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Abstract

In Model-Based Reinforcement Learning (MBRL), an agent learns to make decisions by
building a world model that predicts the environment’s dynamics. The accuracy of this
world model is crucial for generalizability and sample efficiency. Often, world models focus
on irrelevant, exogenous features over minor but key information. We notice that important
task-related information is often associated with dynamic objects. To encourage the world
model to focus on such information, in this work, we propose an augmentation to the world
model training using a temporal prediction loss in the embedding space as an auxiliary loss.
Building our method on the DreamerV3 architecture, we improve sample efficiency and
stability by learning better representations for world model and policy training. We evaluate
our method on the Atari100k and Distracting Control Suite benchmarks, demonstrating
significant improvements in world model quality and overall MBRL performance.

1 Introduction

In Model-Based Reinforcement Learning (MBRL), the goal is to learn a useful policy by predicting the
dynamics of the environment and rolling out the steps in the model. This model — often referred to as
a world model — acts as a surrogate for the environment, allowing the agent to simulate its actions while
preventing actual interaction with it. Thus, accurately modeling the dynamics of the environment in a
sample-efficient manner is essential towards a sample-efficient reinforcement learning (RL) agent.

A key challenge in RL is to distinguish endogenous and exogenous information. Endogenous information
is the internal, task-relevant information that directly influences the dynamics of the environment and the
success of the agent’s policy. Exogenous information is the irrelevant or non-essential information that does
not influence the underlying dynamics of the task or the agent’s policy. Pixel-level reconstruction is utilized
to learn the world model by many (Hafner et al., 2020; 2021; 2023; Micheli et al., 2022; Zhang et al., 2024),
However, limited bandwidth may favor minor endogenous information over major exogenous information
that the RL agent learn from, resulting in a subpar and spurious policy. Endogenous information are often
the dynamic parts, i.e., parts that are moving. Take, for example, breakout from Atari100k. In this game,
the player controls a paddle to bounce a small ball and break bricks in a big black space. Being only one
pixel out of 4096, the ball is minor endogenous information and the black space is major exogenous feature.
If we cannot represent the ball properly, the model can only learn from the movement of the paddle and the
disappearance of the pixels, which is a harder task than the original. One simple way for the model to learn
such endogenous information is to focus on the dynamic parts.

There are many recent works that improve RL agent performance by adding auxiliary losses in order to
learn a better representation (Lamb et al., 2022; Islam et al., 2023; Stooke et al., 2021; Yu et al., 2022; Zang
et al., 2022). While these methods generally involve a feedback loop from the RL agent that encourages
learning a better representation, Stooke et al. (2021) takes a different approach. Notably, they aim to learn
the representation by using only self-supervised learning (SSL) — specifically, learning a forward prediction
in the latent space, where the prediction is between the features of temporally distant observations. This
decoupling between the RL agent and representation learning connects well to our MBRL case — RL agent
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training and world model training are also decoupled. This similarity motivates us to pursue the applicability
of the technique in learning a better representation for world models.

In this work, we tackle the following question:

Can a forward-predictive scheme in the joint embedding space help to learn a better representation for training
world models?

There are important considerations that come with the question above. 1) The representation learnt from
the scheme should focus on features that are necessary for world models — features that are useful for
dynamics prediction. 2) The features should be sufficiently endogenous — useful for the RL agent to train
its policy on. To investigate the question, we propose an auxiliary loss incorporated into the DreamerV3
architecture (Hafner et al., 2023). Specifically, we augment observations by applying random shifts and
learn a joint-embedding representation by predicting forward steps. We empirically show that our method
learns endogenous representation that is useful for the world model and, subsequently, RL policy training.
Our method is the closest to the work of Stooke et al. (2021), although our work finds its purpose in the
context of world models. It can also be considered as a variant of Joint Embedding Predictive Architecture
(JEPA) (LeCun, 2022; Assran et al., 2023) with augmented input frames. Our primary contributions are
the following.

• We introduce joint embedding forward prediction loss as an auxiliary loss for world model represen-
tation learning.

• We empirically show that our method built on DreamerV3 learns useful representation for MBRL
in the Atari100k benchmark.

• We empirically show that our method learns a robust representation by evaluating on the Distracting
Control Suite Benchmark.

• We study the role of forward prediction steps for sample efficiency.

2 Related works

MBRL and World models World models (Ha & Schmidhuber, 2018) improve sample-efficiency (Mahe
et al., 2021) to learn the state transition dynamics and maximize the return (Xu et al., 2018). It has been
shown both empirically (Jiang et al., 2020) and theoretically (Sun et al., 2019) that MBRL yields a more
accurate policy than model-free RL. The idea of learning a model of the environment and using the world
model for learning a task has been around for many years (Nguyen & Widrow, 1990; Schmidhuber, 1990;
Jordan & Rumelhart, 2013). Early works in MBRL typically relied on low-dimensional state spaces for model
prediction (Williams et al., 2017; Janner et al., 2019; 2020), with limited applicability in larger, complex
tasks. Therefore, many recent works (Gelada et al., 2019; Rafailov et al., 2021; Hafner et al., 2023) have
focused on learning models of environments that the agent can interact with to solve complex tasks. These
world models also include hierarchical world models that utilize goal-conditioned RL (Gumbsch et al., 2023),
hierarchical exploration (Mattes et al., 2024), and multi-time scale prediction (Shaj Kumar et al., 2023).

