
Under review as a conference paper at ICLR 2024

DISTRIBUTIONAL BELLMAN OPERATORS OVER MEAN
EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel algorithmic framework for distributional reinforcement learn-
ing, based on learning finite-dimensional mean embeddings of return distribu-
tions. We derive several new algorithms for dynamic programming and temporal-
difference learning based on this framework, provide asymptotic convergence the-
ory, and examine the empirical performance of the algorithms on a suite of tabular
tasks. Further, we show that this approach can be straightforwardly combined
with deep reinforcement learning, and obtain a new deep RL agent that improves
over baseline distributional approaches on the Arcade Learning Environment.

1 INTRODUCTION

In distributional approaches to reinforcement learning (RL), the aim is to learn the full probability
distribution of future returns (Morimura et al., 2010a; Bellemare et al., 2017; 2023), rather than just
their expected value, as is typically the case in value-based reinforcement learning (Sutton & Barto,
2018). Distributional RL was proposed in the setting of deep reinforcement learning by Bellemare
et al. (2017), with a variety of precursor work stretching back almost as far as Markov decision
processes themselves (Jaquette, 1973; Sobel, 1982; Chung & Sobel, 1987; Morimura et al., 2010a;b).
Beginning with the work in Bellemare et al. (2017), the distributional approach to reinforcement
learning has been central across a variety of applications of deep RL in simulation and in the real
world (Bodnar et al., 2020; Bellemare et al., 2020; Wurman et al., 2022; Fawzi et al., 2022).

Typically, predictions of return distributions are represented directly as approximate probability dis-
tributions, such as categorical distributions (Bellemare et al., 2017). Rowland et al. (2019) proposed
an alternative framework where return distributions are represented via the values of statistical func-
tionals, called a sketch by Bellemare et al. (2023). This provided a new space of distributional
reinforcement learning algorithms, leading to improvements in deep RL agents, and hypotheses re-
garding distributional RL in the brain (Dabney et al., 2020; Lowet et al., 2020). On the other hand, a
potential drawback of this approach is that each distributional Bellman update to the representation,
these values must be “decoded” back into an approximate distribution via an imputation strategy. In
practice, this can introduce significant computational overhead to Bellman updates, and is unlikely
to be biologically plausible for distributional learning in the brain (Tano et al., 2020).

Here, we focus on a notable instance of the sketch called the mean embedding sketch. In short, the
mean embedding is the expectation of nonlinear functions under the distribution represented (Smola
et al., 2007; Sriperumbudur et al., 2010; Berlinet & Thomas-Agnan, 2011), and is related to frames
in signal processing (Mallat, 1999) and distributed distributional code in neuroscience (Sahani &
Dayan, 2003; Vértes & Sahani, 2018). The core contributions of this paper are to revisit the ap-
proach to distributional reinforcement learning based on sketches (Rowland et al., 2019), and to
propose the sketch Bellman operator that updates the implicit distributional representation as a sim-
ple linear operation, obviating the need for the expensive imputation strategies converting between
sketches and distributions. This provides a rich new space of distributional RL algorithms that oper-
ate entirely in the space of sketches. We provide theoretical convergence analysis to accompany the
framework, investigate the practical behaviour of various instantiations of the proposed algorithms
in tabular domains, and demonstrate the effectiveness of the sketch framework in deep reinforce-
ment learning, showing that our approach is robust enough to serve as the basis for a new variety of
deep distributional reinforcement learning algorithms.

1

Under review as a conference paper at ICLR 2024

2 BACKGROUND

We consider a Markov decision process (MDP) with state space X , action space A, transition prob-
abilities P : X × A → P(X), reward distribution function PR : X × A → P(R), and discount
factor γ ∈ [0, 1). Given a policy π : X → P(A) and initial state x ∈ X , a random trajec-
tory (Xt, At, Rt)t≥0 is the sequence of random states, actions, and rewards encountered when us-
ing the policy π to select actions in this MDP. More precisely, we have X0 = x, At ∼ π(·|Xt),
Rt ∼ PR(Xt, At), Xt+1 ∼ P (·|Xt, At) for all t ≥ 0. We write Pπ

x and Eπ
x for probabilities and

expectations with respect to this distribution, respectively. The performance along the trajectory is
measured by the discounted return, defined by

∞∑
t=0

γtRt . (1)

In typical value-based reinforcement learning, during policy evaluation, the agent learns the expec-
tation of the return for each possible initial state x ∈ X , which is encoded by the value function
V π : X → R, given by V π(x) = Eπ

x [
∑∞

t=0 γ
tRt].

2.1 DISTRIBUTIONAL RL AND THE DISTRIBUTIONAL BELLMAN EQUATION

In distributional reinforcement learning, the problem of policy evaluation is to learn the probability
distribution of return in Equation (1) for each possible initial state x ∈ X . This is encoded by
the return-distribution function ηπ : X → P(R), which maps each initial state x ∈ X to the
corresponding distribution of the random return, e.g. ηπ(x) is the return distribution of state x. A
central result in distributional reinforcement learning is the distributional Bellman equation, which
relates the distribution of the random return under different combinations of initial states and actions.

To build the random variable formulation of the returns, we let (Gπ(x) : x ∈ X) be a collection of
random variables with the property that Gπ(x) is equal to Equation (1) in distribution, conditioned
on the initial state X0 = x. This formulation implies that the random variable Gπ(x) is distributed
as ηπ(x), introduced above, for all x ∈ X . Consider a random transition (x,R,X ′) generated by
π, independent of the Gπ random variables. Then, the (random variable) distributional Bellman
equation states that for each initial state x,

Gπ(x)
D
= R+ γGπ(X ′) |X = x .

Here, we use the slight abuse of the conditioning bar to set the distribution of X in the random
transition. It is also useful to introduce the distributional Bellman operator T π : P(R)X →P(R)X
to describe the transformation that occurs on the right-hans side (Morimura et al., 2010a; Bellemare
et al., 2017). If η ∈ P(R)X is a collection of probability distributions, and (G(x) : x ∈ X) is a
collection of random variables such that G(x) ∼ η(x) for all x, and (X,R,X ′) is random transition
generated by π, independent of (G(x) : x ∈ X), then (T πη)(x) = Dist(R+ γG(X ′)|X = x).

To implement algorithms of distributional RL, one needs to approximate the infinite-dimensional
return-distribution function ηπ with finite-dimensional representations. This is typically done via
direct approximations in the space of distributions; see e.g. Bellemare et al. (Chapter 5; 2023).

2.2 STATISTICAL FUNCTIONALS AND SKETCHES

Rather than using approximations in the space of distributions, Rowland et al. (2019) proposed to
represent return distributions indirectly via functionals of the return distribution, called sketches by
Bellemare et al. (2023). In this work we consider a specific class of sketches, defined below.
Definition 2.1 (Mean embedding sketches). A mean embedding sketch ψ is specified by a function
ϕ : R→ Rm, and defined by

ψ(ν) := EZ∼ν [ϕ(Z)] . (2)

For a given distribution ν, the embedding ψ(ν) can therefore be thought of as providing a lossy sum-
mary of the distribution. The name here is motivated by the kernel literature, in which Equation (2)
can be viewed as embedding the distribution ν into Rm based on the mean value of ϕ under this
distribution (Smola et al., 2007; Sriperumbudur et al., 2010; Berlinet & Thomas-Agnan, 2011).

2

Under review as a conference paper at ICLR 2024

Figure 1: The statistical functional frame-
work proposed by Rowland et al. (2019) (top),
and the framework proposed in this paper, di-
rectly updating sketches, avoiding the imputa-
tion step (bottom).

Statistical functional dynamic programming and
temporal-difference learning (SFDP/SFTD; Row-
land et al. (2019), see also Bellemare et al. (2023))
is an approach to distributional RL in which sketch
values, rather than approximate distributions, are
the primary object learned. Given a sketch ψ and
estimated sketch values U : X → Rm, these
approaches proceed by first defining an imputa-
tion strategy ι : Rm → P(R) mapping sketch
values back to distributions, with the aim that
ψ(ι(U)) ≈ U , so that ι behaves as an approximate
pseudo-inverse to ψ. The usual Bellman backup is
then applied to this imputed distribution, and the
sketch value extracted from this updated distribu-
tion. Thus, if U : X → Rm represents approxi-
mations to sketch values, a typical update in SFDP
takes the form U ← ψ((T πι(U))(x)) (Bellemare
et al., 2023); see Figure 1.

This approach led to expectile-regression DQN, a deep RL agent that aims to learn the sketch values
associated with certain expectiles (Newey & Powell, 1987) of the return, and influenced a distribu-
tional model of dopamine signalling in the brain (Dabney et al., 2020). An important consideration
is that computation of the imputation strategy is often costly in machine learning applications, and
considered biologically implausible in neuroscience models (Tano et al., 2020).

3 THE BELLMAN SKETCH FRAMEWORK

Our goal is to derive a framework for approximate computation of the sketch ψ (with corresponding
feature function ϕ) of the return distributions corresponding to a policy π, without needing to design,
implement, and compute an imputation strategy as in the case of SFDP/TD; see Figure 1 for a visual
comparison of the two approaches. That is, we aim to compute the object Uπ : X → Rm, given by

Uπ(x) := ψ(ηπ(x)) = Eπ
x [ϕ(

∑∞
t=0 γ

tRt)] .

We begin by considering environments with a finite set of possible rewards R ⊆ R; we discuss
generalisations later. To motivate our method, we first consider a special case; suppose that for each
possible return g ∈ R, and each possible immediate reward r∈R, there exists a matrix Br such that

ϕ(r + γg) = Brϕ(g) ; (3)

note that Br does not depend on g, and γ is a constant. In words, this says that the feature function
ϕ evaluated at the bootstrap return r + γg is expressible as a linear transformation of the feature
function evaluated at g itself. If such a relationship holds, then we have

Uπ(x)
(a)
= Eπ

x [ϕ(R+ γGπ(X ′))]
(b)
= Eπ

x [BRϕ(G
π(X ′))]

(c)
= Eπ

x [BRU
π(X ′)] , (4)

where (a) follows from the distributional Bellman equation, (b) follows from Equation (3), and (c)
from exchanging the linear map Br and the conditional expectation given (R,X ′), crucially relying
on the linearity of the approximation in Equation (3). Note that for example with ϕ(g) = (1, g)⊤

we have Br = (1 0
r γ), and Equation (4) reduces to the classical Bellman equation for V π , with

Uπ(x) = (1, V π(x))⊤.

Thus, Uπ(x) satisfies its own linear Bellman equation, which motivates algorithms that work di-
rectly in the space of sketches, without recourse to imputation strategies. In particular, a natural
dynamic programming algorithm to consider is based on the recursion

U(x) ← Eπ
x [BRU(X ′)] . (Sketch-DP)

As this is an update applied directly to sketch values themselves, we introduce the sketch Bellman
operator T π

ϕ : (Rm)X → (Rm)X , with (T π
ϕ U)(x) defined according to the right-hand side of

3

Under review as a conference paper at ICLR 2024

Equation (Sketch-DP). Note that T π
ϕ is a linear operator, in contrast to the standard expected-value

Bellman operator, which is affine. We recover the affine case by taking one component of ϕ to be
constant, e.g. ϕ1(g) ≡ 1, and enforcing U1(x) ≡ 1.

