicated in
Tab. 1, when inverting high-resolution images from large-
scale ViTs, there is a notable increase in time and compu-
tational expenses. This is because inverting XI in Eq. (1)
requires multiple iterations of forward and backward propa-
gation. As the image resolution or the model size grows, the
number of learnable parameters in XI rises, and the costs
associated with forward and backward propagation through
the large model also increase significantly.
Table 1. Inefficiency of dense inversion (e.g., DeepInversion).

Resolution Model Inversion Throughput (its/s) FLOPs (G)

32 × 32 ResNet18 Dense 77.91 0.11
224 × 224 ResNet18 Dense 10.21 5.47
224 × 224 DeiT/16-Base Dense 1.79 6475.63

Cause 1: Redundant inversion of noisy backgrounds. In
Eq. (1), when targeting a specific label y, we aim to craft
semantic features in XI by reducing the classification loss.
However, from Fig. 1(a), we observe that these semantic
features typically occupy only a small portion in XI, while
the backgrounds tend to be noisy. The reason is the back-
grounds tend to contribute minimally to the decrease of Lcls

(see Tab. 2), thus maintaining characteristics similar to the
initialized noise. Despite their uselessness, the uninforma-
tive and noisy backgrounds are equally included in the inver-
sion process, resulting in wasted computational resources
and time costs, thereby damaging the overall efficiency of
inversion. Similarly, studies of token sparsification (Wang
et al., 2021; Rao et al., 2021; Haurum et al., 2023; Chang
et al., 2023; Kim et al., 2024; Chen et al., 2023a) suggest
that background patches consume most of the processing
bandwidth but contribute little to the final prediction.
Table 2. Backgrounds contribute minimally to reducing Lcls dur-
ing inversion. The initial loss value is evaluated on all patches.

Ablation Change of Lcls

Identified Background Patches 10.78 → 10.69
Identified Foreground Patches 10.78 → 0.12

Cause 2: Unintended inversion of spurious correla-
tions—a phenomenon we term “hallucination” in model
inversion. As shown in Fig. 1(b), in addition to redundant in-
version of noisy backgrounds, spurious correlations between
the foregrounds and backgrounds can also be unintentionally
inverted. For example, in the original training dataset, the
waterbird may spuriously correlate to the ocean background.
This statistical correlation can be improperly memorized
by the model trained on it. When we attempt to invert wa-
terbird images from this model, the ocean background can
be unintentionally inverted, leading to co-inversion of both
the foregrounds and connected backgrounds. The example
in Fig. 1(b) illustrates such co-inversion, such as the co-
occurrences of a gardener background when the target is
a sunflower, or a mountainous and lacustrine background
when the target is a bird. Several studies (Bica et al., 2021;
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Hu et al., 2022; Ye et al., 2023; Kim et al., 2023; Ghosal &
Li, 2023) have demonstrated that spurious correlations may
cause a model to rely on the background rather than the true
relevant foreground for predictions, thereby impairing its
generalization during deployment when such correlations
no longer hold. Moreover, when inverted data containing
spurious correlations are utilized for knowledge transfer,
these misleading correlations can be transferred to from the
teacher model to the student model (Ojha et al., 2024).

4. Methodology
4.1. Preliminary of ViTs

ViTs (Dosovitskiy et al., 2020; Vaswani et al., 2017;
Liu et al., 2024) first partition the input image XI ∈
RH×W×C into L non-overlapping patches, which are sub-
sequently embedded into tokens of dimension D, i.e., XI =
[x[CLS],x1, ...,xL] and xi ∈ RD. x[CLS] is the class to-
ken inserted to the front before all image tokens to facilitate
final classification. To integrate positional relationships,
learnable position encodings are added to all tokens. The
processed tokens are then fed into several stacked ViT lay-
ers. Each layer includes a multi-head self-attention (MHSA)
layer and a feed-forward network (FFN). In MHSA, XI is
projected to three matrices, namely query Q, key K, and
value V matrices. The attention operation is defined as

Attention(Q,K,V ) = Softmax

(
QKT

√
d

)
V , (3)

where d is the length of the query vectors in Q. We
define the square matrix A ≜ Softmax

(
QKT
√
d

)
, A ∈

R(L+1)×(L+1), which is known as the attention map, rep-
resenting attention weights of all token pairs. Further more,
we define ai ≜ A[i,:], ai indicating the attention weights
from xi to all tokens [x[CLS],x1, ...,xL]. Particularly,
a[CLS] refers to a0. Based on Eq. (3), the ith output to-
ken can be viewed as a linear combination of all tokens’
value vectors [v[CLS],v1, ...,vL] = V , weighted by ai.
Then, these output tokens are sent to FFN, consisting of two
fully connected layers with an activation layer. At the final
ViT layer, the output token x[CLS], summarizing the entire
image, is extracted as input to the classifier, generating the
image’s classification probability distribution.

