
Under review as a conference paper at ICLR 2024

CALIBRATED ON AVERAGE, BUT NOT WITHIN EACH
SLICE: FEW-SHOT CALIBRATION FOR ALL SLICES OF
A DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has uncovered promising ways to extract well-calibrated confidence
estimates from language models (LMs), in which the model’s confidence accu-
rately reflects the probability that the answer is correct. However, while a model
may be well-calibrated on average over some input distribution, the same model
can actually be significantly miscalibrated within any narrower slice of the full
distribution. For example, we find that a model may be well-calibrated over
multiple-choice exam questions, but this calibration is the result of systematic
overconfidence in one subject (e.g. math) getting balanced out by systematic
underconfidence in another subject (e.g. history). In practice, being calibrated
within narrower slices of a distribution is important because the full distribution
is often formed from the queries of individual users who each only care about a
narrower slice. In this work, we propose a new framework for calibrating mod-
els on any given slice of a distribution, using just a few unlabeled samples from
that slice. Specifically, we train a model that approximates the precision-threshold
curve for any given slice by using its few-shot samples to predict the LM’s empir-
ical precision at various confidence thresholds. This allows us to directly identify
slice-specific thresholds above which the LM’s predictions can be trusted (e.g. for
a target precision of 90), and below which it should abstain. We also show that
the precision curve can be mapped back to the classic calibration curve, which
can guide adjusting the LM confidence to achieve lower calibration error. Ex-
periments show that our fewshot recalibrator consistently outperforms existing
calibration methods, for instance improving calibration error for PaLM2-Large on
MMLU by 16%, as compared to temperature scaling.

1 INTRODUCTION

Knowing when to trust a model’s predictions is typically mapped to the concept of calibration where
the model’s confidence estimate for a prediction reflects how likely it is to be correct. Language
models (LMs) have recently been shown to be well-calibrated in a number of settings (Kadavath
et al., 2022; Xiao et al., 2022; Kuhn et al., 2023; OpenAI, 2023). However, we find that while they
may be well-calibrated for broader distributions (e.g. mixtures of a number of domains), LMs can be
significantly miscalibrated for narrower slices of that broad distribution (e.g. individual domains).

For instance, Figure 1 shows an LM that is well-calibrated on questions from the diverse com-
bination of five domains—abstract algebra, business ethics, virology, high school chemistry and
global facts. While the combined calibration curve on the left appears near-perfect with a low ex-
pected calibration error (ECE), curves for the individual domains appear significantly miscalibrated
in comparison, with the least calibrated domain virology having a 250% higher error. This miscal-
ibration problem is hidden for the combined distribution because overconfidence in some domains
cancels out underconfidence in others. This illustrates a key problem: LMs are not well-calibrated
for meaningful slices of broader distributions. This is particularly relevant in practice where users
querying an LM rarely sample from a broad combination of distributions at any given time, and are
more likely to sample from slices like abstract algebra or virology. Our goal is to recalibrate LMs
for each of these fine-grained distributions, to allow users to reliably determine when predictions
can be trusted.
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Figure 1: An example of the illusion of LM calibration. For a combination of five domains, the
model is well-calibrated with a calibration error of 0.02 (the first plot). However, the same model is
miscalibrated on the the five individual domains, each with a higher calibration error.1

In order to recalibrate a model on specific slices of a broader distribution, we propose fewshot
recalibration—a new framework that uses a small number of unlabeled samples from the given
slice to predict its precision curve. The precision curve maps a given confidence threshold to the
corresponding precision for all examples with confidence higher than that threshold. We find that
predicting precision curves is useful because they are flexible and can be used to achieve a diverse
set of downstream goals, including recovering the more traditional calibration curves. We simulate
slices for training and evaluation by starting with a broad distribution of queries, such as the five do-
mains from Figure 1, and creating a large number of narrower distributions as a weighted mixture of
a smaller number of domains, such as 80% abstract algebra and 20% virology. Then, we randomly
sample a small number of queries from each slice and train a model to use this unlabeled fewshot
sample to predict the corresponding precision curve. Note how this setup mimics the real-world
setting where given a small set of a user’s queries, our approach recalibrates the LM for that user’s
slice of the broader distribution.

We train our fewshot calibrator to recalibrate LLaMA-65B (Touvron et al., 2023) and PaLM2-Large
(Anil et al., 2023) on the MMLU (Hendrycks et al., 2021) and XNLI (Conneau et al., 2018) datasets,
which already categorize examples into domains allowing us to easily create slices. We evaluate our
fewshot recalibrator against a variety of baselines in three settings: (1) achieving a desired level of
target precision by identifying slice-specific confidence thresholds, (2) reducing calibration error per
slice, and (3) maximizing utility by selecting the optimal slice-specific threshold, below which the
model should abstain. Overall, we find that our fewshot calibrator consistently outperforms existing
methods for calibration in all three settings. For PaLM2-Large on MMLU, our calibrator achieves a
21% higher success rate for achieving a target precision of 90 and a 16% lower calibration error on
the test set slices, compared to directly using the precision and calibration curves for the combined
distribution over all domains.