Representation learning in MBRL Many recent efforts have been put on to the construction of precise
and sample-efficient models of the environment (Hafner et al., 2020; 2021; 2019a), with some work solely
focusing on constructing a robust MDP in a stricter setting (Hafner et al., 2019a; Agarwal et al., 2020). Some
works rely on temporal consistency for learning the world model (Zhao et al., 2023; Hansen et al., 2022; 2024;
Yan et al., 2023). The DreamerV1-3 models (Hafner et al., 2020; 2021; 2023) use RSSM (Hafner et al., 2019b)
to learn a latent representation of the world and use the hidden states to predict the next abstract states.
Many works build on the Dreamer architecture by augmenting it with different ideas, such as learning task
informed representations coming from the policy (Fu et al., 2021), modeling two independent latent MDPs
that represent useful signal and noise (Wang et al., 2022), utilizing a contrastive loss (Okada & Taniguchi,
2021; Poudel et al., 2024), using mutual information Zhu et al. (2023), and reconstruction in the latent
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Figure 1: We integrate ATC loss LATC into the DreamerV3 architecture additionally to Ldyn, Lrep and
Lpred. At first, we augment two sequences of observations — the anchor ot:t+T and positive ot+K:t+T +K —
which are then encoded into latent representations xt:T +T and xt+K:t+T +K with encoders gϕ and gϕ̄. By
contrasting the predictions given by anchor latents and the positive latents, we compute LATC, encouraging
the model to bring temporally distant observations closer in the latent space. The learnt encoder maps
observation ot to latent representation xt, which is passed to the DreamerV3’s RSSM world model to predict
the future latent representation zt+1 from hidden state ht and action at. These zt observations are then
decoded to reconstruct the observations ôt and ôt+1.

space (Sun et al., 2024). There are multiple pathways for using a transformer as the backbone of the world
models. IRIS (Micheli et al., 2022) uses VQ-VAE (Kingma, 2013; Van Den Oord et al., 2017) to quantize
the observations into tokens to learn a GPT2 (Radford et al., 2019) backbone for the world model. Delta
IRIS (Micheli et al., 2024) improves the efficiency by encoding the stochasticity and simulating the resulting
tokens. Furthermore, STORM (Zhang et al., 2024) uses a stochastic transformer to improve the efficiency
and precision of the world model. While these works focus on architectural improvements for world models,
many others focus on representation learning for world models. For example, Burchi & Timofte (2024) learns
hidden representations by predicting the environment value function and previously selected actions instead
of relying on pixel reconstruction. Besides, Burchi & Timofte (2025a) learns high-level temporal feature
representations by using action-conditioned contrastive predictive coding. Furthermore, Burchi & Timofte
(2025b) uses spatial latent state with MaskGIT predictions to generate accurate trajectories in latent space.
Unlike previous approaches that rely on task specific information or noise modeling, we learn representations
by predicting in the latent space.

3 Preliminaries

Reinforcement Learning. In RL, an agent uses trial and error to explore an environment and improve
its decision-making strategy. This agent interacts with the environment by taking actions and receiving
rewards to learn an optimal policy that maximizes cumulative returns. This interaction is typically modeled
as a Markov Decision Process (MDP) M = (S,A, P,R, γ). In the MDP, S denotes the state space, A
the action space, P (s′ | s, a) the transition probability between states given an action, R(s, a) the reward
function, and γ ∈ [0, 1] the discount factor that prioritizes immediate rewards over distant ones. The goal of
RL is to learn a policy π(a | s) that maximizes the expected discounted reward J(π) = Eπ [

∑∞
t=0 γ

tR(st, at)]
in order to solve problems.

Model-based RL. In MBRL, the agent learns a world model of the environment’s dynamics, represented
by the transition function P̂ (s′ | s, a) and the reward function R̂(s, a). Given a current state st and action at,
the world model predicts the next state st+1 ∼ P̂ (st+1 | st, at) and the corresponding reward rt = R̂(st, at).
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Using these predictions, the agent can simulate future trajectories by iterating over sequences of states
and actions. The goal is to optimize the policy π(a | s) by maximizing the expected reward over these
simulated trajectories Eπ

[∑T
t=0 γ

tR̂(st, at)
]
. By using the learned world model P̂ (s′ | s, a) and reward

R̂(s, a), the agent learns to refine its policy π(a | s), improving performance without relying extensively on
direct interaction with the real environment.

4 Methods

Endogenous information for an RL agent is often similar to that needed to predict environmental dynamics.
Effective transmission of key information between the dynamics and the feature extractor is crucial, as
it enables the representation of relevant endogenous features while filtering out irrelevant exogenous ones.
Minimizing prediction loss in a shared latent space between temporally distant observations helps the feature
extractor learn more robust representations, promoting information flow between the dynamics and the
features.

