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Abstract

Dense passage retrieval (DPR) is the first step001
in the retrieval augmented generation (RAG)002
paradigm for improving the performance of003
large language models (LLM). DPR fine-tunes004
pre-trained networks to enhance the alignment005
of the embeddings between queries and rele-006
vant textual data. A deeper understanding of007
DPR fine-tuning will be required to fundamen-008
tally unlock the full potential of this approach.009
In this work, we explore DPR-trained mod-010
els mechanistically by using a combination of011
probing, layer activation analysis, and model012
editing. Our experiments show that DPR train-013
ing decentralizes how knowledge is stored in014
the network, creating multiple access pathways015
to the same information. We also uncover a lim-016
itation in this training style: the internal knowl-017
edge of the pre-trained model bounds what the018
retrieval model can retrieve. These findings019
suggest a few possible directions for dense re-020
trieval: (1) expose the DPR training process to021
more knowledge so more can be decentralized,022
(2) inject facts as decentralized representations,023
(3) model and incorporate knowledge uncer-024
tainty in the retrieval process, and (4) directly025
map internal model knowledge to a knowledge026
base.027

1 Introduction028

In just a few years, Large Language Models029

(LLMs) have emerged from research labs to be-030

come a tool utilized daily by hundreds of millions031

of people and integrated into a wide variety of busi-032

nesses. Despite their popularity, these models have033

been critiqued for frequently hallucinating, confi-034

dently outputting incorrect information (Bang et al.,035

2023). Such inaccuracies not only mislead people036

but also erode trust in LLMs. Trust in these systems037

is crucial to their success and rate of adoption.038

The retrieval augmented generation (RAG)039

paradigm is an approach to address hallucina-040

tions (Lewis et al., 2020). Unlike traditional LLM041

interactions where a query directly prompts an out- 042

put from the model, RAG introduces an interme- 043

diary step. Initially, a "retrieval" model processes 044

the query to gather additional information from a 045

knowledge base, such as Wikipedia or the broader 046

internet. This additional information alongside the 047

original query is fed to the LLM, increasing the 048

accuracy of the answers that the LLM generates. 049

For RAG to be effective, the underlying retrieval 050

model has to excel at finding accurate and rele- 051

vant information. Typically, model performance is 052

evaluated based on metrics that consider the top- 053

5, top-20, top-50, and top-100 retrieved passages. 054

However, recent studies indicate that LLMs pre- 055

dominantly use information from the top-1 to top-5 056

passages, underscoring the importance in RAG of 057

not only high recall in retrieval but also precision 058

in ranking (Liu et al., 2023a; Xu et al., 2024). One 059

approach to achieve both high recall and precision 060

involves integrating a "reranking" model, which 061

adjusts the order of retrieved passages to improve 062

the relevance of the top-ranked passages (Nogueira 063

et al., 2019, 2020). However, this approach adds 064

the computational and maintenance cost of an addi- 065

tional model to the pipeline and can also introduce 066

errors. The alternative option is to improve retrieval 067

models to directly retrieve and rank passages well. 068

Retrieval methods can be broadly categorized 069

into two types: sparse and dense (Zhao et al., 070

2024). Sparse methods encode queries and pas- 071

sages into sparse vectors, usually based on terms 072

that appear in the queries and passages (Robertson 073

and Zaragoza, 2009; Sparck Jones, 1972). Dense 074

methods employ language models to encode the 075

semantic information in queries and passages into 076

dense vectors (Karpukhin et al., 2020; Huang et al., 077

2013). Dense methods often share two common 078

properties: (a) the joint training of two or more 079

encoding models – one for embedding a query and 080

the other for embedding a knowledge base, and 081

(b) contrastive training. These commonalities were 082
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2-Passage
Probing

Pre-trained BERT
– Untrained Probe 0.50 0.50 0.51 0.48 0.50 0.52 0.51 0.51 0.50 0.49 0.50 0.54 0.50

Pre-trained BERT 0.51 0.69 0.74 0.74 0.77 0.79 0.81 0.81 0.81 0.82 0.83 0.84 0.84
DPR-BERT
Query Model 0.51 0.68 0.74 0.77 0.79 0.80 0.81 0.83 0.82 0.83 0.83 0.82 0.82