2 THE ILLUSION OF LM CALIBRATION

Calibration is a key tool for knowing when language model predictions can be trusted and when
they should abstain or defer to experts. However, we find that even though LMs appear to be well-
calibrated on average, they are significantly miscalibrated in finer-grained settings.

In this work, we study LM calibration for multiclass classification: let x ∼ p be the input drawn
from the query distribution and y ∈ {1, · · · ,K} be the output class. Let pLM(y | x) denote the
model probability, which is also the model’s confidence. Let ŷ = argmaxy pLM(y | x) be the
model’s prediction, and y∗ be the ground truth label.

2.1 MEASURING CALIBRATION

Calibration expresses how closely a model’s confidence estimate for a prediction is aligned
with the true probability that the prediction is correct, as measured by accuracy. We use
acc(B) = E(x,y∗,ŷ)∈B1(ŷ = y∗) to denote the model’s accuracy for the set B, and conf(B) =
E(x,y∗,ŷ)∈BpLM(ŷ | x) denotes the model’s confidence on this set.

Expected Calibration Error (ECE) This is the canonical metric which measures L1 distance
between the confidence and accuracy (Naeini et al., 2015). To measure ECE, we first group all the

1Although a smaller sample size in MMLU can cause some jaggedness, our experiments on XNLI confirm
this finding for larger sample sizes as well.
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N predictions intoM equally sized bins based on their confidence estiamtes, denoted asB1 · · ·BM .
We then calculate the average confidence and accuracy of each bin, and compute the ECE of the LM
under this query distribution p(x):

ECE(pLM, p) =

M∑
i=1

|Bi|
N
|conf(Bi)− acc(Bi)|

Perfectly calibrated models have ECE = 0 i.e. model confidence matches expected accuracy at
all confidence levels. For example, suppose there are 100 examples, each with confidence 0.8, we
expect that 80 of the examples are correctly classified.

Calibration Curves Also known as reliability diagrams, these curves are a visual representation
of model calibration, plotting the expected model accuracy as a function of model confidence (De-
Groot & Fienberg, 1983; Niculescu-Mizil & Caruana, 2005). Well-calibrated models lie close to the
diagonal (y = x). Figure 1 shows example curves with respect to different query distributions p(x).

2.2 POOR CALIBRATION ON SLICES OF DISTRIBUTIONS

Figure 2: A histogram of ECE
scores for LLaMA-65B on 57
MMLU domains. The red line
shows ECE for all the domains
combined. We can see the ag-
gregate ECE is lower than most
domains, hiding the underlying
miscalibration problem.

We often study LM calibration for aggregate query distributions
(p). But these are often composed of mixtures of meaningful
finer-grained distributions: p(x) =

∑
d∈D αdpd(x), where D

denotes a set of domains, and each pd denotes the input distri-
bution of domain d, with relative frequency αd. For instance,
OpenAI (2023) and Kadavath et al. (2022) have reported LM
calibration on MMLU, which consists of 57 individual domains
like abstract algebra, high school chemistry etc. However, in
practice, users querying an LM at a given point rarely sample
from a broad aggregate distribution. They are more likely to
sample from meaningful slices, like queries from abstract alge-
bra alone.

To better understand the reliability of model predictions in both
settings, we measure calibration of LLaMA-65B on combined
MMLU (p), similarly to previous work, and also measure cal-
ibration on each domain separately. As expected, the model is
well-calibrated on p. However, we find that the LM is signifi-
cantly miscalibrated for most domains. This is shown in (Fig-
ure 2) where the aggregate ECE is lower than that of most do-
mains. It appears that the miscalibration problem is hidden for the broader distribution because
overconfidence in some domains cancels out underconfidence in others. Figure 1 shows a qualita-
tive example to illustrate this using five domains from MMLU: while the model is well-calibrated
for the combined distribution with a curve that falls nearly on the diagonal and has the lowest ECE,
it appears to be significantly miscalibrated for each of the five domains. The worst calibration error
for virology is about 250% higher than that of the combined distribution. These results show that
LMs are not always well-calibrated for meaningful slices of broader distributions, making it hard
for users to know when they can trust model predictions.

3 FEWSHOT RECALIBRATION

We have shown that LMs may not be well-calibrated for meaningful slices of broader distributions
even if they are calibrated for the broader distribution itself. To tackle the miscalibration problem,
we formulate the fewshot recalibration task which takes k unlabeled queries (x1:k) drawn from a
fine-grained distribution pi(x) and recalibrates LM predictions with respect to this slice. In practice,
the first few queries in a chat session can provide a sketch of a given user’s query distribution (e.g.
questions about abstract algebra), and thus be used for distribution-specific recalibration in this
framework.