To enhance this information flow in MBRL, we propose augmenting world model training with joint em-
bedding forward prediction. Specifically, we integrate the Augmented Temporal Contrast (ATC) loss as an
auxiliary loss into DreamerV3, improving the representation learned by the world model and leading to a
more sample-efficient policy learning. We start with a short description of DreamerV3 and then go on to
describe the ATC loss and its integration into the DreamerV3 architecture. Finally, we describe the agent
policy sampling with our modification. The pipeline is shown in Figure 1.

4.1 DreamerV3

The DreamerV3 architecture uses a Recurrent State Space Model (RSSM) (Hafner et al., 2019b) to learn a
latent dynamics representation from the visual sensory signals. It optimizes its model to imagine trajectories
conditioned on actions similar to the environment steps. The policy is trained with the abstract trajectories
with the representations learned by the world model. The world model uses an encoder gϕ to project the
sensory observations ot to latent representation xt. The architecture of this encoder is presented in Appendix
D. The latent representations are transformed into stochastic representations zt using a representation model.
Next, RSSM with hidden ht and past actions at−1 predicts the representation ẑt. Together with zt and ht,
we predict rewards r̂t, episode continuation flag ĉt ∈ {0, 1}, and the reconstruction of the sensory observation
ôt. In summary, the world model is a combination of the following.

Sequence model: ht = fϕ(ht−1, zt−1, at−1)

Representation model: zt ∼ qϕ(zt | ht, xt)

Dynamics predictor: ẑt ∼ pϕ(ẑt | ht)

Reward predictor: r̂t ∼ pϕ(r̂t | ht, zt)

Continue predictor: ĉt ∼ pϕ(ĉt | ht, zt)

Decoder: ôt ∼ pϕ(ôt | ht, zt).

4.2 Modifying DreamerV3 with ATC loss

The inspiration in our method lies in the findings of Nayebi et al. (2023). This work highlights the brain’s
ability to anticipate future events based on adaptable visual representations, suggesting that forward pre-
diction mechanisms are crucial to learn dynamic environments. Motivated by this, we integrate the ATC
loss directly into the DreamerV3 architecture, enabling the model to learn a better representation of the
dynamic settings.

The augmented temporal loss is forward prediction loss, where the encoder model gϕ learns to associate an
observation ot with an observation K-step forward ot+K in the joint embedding space. The observations in
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a trajectory τ = (ot, ot+1, . . . , ot+T , . . . , ot+T +K) are split into two groups: the anchor (ot, ot+1, . . . , ot+T )
and the positive (ot+K , ot+1+K , . . . , ot+T +K) trajectories, where t and T denotes the start and the end
point of the positive trajectory, respectively. Both the positive and anchor are mapped into a shared latent
space (xt, xt+1, . . . , xt+T , . . . , xt+T +K). In this latent space, we use a predictor hϕ to predict the positive
embeddings (xt+K , xt+1+K , . . . , xt+T +K) from the anchor embeddings (xt, xt+1, . . . , xt+T ). Following Stooke
et al. (2021) we compute the InfoNCE loss (Gutmann & Hyvärinen, 2010; Oord et al., 2018) on the predicted
and positive embeddings, enabling the model to learn temporal relationships by minimizing the difference
between the current and future embeddings. We regularize the model by updating a target encoder gϕ using
exponential moving averages (EMA) (He et al., 2020) and augmenting the sensory observations with data
transformations (Laskin et al., 2020; Yarats et al., 2021).

Implementation. The DreamerV3 model maps observation ot to stochastic representation zt through
utilizing the convolution encoder and RSSM. To fit ATC into the method, we break down the two steps and
label the intermediate output from the encoder xt. Our goal is to learn the encoder that maps the sensory
observation ot to latent representation xt in order to be passed to the RSSM world model. This, in essence,
improves the representation that is used for the stochastic representation zt, affecting the entire world model.
Following Stooke et al. (2021), we utilize the components below in the forward predictive architecture. For
clarity, we follow the notations as closely as possible. For additional details on implementation, please refer
to Appendix C.

• Convolution encoder and its target encoder The encoders gϕ and gϕ map the observations
ot to a shared latent space, i.e., xt = gϕ(aug(ot)), where aug is a shift augmentation. The encoder
and its target act as a filter for the augmented anchor and positive observations, respectively. We
use the same convolution encoder as used in the DreamerV3 architecture. We detail this encoder in
Table 1.

• Recurrent predictor hϕ. Similar to prior works (Pathak et al., 2017; Islam et al., 2023; Assran
et al., 2023), we use a recurrent layer hϕ to carry out the forward prediction pt of the latent features
xt, i.e., pt = xt + hϕ(xt). The skip connection is useful for propagating information throughout
the model. Here, pt is expected to contain information about the latent features of the augmented
forward observations.

• Contrastive transformation matrix Wϕ. The matrix W captures the information between
anchors and positives by contrasting the anchor embeddings to the positive embeddings. Given
the forward prediction pt and positive embedding xt+K , the logits are lt,t+K = ptWϕxt+K . The
logits capture the model’s belief of the relationship between the forward prediction pt and positive
embedding xt+K . We calculate the differences between the logits and true labels using a cross-
entropy loss, which is the following.

LATC(ϕ) = − log exp lt,t+K∑
t∈0,...,T −1 exp lt,t+K

. (1)

The loss LATC maximizes the expected agreement between the augmented anchor and forward
observations in the latent space.