4.2. Sparse Model Inversion (SMI)

When applying dense inversion methods to ViTs, all patches
will undergo inversion. In contrast, we propose a sparse
model inversion, which involves two key components: se-
mantic patch identification, a method for identifying se-
mantic patches to invert in subsequent iterations, and early
inversion stopping, a technique to stop the inversion of
uninformative background patches. The overall inversion

process is illustrated in Fig. 3.

Semantic patch identification. The first question is how
to identify the semantic patches that are crucial for inver-
sion. At iteration t within the inversion process, we propose
to identify semantic patches utilizing the attention weights
a[CLS] (defined in Sec. 4.1) from the preceding iteration
t−1. Here, a[CLS] is a (L+1)-dimension vector, represent-
ing the attention weights from token x[CLS] to all tokens
[x[CLS],x1, ...,xL]. The interaction between x[CLS] and
all tokens is performed via attention:

x[CLS] = a[CLS] · V . (4)

The output x[CLS] is a linear combination of all tokens’
value vectors, weighted by a[CLS]. Since x[CLS] in the final
layer serves for classification, it is rational to view a[CLS]
as an indicator, measuring the extent to which each token
contributes label-relevant information to final predictions.

Moreover, we only use a[CLS] from the final ViT layer, as it
more precisely reflects the relationships among tokens. This
is in contrast to shallower layers, where tokens interact to de-
velop enhanced representations. Furthermore, within each
ViT layer, the MHSA comprises H heads that execute par-
allel operations defined in 3. Consequently, there are H dis-
tinct attention weights represented as [a(1)

[CLS], ...,a
(H)
[CLS]].

To obtain more comprehensive relationships among all to-
kens, we compute the average of a[CLS] across all heads
(Fayyaz et al., 2022), i.e., a[CLS] = 1

H

∑H
h=1 a

(h)
[CLS]. Note

that this process to identify semantic patches requires no
additional computational or informational demands, as it is
an inherent part of the original ViTs’ feed-forward process.

Early inversion stopping. The second question is how to
stop the inversion of other uninformative patches. Suppose
we have L(t−1) (L(t−1) ≤ L) patches remaining at the be-
ginning of iteration t, and other tokens (if any) have been
stopped previously. We start by evaluating the importance
of each remaining token based on the attention weights from
the preceding iteration t− 1. Then, we stop the inversion of
additional p% patches with the lowest attention weights, so
that only L(t) = L(t−1)× (1−p%) patches will be retained
for subsequent inversion. We implement “stopping” by di-
rectly pruning patches with the lowest attention weights,
which means they will no longer involve feed-forward pro-
cessing and backward gradient calculations, and thus be
excluded from inversion ever since. Those tokens will not
be updated via Eq. (1) anymore. Patch pruning is performed
after the addition of position embeddings to maintain the
relative positional relationships among patches.

Moreover, we provide a progressive stopping strategy, i.e.,
multi-stage stopping. Specifically, in the early iterations,
when images are predominantly noisy and semantic patches
are less discernible, our stopping strategy is conservative,
i.e., stopping inversion of a limited number of patches. As
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Figure 3. Overall process of sparse model inversion. As the inversion progresses, our approach selectively inverts semantic foreground
patches while progressively stopping the inversion of uninformative background patches (marked as black blocks). Those stopped patches
are directly discarded, with no further feed-forward processing and backward gradient computation, and thus are excluded from inversion
ever since. The final inverted image only retains sparse patches with semantically meaningful information.

model inversion evolves, the clarity of inverted images in-
creases, prompting us to stop inversion of more patches
deemed to be uninformative, ensuring only the most criti-
cal patches are retained and processed further. The overall
inversion process is illustrated in Fig. 3. As the inversion
progresses, our approach selectively inverts semantic fore-
ground patches while progressively stopping the inversion
of other uninformative patches (marked as black blocks).

4.3. Applications of Model Inversion

Below, we introduce how to use sparsely inverted data to
achieve data-free model quantization (Li et al., 2023d) and
data-free knowledge transfer (Yin et al., 2020). As shown in
Fig. 2, we adopt a specific recipe for using sparsely inverted
data, only feeding forward the retained foreground patches
while discarding other background patches (marked as black
blocks). This can speed up downstream applications by
reducing the number of tokens and improve performance by
discarding noisy backgrounds (Li et al., 2023b) and avoiding
potential spurious correlations (Ghosal & Li, 2023).