To recalibrate predictions, we train a fewshot recalibrator fθ : x1:k −→ g which outputs a function g
that adjusts model confidence g : pLM(ŷ | x) −→ p′LM(ŷ | x), while the underlying model pLM and
its predictions remain unchanged. Next, we discuss our choice for the target function g and details
for training the recalibrator, as depicted in Figure 3.
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Figure 3: An illustration of the fewshot recalibrator. This model learns to predict the precision curve
for slices (e.g. psychology only, or 20% psychology-80% biology) of a broader distribution (mix of
psychology, biology, botany etc.), using fewshot unlabeled examples. At test time, it can predict the
precision curve for an unseen slice (e.g. 66% botany-34% biology) given only an unlabeled fewshot
set drawn from it. This precision curve can then be used to accomplish various downstream goals.

3.1 PREDICTING PRECISION CURVES RATHER THAN CALIBRATION CURVES

The most direct choice for g would be the calibration curve, i.e. a function that adjusts model
confidence to predicted accuracy. However, as described in §2.1, calibration curves rely on binning
predictions based on confidence estimates. This binning step introduces two hyperparameters: (1)
the binning design where scores can be grouped into equally-spaced bins with equal interval ranges,
or equally-sized bins with an equal number of examples per bin. And, (2) the number of bins such
that scores can be grouped into a large number of bins each containing a small number of examples,
or a small number of bins each containing many examples. Both hyperparameters affect the shape of
the calibration curve, and certain choices can hide miscalibration issues, making this an unreliable
prediction target for the calibrator.

Instead, we propose predicting the precision curve (PC; prec(·)), which maps confidence thresholds
to precision scores. So, prec(0.5) = 0.8 means that for all the examples with confidence greater than
0.5, the model pLM achieves a precision of 0.8. In contrast to the calibration curve, the precision
curve has no hyperparameters. It is also extremely flexible. For instance, it can be converted to
the corresponding calibration curve with any hyperparameter setting, given additional information
about the distribution over confidence scores (see details in §3.3). Conversely, it is hard to convert
a calibration curve to a precision curve since the binning step is lossy. This flexibility allows us
to accomplish a variety of downstream goals such as reducing calibration error, finding optimal
confidence thresholds for desired precision etc. as described in §3.3. For this reason, we choose
precision curves as our calibrator’s prediction target g.

3.2 TRAINING THE FEWSHOT RECALIBRATOR

We train a fewshot recalibrator fθ that takes a small set of k unlabeled examples from some fine-
grained distribution slice pi, and predicts the precision curve for pi. The training set consists of many
slices and each example is a pair (xij,(1:k), preci) which is the j-th few-shot set drawn from the i-th
slice mapping to the corresponding ground-truth precision curve. The training loss minimizes L2

distance between the ground-truth and predicted precision values at different confidence thresholds.

While the training loss penalizes all errors equally, over-estimating precision at some confidence
threshold can be seen as a more costly error than under-estimating it. This is because predicting
a higher precision score than the ground-truth means the recalibrator believes the model correctly
answers more questions than it actually can, and the confidence threshold does not trigger abstention
when it should. Conversely, when under-estimating precision, the confidence threshold is more
conservative and sacrifices recall in favor of more reliable answers. In this work, we prioritize
correctness over recall, as is likely in most practical scenarios, by adapting the L2 training objective
to be asymmetric.

L(θ) =
{
β||precθ(c)− prec(c)||2 if precθ(c) > prec(c),
||precθ(c)− prec(c)||2 otherwise.

where precθ = fθ(x1:k) is the output of the fewshot recalibrator. This penalizes over-estimation
more than under-estimation by setting the coefficient β > 1.0.

3.3 EVALUATION

Our fewshot recalibrator outputs a precision curve which is flexible and can be used to accomplish
various downstream goals. We describe three of them here, along with the corresponding metrics
that define success.
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Achieving Target Precision For a given system, we may want to guarantee a minimum level of
precision. The goal, then, is to identify distribution-specific confidence thresholds that achieve that
level of precision without sacrificing much recall. In this setting, we can directly use the predicted
precision curve precθ as a lookup table and find the threshold that attains the target precision. We
evaluate performance by measuring the success rate of whether the selected threshold achieves the
target precision on the ground-truth precision curve.

Reducing Calibration Error Alternatively, the goal can be to reduce the system’s calibration
error. For this setting, first we map the predicted precision curve precθ to the corresponding
calibration curve, given the confidence scores of the predictions. We do this as follows: let
count(a) denote the number of examples whose confidence exceeds a. For bin Bi, we have the
upper Bi.r and lower Bi.l bounds on the confidence scores. We compute the accuracy for Bi:
acc(Bi) =

precθ(Bi.l)count(Bi.l)−precθ(Bi.r)count(Bi.r)
count(Bi.l)−count(Bi.r)

, which along with the confidence conf(Bi), is
sufficient to recover the calibration curve. Once we have the calibration curve, we can apply his-
togram binning (Zadrozny & Elkan, 2001) to map confidence scores to the corresponding accuracy,
minimizing the calibration error. We evaluate performance by measuring ECE.