Regularization using stochastic augmentation. To regularize the training, we augment the observa-
tions with random shifts. To achieve this, we first move the images in randomly picked one of the four
directions for kpad pixels. This creates empty pixels, which we fill with its closest pixel. Throughout our
implementation, we keep kpad fixed at 4. We apply the shift augmentation to both anchors and positives.
Notably, we only apply this augmentation to the sampled trajectories during calculating the ATC loss.

Combining with DreamerV3 losses. We base our implementation by incorporating the losses reported
in the DreamerV3 architecture. The representation and the dynamics loss involve the KL divergence between
the posterior state zt and the predicted prior state ẑt with free bits (Kingma et al., 2016). Next, we train the
reward predictor and decoder via the symlog loss and the continue predictor via binary classification loss.
Overall, these losses are the following.
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Lpred(ϕ) .= − ln pϕ(ot | zt, ht) − ln pϕ(rt | zt, ht) − ln pϕ(ct | zt, ht) (2)
Ldyn(ϕ) .= max (1,KL [sg(qϕ(zt | ht, xt)) ∥ pϕ(zt | ht)]) (3)
Lrep(ϕ) .= max (1,KL [qϕ(zt | ht, xt) ∥ sg(pϕ(zt | ht))]) (4)

Putting it all together, the total loss is:

L(ϕ) .= Eqϕ

[
T∑

t=1
(βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ) + βATCLATC(ϕ))

]
. (5)

We train the parameters of the different components of the world model together with this loss.

4.3 The policy

We follow the actor-critic setup from the DreamerV3 — a short summary of which can be found in the
Appendix B. To learn the policy, we roll out trajectories in the abstract space and train the actor-critic
model on them. In order to sample training trajectories from the policy to learn the world model, we use
the target encoder gϕ̄ to encode the sensory observations.

5 Experiments

We present our experimental results on the Atari100k benchmark with mean return on the evalutation stage.
Empirically, we aim to address the following questions.

1. Does our method learn useful endogenous representation for the world model?

2. Are the representations learned by the world model useful in downstream tasks, e.g., learning a
better RL policy?

3. How does our method behave in the presence of exogenous information?

4. How do different environment dynamics affect the optimal forward prediction horizon K?

We address the questions above in the next part of the paper.

5.1 Atari100k benchmark

The Atari 100k benchmark is used to test RL algorithms using only 100,000 environment steps. It includes a
subset of 26 Atari games and focuses on data efficiency, requiring agents to perform well with limited training
data. This benchmark is widely used to evaluate the sample efficiency and generalization capabilities of RL
models.

Baselines. We compare the following methods as a baseline. SimPLe (Kaiser et al., 2019) trains a policy
using PPO (Schulman et al., 2017) leveraging a world model represented as an action-conditioned video gener-
ation model; TWM (Robine et al., 2023) uses a transformer-based world model that leverages a Transformer-
XL architecture and a replay buffer that uses a balanced sampling scheme (Dai et al., 2019); IRIS (Micheli
et al., 2022) uses a VideoGPT Yan et al. (2021) based world model; DreamerV3 (Hafner et al., 2023), a
general algorithm that achieves SOTA results on a multitude of RL benchmarks.

Metrics. RL evaluation is difficult due to stochasticity and computational complexity related to environ-
ments (Agarwal et al., 2021). Keeping this in mind, we provide a series of related metrics to evaluate the
overall performance of our method on the Atari100k benchmark. The metrics are the following: human
mean, human median, Interquantile Mean (IQM), optimality gap, performance profiles, and probability of
improvement. We provide a full description of these metrics in Appendix F.
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Figure 2: Comparison of representations learned by our model with those generated by DreamerV3 (both
rollout). In all 40k, 60k and 100k iterations, our method consistently represents the ball properly. However,
DreamerV3 does not captures this crucial detail at 40k iterations. In 60k and 100k iterations the ball
disappears in the representation of DreamerV3 after a briefly appearance. Unlike DreamerV3, which struggles
to consistently capture key information, our model remains robust in visualizing the ball throughout.

Results. We report our results in Figure 3 and complete benchmark results in Appendix G. Our method
achieves the best result over 11 games while outperforming or equaling DreamerV3 in 18 games. We present
an optimality gap of 0.473 smaller than the DreamerV3 baseline. Additionally, we report a high probability
of improvement over baselines on a random task except for DreamerV3, shown in Figure 3. Finally, we
achieve significantly better results in human normalized mean, median, and IQM than other baselines.

5.2 Evaluating the learned representation

Whether the representations learned by our world model are mappable to useful sensory observations is a
good indication of the quality of the representations. This is also convenient for us, since we already train
a decoder using reconstruction loss. With this in mind, we examine the reconstructed rollout frames from
DreamerV3 and our method at 40k and 60k steps for Breakout. Figure 2 shows the results. At 40k steps,
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Figure 3: Comparison of our method and baselines across two metrics. (Left) The Optimality Gap shows
how much each algorithm falls short of human-level performance (smaller is better). Our method exhibits the
smallest gap, indicating that it comes closest to replicate human-level performance outperforming baselines.
(Right) The Probability of Improvement highlights the likelihood of our method outperforming the baselines
on a random task. We observe a high probability of improvement over all baselines, with the exception of
DreamerV3 (with reported scores), where the margin is narrower.