4.3.1. DATA-FREE MODEL QUANTIZATION

Data-free model quantization aims to quantize a full-
precision (FP) model to a low-precision one for lightweight
deployment by using surrogate data inverted from the full-
precision model (Li et al., 2023d; 2022b; Xu et al., 2020;
Qin et al., 2023). Following (Li et al., 2022b), the quantiza-

tion is defined by the following equation:

θd =
⌊
{clip (θu;Tmin, Tmax)− Tmin}

/
S
⌉
, (5)

where S = {Tmax − Tmin}
/
{2k − 1}.

Here, θu and θd denote the parameters of the FP model and
its quantized variant, respectively. The round operator is
represented by ⌊·⌉. The term k refers to the bit precision for
the quantized model, such as 4 or 8 bits. The scale factor S
is calculated as described. Critically, Tmin and Tmax are the
bounding values for quantization, which must be determined
prior to the quantization process.

For weight quantization, Tmin and Tmax are directly deter-
mined by the minimum and maximum values of the FP
weights. For activation quantization, following (Li et al.,
2022b), we first invert surrogate data from the FP model and
feed it to the FP model to obtain their activations. Then, we
set Tmin and Tmax as the minimum and maximum values
of these activations, respectively. Once Tmin and Tmax are
set, we can perform activation quantization as Eq. (5). The
rationale behind this approach is that the inverted data can
provide prior information about original data distribution,
helping to eliminate outliers and represent the majority of
the FP activations more precisely.

4.3.2. DATA-FREE KNOWLEDGE TRANSFER

Data-free knowledge transfer enables knowledge transfer
from a teacher model to a student model by using surrogate
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Table 3. Model-quantization results on ImageNet. Sparsity refers to the fraction of remaining patches. Gaussian Noise refers to calibrating
the quantization configuration using Gaussian noise. W4/A8 refers to the bit precision for weight and activation quantization, respectively.
The changes in blue refer to the comparison with DeepInversion.

Model Method Model Inversion (Upstream) Quantization (Downstream)

Sparsity Throughput (its/s) ↑ FLOPs (G) ↓ GPU Mem (MB) ↓ Prec. Top-1 Prec. Top-1

DeiT/16
-Tiny

Original — — — — FP 72.14 FP 72.14
Gaussian Noise — — — — W4/A8 7.80 W8/A8 10.55
PSAQ-ViT (Dense) 0 0.74 414.20 1648.08 W4/A8 64.97 W8/A8 70.54

DeepInversion (Dense) 0 7.33 414.20 1118.69 W4/A8 64.28 W8/A8 70.27
DeepInversion (Sparse) 77% 18.82 (×2.57) 107.32(−74.09%) 476.32(−57.42%) W4/A8 64.04 W8/A8 70.13

DeiT/16
-Base

Original — — — — FP 81.85 FP 81.85
Gaussian Noise — — — — W4/A8 11.09 W8/A8 14.72
PSAQ-ViT (Dense) 0 0.46 6475.63 9327.12 W4/A8 76.73 W8/A8 78.93

DeepInversion (Dense) 0 1.19 6475.63 4096.96 W4/A8 75.99 W8/A8 78.58
DeepInversion (Sparse) 77% 4.51 (×3.79) 1578.97 (−75.62%) 1516.64 (−62.98%) W4/A8 77.51 W8/A8 79.63

data inverted from the teacher model (Yin et al., 2020; Fang
et al., 2021; Chundawat et al., 2023; Zhu et al., 2021). We
begin with a teacher model fu, which has been trained on a
specific dataset Du. We invert surrogate data D̂u from the
teacher and utilize it to transfer the teacher’s specific knowl-
edge on Du to a vanilla student model fd. The knowledge
transfer is implemented by minimizing the disparity in the
prediction outputs on D̂u between fu and fd, formulated as:

θd = min
θd

1

|Du|
∑
x∈Du

KL (fu (x;θu) /τ ; fd (x;θd) /τ) ,

(6)
where KL denotes the Kullback–Leibler divergence, and τ
is the temperature parameter. Data-free knowledge transfer
can be used to transfer knowledge from a large-scale model
to a smaller one for model compression (Fang et al., 2021),
transfer selective knowledge from the original model to a
new model for machine unlearning (Chundawat et al., 2023),
or transfer knowledge from client models to a server model
for federated learning (Zhu et al., 2021; Zhang et al., 2022a).

4.4. Analytical Study

How does sparse model inversion achieve significant ac-
celeration? Given an image split into L patches, each with
an embedding dimension of D, the computational complex-
ity of self-attention (SA) and feed-forward network (FFN)
are (Chen et al., 2023a):

O(SA) = 3LD2 + 2L2D, O(FFN) = 8LD2. (7)

Since the complexities of SA and FFN scale quadratically
and linearly with L, our approach can significantly reduce
the cost by decreasing the input patch number.