The right-hand side of Equation (Sketch-DP) can be unbiasedly approximated with a sample transi-
tion (x, r, x′). Stochastic approximation theory (Kushner & Yin, 1997; Bertsekas & Tsitsiklis, 1996)
then naturally suggests the following temporal-difference learning update, given a learning rate α:

U(x) ← (1− α)U(x) + αBrV (x′) , (Sketch-TD)

Rowland et al. (2019) introduced the term Bellman closed for sketches for which an exact dynamic
programming algorithm is available, and provided a characterisation of Bellman closed mean em-
bedding sketches. The notion of Bellman closedness is closely related to the relationship in Equa-
tion (3), and from Rowland et al. (Theorem 4.3; 2019), we can deduce that the only mean embedding
sketches that satisfy Equation (3) are invertible linear combinations of first-m moments.

Thus, our discussion above serves as a way of re-deriving known algorithms for computing moments
of the return (Sobel, 1982; Lattimore & Hutter, 2014), but is insufficient to yield algorithms for
computing other sketches. Additionally, since moments of the return distribution are naturally of
widely differing magnitudes, it is difficult to learn a high-dimensional mean embedding based on
moments; see Appendix D.3 for further details. To go further, we must weaken the assumption made
in Equation (3).

3.1 GENERAL SKETCHES

To extend our framework to a much more general family of sketches, we relax our assumption of
the exact predictability of ϕ(r + γg) from ϕ(g) in Equation (3), by defining a matrix of Bellman
coefficients Br for each possible reward r ∈ R as the solution of the linear regression problem:

Br := argmin
B

EG∼µ

[
∥ϕ(r + γG)−Bϕ(G)∥22

]
, (5)

so that, informally, we have ϕ(r+γg) ≈ Brϕ(g) for each g. Here, µ is a distribution to be specified
that weights the returnsG. Using the same motivation as in the previous section, we therefore obtain

Uπ(x)
(a)
= Eπ

x [ϕ(R+ γGπ(X ′))] ≈ Eπ
x [BRϕ(G

π(X ′))]
(c)
= Eπ

x [BRU
π(X ′)] , (6)

noting that informally we have approximate equality in the middle of this line. This still moti-
vates the approaches expressed in Equations (Sketch-DP) and (Sketch-TD), though we have lost the
property that the exact sketch values Uπ are a fixed point of the dynamic programming procedure.

Algorithm 1 Sketch-DP/Sketch-TD

Precompute Bellman coefficients
Compute C as in Equation (7)
for r ∈ R do
Compute Cr as in Equation (7)
Set Br = CrC

−1

end for
Initialise U : X → Rm

Main loop
if DP then
for k = 1, 2, . . . do
U(x)←

∑
r,x′,a

P (r, x′|x, a)π(a|x)BrU(x′) ∀x

end for
else if TD then
for k = 1, 2, . . . do

Observe transition (xk, ak, rk, x
′
k).

U(xk)← (1− αk)U(xk) + αkBrkU(x′k)
end for

end if

Computing Bellman coefficients. Under mild
conditions (invertibility of C as follows) the
matrix of Bellman coefficients Br defined in
Equation (5) can be expressed asBr = CrC

−1,
where C,Cr ∈ Rm×m are defined by

C := EG∼µ[ϕ(G)ϕ(G)
⊤] , (7)

Cr := EG∼µ[ϕ(r + γG)ϕ(G)⊤] .

The elements of these matrices are expressible
as integrals over the real line, and hence sev-
eral possibilities are available for (approximate)
computation: if µ is finitely-supported, direct
summation is possible; in certain cases the in-
tegrals may be analytically available, and oth-
erwise numerical integration can be performed.
Additionally, for certain feature maps ϕ, the
Bellman coefficients Br have particular struc-
ture that can be exploited computationally; see
Appendix B.3 for further discussion. Detailed
properties of Br are studied in Appendix B.5.

4

Under review as a conference paper at ICLR 2024

Algorithms. We summarise the two core algorithmic contributions, sketch dynamic programming
(Sketch-DP) and sketch temporal-difference learning (Sketch-TD), that arise from our proposed
framework in Algorithm 1. Pausing to take stock, we have proposed an algorithm framework for
computing approximations of lossy mean embeddings for a wide variety of feature functions ϕ.
Further, these algorithms operate directly within the space of sketch values.

Selecting feature maps. A natural question is what effects the choice of feature map ϕ has on the
performance of the algorithm. There are several competing concerns. First, the richer the map ϕ,
the more information about the return distribution can be captured by the corresponding mean em-
bedding. However, the computational costs (both in time and memory) of our proposed algorithms
scale in the worst case cubically with m, the dimensionality of the mean embedding. In addition,
the accuracy of the algorithm in approximating the mean embeddings of the true return distributions
relies on having a low approximation error in Equation (6), which in turn relies on a low regression
error in Equation (5) (see Proposition 4.1 below). Selecting an appropriate feature map is therefore
somewhat nuanced, and involves trading off a variety of computational and approximation concerns.

A collection of feature maps we will use throughout the paper that offer the potential for trade-offs
along the dimensions identified above is given by the translation family

ϕi(z) := κ(s(z − zi)), ∀ i ∈ {1, · · · ,m} , (8)

where κ : R → R is a base feature function, s ∈ R+ is the slope, and the set {z1, . . . , zm} ⊆ R
is the anchors of the feature map. We will often take κ to be commonly used bounded and smooth
nonlinear functions, such as the Gaussian or the sigmoid functions, and spread the anchor points
over the return range. We emphasise that in principle there are no restrictions on the feature maps
that can be considered in the framework; see Appendix B.2 for other possible choices.
Remark 3.1 (Invariance). Given the m-dimensional function space obtained from the span of the
coordinate functions ϕ1, . . . , ϕm, the algorithms proposed above are essentially independent of the
choice of basis for this space. For any invertible matrix M ∈ Rm×m, replacing ϕ by M−1ϕ, and
also || · ||2 by || · ||M⊤M in Equation (5) gives an equivalent algorithm.
Remark 3.2 (The need for linear regression). It is tempting to try and obtain a more general frame-
work by allowing non-linear regression of ϕ(r + γg) on ϕ(g) in Equation (5), to obtain a more
accurate fit, for example fitting a function H : R × Rm → Rm so that ϕ(r + γg) ≈ H(r, ϕ(g)).
The issue is that if H is not linear in the second argument, then generally E[H(r, ϕ(G(X ′)))] ̸=
H(r,E[ϕ(G(X ′))]), and so step (c) in Equation (6) is not valid. However, there may be settings
where it is desirable to learn such a functionH , to avoid online computation of Bellman coefficients
every time a new reward is encountered in TD learning.

3.2 SKETCH-DP AT WORK

To provide more intuition for the Bellman sketch framework, we provide a walk-through of using
Algorithm 1 to estimate the return distributions for the environment in Figure 2A; full details for
replication are given in Appendix C. We take a feature map ϕ of the form given in Equation (8),
taking κ to be the sigmoid function, and m = 13 anchors evenly spaced between −4.5 and 4.5
(Figure 2B). The Bellman regression problem in Equation (5) is set with µ = Uniform([−4, 4]),
based on the typical returns observed in the environment. The anchors and the choice of µ for
regression are important but can be set following simple heuristics; see Appendices B.2 and B.3.
We then run the Sketch-DP algorithm with the initial estimates U(x) set to ϕ(0) for all x ∈ X .

We compare the estimates produced by Sketch-DP against ground-truth by estimating the true mean
embeddings from a large number of Monte Carlo samples of the returns from each state. Figure 2C
(top) shows illustrates the ground-truth embeddings for each state, and Figure 2D (top) compares
these ground-truth embeddings with those computed by Sketch-DP as the algorithm progresses; by
30 iterations, the mean embeddings are very close to the ground-truth.

To aid interpretation of these results, we also include a comparison in which we “decode” the mean
embeddings back into probability distributions (via an imputation strategy (Rowland et al., 2019)),
and compare with the ground-truth return distributions, projected onto the anchor locations of the
features (Rowland et al., 2018). Full details of the imputation strategy are in Appendix B.1. These
results are shown in the bottom panels of Figure 2C & D. Initially, the imputed distributions of
the Sketch-DP mean embedding estimates reflect the initialisation to the mean embedding of δ0,

5

Under review as a conference paper at ICLR 2024

A

1 2

3 4

0.3 0.7

 -1=r +1=r

B

5 0 5

Feature function

C D
state 1 state 2

state 3 state 4

Ground-truth ()

Projected
DP estimate
imputed

Iteration 0 Iteration 1 Iteration 2 Iteration 10 Iteration 30

Figure 2: A: State transitions and rewards in the environment. B: The feature functions ϕ for the
sketch-DP. Dotted lines indicate anchors. The regression Equation (5) is performed under a densely
spaced grid over the light region [−4, 4]. C: The ground-truth mean embeddings under the sigmoid
features in B, and the categorical projection of the ground-truth distribution onto the anchors of ϕ in
B. D: The evolution of the estimated mean embeddings (bright blue lines) and imputed distributions
(bright red lines) during Sketch-DP. The stems are the respective ground-truth from panel C.

though as more iterations of Sketch-DP are applied, the imputed distributions become close to the
ground-truth. This indicates that, in this example, not only does Sketch-DP compute accurate mean
embeddings of the return, but that this embedding is rich enough to recover a lot of information
regarding the return distributions themselves.

Concluding the introduction of the Sketch-DP algorithmic framework, there are several natural ques-
tions that arise. Can we quantify how accurately Sketch-DP algorithms can approximate mean em-
beddings of return distributions? What effects do choices such as the feature map ϕ have on the
algorithms in practice? The next sections are devoted to answering these questions in turn.

4 CONVERGENCE ANALYSIS

η̄ η̄′

η η′

Ū Ū ′

U Ũ U ′

T π

Φ
Φ

T π

Φ

δ+εR γc(δ+εR)

Φ

T π
ϕ

δ

εB

γc(δ+εR)+εE

Figure 3: The objects and structure used
to analyse the Sketch-DP algorithm.

We analyse the Sketch-DP procedure described in Algo-
rithm 1, which can be mathematically described in the
following succinct manner. We let U0 : X → Rm

denote the initial sketch value estimates, and then note
from Algorithm 1 that the collection of estimates after
each DP update form a sequence (Uk)

∞
k=0, with Uk+1 =

T π
ϕ Uk. Our convergence analysis therefore focuses on the

asymptotic behaviour of this sequence. We introduce the
notation Φ : P(R)→ Rm for the sketch associated with
the feature function ϕ, so that Φµ = EZ∼µ[ϕ(Z)], and de-
fine Φ for return-distribution functions by specifying for
η ∈P(R)X that (Φη)(x) = Φ(η(x)). Ideally, we would
like these iterates to approach Uπ : X → Rm, the sketch values of the true return distributions,
given by Uπ(x) = Eπ

x [ϕ(
∑∞

t=0 γ
tRt)]. As already described, typically this is not possible when the

sketch Φ is not Bellman closed, and so we can only expect to approximate Uπ . Mathematically, this
is because in general we have ΦT π ̸= T π

ϕ Φ when ϕ is not Bellman closed.