Figure 4: Performance comparison of our proposed method (red) and DreamerV3 (blue) in three Atari
environments: Breakout (left), Ms. Pac-Man (middle), and Pong (right). In all environments, our method
not only outperforms DreamerV3, but demonstrates a faster growth overall. We achieve strong results
quickly (50k), which contributes to the overall high final performance.

the reconstructed observation from DreamerV3 cannot model the red ball, while our method faintly models
the ball. Furthermore, at 60k, we can see that both methods clearly model the ball, but DreamerV3 misses
the ball at a few time steps. Since the red ball is an important learning signal for the RL agent as well as
environment dynamics, this experiment shows the improved quality of the representations learned by our
method.
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Figure 5: Average evaluation return of our method compared to DreamerV3 at 100k steps. We present
results across three environments: Asterix (left), Breakout (middle), and Ms. Pac-Man (right). In order to
test robustness, we experiment with noise injection to the data using a probability of pshift = 0.01 (top) and
0.05 (bottom). With increasing difficulty, our method consistently gets good scores in all three environments,
while the score of DreamerV3 drops, showing that by learning a better representation of the data, our model
is more robust than DreamerV3.

5.3 Evaluating the usefulness of the representations in downstream tasks

Since the representation learned by the world model is completely decoupled from the actor-critic agent,
another indication for a good representation is whether it leads to a better RL policy. Hence, if the world
model is able to capture endogenous information quicker, it should also reflect in the RL agent’s policy,
given the task in hand. To test our hypothesis, we compare the evaluation returns between the RL agents
of DreamerV3 and our method in Breakout, Ms. Pac-Man, and Pong across two stages of the training. We
report the results in Figure 4. The results make the distinction clear that our method learns endogenous
representations quicker than the DreamerV3, leading to a more sample-efficient RL policy.

5.4 Evaluating the robustness of the representations

To evaluate our method’s robustness against different exogenous information, we perform two experiments.
First, we add pixel-wise noise to selected Atari games and compare our method against its baseline, Dream-
erV3. Next, we take on the Distracting Control Suite Stone et al. (2021) benchmark, which adds dynamic
backgrounds to the DeepMind Control Suite Tassa et al. (2018) tasks.

Injection of pixel-wise noise. For this task, we inject pixels with noise during training the world model.
We control the difficulty of the task by adjusting the pixel shift probability pshift, where higher pshift

corresponds to a higher task difficulty. The representation learner needs to be robust to noise to filter out
the exogenous information passed to the downstream RL agent. To evaluate the robustness of our method,
we compare it against DreamerV3 on two difficulties of the task, pshift ∈ {0.01, 0.05} over 3 Atari games:
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Figure 6: Average evaluation return of our method at 100k iterations using K ∈ {4, 8, 12} across three
Atari100k environments: Breakout (left), Krull (middle), and Ms. Pac-Man (right). The results show that
environments with complex dynamics such as Krull and Ms. Pac-Man and significant input distribution
shifts perform better with higher values of K, while simpler games like Breakout benefit from lower values.

Asterix, Alien, and Breakout. We report the results in Figure 5. We see that with increasing difficulty of
the tasks, our method keeps its result consistent, while DreamerV3 does not.

Dynamic background as an exogenous information. The Distracting Control Suite provides chal-
lenging tasks with exogenous information for world model evaluation. The tasks are divided into three
difficulties: easy, medium, and hard. We compare our method with DreamerV3 on the Cheetah run task
over three difficulties: easy, medium, and hard. Figure 10 in Appendix H shows the results. For the easy
task, we see that the methods perform comparably. However, as the difficulty increases, our method stays
robust to the dynamic background, resulting in a slighter drop in the scores compared to DreamerV3. For
a detailed discussion on what affects the task difficulty, please see Appendix H.

5.5 Evaluating the effect of K

To evaluate the effect of the hyperparameter K, we compare our method for K ∈ {4, 8, 12}. We pick three
games for this evaluation: Breakout, Krull, and Ms. Pac-Man. Figure 6 reports our findings. We see two
different phenomenon: games with complex dynamics such as Krull and Ms. Pac-Man favor higher values
of K, whereas simple games such as Breakout favor smaller values of K. This finding is also consistent with
the ones from Mattes et al. (2024), where the authors observe the importance of increasing hierarchies in
complex games. However, despite the importance of K, we keep K fixed at 4 for all experiments to keep
consistency.

5.6 Evaluating the effect of ATC loss and shift augmentation

To evaluate the individual contribution of the shift augmentation and ATC loss of our method, we perform
an ablation study on three Atari games (Alien, Asterix, Breakout, Krull, Ms-PacMan). Figure 7 illustrates
the results, showing that both ATC loss and the shift augmentation has substantial impact in environments
such as Alien, Asterix, Breakout, Ms-PacMan. However, its influence appears negligible in Krull, although
notably, our method improves it substantially with a higher value of K (see Section 5.5).