How does sparse model inversion benefit downstream
applications? As shown in Fig. 2, it can speed up down-
stream applications by reducing the number of input tokens.
Furthermore, for quantization, using sparsely inverted data
can achieve more precise bounding values in Eq. (5) by
reducing potential outliers in the noisy backgrounds. For

knowledge transfer, we theoretically analyze how the noise
and sparsity of inverted data affect the convergence condi-
tions in the context of training ViTs for classification. Our
analysis draws upon the framework established by Li et al.
(2023b) (refer to App. D for details). To begin, we define
several key factors:

(i) Patch sparsity setup: Consider N inverted samples
{(Xn, yn)}Nn=1, where each Xn comprises L′ retained
patches [xn

1 , ...,x
n
L′ ], (L′ ≤ L). Let Sn ⊆ [L′] repre-

sent the indices of label-relevant1 patches in Xn. We
define the average fraction of label-relevant patches as
α =

∑N
n=1

|Sn|
N ·L′ .

(ii) Patch noise setup: Label-relevant patches in xn corre-
spond to specific patterns µyn of its label yn with a noise
level τ , satisfying

∥∥xn − µyn

∥∥
2
≤ τ . Other patches in Xn,

however, correspond to patterns of other labels or just noise.

(iii) Convergence condition: We denote the required number
of training samples and iterations as N and T , respectively.
Remark 4.1. Compared to real data, using densely inverted
data makes the convergence process more challenging. This
is primarily due to the inherent higher noise level τ in in-
verted data2. With the noise level τ increasing, the number
of required training samples N increases by a factor of
1/(Θ(1) − τ)2 (Li et al., 2023b). This aligns with the ob-
served difficulty in achieving convergence when training
ViTs with densely inverted data (see Fig. 4).
Remark 4.2. Compared to densely inverted data, using
sparsely inverted data can stabilize convergence by reducing
the number of required training samples N and iterations T .
This is because both N and T are negatively correlated with
the fraction of label-relevant patches in α and α2, respec-
tively (Li et al., 2023b). Using sparsely inverted data can
increase α by maintaining foreground patches while discard-

1Label-relevant patches refer to the ground-truth outcome of
our semantic patch identification.

2It is easy to derive that the noise level of inverted data is upper
bounded by the sum of the L2-norm distance between inverted and
real data and the noise level of the real data.
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ing background patches with potential spurious correlations.
Furthermore, using sparsely inverted data can decrease the
noise level τ by pruning noisy background patches. This in-
ference also aligns well with our experiments (as presented
in Fig. 4 and Tab. 5 in App. E).

5. Empirical Study
We conduct comprehensive experiments to validate the effi-
cacy of our approach in reducing time, computational, and
memory costs required for inversion. We also verify that
our method either maintains or even enhances performance
when employing sparsely inverted data for downstream tasks
such as model quantization (Sec. 5.1) and knowledge trans-
fer (Sec. 5.2). In Secs. 5.3 and 5.4, we provide the visual-
ization results with ablation studies.

Baselines of dense model inversion. DeepInversion (Yin
et al., 2020), a method for dense model inversion, aims to
invert entire image areas, as detailed in Sec. 3.1. PSAQ-
ViT (Li et al., 2022a) is a variant of DeepInversion tailored
for data-free ViT quantization. Its primary distinction from
DeepInversion lies in the introduction of extra regularization
terms in the inversion loss function, resulting in significantly
increased time consumption.

Metrics. To evaluate the efficiency of our model inversion
approach, we selecte three key metrics: Throughput, FLOPs,
and GPU Memory Usage. Note that the results we present
are the average values obtained during the model inversion
process on one NVIDIA GeForce RTX 3090 GPU.

5.1. Experiments on Data-Free Model Quantization

Overview. We aim to verify that sparse inversion can accel-
erate the inversion process while maintaining or enhancing
the downstream performance of model quantization.

Experimental setup. We adopt DeiT/16-Base and DeiT/16-
Tiny as the models to be quantized, which are pre-trained
on ImageNet for 1000-class classification. All models are
accessible from timm. The resolution of inverted images is
224×224. We perform 4000 iterations for inversion using
the Adam optimizer with a learning rate of 0.25 (Yin et al.,
2020). αR is set as 1e-4 (Yin et al., 2020). For SMI, we em-
pirically stop 30% of the retained patches at the 50th, 100th,
200th, and 300th iterations, leading to an overall sparsity
level of about 77%. The size of the calibration dataset is
32 (Li et al., 2022a). We evaluate different quantization
precision for weights and activations, including W4/A8 and
W8/A8. The accuracy of the quantized model is reported on
the validation set of ImageNet.