The first step is to bound the error incurred in a single step of dynamic programming due to using
T π
ϕ directly on the sketch values, rather taking sketch values after applying the true distributional

Bellman operator to the underlying distributions; this corresponds to the foreground of Figure 3.
Proposition 4.1. (Regression error to Bellman approximation.) Let ∥ · ∥ be a norm on Rm. Then
for any return-distribution function η ∈P([Gmin, Gmax])

X , we have
max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ ≤ sup
g∈[Gmin,Gmax]

max
r∈R
∥ϕ(r + γg)−Brϕ(g)∥ . (9)

The second step of the analysis is to chain together the errors that are incurred at each step of
dynamic programming, so as to obtain a bound on the asymptotic distance of the sequence (Uk)

∞
k=0

6

Under review as a conference paper at ICLR 2024

from Uπ , motivated by error propagation analysis in the case of function approximation (Bertsekas
& Tsitsiklis (1996); Munos (2003); see also Wu et al. (2023) in the distributional setting). The
next proposition provides the technical tools required for this; the notation is chosen to match the
illustration in Figure 3.
Proposition 4.2. (Error propagation.) Consider a norm ∥ · ∥ on Rm, and let ∥ · ∥∞ be the norm
on (Rm)X defined by ∥U∥∞ = maxx∈X ∥U(x)∥. Let d be a metric on return-distribution functions
(RDFs) such that T π is a γc-contraction with respect to d. Suppose the following bounds hold.

• (Bellman approximation bound.) For any η ∈P([Gmin, Gmax])
X ,

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ ≤ εB .

• (Reconstruction error bound.) For any η, η̄ ∈ P([Gmin, Gmax])
X with sketches U, Ū , we have

d(η, η̄) ≤ ∥U − Ū∥∞ + εR.

• (Embedding error bound.) For any η′, η̄′ ∈ P([Gmin, Gmax])
X with sketches U ′, Ū ′, we have

∥U ′ − Ū ′∥∞ ≤ d(η′, η̄′) + εE.

Then for any two return-distribution functions η, η̄ ∈ P([Gmin, Gmax])
X with sketches U, Ū satis-

fying ∥U − Ū∥ ≤ δ, we have

∥ΦT πη − T π
ϕ Ū∥∞ ≤ γc(δ + εR) + εR + εE .

A formal proof is given in Appendix A; Figure 3 (bottom) shows the intuition, propagating bounds
through different intermediate stages of the analysis of the update. We now state the main error
bound result, which combines the two earlier results.
Proposition 4.3. Suppose the assumptions of Proposition 4.2 hold, that T π maps
P([Gmin, Gmax])

X to itself, and suppose T π
ϕ maps {Φν : ν ∈ P([Gmin, Gmax])

X } to itself.
Then for a sequence of sketches (Uk)

∞
k=0 defined iteratively via Uk+1 = T π

ϕ Uk, we have

lim sup
k→∞

∥Uk − Uπ∥ ≤ 1

1− γc
(γcεR + εB + εE) .

Proof. For each Uk, let ηk be an RDF with the property Φηk = Uk. Applying Proposition 4.2 to
sketches Uπ and Uk, we obtain ∥Uk+1 − Uπ∥∞ ≤ γc∥Uk − Uπ∥∞ + γcεR + εB + εE . Taking a
limsup on both sides over k and rearranging yields the result.

4.1 CONCRETE EXAMPLE

The analysis presented above is abstract; it provides a generic template for conducting error propaga-
tion analysis to show that Sketch-DP converges to a neighbourhood of the true values, and moreover
illustrates the dependence of this error on the “richness” of the sketch, and accuracy of the Bellman
coefficients. To apply this abstract result to a concrete algorithm, we are required to establish the
three error bounds that appear in the statement of Proposition 4.2. The result below shows how this
can lead to a concrete result for a novel class of sketches; in particular, proving that computed mean
embeddings under these features become arbitrarily accurate as the number of features increases.
Proposition 4.4. Consider a sketch ϕ whose coordinates are feature functions of the form ϕi(z) =
1{z1 ≤ z < zi+1} (i = 1, . . . ,m − 1), and ϕm(z) = 1{z1 ≤ z ≤ zm+1}, where z1, . . . , zm+1

is an equally-spaced grid over [Gmin, Gmax], with Gmin = minR/(1 − γ), Gmax = maxR/(1 −
γ). Let T π

ϕ be the corresponding Sketch-DP operator given by solving Equation (5) with µ =

Unif([Gmin, Gmax]), and define a sequence (Uk)
∞
k=0 by taking U0(x) to be the sketch of some initial

distribution in P([Gmin, Gmax]), and Uk+1 = T π
ϕ Uk for all k ≥ 0. Let Uπ ∈ (Rm)X be the

mean embeddings of the true return distributions. Finally, let ∥ · ∥ be the norm on Rm defined by
∥u∥ = Gmax−Gmin

m

∑m
i=1 |ui| . Then we have

lim sup
k→∞

∥Uk − Uπ∥∞ ≤
(Gmax −Gmin)(3 + 2γ)

(1− γ)m
.

7

Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We first conduct a broad empirical investigation into the effects of three key factors in Equation (8):
the base feature κ, the number of features m, and the slope s, using three tabular MRPs (details in
Appendix C.1, extended results in Appendix D.1). As in the example in Section 3.2, we compare
the mean embeddings estimated by Sketch-DP with ground-truth mean embeddings, reporting their
squared L2 distance (mean embedding squared error), and also compare the Cramér distance
maxx∈X ℓ

2
2(η̂(x), η

π(x)) (see e.g. Rowland et al. (2018)) between the distribution η̂(x) imputed
from the Sketch-DP estimate, and the ground-truth return distribution ηπ(x). To aid interpretation of
the Cramér distance results, we also report the Cramér distance between the ground truth ηπ(x) and
two baselines. First, the Dirac delta δV π(X) at the mean return; we expect Sketch-DP to outperform
this naı̈ve baseline by better capturing properties of the return distribution beyond the mean. Second,
the return distribution estimate computed by categorical DP (Rowland et al., 2018; Bellemare et al.,
2023), a well-understood approach to distrbutional RL based on categorical distributions.

The results for sweeps over feature count m and slope s are shown in Figure 4. By sweeping
over m, we see that the estimated mean embedding goes towards the ground-truth as we use more
features. Further, the Cramér distance also decreases as m increases, suggesting that the distribution
represented also approaches the ground-truth. To highlight differences between various Sketch-DP
algorithms, we also compute the excess Cramér: the Cramér distance maxx∈X ℓ

2
2(η̂(x), η

π(x)) as
above, minus the corresponding distance between the categorical projection of ηπ (c.f. the red stems
in Figure 2) and ηπ itself. All distributional methods perform well on these tasks, and significantly
outperform the Dirac estimator in stochastic environments; we note that all methods have tunable
hyperparameters (bin locations for CDRL, feature parameters for Sketch-DP), which should inform
the interpretation of these results, and in particular direct comparison between methods. The results
of the sweep on the slope parameter s show different trends depending on the metric. For smoother
ϕ, generally we can obtain smaller error on the mean embeddings, but the Cramér distances are
only small for intermediate range of slope values. This result is expected: when the features are
too smooth or too sharp, there exists regions within the return range where the feature values do not
vary meaningfully. This results in a more lossy encoding of the return distribution, indicating the
importance of tuning the slope parameter of the translation family (Equation (8)).

5.1 DEEP REINFORCEMENT LEARNING

We also verify that the Bellman sketch framework is robust enough to apply in combination with
deep reinforcement learning. To do so, we aim to learn neural-network predictions Uθ(x, a) of
sketch values for each state-action pair (x, a) in the environment. To be able to define greedy
policy improvements based on estimated sketch values, we precompute value-readout coefficients
β ∈ Rm by solving argminβ EG∼µ[(G − ⟨β, ϕ(G)⟩)2] , so that we can predict expected returns
from the sketch value as ⟨β, Uθ(x, a)⟩. This allows us to define a greedy policy, and therefore a
Q-learning-style update rule, which given an observed transition (x, a, r, x′), first computes a′ =

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain (DC) DC+Gaussian R

0.0

0.2

0.4

Cr
am

er
di

st
an

ce

projected

10 50 90
Count, m

10 7

10 4

10 1

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

sigmoid
gaussian

triangular
CDRL

indicator
mean

10 50 90 10 50 90

Random chain Directed chain DC + Gaussian R

0.01 1
Slope, s

0.01 1 0.01 1

Figure 4: Results of running Algorithm 1 on tabular environments.

8

Under review as a conference paper at ICLR 2024

0 25 50 75 100 125 150 175 200
Million frames

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n

no
rm

al
ise

d
re

tu
rn DQN

C51
QR
IQN

Sketch

0 25 50 75 100 125 150 175 200
Million frames

0.0

2.5

5.0

7.5

10.0

12.5

15.0

M
ea

n
no

rm
al

ize
d

re
tu

rn

Figure 5: Median (left) and mean (right) human-normalised scores on the Atari 57 suite.

argmaxã⟨β, Uθ̄(x
′, ã)⟩, and then the gradient: ∇θ∥Uθ(x, a) − BrUθ̄(x

′, a′)∥22 , where θ̄ are the
target network parameters. In our experiments, we parametrise Uθ according to the architecture of
QR-DQN (Dabney et al., 2018b), so that the m outputs of the network predict the values of the m
coordinates of the corresponding sketch value. We use the sigmoid function as the base feature κ.
Full experimental details for replication are in Appendix C.2; further results are in Appendix D.2.

Figure 5 shows the mean and median human-normalised performance on the Atari suite of envi-
ronments (Bellemare et al., 2013) across 200M training frames, and includes comparisons against
DQN (Mnih et al., 2015), as well as the distributional agents C51 (Bellemare et al., 2017), QR-DQN
(Dabney et al., 2018b), and IQN (Dabney et al., 2018a). Sketch-DQN attains higher performance on
both metrics relative to the comparator agents C51 and QR-DQN, and approaches the performance
of IQN, which uses a more complex prediction network to make non-parametric predictions of the
quantile function of the return. These results indicate that the sketch framework can be reliably
applied to deep RL, and we believe further investigation of the combination of this framework and
deep RL agents is a promising direction for future work.

6 RELATED WORK

Typical approaches to distributional RL focus on learning approximate distributions directly (see,
e.g., Bellemare et al. (2017); Dabney et al. (2018b); Yang et al. (2019); Nguyen-Tang et al. (2021);
Wu et al. (2023)). Much prior work has considered statistical functionals of the random return,
at varying levels of generality with regard to the underlying Markov decision process model. See
for example Mandl (1971); Farahmand (2019) for work on characteristic functions, Chung & So-
bel (1987) for the Laplace transform, Tamar et al. (2013; 2016) for variance, and Sobel (1982) for
higher moments. Our use of finite-dimensional mean embeddings is inspired by distributed distribu-
tional codes (DDCs) from theoretical neuroscience (Sahani & Dayan, 2003; Vértes & Sahani, 2018;
Wenliang & Sahani, 2019), which can be regarded as neural activities encoding return distributions.
DDCs were previously used to model transition dynamics and successor features in partially observ-
able MDPs (Vértes & Sahani, 2019). Tano et al. (2020) consider applying non-linearities to rewards
themselves, rather than the return, and learning with a variety of discount factors, to encode the dis-
tribution of rewards at each timestep. The sketches in this paper are in fact mean embeddings into
finite-dimensional reproducing kernel Hilbert spaces (RKHSs; the kernel corresponding to the fea-
ture function ϕ isK(z, z′) = ⟨ϕ(z), ϕ(z′)⟩). Kernel mean embeddings have previously been used in
RL for representing state-transition distributions (Grünewälder et al., 2012; Boots et al., 2013; Lever
et al., 2016; Chowdhury & Oliveira, 2023), and maximum mean discrepancies in RKHSs (Gretton
et al., 2012) have been used to define losses in distributional RL by Nguyen-Tang et al. (2021).