Maximizing Utility Another downstream goal in practice can be to maximize the utility of a sys-
tem, which consists of the abstention cost (sacrifices recall) and the error cost (sacrifices precision).
Inspired by the rejection learning framework (Cortes et al., 2016; Bartlett & Wegkamp, 2008), we
define a cost function that clearly specifies the trade-off: incorrect predictions incur a cost of 1 and
abstaining incurs a cost c ∈ [0, 1], while correct predictions incur no cost. For a fixed value for c,
the goal is to maximize utility (i.e. negative cost).

Given the predicted precision curve precθ and the raw confidence scores for predictions, let count(t)
denote the number of examples whose confidence exceeds t and N denote the total number of
examples. Then, we estimate the cost at each threshold t as Cost(t) = (1− precθ(t)) · count(t)+ c ·
(N −count(t)), where the first term accounts for incorrect predictions and the second term accounts
for abstentions. And we find the optimal threshold t∗ that minimizes Cost(t) via a grid search over
t ∈ [0, 1]. To evaluate the goodness of the selected threshold t∗, we assume access to labeled data,
and measure the empirical utility achieved by abstaining when the model’s confidence is lower than
the selected threshold and making a prediction otherwise.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate our fewshot recalibrator on two datasets: MMLU (Hendrycks et al., 2021) consists of
multiple choice questions categorized into 57 different subjects (e.g. abstract algebra, high school
physics, law), each of which serves as a separate domain. XNLI (Conneau et al., 2018) is a natural
language inference task, where the model predicts if the given hypothesis entails, contradicts or is
neutral to the corresponding premise. Examples are categorized into 10 genres (e.g. travel guides,
speeches, etc.) in 15 languages each, for a total of 150 domains.

Rather than simply looking at individual domains, we simulate a wider variety of slices of the
broader distributions via weighted mixtures of domains. We do this by first sampling a number
of domains m from a geometric distribution2, and then randomly selecting m domains from the
full set. Then, we sample mixture weights from a Dirichlet distribution and construct the slice by
mixing the m domains according to their mixture weights, e.g. 0.25 math and 0.75 history. Once
we have constructed these slices, we sample k unlabeled examples from each distribution to serve
as the fewshot set that provides a sketch of the corresponding slice. For the main experiments we
set k = 20, and for ablation studies, we consider k = {5, 10, 20, 30}.
We sample 20K slices for the training set and 2K unseen slices for the test set, ensuring that exam-
ples which appear in the test data’s fewshot sets are held out from training. We also construct an
UNSEEN test set for XNLI, where 10 domains are entirely held out from the training data and are
used to construct a separate set of 2K mixtures.

2We use Geometric(0.5) for MMLU and Geometric(0.3) for XNLI.
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4.2 MODELS

We train fewshot recalibrators for PaLM2-Large (Anil et al., 2023) and LLaMA-65B (Touvron et al.,
2023) on MMLU and only PaLM2-Large, the best performing model, on XNLI. We also include
recalibration results for LLaMA-30B in Appendix B. Our recalibrator is a LLaMA-7B model, fine-
tuned for 4K steps for MMLU and 2K for XNLI, both with a batch size of 16, a learning rate of 2e-5
and a cosine learning rate schedule (see more details in Appendix A). All finetuning experiments
use 16 A100-40GB GPUs. Recall from §3.2, our training objective is the asymmetric L2 loss, and
we set β = 5 in all experiments.

4.3 BASELINES

We compare our fewshot recalibrator against the following baselines which output precision curves.

SAMPLE AVERAGE is the precision curve of the combined distribution over all the domains based
on the queries that appear in the training data. This baseline is not distribution-specific: it uses a
single curve for all test set distributions.

DOMAIN AVERAGE involves averaging the precision curves for each domain. Similar to sample
averaging, this approach is not distribution-specific.

EMPIRICAL uses the precision curve obtained from only the k fewshot labeled queries. Note that
this baseline has an unfair advantage over other approaches, including ours, because it assumes
access to the labels of the k fewshot queries.

ORACLE is the ground-truth precision curve of the corresponding slice’s distribution, and serves as
a skyline for the best achievable performance for curve prediction approaches.

In the reducing calibration error setting, we compare our approach to the canonical recalibration
method of temperature scaling (Guo et al., 2017). Temperature scaling (TS) uses a held out cali-
bration set to select a temperature, and then applies that temperature to the test data. We compare
against two variants of temperature scaling, and they differ in the choice of the calibration set.

TS (FEWSHOT) uses the k fewshot examples with ground-truth labels as the calibration set. We
run grid search on values for the temperature in {0.1, 0.2, · · · , 1.9, 2.0, 3.0, 4.0, 5.0} to find one that
minimizes ECE for the k examples.

TS (ALL DOMAINS) uses the training data, combining all domains, as the calibration set. Similarly,
we run grid search on values for the temperature to minimize ECE for the entire training set.

Lastly, in the utility maximization setting, we compare against a baseline inspired by the rejection
learning framework.

ABSTAIN finetunes LLaMA-7B to predict the correctness of a classifier pLM. When the abstain
model predicts the model will be incorrect, we abstain from answering the question, and otherwise,
the question is answered by the classifier pLM.