Results. Tab. 3 illustrates the results. In evaluating ef-
ficiency, compared with dense inversion, our approach
achieves a range of 2.57 to 3.79-fold speed increase, ac-

Table 4. Knowledge-transfer results on CIFAR10/100 datasets.

Model Method Knowledge Transfer (Downstream)

Dataset Top-1 Dataset Top-1

DeiT/16
-Tiny

Teacher CIFAR-10 90.23 CIFAR-100 71.66

DeepInversion (Dense) CIFAR-10 69.51 CIFAR-100 70.32
DeepInversion (Sparse) CIFAR-10 90.08 CIFAR-100 70.48

DeiT/16
-Base

Teacher CIFAR-10 95.36 CIFAR-100 79.41

DeepInversion (Dense) CIFAR-10 90.02 CIFAR-100 74.88
DeepInversion (Sparse) CIFAR-10 95.10 CIFAR-100 74.53

(upper) DeiT/16-Tiny

(below) DeiT/16-Base

Figure 4. Impact of utilizing sparsely (blue curve) versus densely
(orange curve) inverted data on training loss (left) and validation
accuracy (right) throughout the knowledge transfer process.

companied by a 74.09%-75.62% reduction in FLOPs and
57.42%-62.98% less GPU memory usage. Importantly, we
observe performance gains when using sparsely inverted
data compared with using densely inverted data. The rea-
son is that sparsely inverted data allows for a focus on the
foregrounds while disregarding noisy backgrounds, thus
avoiding potential outliers that detrimentally affect the de-
termination of bounding values (Tmin and Tmax in Eq. (5)).

5.2. Experiments on Data-Free Knowledge Transfer

Overview. We further examine the effectiveness of sparse
model inversion for data-free knowledge transfer.

Experimental setup. We adopt timm-sourced DeiT/16-
Tiny and DeiT/16-Base fine-tuned on CIFAR10 and CI-
FAR100 as teachers, containing knowledge of these specific
datasets. We use the vanilla DeiT/16-Tiny and DeiT/16-
Base (pre-trained on ImageNet) as student models. The
setup of inversion is the same as mentioned in Sec. 5.1. For
knowledge transfer, we alternately perform inversion and
knowledge transfer at each iteration with a batch size of
128. We implement Eq. (6) with linear probing, using an
SGD optimizer with a learning rate of 0.1 and a temperature
coefficient of 20. We evaluate the student on the validation
sets of CIFAR10 or CIFAR100.

Results. Tab. 4 verifies the superiority of our approach
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Figure 5. Our inverted images of 224×224 pixels from ViT/32-Base encompass a wide range of datasets, from natural images (CIFAR100
and MiniIma- geNet) to more specialized categories (Oxford 102 Flower for various flower species and CUB-200-2011 for bird species).

(a) Inversion from ViT/32-Base with patch size 32×32

(b) Inversion from ViT/16-Base with patch size 16×16

Figure 6. Inversion with different patch-size settings.

when applied to data-free knowledge transfer. Apart from
the acceleration benefits shown in Tab. 3, using sparsely
inverted data from our approach can maintain or even en-
hance the performance of knowledge transfer compared
to using densely inverted data. Let us take a deeper look
at the convergence process of knowledge transfer on CI-
FAR10 illustrated in Fig. 4. A critical observation is that
using densely inverted data (referring to the orange curve)
markedly damages the convergence of the student model,
causing a decelerated convergence rate (for DeiT/16-Base)
or even a training failure (for DeiT/16-Tiny). Remarkably,
switching to sparsely inverted data (referring to the blue
curve), without modifying any other settings, results in sta-
ble and faster convergence. This finding aligns well with
our previous convergence analysis in Sec. 4.4, suggesting
that using inverted data is prone to issues of slow- or non-
convergence, yet using sparsely inverted data can signifi-
cantly stabilize and speed up convergence.

5.3. Visualization

Inversion of multiple datasets. To validate the versatility
of our approach in inverting images for a broad spectrum
of datasets, we visualize the images inverted from CLIP-
based ViT/32-Base3 because features inverted from such
large-scale models tend to align more closely with human
perception (Ilyas et al., 2019). These models are seperately
fine-tuned on CIFAR100 (Bertinetto et al., 2018), MiniIma-
geNet (Vinyals et al., 2016), Oxford 102 Flower (Nilsback
& Zisserman, 2008), and CUB-200-2011 (Wah et al., 2011).
Fig. 5 visually demonstrates how our method effectively
retains the semantic foregrounds while excluding the noisy
backgrounds and potential spurious correlations.

3https://huggingface.co/openai/clip-vit-base-patch32

iteration 1 iteration 200 iteration 400 iteration 2000

…

sparsity 0 sparsity 20% sparsity 50% sparsity 75%

…

…

Figure 7. Visualization of the inversion process.