7 CONCLUSION

We have proposed a framework for distributional reinforcement learning based on Bellman updates
that take place entirely within the sketch domain. This has yielded new dynamic programming and
temporal-difference learning algorithms as well as novel error propagation analysis, and we have
provided further empirical analysis in the context of a suite of tabular MRPs, as well as demonstrat-
ing that the approach can be successfully applied at scale as a variant of the DQN architecture. We
expect that there will be benefits from further exploration of algorithmic possibilities opened up by
this framework, as well as potential consequences for value representations in the nervous system.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the International Conference on Machine Learning, 2017.

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C. Machado, Sub-
hodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82, 2020.

Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learning. MIT
Press, 2023. http://www.distributional-rl.org.

Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and
statistics. Springer Science & Business Media, 2011.

Dimitri Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Cristian Bodnar, Adrian Li, Karol Hausman, Peter Pastor, and Mrinal Kalakrishnan. Quantile QT-
Opt for risk-aware vision-based robotic grasping. In Robotics: Science and Systems, 2020.

Giulio Bondanelli and Srdjan Ostojic. Coding with transient trajectories in recurrent neural net-
works. PLoS computational biology, 16(2):e1007655, 2020.

Byron Boots, Arthur Gretton, and Geoffry J. Gordon. Hilbert space embeddings of predictive state
representations. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2013.

Sayak Ray Chowdhury and Rafael Oliveira. Value function approximations via kernel embeddings
for no-regret reinforcement learning. In Proceedings of The Asian Conference on Machine Learn-
ing, 2023.

Kun-Jen Chung and Matthew J. Sobel. Discounted MDPs: Distribution functions and exponential
utility maximization. SIAM Journal on Control and Optimization, 25(1):49–62, 1987.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In Proceedings of the International Conference on Machine
Learning, 2018a.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2018b.

Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather, Demis Hassabis,
Rémi Munos, and Matthew Botvinick. A distributional code for value in dopamine-based rein-
forcement learning. Nature, 577(7792):671–675, 2020.

Thang Doan, Bogdan Mazoure, and Clare Lyle. GAN Q-learning. arXiv preprint arXiv:1805.04874,
2018.

Amir-massoud Farahmand. Value function in frequency domain and the characteristic value iteration
algorithm. In Advances in Neural Information Processing Systems, 2019.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multi-
plication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.

Dror Freirich, Tzahi Shimkin, Ron Meir, and Aviv Tamar. Distributional multivariate policy evalu-
ation and exploration with the Bellman GAN. In Proceedings of the International Conference on
Machine Learning, 2019.

10

http://www.distributional-rl.org

Under review as a conference paper at ICLR 2024

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Massi Pontil, and Arthur Gretton. Modelling
transition dynamics in MDPs with RKHS embeddings. In Proceedings of the International Con-
ference on Machine Learning, 2012.

Guillaume Hennequin, Tim P Vogels, and Wulfram Gerstner. Non-normal amplification in random
balanced neuronal networks. Physical Review E, 86(1):011909, 2012.

Stratton C. Jaquette. Markov decision processes with a new optimality criterion: Discrete time. The
Annals of Statistics, 1(3):496–505, 1973.

Harold J. Kushner and George Yin. Stochastic approximation and recursive algorithm and applica-
tions. Springer, 1997.

Tor Lattimore and Marcus Hutter. Near-optimal PAC bounds for discounted MDPs. Theoretical
Computer Science, 558:125–143, 2014.

Guy Lever, John Shawe-Taylor, Ronnie Stafford, and Csaba Szepesvari. Compressed conditional
mean embeddings for model-based reinforcement learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 2016.

Adam S. Lowet, Qiao Zheng, Sara Matias, Jan Drugowitsch, and Naoshige Uchida. Distributional
reinforcement learning in the brain. Trends in neurosciences, 43(12):980–997, 2020.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Petr Mandl. On the variance in controlled Markov chains. Kybernetika, 7(1):1–12, 1971.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 2015.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Nonparametric return distribution approximation for reinforcement learning. In Proceedings of
the International Conference on Machine Learning, 2010a.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki Tanaka.
Parametric return density estimation for reinforcement learning. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence, 2010b.

Rémi Munos. Error bounds for approximate policy iteration. In Proceedings of the International
Conference on Machine Learning, 2003.

Whitney K. Newey and James L. Powell. Asymmetric least squares estimation and testing. Econo-
metrica: Journal of the Econometric Society, pp. 819–847, 1987.

Thanh Nguyen-Tang, Sunil Gupta, and Svetha Venkatesh. Distributional reinforcement learning via
moment matching. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

Mark Rowland, Marc Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An analysis of
categorical distributional reinforcement learning. In Proceedings of the International Conference
on Artificial Intelligence and Statistics, 2018.

Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G. Bellemare, and Will Dab-
ney. Statistics and samples in distributional reinforcement learning. In Proceedings of the Inter-
national Conference on Machine Learning, 2019.

Mark Rowland, Rémi Munos, Mohammad Gheshlaghi Azar, Yunhao Tang, Georg Ostrovski, Anna
Harutyunyan, Karl Tuyls, Marc G Bellemare, and Will Dabney. An analysis of quantile temporal-
difference learning. arXiv preprint arXiv:2301.04462, 2023.

11

Under review as a conference paper at ICLR 2024

Maneesh Sahani and Peter Dayan. Doubly distributional population codes: Simultaneous represen-
tation of uncertainty and multiplicity. Neural Computation, 2003.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Schölkopf. A Hilbert space embedding for
distributions. In Proceedings of the International Conference on Algorithmic Learning Theory,
2007.

Matthew J. Sobel. The variance of discounted Markov decision processes. Journal of Applied
Probability, 19(4):794–802, 1982.

Le Song, Xinhua Zhang, Alex Smola, Arthur Gretton, and Bernhard Schölkopf. Tailoring density
estimation via reproducing kernel moment matching. In Proceedings of the International Confer-
ence on Machine Learning, 2008.

Bharath K. Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert R. G.
Lanckriet. Hilbert space embeddings and metrics on probability measures. Journal of Machine
Learning Research, 11:1517–1561, 2010.

Ke Sun, Yingnan Zhao, Yi Liu, Wulong Liu, Bei Jiang, and Linglong Kong. Distributional rein-
forcement learning via sinkhorn iterations. arXiv preprint arXiv:2202.00769, 2022.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press, 2nd
edition, 2018.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Temporal difference methods for the variance of
the reward to go. In Proceedings of the International Conference on Machine Learning, 2013.

Aviv Tamar, Dotan Di Castro, and Shie Mannor. Learning the variance of the reward-to-go. The
Journal of Machine Learning Research, 17(1):361–396, 2016.

Pablo Tano, Peter Dayan, and Alexandre Pouget. A local temporal difference code for distributional
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

Eszter Vértes and Maneesh Sahani. Flexible and accurate inference and learning for deep generative
models. Advances in Neural Information Processing Systems, 31, 2018.

Eszter Vértes and Maneesh Sahani. A neurally plausible model learns successor representations
in partially observable environments. Advances in Neural Information Processing Systems, 32,
2019.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Li Kevin Wenliang and Maneesh Sahani. A neurally plausible model for online recognition and
postdiction in a dynamical environment. Advances in Neural Information Processing Systems,
2019.

Runzhe Wu, Masatoshi Uehara, and Wen Sun. Distributional offline policy evaluation with pre-
dictive error guarantees. In Proceedings of the International Conference on Machine Learning,
2023.

Peter R. Wurman, Samuel Barrett, Kenta Kawamoto, James MacGlashan, Kaushik Subramanian,
Thomas J. Walsh, Roberto Capobianco, Alisa Devlic, Franziska Eckert, Florian Fuchs, Leilani
Gilpin, Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick MacAlpine, Declan Oller,
Takuma Seno, Craig Sherstan, Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett, Rory
Douglas, Dion Whitehead, Peter Dürr, Peter Stone, Michael Spranger, and Hiroaki Kitano. Out-
racing champion Gran Turismo drivers with deep reinforcement learning. Nature, 602(7896):
223–228, 2022.

12

Under review as a conference paper at ICLR 2024

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized
quantile function for distributional reinforcement learning. In Advances in Neural Information
Processing Systems, 2019.

Pushi Zhang, Xiaoyu Chen, Li Zhao, Wei Xiong, Tao Qin, and Tie-Yan Liu. Distributional re-
inforcement learning for multi-dimensional reward functions. Advances in Neural Information
Processing Systems, 2021.

13

Under review as a conference paper at ICLR 2024

Distributional Bellman Operators over Mean Embeddings:
Supplementary Material

A PROOFS

Proposition 4.1. (Regression error to Bellman approximation.) Let ∥ · ∥ be a norm on Rm. Then
for any return-distribution function η ∈P([Gmin, Gmax])

X , we have

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ ≤ sup
g∈[Gmin,Gmax]

max
r∈R
∥ϕ(r + γg)−Brϕ(g)∥ . (9)

Proof. Let (G(x) : x ∈ X) be an instantiation of η (Bellemare et al., 2023); that is, a collection of
random variables such that for each x ∈ X , we have G(x) ∼ η(x). First, note that the distribution
(T πη)(x) is exactly the distribution ofR+γG(X ′) (when the transition begins at x and is generated
by π). So we have

Φ(T πη)(x) = EZ∼(T πη)(x)[ϕ(Z)] = Eπ
x [ϕ(R+ γG(X ′))] .

It then follows that:

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ = max
x∈X

∥∥∥Eπ
x

[
ϕ(R+ γG(X ′))

]
− Eπ

x

[
BRE[ϕ(G(X ′))|X ′]

]∥∥∥
= max

x∈X

∥∥∥Eπ
x

[
ϕ(R+ γG(X ′))−BRϕ(G(X

′))
]∥∥∥

≤ max
x∈X

Eπ
x

[∥∥ϕ(R+ γG(X ′))−BRϕ(G(X
′))
∥∥]

≤ max
x∈X

max
g∈[Gmin,Gmax]

max
r∈R
∥ϕ(r + γg)−Brϕ(g)∥ ,

as required.

Proposition 4.2. (Error propagation.) Consider a norm ∥ · ∥ on Rm, and let ∥ · ∥∞ be the norm
on (Rm)X defined by ∥U∥∞ = maxx∈X ∥U(x)∥. Let d be a metric on return-distribution functions
(RDFs) such that T π is a γc-contraction with respect to d. Suppose the following bounds hold.

• (Bellman approximation bound.) For any η ∈P([Gmin, Gmax])
X ,

max
x∈X
∥Φ(T πη)(x)− (T π

ϕ Φη)(x)∥ ≤ εB .

• (Reconstruction error bound.) For any η, η̄ ∈ P([Gmin, Gmax])
X with sketches U, Ū , we have

d(η, η̄) ≤ ∥U − Ū∥∞ + εR.

• (Embedding error bound.) For any η′, η̄′ ∈ P([Gmin, Gmax])
X with sketches U ′, Ū ′, we have

∥U ′ − Ū ′∥∞ ≤ d(η′, η̄′) + εE.

Then for any two return-distribution functions η, η̄ ∈ P([Gmin, Gmax])
X with sketches U, Ū satis-

fying ∥U − Ū∥ ≤ δ, we have

∥ΦT πη − T π
ϕ Ū∥∞ ≤ γc(δ + εR) + εR + εE .