6 Discussions and conclusions

In this work, we propose an augmentation to the world model representation learner by using forward
prediction loss in the joint embedding space. Using our augmentation for world model training, we achieve
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Figure 7: Ablation on ATC loss and shift augmentation in five Atari games: Alien, Asterix, Breakout, Krull,
Ms-PacMan. The results highlight that ATC loss and shift augmentation combined boosts the performance
in four environments, while in Krull, the effect of these components appears negligible.

a more robust world model, which helps downstream MBRL tasks. We show strong empirical results in
the Atari100k benchmark, especially when the frames are injected with noise. We also show our method’s
robustness to exogenous features with strong empirical results in the Distracting Control Suite benchmark.

While our results are promising, the primary limitation of our study lies in the considered benchmarks. Due
to computational limitations, we evaluated our methods for all experiments in three seeds, considered fewer
steps, and performed evaluations less frequently. In addition, while our method learns task-relevant features,
it is not a task-specific learner. We envision a task-specific feature learner as a two-part problem: a causal
classifier of task-specific features and a feature extractor given those features. We leave this task for future
work.

Despite these limitations, our method enhances world model sequence modeling capabilities and improves
downstream tasks by employing a temporal prediction loss in the joint embedding space as an auxiliary loss.
Indeed, as discussed in section 4, having such a loss enforces the feature extractor to learn a temporally
relevant representation by sharing information between it and the dynamics. This information passing
improves downstream tasks by filtering out exogenous features. For example, in Figure 2, our method can
represent the ball because being able to do so is important to predict the state K steps later. Without
enforcing this, we see that DreamerV3 fails to represent it consistently.

Broader Impact Statement

The primary goal of this work is to advance the field of Machine Learning. The authors, thus, do not foresee
any specific negative impacts of this work.
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A Hyperparameters

We present all hyperparameters in this section.

Training batch size B 16
Training batch length T 64
Imagination horizon L 15

Gamma γ 0.997
Lambda λ 0.95

Entropy Coefficient η 3 × 10−4

Optimizer - Adam
World model learning rate - 1 × 10−4

World model gradient clipping - 1000
Actor-critic learning rate - 3.0 × 10−5

Actor-critic gradient clipping - 100
Gray scale input - False
Frame stacking - False

Dynamics hidden dimension - 512
Dynamics deterministic dimension - 512

Dynamics stochastic dimension - 32
Dynamics discrete dimension - 32

Dynamics activation - Sigmoid
Normalization - True

Encoder-decoder MLP layers - 5
Encoder-decoder MLP dimension - 1024

Encoder-decoder CNN depth - 32
Encoder-decoder CNN dimension - 1024
Encoder-decoder CNN bottleneck - 256

Encoder-decoder activation function - SiLU
Actor-critic layers - 2
Actor distribution - Normal
Critic distribution - Symlog (Hafner et al., 2023)

Forward prediction step K 4
Dynamics loss scale - 0.5

Representation loss scale - 0.1
Weight decay - 0.0

B Actor-critic policy

For our work, we adopt the existing actor-critic architecture from DreamerV3 (Hafner et al., 2023), where
we train our actor-critic policy with the following reinforce estimator (Williams, 1992) loss:

L(θ) := −
T∑

t=1
sg

(
(R̂t − ψ(st))/max(1, S)

)
log πθ(at|st) + ηH[πθ(at|st)]. (6)

We also normalize the returns by computing the range from the 5th to the 95th return percentile over the
return batch and smooth out the estimate using EMA:

S := EMA(Per(R̂t, 95) − Per(R̂t, 5), 0.99). (7)
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C Details of implementation

Shift augmentation. We perform shift augmentation by randomly shifting the 64 × 64 pixels to one of
the sides by a stride of 4. Next, we fill the pixel gaps with its neighboring pixels.

Encoder. We implement the encoder with convolution layers with a final depth of 32 and a resolution of
4x4. Finally, the outputs of of the layer are passed through an MLP that projects them to a 256-dimensional
space.

Recurrent predictor. The recurrent predictor takes the anchor latent vectors and passes them through
an MLP skip connection. The MLP is a 2-layer MLP with 512 hidden dimensions.

Contrastive transformation matrix. The contrastive matrix, is a 256 × 256 matrix which takes the
anchor and positive latents and outputs a B ×B matrix, where B is the batch size.

D Detailed encoder architecture

We present the architecture of the encoders gϕ and gϕ in this section.

Table 1: Structure of encoder gϕ used for forward prediction. The size of the modules is omitted and can be
derived from the shape of the tensors. Conv denotes CNN layers LeCun et al. (1989) characterized by kernel
= 4, stride = 2 and padding = 1. SiLU means Sigmoid Linear Unit activation functions, while LayerNorm
corresponds to layer normalizations Ba et al. (2016). Flatten is employed to alter the indexing method of
the tensor, while preserving the data and their original order.