Inversion with different patch-size configurations. Pre-
trained ViTs typically have a fixed patch size setting. In
Fig. 6, we perform inversion from ViT/16-Base and ViT/32-
Base with patch sizes of 16× 16 and 32× 32, respectively.
The visualization showcases our approach’s adaptability to
different patch-size settings, effectively focusing on seman-
tic foregrounds and discarding uninformative backgrounds.

Inversion process. Fig. 7 visualize the process of sparse
inversion. As the inversion progresses, our approach selec-
tively inverts semantic patches while progressively stopping
inverting uninformative patches (marked as black blocks).

5.4. Ablation Studies

Effect of sparsity level. Here, we evaluate the performance
of data-free knowledge transfer on CIFAR10 and the teacher
model is DeiT/16-Tiny. Fig. 8 shows that as the sparsity
level of the inverted data increases, the inversion process
speeds up considerably, and the performance of knowledge
transfer significantly improves. Besides, we also find the
convergence becomes more stable and quicker, in alignment
with our analysis detailed in Sec. 4.4.

Throughput

p
Th

ro
ug

hp
ut

 (i
t/s

)

Accuracy

Figure 8. Effect of the sparsity level of inverted data on inversion
speed (i.e., throughput), performance and convergence of data-free
knowledge transfer.
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6. Conclusion
In this paper, we reveal the limitations of existing dense
inversion methods, i.e., the inefficiency of inverting high-
resolution images from large-scale ViTs. We further identify
two underlying causes: the redundant inversion of uninfor-
mative backgrounds and the unintended inversion of spu-
rious correlations—a phenomenon we term “hallucination”
in model inversion. To address these limitations, we pro-
pose the sparse model inversion strategy, as a plug-and-play
extension to speed up existing dense inversion with no need
for modifying the original loss functions. Specifically, it
selectively inverts semantic foregrounds while stopping the
inversion of noisy backgrounds and potential spurious cor-
relations. Comprehensive theoretical and empirical studies
validate our efficacy in achieving significant inversion ac-
celeration (up to ×3.79) while maintaining comparable or
even enhanced downstream performance in data-free model
quantization and data-free knowledge transfer.
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Appendix

A. Model Access and Data Processing
The pre-trained models used in our experiments are all publicly accessible via the Pytorch code or link shown below:

DeiT/16-Tiny (pytorch): timm.create_model("deit_tiny_patch16_224",pretrained=True)

DeiT/16-Base (pytorch): timm.create_model("deit_base_patch16_224",pretrained=True)

ViT/32-Base: https://huggingface.co/openai/clip-vit-base-patch32

ViT/16-Base: https://huggingface.co/openai/clip-vit-base-patch16

We implement data augmentation, including Random Horizontal Flip and normalization, to process inverted data. For the
patches discarded in the sparsely inverted data, we simply ignore them and do not perform any additional processing on
them. We only use resize and normalization to process test data. All images are resized to the resolution of 224× 224.

B. More Discussions on Experimental Results
Different quantization performance gains across model scales. In Tab. 3, we observe that using sparsely inverted data
for model quantization can achieve greater performance gains on DeiT-Base than on DeiT-Tiny. This trend is also found
when using densely inverted data4 (Li et al., 2022a;b). A plausible explanation for this phenomenon is the better foreground
extraction capabilities of larger models. When inverting images from such larger models, the inversion process can target
foregrounds more precisely. This more precise focus on the foregrounds can allow for the more accurate determination
of bounding values (Tmin and Tmax in Eq. (5)), and consequently leading to greater performance gains. Moreover, our
approach with sparsely inverted data goes a step further by explicitly discarding those noisy backgrounds. This removal can
effectively reduce the distraction of outliers to the determination of bounding values, thus further amplifying the beneficial
effect of foreground extraction.

C. More Applications of Model Inversion
Model inversion is often utilized to synthesize surrogate data directly from the discriminative model, proving highly useful
in data-constrained real-world scenarios. Besides model quantization (Liu et al., 2023; Choi et al., 2020; He et al., 2021;
Chen et al., 2023b) and knowledge transfer (Yin et al., 2020; Fang et al., 2019; Chen et al., 2019), which we discussed in
Sec. 2 of the main paper, data-constrained situations also arise in meta-learning, continual learning, federated learning, and
other applications. In these contexts, model inversion can offer an effective solution.