Proof. We follow the illustration laid out in Figure 3:

∥T π
ϕ U − ΦT π η̄∥∞

(a)

≤ ∥T π
ϕ U − ΦT πη∥∞ + ∥ΦT πη − ΦT π η̄∥∞

(b)

≤ εB + ∥ΦT πη − ΦT π η̄∥∞
(c)

≤ εB + d(T πη, T π η̄) + εE

(d)

≤ εB + γcd(η, η̄) + εE

(e)

≤ εB + γc(δ + εR) + εE ,

14

Under review as a conference paper at ICLR 2024

as required, where (a) follows from the triangle inequality, (b) follows from the Bellman approxi-
mation bound, (c) follows from the embedding error bound, (d) follows from γc-contractivity of T π

with respect to d, and (e) follows from the reconstruction error bound.

Proposition 4.4. Consider a sketch ϕ whose coordinates are feature functions of the form ϕi(z) =
1{z1 ≤ z < zi+1} (i = 1, . . . ,m − 1), and ϕm(z) = 1{z1 ≤ z ≤ zm+1}, where z1, . . . , zm+1

is an equally-spaced grid over [Gmin, Gmax], with Gmin = minR/(1 − γ), Gmax = maxR/(1 −
γ). Let T π

ϕ be the corresponding Sketch-DP operator given by solving Equation (5) with µ =

Unif([Gmin, Gmax]), and define a sequence (Uk)
∞
k=0 by taking U0(x) to be the sketch of some initial

distribution in P([Gmin, Gmax]), and Uk+1 = T π
ϕ Uk for all k ≥ 0. Let Uπ ∈ (Rm)X be the

mean embeddings of the true return distributions. Finally, let ∥ · ∥ be the norm on Rm defined by
∥u∥ = Gmax−Gmin

m

∑m
i=1 |ui| . Then we have

lim sup
k→∞

∥Uk − Uπ∥∞ ≤
(Gmax −Gmin)(3 + 2γ)

(1− γ)m
.

Proof. We begin by obtaining reconstruction and embedding error bounds for this sketch. We
introduce the shorthand ∆ = (Gmax − Gmin)/m. To obtain a reconstruction error bound, for
any distribution ν ∈ P([z1, zm+1]), define Πν to be the distribution obtained by mapping each
point of support z of ν to the greatest zi less than or equal to z. Mathematically, if we define
f(z) = max{zi : zi ≤ z}, then Πν = f#ν, i.e. Πν is the pushforward of ν through f . We then
have w1(ν,Πν) ≤ ∆ for all ν supported on [z1, zm], where w1 is the 1-Wasserstein distance, since
f transports mass by at most ∆. Introducing another distribution ν′ and the projection Πν′, we note
that w1(Πν,Πν

′) = ∥Φν − Φν′∥. Combining these observations with the triangle inequality yields

w1(ν, ν
′) ≤ w1(ν,Πν) + ∥Φν − Φν′∥+ w1(ν

′,Πν′) ≤ ∥Φν − Φν′∥+ 2∆ ,

which gives the required form of reconstruction bound, with εR = 2∆, for the supremum-
Wasserstein distance w1(η, η

′) = maxx∈X w1(η(x), η
′(x)) defined over RDFs η, η′ ∈ P(R)X .

We can also essentially reverse the argument to get

∥Φν − Φν′∥ = w1(Πν,Πν
′) ≤ w1(Πν, ν) + w1(ν, ν

′) + w1(ν
′,Πν′) ≤ w1(ν, ν

′) + 2∆

which gives the required form of the embedding error bound, with εE = 2∆.

Additionally, we can analyse the worst-case regression error ∥ϕ(r+γg)−Brϕ(g)∥ to get a bound on
the Bellman approximation εB, by Proposition 4.1. Observe that ϕ(g) is constant for g ∈ [zi, zi+1),
and equal to

(1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0)⊤ .

The minimum regression error in

EG∼Unif([z1,zm][∥ϕ(r + γG)−Brϕ(G)∥] (10)

is therefore obtained by setting the ith column of Br so that

Brϕ(zi) = EG∼Unif([zi,zi+1))[ϕ(r + γG)] ;

note the support of the distribution in the line above. Since r+ γG in this expectation varies over an
interval of width γ∆, the integrand ϕ(r + γG) takes on at most two distinct values. It then follows
that we can bound the minimum regression error in Equation (10) by ∆, and hence we can take
εB = ∆.

Finally, we observe that T π maps P([Gmin, Gmax]) to itself, since for any g ∈ [Gmin, Gmax] and any
r ∈ R, we have by construction of Gmin, Gmax that r + γg ∈ [Gmin, Gmax]. In addition, we have
{Φν : ν ∈ P([Gmin, Gmax]} = {u ∈ Rm : 0 ≤ u1 ≤ · · · ≤ um−1 ≤ um = 1}, and by the
inspection of the columns of Br above, it follows that T π

ϕ maps {Φν : ν ∈ P([Gmin, Gmax]
X
} to

15

Under review as a conference paper at ICLR 2024

itself. Therefore the conclusion of Proposition 4.3 holds, and we obtain

lim sup
k→∞

∥Uk − Uπ∥∞ ≤
1

1− γ
(γεR + εB + εE)

≤ 1

1− γ
(γ2∆ +∆+ 2∆)

=
∆(3 + 2γ)

1− γ

=
(Gmax −Gmin)(3 + 2γ)

(1− γ)m

as required.

B FURTHER DETAILS AND EXTENSIONS

In this section, we collect further details on a number of topics raised in the main paper.

B.1 CATEGORICAL IMPUTATION

In the tabular experiments in Sections 3.2 and 5, we include comparisons of distributions imputed
from the learned mean embeddings, to provide an interpretable comparison between the different
Sketch-DP methods studied. Here, we provide a detailed description of the imputation method.

For a given feature map ϕ, and a learned sketch value u, the goal is to define an imputation strategy
ι : Rm →P(R) (Rowland et al., 2019; Bellemare et al., 2023); that is, a function with the property
EZ∼ι(u)[ϕ(Z)] ≈ u, so that ι serves as an approximate pseudo-inverse to the mean embedding.
Here, we follow the approach of Song et al. (2008), and impute probability distributions supported on
a finite support set {z1, . . . , zn}. We define ι(s) implicitly through the following (convex) quadratic
program

argmin
p∈∆n

∥∥∥ n∑
i=1

piϕ(zi)− s
∥∥∥2
2
.

Note that the left-hand term inside is the expectation of ϕ(Z) with Z ∼
∑n

i=1 piδzi , and so the
objective is simply aiming to minimise the squared error between the learned sketch value and the
sketch value from this discrete distribution. Since this quadratic program is convex, it is solvable
efficiently; in our implementations, we use SciPy’s MINIMIZE algorithm (Virtanen et al., 2020).

B.2 CHOICES OF FEATURE FUNCTION

In the main paper, we note that any set of features spanning the degree-m polynomials is Bellman
closed, as described by Rowland et al. (2019), and hence exact dynamic programming is possible
with this feature set, as shown by Sobel (1982). However, in preliminary experiments we found
these features difficult to learn with temporal-difference methods beyond small values of m, due to
the widely varying magnitude of moments as m grows, making learning rate selection problematic
in stochastic environments; further details are provided in Appendix D.3.

In this paper, we tested the following functions as the base feature κ in the translation family Equa-
tion (8):

• Sigmoid: κ(x) = 1
1+exp(−x) ;

• Gaussian: κ(x) = exp(−x2/2);
• Hyperbolic tangent: κ(x) = tanh(x)

• Morbid: κ(x) = exp(−x2/2) cos(x)
• Triangular: κ(x) = 1− |x| for |x| ≤ 1, zero otherwise.

• Parabolic: κ(x) = 1− x2 for |x| ≤ 1, zero otherwise.

16

Under review as a conference paper at ICLR 2024

• Quartic: κ(x) = (1− x2)2 for |x| ≤ 1, zero otherwise.

In Appendix D.1, we provide further experimental results for a wide variety of feature maps from
this family. In addition, we also consider the indicator feature used in Proposition 4.4.

We found that the anchor points must be chosen carefully so that the features produce variations
within the return range. This can be done by choosing the range of the anchors to be slightly wider
than and estimated return range, and setting the slope so that there does not exist a region of the
return range that produce no change in the feature functions. In the tabular experiments, we set the
extremum anchor points to be Ĝmin − aL̂ and Ĝmax + aL̂, where L̂ = Ĝmin − Ĝmin is the estimated
return range, and a is a small positive value around 0.4 casually chosen and not tuned. The return
limits Ĝmin and Ĝmax are estimated by the sample minimum and maximum from samples collected
by first-visit Monte Carlo; see Appendix C.1.

The slope parameter should depend on the feature and the return range, and we applied the following
intuition. Most of the base feature κ have an “non-trivial support” that produces the most variations
in the function value. For example, the “non-trivial” support for the sigmoidal and Gaussian κ can
be chosen as [−2, 2]; and for base features that are nonzero only in [−1, 1], this support is [−1, 1].
We define the widthw of a base function as the length of the non-trivial support. Crudely, the feature
with slope s has width w/s, as sharper features tend to have shorter non-trivial support. In addition,
for the set of features to cover return range uniformly, we set each adjacent feature functions to
overlap by 50%. Finally, we want the union of the non-trivial supports of 10 (arbitrary chosen) such
overlapping features to equal the return range. We must then have 0.5 × 10w/s = Ĝmin − Ĝmax.
This is the default slope for each feature and each environment with known return range. As such,
the sigmoidal and Gaussian base features have default slope equal to s = 20/(Ĝmin − Ĝmax).

B.3 CHOICES OF REGRESSION DISTRIBUTION µ

In the main paper, we note that the one-dimensional integrals defining the matrices C and Cr which
in turn define the Bellman coefficients Br can be computed in a variety of ways, depending on the
choice of µ and feature map ϕ. In our experiments, we take ν to be a finitely-supported grid in the
range [Ĝmin − bL̂, Ĝmax + bL̂], where b is casually chosen to be around 0.2. The support of ν is thus
slightly wider than the estimated return range and slightly narrower than the anchor range described
in Section B.2. The intuition for using a wider anchor range is that we need the features to cover
the return distribution (and ν) with the non-trivial support of the features. We validate this intuition
in an additional experiment in Appendix D.1. With this ν, Equation (5) is a standard regression
problem, and C and Cr can be computed with standard linear-algebraic operations.

Another possibility, particularly if one wishes to use µ which is not finitely supported, is to use
numerical integration to compute these integrals. Additionally, in certain settings the integrals may
be computed analytically. For example, with Gaussian ϕi(x) = exp(−s2(x− zi)2/2) and Gaussian
µ, or µ as Lebesgue measure (in which case, technically, we modify the expectation in Equation (5)
into an integral against an unnormalised measure), C and Cr can be computed analytically. In the
case of µ as Lebesgue measure, we have

Cij =

√
π

2s
exp

(
−s
2
(zi − zj)2

)
and (Cr)ij =

√
π

s(1 + γ2)
exp

(
−s(r + γzi − γzj)2)

1 + γ2

)
.

B.4 KNOWLEDGE OF REWARDS

In distributional approaches to dynamic programming, it is necessary to know all aspects of the
environment’s transition structure and reward structure in advance, including the set R required for
precomputing the Bellman coefficients. However, in temporal-difference learning, this is a non-
trivial assumption. In many environments, this information is available in advance (in the Atari
suite with standard reward clipping post-processing (Mnih et al., 2015), rewards are known to lie in
{−1, 0, 1}, for example). When this information is not available, one may modify Algorithm 1 to
instead compute Bellman coefficients for observed rewards just-in-time; that is, when these rewards
are encountered in a transition. This makes the algorithm more broadly applicable, but clearly
incurs a significant cost of computing Bellman coefficients for rewards for which these coefficients
are not already cached. As Remark 3.2, one possibility in this setting is to learn an approximator

17

Under review as a conference paper at ICLR 2024

H : R → Rm×m that maps from rewards to Bellman coefficients, and use the predictions of the
approximator as proxies for the true Bellman coefficients to reduce the need to solve for the Bellman
coefficients every time a new reward is encountered.