DPR-BERT Con-
text Model 0.51 0.68 0.74 0.77 0.79 0.80 0.81 0.83 0.82 0.83 0.83 0.82 0.82

3-Passage
Probing

Pre-trained BERT 0.34 0.53 0.59 0.59 0.65 0.64 0.67 0.67 0.68 0.69 0.69 0.73 0.73
DPR-BERT 0.34 0.54 0.60 0.63 0.66 0.66 0.66 0.70 0.71 0.69 0.73 0.72 0.71

4-Passage
Probing

Pre-trained BERT 0.26 0.43 0.47 0.49 0.53 0.57 0.61 0.60 0.56 0.62 0.64 0.66 0.66
DPR-BERT 0.26 0.46 0.51 0.54 0.57 0.58 0.60 0.63 0.64 0.63 0.65 0.63 0.63

5-Passage
Probing

Pre-trained BERT 0.21 0.35 0.42 0.43 0.43 0.50 0.53 0.53 0.54 0.56 0.57 0.60 0.61
DPR-BERT 0.21 0.36 0.42 0.48 0.49 0.51 0.54 0.56 0.58 0.58 0.60 0.56 0.56

Table 1: This table presents the outcomes of linear probing, where probes classify 2 to 5 passages to determine
the best match for a given query. Due to identical performance metrics, DPR-BERT Query and Context model
results are consolidated and displayed only for the 2-Passage Probe. Given that probes without training achieved
performance at random chance levels across all passage counts, their results are reported solely for the 2-Passage
Probe for comparison.

introduced in the DPR method, inspiring many sub-083

sequent methods in the literature.084

In this paper, we analyze the original DPR085

method using the BERT-base backbone. We begin086

by probing the model to determine if the features087

of pre-trained BERT are as discriminative as DPR-088

BERT in matching a query to the correct passage089

amongst hard-negative passages (Section 2). Next,090

using techniques from the pruning literature, we091

compare the relative strength and number of acti-092

vations of the feedforward layers throughout the093

original pre-trained and DPR-trained models (Sec-094

tion 3). Finally, we add and remove knowledge095

from the network to investigate how knowledge096

interacts with DPR training (Section 4). Through097

these experiments, we analyze DPR from multiple098

perspectives to understand what is changing in the099

backbone model during the training process.100

2 Knowledge Consistency Between101

Untrained and Trained Model102

Language models are known to store a vast amount103

of knowledge with the feedforward layers of the104

transformer architecture acting as a key-value mem-105

ory store of knowledge (Geva et al., 2021). This106

section details experiments conducted to under-107

stand the impact of DPR-style training from a108

model-knowledge perspective.109

Linear probing, a method to characterize model110

features, involves training a linear classifier on the111

internal activations of a frozen network to execute112

a simple task (Alain and Bengio, 2017). This re-113

veals the mutual information shared between the114

model’s primary training task and the probing task 115

(Belinkov, 2022). A high degree of probe accuracy 116

indicates that the model’s features possess suffi- 117

cient information to accomplish the probing task. 118

To evaluate whether DPR training improved 119

BERT’s discriminative features, linear probing was 120

employed on both pre-trained and DPR-trained 121

BERT. A classification probe 122

glN (flq, fltp, flhn1, flhn2, . . . ) 123

was trained for each index of the passage deemed 124

most relevant where l signifies the probed layer, flq 125

the features at layer l for the query, fltp the features 126

for the true positive paragraph at layer l, and flhnN 127

the features for the Nth hard negative passage at the 128

same layer. A distinct probe glN was trained for 129

each layer of BERT to examine how performance 130

fluctuates across layers and with different numbers 131

of hard-negative passages, thereby assessing how 132

performance is impacted as the task’s difficulty 133

increases. 134

The difference between a true positive passage 135

and a hard-negative passage is usually the pres- 136

ence of 1-2 key distinct facts in the passage. The 137

ability to discriminate between 2-5 of these pas- 138

sages indicates that the model likely has the aware- 139

ness of which facts are relevant to the query. This 140

awareness is likely driven by the model’s knowl- 141

edge of the subject (as discussed in later sections 142

of this paper). Rather than testing overall re- 143

trieval ability, this experiment aims to find how 144

aware/knowledgeable pre-trained BERT’s features 145

are compared to DPR-trained BERT when the dif- 146
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Figure 1: Layerwise activations for pre-trained and DPR-trained BERT. The parenthetical numbers indicate the
number of neurons in the layer that are above the attribution threshold for any number of examples.