Meta-learning. Meta-learning (Finn et al., 2017; Bertinetto et al., 2018; Hu et al., 2023a) necessitates meta-training on
a vast array of related tasks, typically represented by task-specific training and testing sets. However, in the real world,
acquiring a large number of meta-training tasks with labelled data is challenging due to issues like data privacy or annotation
costs. Based on this real-world setting, data-free meta-learning (Wang et al., 2022) aims to conduct meta-training on tasks
using only pre-trained models, without access to corresponding datasets. Existing work (Hu et al., 2023b;c; Wei et al., 2024)
has also employed model inversion for data-free meta-learning to address the issue of data inaccessibility.

Federated learning. Federated learning is a method to train a global server model without accessing the training data stored
on each client. A typical approach involves each client uploading their self-trained model, which the server then merges
into a single global model. Thus, we can use model inversion to invert data from client models, aiding the server in better
integrating these models. For specific methodologies, please refer to (Zhu et al., 2021; Zhang et al., 2022a;c)

Continual learning. Continual learning (Wang et al., 2024; 2023) aims to learn new tasks while retaining knowledge of old
tasks. A classic approach is to store training data from old tasks and re-learn these along with new tasks. However, the data
for old tasks may be inaccessible due to reasons like privacy concerns or storage costs. In such cases, we can employ model
inversion to infer data from old tasks from the model. For specific methodologies, please refer to (Smith et al., 2021; Li
et al., 2023c; Carta et al., 2022; Yang et al., 2023).

4The performance gains of using sparsely inverted data are based on the comparison with using densely inverted data, while the
performance gains of using densely inverted data are based on the comparison with using real data.
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Other applications include image retrieval (Chaudhuri et al., 2023), neural architecture search (Liu et al., 2022b), model
extraction (Truong et al., 2021; Sanyal et al., 2022), adversarial attack (Zhang et al., 2022b), adversarial defense (Nayak
et al., 2022), object detection (Chawla et al., 2021), and image super-resolution (Zhang et al., 2021).

Previous methods typically employ model inversion as a tool to synthesize surrogate data, while our work is the first to
enhance the scalability of model inversion for inverting high-resolution images from large-scale ViTs.

D. Detailed Theoretical Analysis
Here, we go into more detail about our analysis study to investigate how sparsely inverted data affect the convergence
conditions, including the number of required training samples N and iterations T . Our study is based on the setting of Li
et al. (2023b), in the context of training ViTs for classification. Below, we first introduce some specific setups unique to our
sparsely inverted data.

Setup. (i) Patch sparsity setup: Consider N inverted samples {(Xn, yn)}Nn=1, where each Xn comprises L′ retained
patches [xn

1 , ...,x
n
L′ ], (L′ ≤ L). Let Sn ⊆ [L′] represent the indices of label-relevant patches in Xn. Label-relevant patches

refer to the ground-truth outcome of our semantic patch identification. We define the average fraction of label-relevant
patches as α =

∑N
n=1

|Sn|
N ·L′ . (ii) Patch noise setup: Label-relevant patches in xn correspond to specific patterns µyn of its

label yn with a noise level τ , satisfying
∥∥xn − µyn

∥∥
2
≤ τ . Other patches in Xn, however, correspond to patterns of other

labels or just noise. (iii) Convergence condition: We denote the required number of training samples and iterations as N and
T , respectively.
Lemma D.1. (Li et al., 2023a) Under certain assumptions, a ViT with initial errors σ and δ for value and query/key vectors
respectively, and trained via SGD with step size η, can achieve zero generalization error (i.e., population risk achieves zero)
with a probability of at least 0.99. This outcome is conditioned upon the sample complexity N and iteration numbers T :

α ≥ 1− α

e−(δ+τ)(1− (σ + τ))
, T = Θ

(
η−3/5α−1

)
, (8a)

N ≥ Ω

(
1

(α− c′(1− ζ)− c′′(σ + τ))
2

)
, (8b)

where c′, c′′ > 0 are constants, and ζ ≳ 1− η10.

Compared to real data, using densely inverted data makes the convergence process more challenging. This is primarily
due to the inherent higher noise level τ in inverted data. It is easy to derive that the noise level of inverted data is upper
bounded by the sum of the distance between inverted and real data and the noise level of the real data. With the noise level τ
increasing, the number of required training samples N increases by a factor of 1/(Θ(1)− τ)2 (Li et al., 2023b). This aligns
with the observed difficulty in achieving convergence when training ViTs with densely inverted data (see Fig. 4).

Compared to densely inverted data, using sparsely inverted data can stabilize convergence by reducing the number of
required training samples N and iterations T . This is because both N and T are negatively correlated with the fraction of
label-relevant patches in α and α2, respectively (Li et al., 2023b). Using sparsely inverted data can increase α by maintaining
foreground patches while discarding background patches with potential spurious correlations. Furthermore, using sparsely
inverted data can decrease the noise level τ by pruning noisy background patches. This inference also aligns well with our
experiments (as presented in Fig. 4 and Tab. 5 in App. E).