B.5 MATHEMATICAL PROPERTIES OF BELLMAN COEFFICIENTS

The Bellman coefficients Br play a crucial role in our Bellman sketch framework. Here, we present
various properties of Br in a worked example, derived from both a sigmoid and a Gaussian base
feature in Figure 6. For each base feature, we choose 20 evenly spaced anchors in [−8, 8], and find
Br for r = 1 and γ = 0.8, and µ uniformly supported on a dense grid of 10,000 evenly spaced
points in [−5, 5]. We apply a small L2 regulariser with weight 10−6 in the regression problem.

0.00

0.25

0.50

0.75

1.00
(z)

0.00

0.25

0.50

0.75

1.00
(r + z)

0.50

0.25

0.00

0.25

singular vectors

0.0

0.5

1.0

singular values

0.0 0.5 1.0

0.2

0.0

0.2

eigenvalues

5 0 5
0.00

0.25

0.50

0.75

1.00

5 0 5
0.00

0.25

0.50

0.75

1.00

5 0 5

0.50

0.25

0.00

0.25

0 10
rank

0.0

0.5

1.0

0.0 0.5 1.0
Re

0.2

0.0

0.2

Im

Figure 6: In-depth analysis of Bellman coefficients in the setting described in Section B.5. In the
third column, solid curves are the most significant input/right singular vectors, and dashed lines with
matching colours are the corresponding output/left singular vectors.

First, we assess how accurate approximation in Equation (6) is when Br is found via the regression
problem in Equation (5). In the left two columns of Figure 6, we show the feature functions ϕ(z)
and ϕ(r + γz) in the first two columns. In the second column, we also show Brϕ(z) in dashed
lines evaluated on [−8, 8], wider than the grid over which we minimised the error. The error is tiny
and virtually invisible within the interval [−5, 5], but is larger outside. Quantitatively, the maximum
absolute difference between ϕ(r + γz) and Brϕ(z) over the dense grid in [−5, 5] is less than 0.002
for both base features. By Proposition 4.1, we expect a small error in a single step of dynamical
programming.

Had Br been a contraction, we would have been able to prove contraction for Algorithm 1. How-
ever, we show empirically that Br is not in general a contraction in L2 norm, but the dynamics from
repeated multiplication of Br may converge to a stable fixed point. First, we performed a singular
value decomposition of the Br for the two base features. We see that the singular vectors in Fig-
ure 6 (third column) are similar to harmonic functions. Importantly, in the largest singular values
(operator norms) in Figure 6 (fourth column) are greater than 1, suggesting that a single applica-
tion of Br may expand the input. Further, we show the eigenvalues of Br in the fifth column of
Figure 6. Interestingly, all eigenvalues have real parts less or very close to 1.0 suggesting that there
exists fixed points in the dynamics induced by Br. As such, the Bellman coefficients Br exhibit
transient dynamics (typical for non-normal matrices) but is stable after repeated applications to an
initial vector. Further studies into these dynamical properties are important for future work. Given
the important role of non-normal dynamics hypothesised to be present in the nervous system (Hen-
nequin et al., 2012; Bondanelli & Ostojic, 2020), these observations allude to the possibility that the
Bellman sketch framework could contribute to a biological implementation of distributional RL.

18

Under review as a conference paper at ICLR 2024

B.6 COMPUTATIONAL PROPERTIES OF BELLMAN COEFFICIENTS

Under many choices of feature maps ϕ, the matrix Br has structure that may be exploited computa-
tionally. We provide sketches of several cases of interest. For “binning features”, even for overlap-
ping bins, Br is a very narrow band matrix, and hence is sparse, leading to linear-time matrix-vector
product computation. This remains approximately true for other forms of localised features, such as
low-bandwidth Gaussians and related bump-like functions, and in particular applying truncation to
near-zero coefficient in the Bellman coefficients in such cases will also lead to sparse matrices.

Bellman coefficients as least-squares coefficients. The closed-form solution for the Bellman co-
efficients Br in Equation (7) can be derived by viewing the optimisation problem in Equation (5) as
a vector-valued linear regression problem, and using the usual expression for the optimal prediction
coefficients. The derivation is the same in content to the usual derivation of least-squares coeffi-
cients, which we provide below for completeness, to illustrate how it is obtained in our case. We
begin by differentiating the (quadratic) objective in Equation (7) with respect to B, and setting the
resulting expression equal to the zero vector, to obtain

−2EG∼µ[ϕ(r + γG)ϕ(G)⊤] + 2EG ∼µ[Brϕ(G)ϕ(G)
⊤] = 0 .

Rearranging, we obtain

BrEG ∼µ[ϕ(G)ϕ(G)
⊤] = EG∼µ[ϕ(r + γG)ϕ(G)⊤] .

Finally, under the assumption of invertibility of EG ∼µ[ϕ(G)ϕ(G)
⊤], we obtain the expression for

the Bellman coefficients in Equation (7):

Br = EG∼µ[ϕ(r + γG)ϕ(G)⊤]EG ∼µ[ϕ(G)ϕ(G)
⊤]−1 .

Online computation of Bellman coefficients in the case of unknown rewards. In settings where
the set of possible rewards R is not known in advance, is infinite, or is too large to cache Bellman
coefficients for all possible rewards r ∈ R, we may exploit the structure of the Bellman coefficients
described above to speed up the computation of the coefficients online. Rather than solving the
regression problem from scratch, an alternative is to cache the matrix EG ∼µ[ϕ(G)ϕ(G)

⊤]−1 above,
and construct the matrix EG∼µ[ϕ(r+γG)ϕ(G)

⊤] as required, upon observing a new reward r. This
reduces the marginal cost of computing the Bellman coefficients Br to a matrix-matrix product.

B.7 COMPARISON WITH OTHER APPROACHES TO DISTRIBUTIONAL RL

In this section, we provide additional comparisons against existing approaches to distributional RL,
including their theoretical analysis. As distributional RL is a quickly evolving field, we focus our
comparison on a few main classes of algorithms related to our work, which illustrate some key
axes of variation within the field: (i) categorical approaches (Bellemare et al., 2017); (ii) quantile
approaches (Dabney et al., 2018a;b; Yang et al., 2019); (iii) approaches related to maximum mean
discrepancy (MMD; Gretton et al., 2012), such as Nguyen-Tang et al. (2021); Zhang et al. (2021);
Sun et al. (2022); and (iv) sketch-based approaches (Sobel, 1982; Rowland et al., 2019).

Distribution representation. Categorical, quantile, and MMD approaches are typically presented
as learning approximate return distributions directly. In categorical approaches, the approximate
distribution is parametrised as

m∑
i=1

piδzi ,

with fixed particle locations (zi)
m
i=1, and learnable probabilities (pi)

m
i=1 for each state-action pair

at which the return distribution is to be approximated. In contrast, quantile and MMD approaches
learn fixed-weight particle approximations, of the form

m∑
i=1

1

m
δzi ,

in which the particle locations (zi)mi=1 are learnable. Work on sketches has instead focused on learn-
ing the values of particular statistical functionals of the return, rather than explicitly approximating

19

Under review as a conference paper at ICLR 2024

return distributions. Rowland et al. (2019) also shows that standard categorical- and quantile-based
algorithms can also be viewed through the lens of sketch-based distributional RL. The approach
proposed in this paper sits firmly in the camp of sketch-based approaches, without ever represent-
ing approximated distributions directly. We highlight generative models of distributions as another
prominent class of (non-parametric) representation (see, e.g., Doan et al. 2018; Freirich et al. 2019;
Dabney et al. 2018a; Yang et al. 2019; Wu et al. 2023).

Algorithm types. Most prior algorithmic contributions to distributional reinforcement learning have
focused on sample-based temporal-difference approaches, in which prediction parameters are it-
eratively and incrementally updated based on the gradient of a sampled approximation to a loss
function. These approaches include the original C51 (Bellemare et al., 2017), QR-DQN (Dabney
et al., 2018b), MMDRL (Nguyen-Tang et al., 2021), and EDRL (Rowland et al., 2019) algorithms.
Dynamic programming algorithms, in which parameters are not updated incrementally via loss gra-
dients, but instead according to the application of an implementable operator, have also been con-
sidered (see Rowland et al. (2018; 2023); Wu et al. (2023) for categorical dynamic programming,
quantile dynamic programming, and fitted likelihood estimation, respectively). In this paper, our
algorithmic contributions include both DP and TD methods.

Losses and projections. One of the core axes of variation across distributional RL approaches is the
loss used to define updates in incremental algorithms, and to define projections in dynamic program-
ming. Categorical approaches use a projection in Cramér metric (Rowland et al., 2018) to define a
target distribution for both dynamic programming and incremental versions of the algorithm; the in-
cremental algorithm updates predictions via the gradient of a KL loss between the current and target
distributions. Quantile-based approaches use either the quantile regression loss in incremental set-
tings, or a Wasserstein-1 projection in dynamic programming (Dabney et al., 2018b). The MMDRL
approach has been proposed only in the incremental setting, and considers sample-based gradients
through an MMD loss, specifically taking the form

MMD2
K

(
m∑
i=1

1

m
δzi(x,a),

m∑
i=1

1

m
δr+γzi(x′,a′)

)
, (11)

for some choice of kernel K. In contrast, the Sketch-DP and Sketch-TD algorithms introduced
in this paper define updates via matrix-vector products with the Bellman coefficients derived in
Equation (5). With the connection to RKHS noted in Section 6, one can view the squared norm
appearing in Equation (5) as the squared norm in the RKHS generated by the feature functions ϕ.
From this perspective, it is clear that both the Bellman coefficients that feature in Sketch-DP and
Sketch-TD, and the gradients of the loss in Equation (11), both relate to the mathematical structure
of RKHS.

Contrasting against the Sketch-DP/Sketch-TD approaches described above, earlier approaches to
sketched-based distributional RL, both in dynamic programming and incremental forms, have de-
fined losses via imputation strategies, which compute updates by converting sketches into approx-
imate distributions (Rowland et al., 2019; Bellemare et al., 2023). Foreshadowing the remarks on
theoretical analysis below, we remark that neither MMDRL nor the earlier sketch-based approach
described above have been analysed for convergence, while Section 4 in this paper deals with con-
vergence analysis of the approach proposed in this paper.

Theoretical analysis. The analysis of both dynamic programming and sample-based incremental
algorithms requires analysis of the interaction between distributional updates, and approximations
made to the distributions due to the choice of representation mentioned above.

Convergence analysis of dynamic programming algorithms has been obtained for several classes
of distributional algorithms; see Rowland et al. (2018) for the case of categorical dynamic pro-
gramming, Dabney et al. (2018b) for the case of a quantile dynamic programming algorithm, and
Bellemare et al. (2023); Rowland et al. (2023) for later generalisations of this work. This analysis
typically centres around (i) proving contractivity of the distributional Bellman operator T π with re-
spect to some metric d, and proving non-contractivity of the specific distributional projection used
by the dynamic programming algorithm under this same metric. Notably, the metric d used in the
analysis need not be the same as any metrics used in defining the algorithm; this is the case for
quantile dynamic programming, for which Wasserstein-1 distance is used to define the algorithm,
while Wasserstein-∞ distance is used to analyse the algorithm (Dabney et al., 2018b; Bellemare
et al., 2023; Rowland et al., 2023). Our proof technique, in particular, makes use of contraction of

20

Under review as a conference paper at ICLR 2024

the distributional Bellman operator in Wasserstein distances, though such distances do not feature
in the definition of the Sketch-DP/TD algorithms.