ference of knowing or not knowing 1-2 facts can147

impact the final matching prediction.148

Table 1 shows the result of this experiment.149

The performance disparity between probes for pre-150

trained BERT and DPR-trained BERT is relatively151

minor in the two-passage scenario (1.8%) and in-152

terestingly, it is the pre-trained BERT that exhibits153

a slight advantage. As the number of passages154

increases, the performance gap widens to approx-155

imately 6%, and overall probe efficacy declines.156

These findings suggest that the inherent capabil-157

ities to discern relevant from irrelevant passages158

are likely already present in pre-trained BERT, and159

DPR-style training does not substantially enhance160

these discriminative features.161

3 Knowledge Decentralization in162

DPR-Trained Models163

The next perspective examined neuron activation164

patterns for the pre-trained and DPR-trained mod-165

els. The knowledge attribution method from (Dai166

et al., 2022) was employed which was inspired167

by the pruning literature (Hao et al., 2021; Sun-168

dararajan et al., 2017). Our analysis targeted linear169

layers, as this is where the model stores knowledge170

according to prior research (Geva et al., 2021).171

To calculate an individual neuron’s contribution172

to the output, we varied its weight w(l)
i from 0 to173

its original value. This can be calculated by:174

Attr(l)(wi) = w
(l)
i

∫ 1

α=0

∂Px(αw
(l)
i )

∂w
(l)
i

dα175

The Riemann approximation was used due to176

the intractability of calculating a continuous inte- 177

gral. Following (Dai et al., 2022), a threshold of 178

0.1∗max(Attr) was applied to identify a coarse set 179

of knowledge neurons1. In contrast to (Dai et al., 180

2022), the coarse set of knowledge neurons was not 181

refined to a fine set of knowledge neurons, as our 182

interest is on the broader activation patterns. When 183

the model operates, it activates both "true-positive" 184

and "false-positive" knowledge neurons indiscrim- 185

inately according to their attribution scores. The 186

primary interest lies in how DPR training influ- 187

ences these activation patterns, rather than the role 188

of specific neurons. 189

Figure 1 illustrates the impact of DPR training on 190

BERT’s neuron activations, charting the attribution 191

score of every neuron across both the intermedi- 192

ate and output linear layers within each transformer 193

block for the query model2. DPR-trained BERT has 194

more activated neurons in the intermediate layer of 195

each block. The output layer, on the other hand, 196

maintains a consistent number of activations at each 197

transformer block compared to pre-trained BERT, 198

and in the earlier layers DPR-trained BERT acti- 199

vates fewer neurons in the output layers. Previous 200

studies have conceptualized intermediate layers as 201

"keys" and the output layer as the "value" (Geva 202

et al., 2021). This suggests that DPR training ex- 203

pands the set of "keys" available to access a given 204

volume of semantic knowledge while decreasing 205

1Appendix A.2 demonstrates that our observations are con-
sistent across a spectrum of thresholds.

2Appendix A.1 shows that the observations made in this
section also hold for the context model.
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Answer in Top-1? # Strongly Activated Neurons Title of Top-5 Retrieval

Query
Pre-
trained
BERT

DPR-
BERT

Pre-
trained
BERT

DPR-
BERT Pre-trained BERT DPR BERT

where is the
most distortion
on a robinson
projection

✗ ✗ 220 1323

Circle of latitude,
Scale-invariant feature
transform, Line moiré,
Theil–Sen estimator,
Pole splitting

Robinson projection,
Robinson projection,
Arthur H. Robinson,
Robinson projection,
Arthur H. Robinson

who is the chief
legal advisor to
the government

✗ ✗ 65 831

Jimly Asshiddiqie, Ju-
dicial system of Iran,
Comptroller General of
the State Administra-
tion, Jimly Asshiddiqie,
Law of Kosovo

Attorney General of In-
dia, Attorney general,
Attorney General of In-
dia, K. K. Venugopal,
Attorney General of In-
dia

what type of
government
does kenya
have 2018

✓ ✗ 74 287

Government of Kenya,
Abundant Nigeria Re-
newal Party, 2007–08
Kenyan crisis, Inde-
pendent Electoral and
Boundaries Commis-
sion, Kingdom of
Kongo