Submodule Output tensor shape
Input image (ot) 64 × 64 × 3

Conv1 + LayerNorm1 + SiLU 32 × 32 × 32
Conv2 + LayerNorm2 + SiLU 64 × 16 × 16
Conv3 + LayerNorm3 + SiLU 128 × 8 × 8
Conv4 + LayerNorm4 + SiLU 256 × 4 × 4

Flatten 4096

E Extending our method to other world models

While DreamerV3 is central to our work, and our experiments focus on incorporating ATC loss to DreamerV3,
our approach is not specific to the architecture. Our key idea is to train the encoder of the world model
to capture task-relevant information by enforcing temporal consistency in the latent space. This ensures
that our approach is applicable before the dynamics modeling, enabling it to be incorporated to other world
model architectures.

For example, IRIS (Micheli et al., 2022) utilizes an VQ-VAE tokenizer that is responsible for the tokens that
are passed into the GPT-2 style dynamics predictor. In this case, we can apply ATC loss to encoder outputs
before quantization. Similarly, STORM (Zhang et al., 2024) uses a transformer-based dynamics predictor
following the encoder outputs. Here too, we can apply the ATC loss either to the transformer embeddings
or to the encoder outputs.

F Atari100k benchmark

Containing 26 games, the Atari100k benchmark is a data-efficiency benchmark designed to test the perfor-
mance of the RL model in 100k environment steps. It pushes models to learn more efficiently with fewer
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interactions, reflecting real-world constraints. Many state-of-the-art models have been tested on Atari100k
(Hafner et al., 2023; Micheli et al., 2022; Fu et al., 2021), evaluating their ability to balance between per-
formance and efficiency. Additionally, the benchmark presents human mean, human median, Interquantile
Mean (IQM), optimality gap scores, probability of improvement and performance profiles.

Human normalized score. The human normalized score compares the agent’s scores to a human and a
random agent, highlighting the differences between the algorithm’s performance and human-level play in a
specific environment. It can be calculated with the following formula:

agent_score − random_score
human_score − random_score

Human Mean. The human mean aggregates the human normalised scores for all environments. It is a
general indication of an algorithm’s performance relative to human benchmarks.

Human Median. The human median is an aggregate metric of the human normalized scores as well as
the human mean, but is insensitive to high-score environments skewing it. It’s a crucial metric as it gives
a balanced view of algorithm performance, particularly when some environment scores are distorting the
significance of the mean.

Interquantile Mean (IQM). IQM is a robust statistical method excluding the top and bottom 25% of
results, focusing only on the middle 50%. Mitigating the impact of outliers, it addresses the weakness of the
human mean being skewed by extreme values. Considering a broader range of mid-performing environments,
it is also more informative than the Human Median, which only reflects a single middle value. IQM is defined
by the following formula: IQM = 1

⌈0.5×N⌉
∑⌈0.75×N⌉

i=⌈0.25×N⌉ scorei

Optimality Gap. The Optimality Gap measures the difference between the optimal human-level perfor-
mance set at γ = 1.0 and the score of the algorithm. When the model consistently achieves or surpasses
the target score, the optimality gap decreases. This decrease represents a strong general performance across
all environments, rather than excelling in a subset of them. The optimality gap can be obtained from the
following formula: optimality gap = max(0, 1 − normalized score)

Probability of improvement. The Probability of Improvement gives a probability score of how likely is
algorithm X better than algorithm Y in a specific environment.

Performance profiles. Performance profiles offer a more comprehensive view of an algorithm’s perfor-
mance, particularly in environments, where score distributions can vary widely and have outliers. Unlike
point or interval estimates — such as the human mean and human median — performance profiles capture
the variability across tasks more effectively, providing deeper understanding into performance trends that
single estimates might overlook.

G Additional Atari100k benchmark results

In this section, we present the full evaluation and the reproduced scores of the Atari100k benchmark in Table
2.

We illustrate the optimality gap and the probability of improvement in Figure 3. The optimality gap of
our method is the smallest among all, outperforming our baselines. SimPLe obtains the largest gap (0.729),
significantly falling behind other methods. The gaps for TWM, IRIS, and the reported value for DreamerV3
are all above 0.5, with values of 0.513, 0.512, and 0.503, respectively. Our method is the only one below
0.5 — 0.473 — ranking first. Observing the probability of improvement scores, our method is better than
DreamerV3 (reported), TWM, IRIS and SimPLe with a probability of 0.44, 0.55, 0.6, and 0.81, respectively.

In Figure 8, we compare the human normalized scores across our method and baselines.
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Table 2: Evaluation on the 26 games in the Atari 100k benchmark. Following the conventions of Hafner et al.
(2021), scores that are the highest or within 5% of the highest score are highlighted in bold. We highlight
the scores higher than DreamerV3 with an asterisk (*).