In general, there has been less work on the convergence analysis of sample-based incremental algo-
rithms. Rowland et al. (2023) recently showed convergence of quantile temporal-difference learn-
ing, though the question of convergence for many other sample-based incremental distributional
reinforcement learning algorithms is currently open. In particular, we note as a point of compar-
ison to Nguyen-Tang et al. (2021), that although this work provides a contraction analysis of T π

(Theorem 2), and MMD approximation bounds for fixed target distributions (Theorem 3 and Propo-
sition 2), these do not constitute a proof of convergence of the incremental algorithm described
therein. The analysis of incremental algorithms is generally more mathematically involved than in
the dynamic programming case, principally owing to the fact that rather than analysing the iterated
application of a fixed operator, one needs to analyse the continuous dynamical system associated
with incremental updates.

C EXPERIMENTAL DETAILS

In this section, we provide additional details on the experimental results reported in the main paper.

C.1 TABULAR ENVIRONMENTS

We describe the setup in the main paper. In Appendix D.1, we show extended results of more
features and more environments.

Environments. In the main paper, we reported results on the on the following environments,

• Random chain: Ten states {x1, x2, . . . , x10} are arranged in a chain. There is equal probability
of transitioning to either neighbour at each state, and state x10 has a deterministic reward of +1;

terminal← x1 ←→ x2 ←→ x3 ←→ · · · ←→ x10 → terminal .

• Directed chain (DC): Five states are arranged in a directed chain, but the agent can only move
along the arrow deterministically until termination. A deterministic reward of +1 is given at
state x5;

x1 −→ x2 −→ x3 −→ · · · −→ x5 → terminal .

• DC with Gaussian reward: A variant of the directed chain above, with the only difference that
x5 has a Gaussian reward with mean 1 and unit variance.

The discount factor is γ = 0.9. These environments cover stochastic and deterministic rewards and
state transitions, giving a range of different types of return distributions.

Feature functions. We use features of translation family Equation (8), with κ chosen from a sub-
set of base features described in equation (B.2). We also include the indicator features used in
Proposition 4.4. For the sweep over slope, we set the slope s to be the default slope (described in
Appendix B.2) multiplied by a scaling factor, and sweep over this factor. from 0.001 to 10.0. This
is done primary because the return range varies a lot across different environments, and the default
slope is adjusted to the return range. The results serve as justification for the heuristics on choosing
the default slope.

Ground-truth distribution. We approximate the ground-truth mean embeddings and the ground-
truth return distributions by collecting a large number of return samples from the MRPs. To do so,
we use first-visit Monte Carlo with a sufficiently long horizon (after the first visit to each state) to
ensure that the samples are unbiased and has bounded error caused by truncating the rollout to a finite
horizon. For environments with deterministic rewards, truncating the horizon at L steps induces
maximum truncation error |r|maxγ

L/(1− γ), where |r|max is the maximum reward magnitude. We
bound this error at 10−4, giving L > 110, so we set the horizon after the first visit to 110. For
environments with Gaussian rewards, we set the horizon to 200. We initialise the rollout at each
state in the environment, and for initial each state this is repeated 105 times. This gives us at least
105 samples each state.

21

Under review as a conference paper at ICLR 2024

Sketch DP under conditional independence. Many RL environments, including the tabular envi-
ronments tested in this paper, have the property that R ⊥⊥ X ′|X for the trajectory X,A,R,X ′, so
the Sketch-DP update Equation (Sketch-DP) simplifies to

U(x)← Eπ
x [BR]Eπ

x [U(X ′)] = Eπ
x [BR]

∑
x′∈X

P (x′|x)U(x′).

This means we need to evaluate the expected Bellman coefficient Eπ
x [BR]. This is trivial for deter-

ministic rewards. For stochastic rewards with known distributions, we approximate the expectation
via numerical integration. We run all DP methods for 200 iterations.

Jittered imputation support. The support on which we impute the distribution are the anchors of
the features. Some tabular environments have states with deterministic returns that directly align
with the feature anchors, which interferes in unintuitive ways with the finite support on which we
impute distributions, producing non-monotonic trends in the results. To avoid this unnecessary
complication, we jitter the support before imputing the distribution: for points in the support, we
add noise uniformly distributed over [−∆/2,∆/2], where ∆ is the distance between consecutive
support points. Likewise, we project ground truth distribution using the same jittered support to. In
Figure 4, we report the average of the metrics computed from 100 independent jitters. Note that since
the imputation (from mean embedding) and projection (from ground-truth) share the same support
for each of the 100 jitters, the average Cramér distance between the projected and the ground-truth
still lower-bounds the average Cramér distance between the imputed distribution and the ground-
truth.

C.2 DEEP REINFORCEMENT LEARNING IMPLEMENTATION DETAILS

In this section, we provide further details on the deep reinforcement learning experiments described
in the main paper, in particular describing hyperparameters and relevant sweeps.

Environment. We used the exact same Atari suite environment for benchmarking QR-DQN (Belle-
mare et al., 2013; Dabney et al., 2018b). In all experiments, we run three random seeds per environ-
ment.

Feature map ϕ. The results in Figure 5 uses the sigmoid base feature κ(x) = 1/(e−x + 1) with
slope s = 5, and the anchors to be 401 (tuned from 101, 201 and 401) evenly spaced points between
−12 and 12. These values are loosely motivated by the range used in C51 (Bellemare et al., 2017).
We did not use the heuristic in Appendix B.2 to choose the slope parameter, instead we set this
to 10 by tuning from {1, 2, . . . , 12}. Larger slope values typically resulted in Bellman coefficients
with a worst-case regression error maxr∈R maxg∈supp(µ) ∥ϕ(r + γg)− Brϕ(g)∥ greater than 0.01.
In these cases, we regard the regression error as too large, and did not perform agent training with
these hyperparameter settings. In addition, ϕ is appended with a constant feature of ones, which we
found to be very crucial for a good performance; as noted in the main paper, this ensures that the
sketch operator is truly affine, not linear. We also tried a several other feature functions, including
the Gaussian, the hyperbolic tangent and the (Gaussian) error function, and found that the sigmoid
reliably performed the best.

Solving the regression problems. To compute the Bellman coefficients as well as the value readout
weights β described in Section 5.1, we solve the corresponding regression problem with µ set to be
100,000 points evenly spaced between −10 and 10. We also add a L2 regulariser with strength set
to 10−9 to avoid numerical issues, which is tuned from {10−15, 10−12, 10−9, 10−6, 10−3}.
Neural network. We implement Sketch-DQN based on the QR-DQN architecture, using exactly
the same convolutional torso and fully-connected layers to estimate the mean embeddings. The
differences are:

• We add a sigmoid or tanh nonlinearity, depending on the base feature output range to the final
layer. This helps bound the predicted mean embedding and improved the results.

• The network only predicts the non-constant dimensions of the mean embedding, and the constant
feature is appended as a hard-coded value.

• We use the pre-computed mean readout coefficients β to predict state-action values for state-
action pairs in the Q-learning objective, and at current states to determine the greedy policy.

22

Under review as a conference paper at ICLR 2024

Training. We use the exact same training procedure as QR-DQN (Dabney et al., 2018b). Notably,
the learning rate, exploration schedule, buffer design are all the same. We tried a small hyperpa-
rameter sweep on the learning rate, and found the default learning rate 0.00005 to be optimal for
performance taken at 200 million frames.

Evaluation. The returns are normalised against random and human performance, as reported by
Mnih et al. (2015). We use the mean and median over all games and three random seeds for each
game.

Baseline methods. We also tuned the number of atoms of the approximating distributions in the
baseline methods. In particular, we found that C-51 performed the best compared to using more
atoms; IQN did best when using 51 quantiles; and QR-DQN did best using 201 quantiles. Increasing
the number of atoms in these methods lead to worse performance. We report the results of these best
variants of the corresponding baseline methods in Figure 5.

D FURTHER EXPERIMENTS

In this section, we collect further experimental results to complement those reported in the main
paper.

D.1 EXTENDED TABULAR RESULTS

We tested Sketch-DP using the following additional MRPs. If unspecified, the default reward dis-
tribution for each state is a Dirac delta at 0, and the transition probabilities from a state to its child
states are equal.

• Tree: State 1 transitions to states 2 and 3; state 3 transitions to states 4 and 5. State 2 has mean
reward 5; state 4 has mean reward -10, and state 5 has mean reward 10. All leaf states are
terminal.

• Loopy tree: Same as Tree, but with a connection from state 2 back to state 1.
• Cycle: Five states arranged into a cycle, with only a single state having mean reward 1.
• Rowland ’23: The environment in Example 6.5 of Rowland et al. (2023).
• S&B ’18: The environment in Example 6.4 of Sutton & Barto (2018).
• Loopy fork: The environment shown in Figure 2(A).

All environments have discount factor γ = 0.9. For each environment, except Rowland ’23 and
S&B’18, the reward distributions for the non-zero-reward states are either Dirac deltas at the speci-
fied mean, or Gaussian with specified mean and unit standard deviation.

The results, extending those in Figure 4, are illustrated in Figure 7. The results are in general
consistent with the main Figure 4. In particular, the Cramér distances decay as the number of
features increases, and can be closer to the corresponding projected ground-truths than the CDRL
baseline.

In Appendix B.2, we suggested that the range of the anchors should be wider than the range of the
uniform grid µ on which we measure the regression loss. We validate this intuition by performing
another experiment, sweeping the ratio of the width of the anchor range relative to the width of the
grid µ, fixing the mid points between these two ranges the same. Here, we use m = 50 features
for each base feature function and apply the default slope described in Appendix B.2. The results
in Figure 8 shows that a slightly wider anchor range produces reliably small Cramér distances for
almost all base features. When the anchor range decreases from 1 to 0, there is a much sharper
increase in the Cramér distance, because the support on which we impute the distribution is too
narrow and can miss substantial probability mass outside the support. On the other hand, when the
anchor range increases from 1, the Cramér distance also increases because the support points get
further away from each other, lowering the resolution of the imputed distribution. Since the grid is
chosen to be slightly wider than the true return range, we see that the smallest Cramér distances can
be attained at anchor range ratio slightly less than 1, but this does not hold universally (see, e.g.,
random chain and cycle results). Choosing this ratio to be slightly greater than 1, as suggested in
Appendices B.2 and B.3, is more reliable at the cost of a small increase in distributional mismatch.

23

Under review as a conference paper at ICLR 2024

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

0.0

0.5

Cr
am

er
di

st
an

ce

10 50 90
Count, m

10 7

10 4

10 1

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

sigmoid gaussian triangular parabolic tanh morbid quartic CDRL
10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90

(a) Environments with deterministic rewards, sweeping over feature count m.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

0.0

0.5

Cr
am

er
di

st
an

ce

0.01 1
Slope, s

10 8

10 3

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

sigmoid gaussian triangular parabolic tanh morbid quartic CDRL
0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1

(b) Environments with deterministic rewards, sweeping over slope s.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle S&B '18 Loopy fork

0.0

0.2

0.4

Cr
am

er
di

st
an

ce

10 50 90
Count, m

10 4

10 3

10 2

10 1

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

sigmoid gaussian triangular parabolic tanh morbid quartic CDRL
10 50 90 10 50 90 10 50 90 10 50 90 10 50 90 10 50 90

(c) Environments with Gaussian rewards, sweeping over feature count m.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle S&B '18 Loopy fork

0.0

0.5

Cr
am

er
di

st
an

ce

0.01 1
Slope, s

10 3

10 1

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

sigmoid gaussian triangular parabolic tanh morbid quartic CDRL
0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1

(d) Environments with Gaussian rewards, sweeping over slope s.