Government of Kenya,
Politics of Kenya, Gov-
ernment of Kenya, Gov-
ernment of Kenya, Gov-
ernment of Kenya

are pure metals
made of atoms
or ions

✓ ✗ 69 1268
Alloy, Common
attributes, Metal, Reso-
nance ionization, Alloy

Properties of metals,
metalloids and non-
metals, Properties of
metals, metalloids and
nonmetals, Solid, Metal,
Metal

who is the bad
guy in lord of
the rings

✗ ✓ 100 533

Millennium Earl, The
Sword of Shannara, Eye
of Ra, The Enchanted
Apples of Oz, Ys I & II

Saruman, Saruman,
Sauron, Morgoth, Lego-
las

when were man-
atees put on the
endangered list

✗ ✓ 42 1522

Ivory trade, Namib
Desert Horse, Endan-
gered Species Act of
1973, Iriomote cat, Bile
bear

Manatee conservation,
Endangered Species Act
of 1973, Endangered
Species Act of 1973,
Manatee conservation,
Endangered Species Act
of 1973

when did wes-
ley leave last
of the summer
wine

✓ ✓ 38 1024
Naif (band), Aiden,
Queensrÿche, Josef
Brown, Matthew Stocke

Gordon Wharmby, Gor-
don Wharmby, Brian
Wilde, Cory Monteith,
Last of the Summer
Wine

when did
mozart com-
pose his first
piece of music

✓ ✓ 74 364

Wolfgang Amadeus
Mozart, Der Messias,
Life of Franz Liszt, Die
Entführung aus dem
Serail, Quattro versioni
originali della R̈itirata
notturna di Madrid¨

Wolfgang Amadeus
Mozart, Wolfgang
Amadeus Mozart,
Leopold Mozart, Wolf-
gang Amadeus Mozart,
Wolfgang Amadeus
Mozart

Table 2: This table presents example queries alongside the corresponding model retrievals and the count of strongly
activated neurons for both pre-trained and DPR-trained BERT. Notably, DPR training consistently increases the
number of strongly activated neurons. Additionally, the retrievals, even when DPR does not retrieve the correct
passage in the top-1 retrieval, are much more focused and targeted to the asked query. In contrast, pre-trained
BERT’s retrievals are much more varied and sporadic. This is likely because in pre-trained BERT each neuron
that is activated is responsible for more information and the model has no fine-grained path to follow for specific
information like it does after DPR training.
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the accessible volume of syntactic knowledge, em-206