5 RESULTS

5.1 ACHIEVING TARGET PRECISION

We first experiment with measuring the success rate of selecting a confidence threshold that achieves
a given target precision on the slice’s ground-truth precision curve. As shown in Table 1, our few-
shot recalibrator outperforms baselines by achieving a higher success rate for three different target
precision values of 0.85, 0.9 and 0.95.

In spite of the fact that the Empirical baseline has access to the fewshot example labels, our recali-
brator consistently outperforms it by a large margin. This shows that while the fewshot set itself is
not sufficient for plotting a precision curve and selecting a slice-specific threshold, our recalibrator
successfully learns to infer the full slice’s distribution, and its corresponding precision curve, from
this this set. This is also demonstrated in Figure 5, where we show examples of precision curves gen-
erated by our fewshot recalibrator. As we can see, the Empirical curve deviates far from the Oracle
curve, while our recalibrator closely approximates it, and tends to upper bound it, as a consequence
of our asymmetric training objective.
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Target Precision 0.85 0.9 0.95
Success Recall Success Recall Success Recall L2

X
N

L
I

Pa
L

M
2-

L Sample Avg 0.47 0.86 0.55 0.71 0.62 0.42 0.001
Domain Avg 0.53 0.86 0.55 0.71 0.62 0.42 0.001
Empirical 0.47 0.81 0.38 0.68 0.34 0.52 0.008
FSC(Ours) 0.69 0.83 0.75 0.66 0.76 0.37 0.001
Oracle 1.00 0.85 1.00 0.7 1.00 0.45 0.000

M
M

L
U

Pa
L

M
2-

L Sample Avg 0.64 0.95 0.64 0.88 0.60 0.75 0.006
Domain Avg 0.71 0.93 0.78 0.84 0.78 0.69 0.007
Empirical 0.61 0.91 0.47 0.86 0.34 0.74 0.007
FSC(Ours) 0.87 0.87 0.85 0.80 0.77 0.67 0.002
Oracle 1.00 0.91 1.00 0.85 1.00 0.74 0.000

M
M

L
U

L
L

aM
A

-6
5B Sample Avg 0.58 0.60 0.59 0.51 0.57 0.36 0.012

Domain Avg 0.72 0.57 0.80 0.41 0.99 0.02 0.012
Empirical 0.43 0.58 0.40 0.48 0.34 0.40 0.023
FSC(Ours) 0.90 0.50 0.89 0.39 0.80 0.23 0.006
Oracle 1.00 0.60 1.00 0.51 1.00 0.39 0.000

Table 1: Our fewshot recalibrator has a higher success rate for identifying confidence thresholds that
achieve a given target precision, as compared to the baselines, while maintaining reasonable recall.

Our approach also outperforms the Sample and Domain averaging baselines in all settings but one:
for a target precision of 0.95 when calibrating LLaMA-65B on MMLU. However, in this case Do-
main averaging achieves a high success rate of 0.99 by selecting an extremely high threshold and
entirely sacrificing recall, down to 0.02. In contrast, our recalibrator strikes a better balance between
achieving the target precision with a high success rate, while still maintaining reasonable recall.

5.2 REDUCING CALIBRATION ERROR

XNLI (PaLM2-Large) MMLU (PaLM2-Large) MMLU (LLaMA-65B)
ECE Win% Lose% ECE Win% Lose% ECE Win% Lose%

Base 0.059 22 78 0.063 38 62 0.109 16 84
Sample Avg 0.049 39 61 0.082 17 83 0.103 25 75
Domain Avg 0.049 39 61 0.085 17 83 0.107 22 78
Empirical 0.094 9 91 0.078 29 71 0.122 14 86
TS (fewshot) 0.094 8 92 0.079 27 73 0.120 16 84
TS (all domains) 0.057 23 77 0.063 38 62 0.099 24 76
FSC(ours) 0.045 - - 0.053 - - 0.074 - -
Oracle 0.011 99 1 0.009 100 0 0.016 100 0

Table 2: Our approach achieves the lowest calibration error (ECE), outperforming all baselines.
Pairwise comparisons show that it has a lower ECE for most of the test slices, indicated by each
baseline’s lose percentage. Base refers to the LM without any temperature scaling.

For the goal of reducing calibration error, we similarly find that our fewshot recalibrator outperforms
baselines by achieving the lowest ECE score across various settings, as shown in Table 2. We also
conduct a pairwise comparison and find that our recalibrator wins by achieving a lower ECE score
most of the test slices as compared to all other approaches.

We find that the labeled fewshot set is not a useful proxy for the whole slice, since selecting a
temperature based on this set for temperature scaling fails to improve ECE over the base LM with a
temperature of 1. We also find that selecting a single temperature for all slices, based on the broader
distribution of the training set examples, is sub-optimal. In contrast, our fewshot recalibrator can
provide slice-specific calibration which results in lower ECE.