E. More Experiments
Effect of sparsely inverted data on convergence conditions of knowledge transfer. In addition to Figs. 4 and 8, which
illustrates how using sparsely inverted data stabilizes and accelerates the convergence process in knowledge transfer, this
section provides a quantitative analysis of the impact of using sparsely inverted data on the convergence conditions in
knowledge transfer, including the required number of training samples (N ) and iterations (T ). Tab. 5 compares the number
of inverted samples and iterations needed to achieve the same accuracy (as per the maximum test accuracy achieved using
densely inverted data) when using sparsely versus densely inverted data. In this experiment, we invert 128 CIFAR-10 data
from DeiT/16-Base per iteration, which is used to perform knowledge transfer (Eq. (6)). Tab. 5 demonstrate that sparsely
inverted data leads to faster convergence and requires fewer training samples to reach the same level of accuracy. These
results also align well with our analytical study in Sec. 4.4.
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Table 5. Impact of using sparsely versus densely inverted data on convergence conditions of knowledge transfer. We compare the number
of inverted samples and iterations required to achieve the same accuracy. For each iteration of knowledge transfer, we invert 128 CIFAR-10
data from DeiT/16-Base, and then use them to perform knowledge transfer (Eq. (6)).

Training Data Knowledge Transfer

Test Accuracy Sample Complexity (N ) Iteration Counts (T )

Densely Inverted Data (DeepInversion) 90.02 14080 110
Sparsely Inverted Data (SMI) 90.02 5540 43

T-SNE visualization. Fig. 9 presents the t-SNE visualizations of pseudo images inversed from ViT/32-Base on diverse
datasets, namely CIFAR100, MiniImageNet (which is a subset of ImageNet featuring diverse images), VGG-Flower (dedi-
cated to detailed flower species classification), and CUB (focused on fine-grained bird categorization). These visualizations
effectively highlight our method’s ability to invert essential discriminative features.

sparsely inverted
CUB-200-2011

sparsely inverted
CIFAR100

sparsely inverted
Oxford 102 Flower

sparsely inverted
MiniImageNet

Figure 9. T-SNE visualization of sparsely inverted data with the sparsity level of 77%.

Effect of progressive stopping. In Tab. 6, we compare the effects of one-stage and progressive multi-stage stopping on the
downstream performance of data-free knowledge distillation. With the same sparsity level in the inverted data, multi-stage
pruning provides greater performance gains for data-free knowledge transfer due to its progressive refinement in identifying
semantic patches.

Table 6. Effect of progressive stopping. Under the same sparsity goal, we implement one-stage stopping at the 100 th iteration, and
multi-stage with the same inversion setting in Sec. 5.1. We evaluate the performance of knowledge transfer on CIFAR10 and the
pre-trained model is DeiT/16-Tiny.

Variants Sparsity Data-free knowledge transfer

one-stage 77% 88.82
multi-stage 77% 90.08

Sensitivity analysis of varied inversion stopping strategies. Tab. 7 shows that the downstream performance of data-free
knowledge transfer is not very sensitive to variations in stopping strategy, if the overall sparsity level keep consistent,
highlighting the practical adaptability of our approach.

Table 7. Sensitivity analysis of different inversion stopping strategies. We evaluate the performance of knowledge transfer on CIFAR10
and the pre-trained model is DeiT/16-Tiny.

Inversion stopping strategy Sparsity Data-free knowledge transfer

{100: 77%} 77% 88.82
{200: 77%} 77% 89.02
{400: 77%} 77% 89.13

{50: 40%, 150: 60%} 77% 89.26
{100: 40%, 200: 60%} 77% 89.38
{250: 40%, 300: 60%} 77% 90.02

{30: 30%, 70: 30%, 150: 30%, 200: 30%} 77% 89.90
{50: 30%, 100: 30%, 200: 30%, 300: 30%} 77% 90.08
{200: 30%, 250: 30%, 350: 30%, 450: 30%} 77% 90.14
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Effect of batch size and model scale on speed gains. Tab. 8 illustrates that (i) increasing the batch size for each iteration of
model inversion enhances processing speed, and (ii) enlarging the model scale further amplifies this speed gain.

Table 8. Effect of batch size and model scale on speed gains.

Model Scale Batch Size Throughout (its/s) ↑
DeepInversion (Dense) DeepInversion (Sparse) Speed Gains

DeiT/16-Base
32 4.45 14.29 ×3.21
64 2.36 8.30 ×3.52

128 1.19 4.51 ×3.79

DeiT/16-Tiny

32 24.78 43.26 ×1.75
64 14.04 33.58 ×2.39

128 7.33 18.82 ×2.57
256 3.76 9.78 ×2.60
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