bodying a decentralization strategy for semantic207

knowledge. Rather than relying on a single, highly208

precise key to unlock some knowledge, DPR al-209

lows for the use of multiple, somewhat less precise210

keys. This underscores DPR training’s primary211

goal: to modify the model’s method of knowledge212

access without altering the stored knowledge itself.213

These multiple pathways enable morphologically214

distinct but semantically related text to trigger the215

same knowledge or collections of facts, thus mak-216

ing retrieval possible.217

Table 2 demonstrates the effects of DPR training218

through performing retrieval with various queries219

and the full corpus of 21M Wikipedia passages.220

Across all instances, DPR training increases the221

number of strongly activated neurons indicating222

the existence of more pathways in the network al-223

lowing for better access to the information needed224

to perform retrieval. When examining the titles of225

the retrieved passages, a marked difference is re-226

vealed between pre-trained BERT and DPR BERT.227

Pre-trained BERT’s retrievals are often disparate,228

aligning with the query in some instances while229

seemingly unrelated in others. This inconsistency230

indicates that successful retrievals by pre-trained231

BERT may hinge on the activation pattern precisely232

aligning with the relevant article. On the other233

hand, DPR-BERT, consistently retrieves passages234

that are topically related to the query, even if they235

are not the exact best match, reflecting a better abil-236

ity to home in on pertinent information. By having237

more neurons responsible for each query the model238

has more fine-grained control to find relevant pas-239

sages, even if it is not the most relevant passage. In240

the cases where it was not able to navigate to the241

exact correct passage it is possible that the knowl-242

edge needed to discern between the correct and243

incorrect passage in the article is not in the model.244

4 Adding and Removing Knowledge to245

Model246

If DPR is rearranging knowledge found in pre-247

trained BERT, would we be able to see facts that248

pre-trained BERT knows reappear in DPR-BERT?249

To investigate this, we employed model editing250

techniques to add and remove facts from pre-251

trained BERT. Owing to the emerging state of this252

subfield and the variability in results, we employed253

various model editing techniques. In selecting tech-254

niques, we prioritized those that directly manipu-255

lated the model’s weights or minimally altered the 256

model architecturally. This approach was chosen to 257

facilitate clearer attributions of our findings to DPR 258

training rather than to potential architectural modi- 259

fications. TransformerPatch, MalMen, and Mend 260

were used to perform the model editing (Huang 261

et al., 2023; Tan et al., 2024; Mitchell et al., 2022). 262

TransformerPatch introduces a single parameter to 263

the last layer for each fact added, whereas MalMen 264

and Mend utilize hypernetworks to add facts by 265

predicting how the model weights would need to 266

be changed. 267

4.1 Knowledge Addition 268

The first branch of experiments focused on adding 269

facts to BERT. To select the facts for addition, we 270

identified the questions from the NQ dataset that 271

both DPR-BERT and the probed pre-trained BERT 272

incorrectly answered. For each of the 284 identified 273

questions, we added one fact to BERT, synthesized 274

by transforming each query-answer pair from the 275

NQ dataset into a cohesive sentence with GPT- 276

4. Furthermore, when necessitated by the editing 277

methodology, GPT-4 was employed to generate 278

10-12 rephrasings of each sentence. 279

The next step was determining whether the facts 280

had been successfully added to the network. Prob- 281

ing results served as an indicator for this verifica- 282

tion. If the probe accurately matched the query 283

associated with a fact, it suggested that the fact was 284

successfully added to the model. Table 3 shows 285

that approximately 54%-57% of the attempted facts 286

were successfully added to the model. The con- 287

sistency observed across various recently devel- 288

oped methods suggests that this level of perfor- 289

mance is representative of current model editing 290

capabilities. We also observed a number of off- 291

target edits; however, this issue was deemed mi- 292

nor, given the primary goal of adding specific facts 293

was achieved. Following the edits, this modified 294

"pre-trained BERT" underwent DPR-style training. 295

Table 3 reveals that DPR-trained BERT accurately 296

recognized 37%-44% of these newly added facts. 297

The lower-than-expected performance observed 298

does not detract from the results of these experi- 299

ments. In evaluating these experiments, it is im- 300

portant to note that the facts that were edited are 301

in the test set, while the model is trained with 302

a distinct training set. This discrepancy raises 303

the possibility that the overlap between the facts 304

necessary for training and testing queries might 305

not be sufficiently high. Consequently, the added 306
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284 Facts
Added

Probing
Added

Off-
Target
Flips -
Probing

DPR
Added

Off-
Target
Edits -
DPR

Transformer-
Patch 0.54 581 0.44 222

MalMen 0.57 592 0.37 236
Mend 0.57 592 0.38 229

Table 3: This table presents the outcomes of the knowl-
edge addition experiments. The "Probing Added" col-
umn is the percentage of the total facts that were suc-
cessfully added to BERT. The "DPR Added" column
is the percentage of those facts that were detected after
DPR training.