5.3 MAXIMIZING UTILITY

For the utility maximization setting, we experiment with two values of the abstention costs, c =
0.4 which favors abstaining more (i.e. precision) and c = 0.6 which favors answering more (i.e.
recall). These two settings evaluate each method’s flexibility to balance different trade-offs between
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XNLI (PaLM2-Large) MMLU (PaLM2-Large) MMLU (LLaMA-65B)
c = 0.4 c = 0.6 c = 0.4 c = 0.6 c = 0.4 c = 0.6

Abstain -0.224 -0.240 -0.162 -0.188 -0.315 -0.390
Sample Avg -0.206 -0.219 -0.169 -0.197 -0.289 -0.382
Domain Avg -0.206 -0.219 -0.171 -0.197 -0.289 -0.388
Empirical -0.208 -0.225 -0.164 -0.190 -0.293 -0.372
FSC(Ours) -0.202 -0.218 -0.157 -0.189 -0.284 -0.372
Oracle -0.192 -0.213 -0.150 -0.180 -0.277 -0.358

Table 3: Our fewshot recalibrator is better at maximizing utility, and thus, finding the right balance
between abstaining and making predictions.

Figure 4: Our approach
works well even with small
fewshot sets.

Figure 5: Examples of precision curves generated by the fewshot
recalibrator, compared to the Empirical and Oracle curves. Our
curves approximate the Oracle curves more closely.

precision and recall. As shown in Table 3, we find that our fewshot calibrator strikes a good trade-off
between precision and recall for both settings, consistently achieving a higher utility as compared to
baselines, including the Abstain model.

5.4 EXTRAPOLATION TO UNSEEN DOMAINS

Target Precision 0.85 0.9 0.95
Success Recall Success Recall Success Recall L2

Sample Avg 0.60 0.86 0.63 0.70 0.38 0.42 0.002
Domain Avg 0.65 0.85 0.63 0.70 0.38 0.42 0.002
Empirical 0.53 0.81 0.43 0.69 0.33 0.53 0.009
FSC(Ours) 0.79 0.83 0.74 0.67 0.69 0.34 0.001
Oracle 1.00 0.87 1.00 0.72 1.00 0.43 0.000

Table 4: Precision Success Rate On Unseen Domains from XNLI. Our approach achieves the highest
success rate and lowest L2 distance on previously unseen domains, without sacrificing much recall.

We also evaluate the extrapolation performance of our fewshot recalibrator. For this, we measure the
success rate of achieving target precision on domains from XNLI that were unseen in the training
set. Table 4 shows that our approach performs well on unseen domains as well, achieving the highest
success rate of all curve prediction baselines, while maintaining a reasonable recall.

6 ABLATION STUDIES

We run all ablation experiments on the MMLU dataset, recalibrating the PaLM2-Large model.

Number of fewshot examples We examine the impact of the number of fewshot examples by
experimenting with k = {5, 10, 20, 30}. As shown in Figure 4, the success rate of achieving target
precision increases as we increase the number of fewshot examples for both the Empirical baseline
and our fewshot recalibrator,. Our approach with only 5 examples still achieves a high success rate
of 0.81, suggesting that our approach is highly suitable for settings with very small amounts of
recalibration data.

Asymmetric vs. symmetric loss The asymmetric objective penalizes over-estimation of precision
more severely than under-estimation. In this ablation experiment, we verify the effectiveness for the
asymmetric objective. We find that training our recalibrator with the asymmetric loss (β = 5) results
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in a higher success rate of 0.85 whereas the symmetric loss only achieves 0.68, when aiming for a
target precision of 90%.

Performance for different numbers of domains per slice Our experiments involve constructing
slices using different numbers of domains. Here, we decompose target precision success rate results
for mixtures containing 2, 3, 4 and 5 domains. Table 5 shows that performance does not vary
significantly across these settings.

2 domains 3 domains 4 domains 5 domains
Success Recall Success Recall Success Recall Success Recall

Empirical 0.39 0.68 0.40 0.65 0.34 0.71 0.29 0.70
FSC(ours) 0.76 0.66 0.75 0.65 0.77 0.65 0.71 0.66
Oracle 1 0.70 1 0.69 1 0.71 1 0.70

Table 5: Model performance is robust to the number of domains included in the slice and the success
rate does not vary significantly as the number of domains changes.

7 RELATED WORK

We note that our fewshot recalibrator draws inspiration from Lee et al. (2021) who introduced this
type of meta-learning on slices for the purposes of synthesizing new examples. Below, we discuss
relevant prior work on calibration for LMs and abstention.

Calibration for LMs Calibration ensures the model’s confidence reflects the model’s accuracy,
which is instrumental for understanding when to trust LMs. Pretrained language models appear
mostly well-calibrated on broader distributions (Kadavath et al., 2022; Xiao et al., 2022; Kuhn
et al., 2023), and can express their uncertainty in words (Lin et al., 2022; Mielke et al., 2022; Tian
et al., 2023; Zhou et al., 2023). However, the models are still miscalibrated in some settings (Wang
et al., 2020; Stengel-Eskin & Durme, 2023), and prior work has focused on recalibrating neural
networks by temperature scaling (Guo et al., 2017), Platt scaling (Platt, 1999), isotonic regression
(Niculescu-Mizil & Caruana, 2005; Zadrozny & Elkan, 2002), or histogram binning (Kumar et al.,
2019; Zadrozny & Elkan, 2001). In this work, we identify a class of miscalibration problems on
narrower distributions covering only a few domains, and propose a new framework of distribution-
specific recalibration that relies on fewshot, unlabeled queries.