Game Rand Hum SimPLe TWM IRIS DreamerV3 Ours
reported reported reported reproduced

Alien 228 7128 617 675 420 804 1348*
Amidar 6 1720 74 122 143 122 128*
Assault 222 742 527 683 1524 642 737*
Asterix 210 8503 1128 1116 854 1190 1401*
Bank Heist 14 753 34 467 53 752 981*
Battle Zone 2360 37188 4031 5068 13074 11600 9289
Boxing 0 12 8 78 70 71 76*
Breakout 2 30 16 20 84 24 52*
Chopper Command 811 7388 979 1697 1565 680 726*
Crazy Climber 10780 35829 62584 71820 59234 86000 89040*
Demon Attack 152 1971 208 350 2034 203 155
Freeway 0 30 17 24 31 0 0
Frostbite 65 4335 237 1476 259 1124 1361*
Gopher 258 2413 597 1675 2236 4358 3495
Hero 1027 30826 2657 7254 7037 12070 7019
Jamesbond 29 303 101 362 463 290 425*
Kangaroo 52 3035 51 1240 838 4080 5227*
Krull 1598 2666 2204 6349 6616 7326 7618*
Kung Fu Master 256 22736 14862 24555 21760 19100 26744*
Ms Pacman 307 6952 1480 1588 999 1370 2056*
Pong -21 15 13 19 15 19 21*
Private Eye 25 69571 35 87 100 140 100
Qbert 164 13455 1289 3331 746 1875 1053
Road Runner 12 7845 5641 9109 9615 14613 9721
Seaquest 68 42055 683 774 661 571 547
Up N Down 533 11693 3350 15982 3546 7274 19302*
Human Mean (↑) 0% 100% 33% 96% 105% 104% 121%
Human Median (↑) 0% 100% 13% 51% 29% 49% 63%
IQM (↑) 0.00 1.00 0.130 0.459 0.501 0.502 0.589
Optimality Gap (↓) 1.00 0.00 0.729 0.513 0.512 0.503 0.473

H Distracting Control Suite Benchmark

The Distracting Control Suite Benchmark (Stone et al., 2021) is designed to test the robustness of an
RL agent under visual distractions. These distractions are changes in camera poses, object colors, and
background scenes, controlled by a scaler. These scalers are used to determine the difficulty of the task. The
easy scenarios have minimal variation in the factors, while medium introduces more noticeable changes. In
the hard samples, significant disruptions can be observed in the data — aggressive color changes, dynamic
backgrounds. Figure 9 shows the training frames of a Cheetah run in three different difficulties.
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Figure 8: Performance profiles of baseline methods and our method, illustrating the fraction of games scoring
higher than the specified human normalized score.

Figure 9: Training frames for the Distracting Control Suite benchmark. The frames capture the Cheetah
run task across three difficulty levels: easy (first row), medium (second row), and hard (third row). We
evaluate our method under varying amounts of visual disturbances using this benchmark.

I Robustness experiment frames

Figure 11 presents the training frames after noise injection using probabilities of pshift = 0.01 and
pshift = 0.05. When using pshift = 0.05 the frames are more disturbed — the extra (red) pixels make
the representation of the red ball even harder.
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Figure 10: Performance comparison of our proposed method (red) and DreamerV3 (blue) in three increasing
difficulty of Cheetah Run task in the Distracting Control Suite benchmark. Our method shows better
performance than the baseline with increasing difficulty.

Figure 11: Training frames for the robustness experiments in the Atari Breakout environment. The top row
shows pshift = 0.01, corresponding to a lower noise level, while the bottom row represents pshift = 0.05,
indicating higher difficulty.

J Additional experiments

Atari100k with greater seeds. Despite the limitation of academic compute, we run the first seven games
of Atari100k benchmark comparing our method and DreamerV3 over 5 seeds. The results essentially remain
the same: we see that our reported results over 3 seeds mimic the scores, with the exception of Amidar,
which now becomes the best across all of the benchmark methods.

Comparison with K-step forward prediction and task-relevant dynamics method. To under-
stand whether multi-step prediction in ATC is driving the improvements in DreamerV3, we implement a
vanilla DreamerV3 with a K-step forward prediction without ATC. To achieve that, we train an additional
reward and episode continuation predictor for the K-step forward reward and episode continuation and
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Figure 12: Training profiles across all the checkpoints for first 7 games of the Atari 100k benchmark for our
proposed method and DreamerV3. The solid line represents the average over 5 seeds while the fill area is
defined in terms of maximum and minimum values corresponding to each checkpoint.
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Figure 13: Training profiles across all the checkpoints for the first 4 games of the Atari100k benchmark for our
proposed method compared to bisimulation loss w/ and w/o decoder and k-step loss applied to DreamerV3.
The solid line represents the average over 5 seeds while the fill area is defined in terms of maximum and
minimum values corresponding to each checkpoint.

backpropagate the loss through the encoder. Besides, to understand whether a dynamics method that is
specifically trained for extracting task-relevant details would be more beneficial, we train DreamerV3 with a
bisimulation loss (Ferns & Precup, 2014) both with and without the decoder, taking inspiration from Zhang
et al. (2021). We compare these methods with our method over the first four Atari100k games. Figure 13
reports the results. We see that K-step loss is indeed beneficial, offering comparable results to our method,
espeically for Asterix. However, the method still falls short to our method. We hypothesize that this happens
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because our method works directly in the representation space, whereas the K-step prediction only compares
the future outcomes. We also see that the the bisimulation loss is not beneficial when added to DreamerV3.
Indeed, the original inspiration is a model-free method (Zhang et al., 2021), offering representation learning
for RL. However, for a model-based method such as DreamerV3, the RL algorithm is trained on outputs
from the world model. Hence, the dynamics training is not able to benefit from the gradient signals from
the RL algorithm. We hypothesize that these signals are necessary for the bisimulation method to work but
do not investigate in details.
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