facts may not have developed a decentralized rep-307

resentation within the model through DPR training.308

This is consistent with other research that indicates309

DPR’s potential limitations in terms of general-310

ization (Thakur et al., 2021; Gangi Reddy et al.,311

2022). Additionally, certain queries might require312

the addition of multiple facts to enable accurate313

matching, but our experiments introduced only one314

fact per query. Given the interconnected and co-315

dependent nature of facts and knowledge—contrary316

to being discrete entities—this one fact per query317

approach might not suffice. Lastly, it is possible318

that these results simply reflect how new this sub-319

field is. Nevertheless, the reappearance of inserted320

facts in DPR-BERT underscores the way in which321

the DPR training process leverages the knowledge322

of pre-trained BERT to create a model capable of323

retrieving information.324

4.2 Knowledge Removal325

The next experiment was the inverse of the previ-326

ous one: facts were removed from BERT. A total of327

284 queries, which both DPR-BERT and the linear328

probes had accurately matched with their corre-329

sponding passages, were randomly selected. Given330

that the chosen model editing techniques did not331

provide a direct method to explicitly remove facts332

from BERT, we employed previously described333

techniques to "overwrite" BERT’s knowledge. To334

generate factually incorrect statements, the factu-335

ally correct query-answer pairs were provided to336

GPT-4, which was prompted to generate new factu-337

ally incorrect sentences. These new sentences were338

used by the model editing techniques to overwrite339

existing knowledge.340

Table 4 indicates that merely 11%−16% of facts341

were successfully overwritten. This limited success342

284 Facts
Removed

Probing
Re-
moved

Off-
Target
Flips -
Probing

DPR
Re-
moved

Off-
Target
Edits -
DPR

Transformer-
Patch 0.16 689 0.87 183

MalMen 0.11 721 0.81 261
Mend 0.11 722 1.00 252

Table 4: This table presents the outcomes of the knowl-
edge removal experiments. The "Probing Removed"
column is the percentage of the total facts that were suc-
cessfully removed from BERT. The "DPR Removed"
column is the percentage of those facts that were de-
tected after DPR training.

could stem from the complexity of fully erasing a 343

fact, given that facts are interdependent, exist in 344

multiple logical forms, and are supported by neigh- 345

boring facts that might compensate for any inaccu- 346

racies introduced. This complexity, along with the 347

fact that existing facts are being overwritten rather 348

than new ones being introduced, may contribute 349

to the higher incidence of off-target edits when 350

performing fact removal. Notably, the overwritten 351

facts appear to be more strongly set into BERT. 352

81%− 100% of the facts that are overwritten were 353

also incorrectly matched in DPR-BERT, as shown 354

in Table 4. This outcome suggests that once a fact 355

and its interconnected network are overwritten, the 356

ability to train a model to retrieve context that re- 357

quires that fact becomes significantly compromised. 358

It is unlikely that post-removal the fact remains in 359

the network in a form that can be decentralized in 360

a way that makes it retrievable. 361

Both the knowledge addition and knowledge re- 362

moval experiments demonstrate that DPR train- 363

ing primarily refines how pre-existing knowledge 364

within BERT is rendered more "retrievable". Newly 365

added facts to BERT became retrievable, while 366

those that were removed ceased to be retrievable. 367

Thus, it appears that DPR training does not alter 368

the model’s inherent knowledge base; instead, it 369

modifies the representation and accessibility of this 370

knowledge. 371

5 Related Works 372

DPR addresses the challenge of matching a query 373

with the most relevant passages from a knowledge 374

base (Karpukhin et al., 2020). This approach em- 375

ploys dual encoders—one encoder for the passages 376

and another for the query—and utilizes a distance 377

metric, such as the inner product, to identify the 378
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passages closest to the query. Inspired by Siamese379