Abstention When the model is not confident about an answer, abstention or deferral to an expert
are desirable alternatives compared to responding with the incorrect answer. In order to decide when
to abstain, the line of work called rejection learning (or selective classification) focuses on jointly
learning a rejection function and a predictor (Tortorella, 2000; Santos-Pereira & Pires, 2005; Bartlett
& Wegkamp, 2008; Cortes et al., 2016; Geifman & El-Yaniv, 2017; Fisch et al., 2022). The rejection
function decides when to abstain, and if the rejection function decides not to abstain, the predictor
answers the question. In this paper, we freeze the base LM which functions as the predictor because
it is computationally expensive to update a large model for downstream tasks. Instead, we make
the abstention decision using a smaller model and the raw confidence of the base LM. Specifically,
we use the trained recalibrator to derive a confidence threshold of abstention. To compare to the
rejection learning line of work, we train an abstention baseline by learning a rejection function
that predicts the correctness of the base model’s responses. This resembles the setting of one-stage
version of Trapeznikov & Saligrama (2013), which also freezes the base classifier model.

8 CONCLUSION AND FUTURE WORK

We have shown that while LMs appear to be well-calibrated on broad distributions, they remain mis-
calibrated for meaningful slices of that broader distribution. To recalibrate them for each slice, we
propose fewshot recalibration which takes fewshot, unlabeled queries and predicts a slice-specific
precision curve. We then use the predicted precision curve for three downstream calibration tasks,
finding that our approach consistently outperforms existing recalibration methods under all evalua-
tion settings. Future work should study fewshot recalibration for natural language generation tasks,
to steer model generated text to be more or less conservative, as well as apply this approach to a
broader set of models, including instruction-tuned and RLHF models, and multimodal settings.
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A HYPERPARAMETERS

For inference of LLaMA-65B and LLaMA-30B to obtain the target precision curves, we use the
deepspeed library (Rasley et al., 2020) with 4 A-100 GPUs. For training the fewshot recalibrator,
we finetune LLaMA-7B using the AdamW optimizer and a cosine learning rate schedule. We use
a warmup ratio of 0.03, learning rate of 2e − 5, and batch size of 16. We train for 4K steps for the
MMLU experiments and 2K steps for the XNLI experiments. Our fine-tuning is conducted on 16
A100 GPUs of 40GB memory, and we use Deepspeed Stage 3 to ensure the 7B model fits on GPU.
Our implementation of inference and finetuning are based on the Hugging Face library (Wolf et al.,
2019).

B ADDITIONAL RESULTS (LLAMA-30B)

In addition to LLaMA-65B and PaLM2-Large, we also apply our fewshot recalibrator approach to
LLaMA-30B to study the impact of model scales. See results in Table 6, Table 7, and Table 8. Com-
pared to other base models (LLaMA-65B model and PaLM2-Large), we observe similar trends in
the minimizing ECE and maximizing utility experiment: We find that our approach outperform all
baselines in achieving the lowest calibration error with the highest win rate (Table 7). In addition,
our approach outperform all baselines in selecting an abstention threshold that yields the highest
utility score (Table 8). The only exception happens for the precision success rate experiment. Un-
like the results of LLaMA-65B where our fewshot recalibrator outperform all the baselines including
Domain Avg, for LLaMA-30B, Domain Avg achieves higher success rate than our fewshot recali-
brator. The gap is particularly large for a target precision of 0.95. We hypothesis that this is because
the LLaMA-30B suffers from lower accuracy compared to larger models. Thus, in the training data,
the groundtruth precision curve of many custom distributions fail to hit the 95% precision level,
leading to a sparsity of training data that hits the 95% precision level. As a result, when we try to
infer about 95% precision level at inference time, the model predictions are more prone to error.
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Target Precision 0.85 0.9 0.95
Success Recall Success Recall Success Recall L2

M
M

L
U

L
L

aM
A

-3
0B Sample Avg 0.57 0.45 0.58 0.36 0.59 0.26 0.012

Domain Avg 0.76 0.38 0.72 0.32 0.94 0.09 0.013
Empirical 0.36 0.5 0.34 0.42 0.28 0.35 0.030
FSC (ours) 0.75 0.35 0.68 0.26 0.52 0.16 0.007
Oracle 1 0.46 1 0.38 1 0.28 0

Table 6: Precision Success Rate for LLaMA-30B on MMLU. Domain Avg achieves higher success
rate than our fewshot recalibrator. The gap is particularly large for a target precision of 0.95. We
hypothesizes that this is because the LLaMA-30B suffers from lower accuracy compared to larger
models (LLaMA-65B). Thus, in the training data, the groundtruth precision curve of many custom
distributions fail to hit the 95% precision level, leading to a sparsity of training data that hits the
95% precision level. As a result, when we try to infer about 95% precision level at inference time,
the model predictions are more prone to error.