networks (Bromley et al., 1993), DPR represents380

the first fully neural architecture to outperform the381

BM25 algorithm (Robertson and Zaragoza, 2009).382

Since then, there have been quite a few improve-383

ments in how to train DPR-style models. Methods384

like RocketQA improve DPR by employing cross-385

batch negatives and training the network on more386

difficult hard negatives (Qu et al., 2021). Dragon fo-387

cuses on novel data augmentation and supervision388

strategies (Lin et al., 2023). Contriever also em-389

ploys a greater number of hard-negatives and data-390

augmentation methods in addition to pre-training391

the model on the inverse cloze task (Izacard et al.,392

2022). MVR generates multiple views for each doc-393

ument to allow for multiple diverse representations394

of each of them (Zhang et al., 2022). ColBERT395

employs token embeddings for more fine-grained396

matching (Khattab and Zaharia, 2020). REALM397

leverages feedback from the reader component to398

jointly train the retriever with the reader (Guu et al.,399

2020). Other methods distill knowledge from the400

reader to the retriever (Izacard and Grave, 2020;401

Reichman and Heck, 2023). Additionally, efforts402

in query augmentation or generation aim to better403

synchronize the query with the document encoder404

(Ma et al., 2023; Wang et al., 2023; Shao et al.,405

2023; Gao et al., 2023). Despite these different406

enhancements, each method builds upon the DPR407

framework discussed in this paper.408

Distinctly, RetroMAE and CoT-MAE pre-train a409

model using a masked auto-encoder strategy, which410

they show enhances downstream retrieval perfor-411

mance (Xiao et al., 2022; Wu et al., 2023a; Liu412

et al., 2023b; Wu et al., 2023b). Following this pre-413

training phase, both methods subsequently adopt414

DPR fine-tuning to further refine their models for415

improved task performance.416

Only a few studies have delved into analyzing417

DPR models. One such study took a holistic look418

at RAG to see where the pipeline made errors419

(BehnamGhader et al., 2023). The study found that420

a similarity-based search during retrieval biased421

the result in favor of passages similar to the query,422

even when more relevant but dissimilar passages423

were available. Another study employed probing424

techniques to analyze ranking models (MacAvaney425

et al., 2022). The authors adopted a probing method426

akin to ours, categorizing passages by specific prop-427

erties for analysis, in contrast to our approach of428

random selection among hard negatives. This study429

explored how query and document characteristics430

affect ranking outcomes. Another study analyzed 431

the embeddings produced by retrieval models in 432

the vocabulary space (Ram et al., 2023). To do 433

this, they used pre-trained BERT’s MLM head on 434

the DPR-trained embeddings’ [CLS] token. It was 435

found that DPR implicitly learns the importance 436

of lexical overlap between the query and passage. 437

DPR training causes BERT to retrieve passages 438

that share more tokens with the query as compared 439

to pre-trained BERT. This ties in with our finding 440

where the number of output layer activations in 441

the early part of the model post-DPR training de- 442

creased. This may function as a sort of syntactic 443

filter, where many keys can access fewer, but more 444

pertinent, lexical features. However, this filtering 445

can also induce what the authors term “token amne- 446

sia”. This condition occurs when an encoder fails 447

to correctly retrieve relevant passages because it 448

does not properly encode the relevant token, usu- 449

ally related to a named entity. Unlike previous 450

research, our study adopts a holistic approach, ex- 451

amining model knowledge, activation patterns, and 452

capabilities across different model stages. This 453

analysis approach integrates and makes sense of 454

the different insights from prior works. 455

6 Conclusion 456

To reveal possible avenues for improving RAG sys- 457

tems, this paper set out to study the purpose served 458

by DPR-style fine-tuning and how DPR-trained 459

BERT operates. Through linear probing in Sec- 460

tion 2, alongside experiments where we added and 461

removed knowledge from pre-trained BERT in Sec- 462

tion 4, we determined that BERT does not appear to 463

acquire new information through DPR fine-tuning. 464

Instead, we observed that the efficacy of retrieval 465

hinges on the activation of shared facts/memories 466

between the BERT models used to encode the query 467

and the context passages. This mechanism implies 468

that incorrect retrieval could occur if a query or con- 469

text passage inadvertently activates irrelevant or in- 470

correct memories in BERT. Moreover, the absence 471

of necessary facts or webs of knowledge within the 472

model hampers its ability to retrieve information. 473

However, the crucial insight came in Section 3 474

from analyzing the changes in BERT’s activations 475

before and after DPR-style training. We found 476

that DPR-style training alters the model’s internal 477

representation of facts, transitioning from a central- 478

ized to a decentralized representation. Pre-trained 479

BERT’s representations are very centralized with a 480
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select few neurons being activated across a wide ar-481

ray of facts and only a few neurons being strongly482

activated for each fact, suggesting a limited num-483

ber of pathways for fact or memory activation. The484

representations in DPR-trained BERT, on the other485

hand, are a lot less centralized. DPR-trained BERT486

engages more neurons, more robustly for each fact,487

and diminishes the uniform reliance on specific neu-488

rons across different facts. This decentralization489

makes it so that each fact/memory has a lot more490

pathways to get triggered, which in turn allows491

for more potential inputs to trigger the same set of492

memories. Such a shift not only underscores the493

primary objective of DPR training—to diversify the494

model’s retrieval capabilities across an expanded495

set of queries and passages—but also delineates a496

crucial mechanism by which these models improve497

their retrieval performance.498

In the most fundamental sense, DPR achieves499

its namesake function—it retrieves, locating and500

returning relevant context to the user given a query.501

Yet, as our evidence suggests, DPR models appear502

constrained to retrieving information based on the503

knowledge that preexists within their parameters,504

either innately or through augmentation. This op-505

erational boundary delineates a significant caveat:506

facts must already be encoded within the model for507

useful context to be accessible by retrieval. Absent508

these facts or their associative networks, retrieval509

seems to falter. Thus, if retrieval is understood510

as the capacity to recall or recognize knowledge511

already familiar to the model, then indeed, DPR512

models fulfill this criterion. However, if we extend513

our definition of retrieval to also encompass the514

ability to navigate and elucidate concepts previ-515

ously unknown or unencountered by the model—a516

capacity akin to how humans research and retrieve517

information—our findings imply that DPR models518

fall short of this mark.519

Our findings suggest several areas of focus for520

future work including (1) accelerate knowledge rep-521

resentation decentralization with new unsupervised522

training methods (2) develop new methods to di-523

rectly inject facts in a decentralized manner into the524

network (3) optimize retrieval methods that operate525

with uncertainty, and (4) map the model’s internal526

knowledge directly to the set of best documents to527

retrieve.528

Current work in optimizing the inverse cloze529

pre-training task and various data augmentation530

methods such as (Lin et al., 2023) begin to address531

(1) by increasing the amount of knowledge that the532

model is exposed to during fine-tuning and thus 533

the amount of knowledge that can be decentralized. 534

With the knowledge of the purpose of DPR-training 535

more targeted methods can be developed. (3) re- 536

quires more detailed model analysis to determine 537

how the model processes a query when it is miss- 538

ing key knowledge needed for retrieval. Being 539

aware of when a model is uncertain in its retrieval 540

is crucial. The analysis should reveal methods to 541

more robustly and gracefully handle increased lev- 542

els of uncertainty. One direction to better leverage 543

a model’s knowledge as suggested in (4) is shown 544

in (Tay et al., 2022; Pradeep et al., 2023; Wang 545

et al., 2022; Bevilacqua et al., 2022; Ziems et al., 546

2023). 547

7 Limitations 548

This paper presents a detailed analysis of the DPR 549

formula, specifically focusing on the original DPR 550

training formula utilizing a BERT backbone. We 551

anticipate that our findings will exhibit a degree of 552

generalizability across various DPR implementa- 553

tions, given the underlying commonalities of the 554

core training approach. It is important to recog- 555

nize that modifications—such as improving hard 556

negatives, different data augmentation techniques, 557

different transformer-based backbones, or leverag- 558

ing multiple views/vectors from models—while 559

serving to refine and enhance the DPR framework, 560

build upon and amplify the mechanisms of the DPR 561

method. These enhancements, though significant 562

in optimizing performance, are expected not to fun- 563

damentally change this analysis. However, it is still 564

a limitation of this paper that we did not repeat our 565

analysis on more DPR-based methods and datasets. 566

(Reichman and Heck, 2024) 567

8 Ethics Statements 568

This work presents an analysis of DPR-style train- 569

ing. Improving DPR-style training would improve 570

RAG pipelines, increasing the factuality of LLMs 571

and decreasing the rate which they hallucinate. 572
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A Appendix843

A.1 Context Model Activations844

Figure 2 depicts the activation patterns observed in845

the context model, mirroring the trends outlined in846

Section 3. The only exception occurs in the first847

intermediate layer of the pre-trained BERT model,848

where a larger number of neurons are activated as849

compared to DPR-trained BERT.850

A.2 Model Activations at different thresholds851

Figures 3, 4, 5, 6, and 7 illustrate neuron activation852

patterns across varying activation thresholds set853

at 0.005 ∗ max(Attr), 0.01 ∗ max(Attr), 0.05 ∗854

max(Attr), 0.2∗max(Attr), and 0.3∗max(Attr),855

respectively. As the threshold increases from 0.005856

to 0.3, the visualization narrows down to neurons 857

with stronger activations. This observation rein- 858

forces the findings discussed in Section 3: pre- 859

trained BERT shows a trend of fewer but more 860

consistently activated neurons, in contrast to DPR- 861

trained BERT, which exhibits a broader array of 862

neurons activated less frequently. 863
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Figure 2: Layerwise activations for pre-trained and DPR-trained BERT - context model. The parenthetical numbers
indicate the number of neurons in the layer that are above the attribution threshold for any number of examples.

Figure 3: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.005. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 4: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.01. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.

Figure 5: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.05. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 6: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.2. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.

Figure 7: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.3. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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