Method ECE win% lose%

Base 0.093 0.2425 0.7575
Sample Avg 0.106 0.2325 0.7675
Domain Avg 0.109 0.192 0.808
Empirical 0.131 0.091 0.909
TS (Fewshot) 0.117 0.187 0.813
TS (all domains) 0.090 0.283 0.717
FSC(ours) 0.074 - -
Oracle 0.016 0.9975 0.0025

Table 7: ECE for LLaMA-30B on MMLU. Our approach outperforms all the baselines in achieving
the lowest calibration error with the highest win rate.

c = 0.4 c = 0.6
Utility Win Tie Lose Utility Win Tie Lose

X
N

L
I

Pa
L

M
2-

L

Abstain -0.352 0.3065 0.001 0.6925 -0.437 0.4595 0.002 0.5385
Sample Avg -0.326 0.231 0.212 0.557 -0.443 0.2445 0.1345 0.621
Domain Avg -0.329 0.185 0.145 0.67 -0.451 0.1985 0.0905 0.711
Empirical -0.329 0.279 0.0805 0.6405 -0.431 0.4105 0.1065 0.483
FSC(ours) -0.319 0 1 0 -0.428 0 1 0
Oracle -0.311 0.8125 0.13 0.0575 -0.416 0.8215 0.099 0.0795

Table 8: Utility Scores for LLaMA-30B on MMLU. Our approach outperforms all baselines in
selecting abstention thresholds that yield the highest utility scores.
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C ADDITIONAL RESULTS (MAXIMIZING UTILITY)

Recall in §5.3, we report the utility score for 3 different settings (LLaMA-65B on MMLU, PaLM2-L
on MMLU, and PaLM2-L on XNLI). Here, we provide additional pairwise comparison results that
contains win/tie/lose rate of each baseline v.s. our approach in Table 9.

c = 0.4 c = 0.6
Utility Win Tie Lose Utility Win Tie Lose

X
N

L
I

Pa
L

M
2-

L

Abstain -0.224 0.4 0.0005 0.5995 -0.24 0.398 0.0035 0.5985
Curve agg -0.206 0.183 0.3795 0.4375 -0.219 0.218 0.4975 0.2845
Fewshot -0.208 0.332 0.0775 0.5905 -0.225 0.299 0.246 0.455
FSC(Ours) -0.202 0 1 0 -0.218 0 1 0
Oracle -0.192 0.851 0.098 0.051 -0.213 0.709 0.22 0.071

M
M

L
U

Pa
L

M
2-

L

Abstain -0.162 0.484 0.0015 0.5145 -0.188 0.5085 0.0015 0.49
Curve agg -0.171 0.188 0.2005 0.6115 -0.197 0.176 0.2355 0.5885
Fewshot -0.164 0.3095 0.0885 0.602 -0.19 0.4205 0.0885 0.491
FSC(Ours) -0.157 0 1 0 -0.189 0 1 0
Oracle -0.15 0.862 0.096 0.042 -0.18 0.823 0.124 0.053

M
M

L
U

L
L

aM
A

-6
5B

Abstain -0.315 0.322 0.001 0.677 -0.39 0.401 0.002 0.597
Curve agg -0.289 0.2715 0.2135 0.515 -0.388 0.225 0.1245 0.6505
Fewshot -0.293 0.3105 0.091 0.5985 -0.372 0.448 0.1305 0.4215
FSC(Ours) -0.284 0 1 0 -0.372 0 1 0
Oracle -0.277 0.787 0.139 0.074 -0.358 0.817 0.088 0.095

Table 9: Additional utility results, including the pairwise comparisons win/tie/lose rate compared to
our approach. Overall, our fewshot recalibrator outperforms all baselines in achieving the highest
utility scores, and more winning percentages.

D ADDITIONAL RESULTS (EXTRAPOLATION)

Recall in §5.4, we show our fewshot recalibrator extrapolates well to unseen domains as demon-
strated by the precision success rate experiments. Here, we provide more evidence, demonstrated
by the ECE results in Table 10. Same as the trend in the precision experiment, our approach out-
performs all the baselines in achieving the lowest calibration error and more winning percentages in
pairwise comparison.

Method ECE Win Lose
Base 0.064 0.268 0.732
Sample Avg 0.052 0.4525 0.5475
Domain Avg 0.052 0.444 0.556
Empirical 0.093 0.115 0.885
TS (Fewshot) 0.095 0.1285 0.8715
TS (all domains) 0.061 0.3155 0.6845
FSC (ours) 0.049 - -
Oracle 0.011 0.9965 0.0035

Table 10: Unseen ECE Evaluation. Our approach outperforms all the baselines in achieving the
lowest calibration error and more winning percentages in pairwise comparison.
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