Figure 7: Additional tabular results extending Figure 4.

24

Under review as a conference paper at ICLR 2024

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

0 1 2 3
anchor range ratio

0.0

0.5

Cr
am

er
di

st
an

ce

sigmoid gaussian triangular parabolic tanh morbid quartic CDRL
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(a) Environments with deterministic rewards.

10 8

100

108

M
ea

n-
em

be
dd

in
g

sq
ua

re
d

er
ro

r Directed chain Tree Loopy tree Cycle S&B '18 Loopy fork Random chain

0 1 2 3
anchor range ratio

0.0

0.5

Cr
am

er
di

st
an

ce

sigmoid gaussian triangular parabolic tanh morbid quartic CDRL
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

(b) Environments with Gaussian rewards.

Figure 8: Additional tabular results from sweeping over the range of the anchors relative to the width
of the uniform grid given by the support of µ.

D.2 EXTENDED RESULTS ON ATARI SUITE

We show in Figure 9 the advantage of the Sketch-DQN method to other baselines. On one hand, we
see that Sketch-DQN surpasses DQN on almost all games. Compared to IQN and QR-DQN, Sketch-
DQN is consistently better on CRAZY CLIMBER, SPACE INVADERS, RIVER RAID, ROAD RUNNERS
and VIDEO PINBALL, while worse on ASSAULT, ASTERIX, DOUBLE DUNK, KRULL, PHOENIX, and
STAR GUNNER.

To show how sensitive are the results depending on the feature parameters, we ran the full Atari suite
using a few sigmoidal and Gaussian features, and show the results in Figure 10. Overall, we see
that the choice on feature parameters is important; in particular, the sigmoidal feature outperforms
Gaussian features. For the sigmoidal feature, the performance improved from using 101 to 201
features. On the contrary, for Gaussian features, increasing the feature count does not produce much
change.

D.3 TEMPORAL-DIFFERENCE LEARNING WITH POLYNOMIAL FEATURES

As noted in the main text, the sketch corresponding to the polynomial feature function ϕ(g) =
(1, g, g2, . . . gm) is Bellman closed, and the Bellman coefficients Br obtain zero regression error
in Equation (5). In addition, there has been much prior work on dynamic programming (Sobel,
1982) for moments of the return, and temporal-difference learning specifically in the case of the
first two moments (Tamar et al., 2013; 2016). However, such polynomial feature functions are
difficult to use as the basis of learning high-dimensional feature embeddings. This stems from
several factors, including that the typical scales of the coordinates of the feature function often vary
over many orders of magnitude, making tuning of learning rates difficult, as well as the fact that
polynomial features are non-local, making it more difficult to decode distributional information via
an imputation strategy.

To quantify these informal ideas, we ran an experiment comparing Sketch-TD updates for a 50-
dimensional mean embedding based on the translation family (Equation (8)) with a sigmoid base
feature κ, as well as polynomial features withm = 5, andm = 50. The sigmoid features are chosen
according to the intuitions in Appendix B.2. We ran 100,000 synchronous TD updates on mean
embedding estimates initialised at ϕ(0) for all state. Each run uses a fixed learning rate chosen from
10−6 to 1.

In Figure 11, we plot the Cramér distance of imputed distributions from ground-truth after running
TD for each of these three methods, on a variety of the environments described in Section D.1. In

25

Under review as a conference paper at ICLR 2024

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

DQN

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

Double

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

Dueling

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

C51

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

QR

al
ie

n
am

id
ar

as
sa

ul
t

as
te

rix
as

te
ro

id
s

at
la

nt
is

ba
nk

_h
ei

st
ba

ttl
e_

zo
ne

be
am

_r
id

er
be

rz
er

k
bo

wl
in

g
bo

xi
ng

br
ea

ko
ut

ce
nt

ip
ed

e
ch

op
pe

r_
co

m
m

an
d

cr
az

y_
cli

m
be

r
de

fe
nd

er
de

m
on

_a
tta

ck
do

ub
le

_d
un

k
en

du
ro

fis
hi

ng
_d

er
by

fre
ew

ay
fro

st
bi

te
go

ph
er

gr
av

ita
r

he
ro

ice
_h

oc
ke

y
ja

m
es

bo
nd

ka
ng

ar
oo

kr
ul

l
ku

ng
_f

u_
m

as
te

r
m

on
te

zu
m

a_
re

ve
ng

e
m

s_
pa

cm
an

na
m

e_
th

is_
ga

m
e

ph
oe

ni
x

pi
tfa

ll
po

ng
pr

iv
at

e_
ey

e
qb

er
t

riv
er

ra
id

ro
ad

_r
un

ne
r

ro
bo

ta
nk

se
aq

ue
st

sk
iin

g
so

la
ris

sp
ac

e_
in

va
de

rs
st

ar
_g

un
ne

r
su

rro
un

d
te

nn
is

tim
e_

pi
lo

t
tu

ta
nk

ha
m

up
_n

_d
ow

n
ve

nt
ur

e
vi

de
o_

pi
nb

al
l

wi
za

rd
_o

f_
wo

r
ya

rs
_r

ev
en

ge
za

xx
on

Game name

102
101
1000
100
101
102

Sk
et

ch
 D

QN
 a

dv
.

IQN

Figure 9: Advantage of Sketch-DQN, measured as Sketch-DQN’s normalised return minus the re-
turns of other baseline methods. Positive values means Sketch-DQN is better. We show the mean
and standard error over 3 seeds for each game.

26

Under review as a conference paper at ICLR 2024

0

5

10

15 : sigmoid, Count m = 101 : gaussian, Count m = 101

0 50 100 150 200
Million frames

0

5

10

15

M
ea

n
no

rm
al

ise
d

re
tu

rn : sigmoid, Count m = 201

0 50 100 150 200
Million frames

: gaussian, Count m = 201

(a) Mean normalised return.

0.0

0.5

1.0

1.5

: sigmoid, Count m = 101

slope s
4.0 5.0 6.0

: gaussian, Count m = 101

slope s
1.33 1.67 2.0

0 50 100 150 200
Million frames

0.0

0.5

1.0

1.5

M
ed

ia
n

no
rm

al
ise

d
re

tu
rn : sigmoid, Count m = 201

slope s
4.0 5.0 6.0

0 50 100 150 200
Million frames

: gaussian, Count m = 201

slope s
1.33 1.67 2.0

(b) Median normalised return.

Figure 10: Results on Atari suite for different feature parameters.

27

Under review as a conference paper at ICLR 2024

10 5 10 3 10 1

Learning rate

10 1

100

Cr
am

er
 d

ist
an

ce Random chain

sigmoid, m = 50 polynomials, m = 5 polynomials, m = 50
10 5 10 3 10 1

Directed chain

10 5 10 3 10 1

Tree

10 5 10 3 10 1

Loopy tree

10 5 10 3 10 1

Cycle

10 5 10 3 10 1

Rowland '23

10 5 10 3 10 1

Loopy fork

Figure 11: Results comparing sketch-TD with sigmoidal and polynomial features.

all environments, there is a similar pattern. For the Sketch-TD algorithm based on sigmoid non-
linearities, there is a reasonably wide basin of good learning rates, with performance degrading as
the learning rate becomes too small or too large. On several environments this pattern is reflected
also in the performance of the degree-5 polynomial embedding, though the minimal Cramér error is
generally significantly worse than that of the sigmoid embedding. This supports our earlier obser-
vations; this mean embedding captures relatively coarse information about the return distribution,
and in addition different feature components have different magnitudes, meaning that a constant
learning rate cannot perform well. The mean embedding with degree-50 polynomials generally per-
forms very badly on all environments, as the components of the embedding are at such different
magnitudes that no appropriate learning rate exists.

D.4 COMPARISON WITH STATISTICAL FUNCTIONAL DYNAMIC PROGRAMMING

The Sketch-DP methods developed in this paper were motivated in Section 2 with the aim of having
distributional dynamic programming algorithms that operate directly on sketch values, without the
need for the computationally intensive imputation strategies associated with SFDP algorithms. In
this section, we empirically compare Sketch-DP and SFDP methods, to quantitatively measure the
extent to which this has been achieved. We give details below of the Sketch-DP and SFDP algo-
rithms we compare, and provide comparisons of per-update wallclock time to assess computational
efficiency, and distribution reconstruction error to assess accuracy.

Sketch-DP. We consider the Sketch-DP algorithm based on sigmoid features as described in Sec-
tion 3.1, and implemented as described in Section 5 and Appendix C.1.

SFDP. We consider the SFDP algorithm for learning expectile values as described by Bellemare
et al. (2023, Section 8.6). We use SciPy’s default minimize implementation (Virtanen et al.,
2020) to solve the imputation strategy optimisation problem given in Equation (8.15) in Bellemare
et al. (2023). For a given sketch dimension m, we use expectiles at linearly spaced levels τi =
(2i− 1)/(2m) for i = 1, . . . ,m.

Results. These two algorithms, for varying numbers of feature/expectilesm, were run on a selection
of deterministic-reward environments as described in Appendix D.1. In Figure 12, we plot the
Cramér distance and the excess Cramér distance of reconstructed distributions to ground truth, as
described in Section 5 and plotted in Figure 4. In addition, we also plot two wallclock times in
each case: the average time it takes to run one iteration of the dynamic programming procedure, and
the time it takes to setup the Bellman operator, which includes solving for Br for Sketch-DP. As
predicted, the run time is significantly higher for the SFDP algorithm, due to its use of imputation
strategies. The approximation errors measured by Craḿer distances are also smaller for Sketch-DP,
particularly as the number of features/expectiles is increased. Considering the per-update wallclock
times in the third row of the figure, there is consistently a speed up of at least 100x associated with the
Sketch-DP algorithm relative to SFDP. This is due to the fact that the Sketch-DP update consists of
simple linear-algebraic operations, while the SFDP update includes calls to an imputation strategy,
which must solve an optimisation problem. The one-off computation of the Bellman coefficients
takes around 0.1–4 seconds, depending on the number of features m, which is only at most a couple
of SFDP iterations, and hence a small fraction of the total run time of the SFDP algorithm.

28

Under review as a conference paper at ICLR 2024

0.00
0.25
0.50
0.75
1.00

Cr
am

er
di

st
an

ce

Random chain Directed chain Tree Loopy tree Cycle Rowland '23 Loopy fork

10 6

10 3

100

Ex
ce

ss
 C

ra
m

er
di

st
an

ce

10 4

10 2

100

Ti
m

e
/ I

te
r (

s)

25 50 75
features/expectiles

0

2

4

Op
er

at
or

se
tu

p
tim

e
(s

)

SFDP Sketch-DP (sigmoid)
25 50 75 25 50 75 25 50 75 25 50 75 25 50 75 25 50 75

Figure 12: Results comparing Cramér distances as in Figure 4 (first two rows), and wallclock run-
times for each DP iteration (third row) and for setting the corresponding Bellman operator (bottom
row), for Sketch-DP and SFDP algorithms, varying the numbers of features/expectiles m.

29

	Introduction
	Background
	Distributional RL and the distributional Bellman equation
	Statistical functionals and sketches

	The Bellman sketch framework
	General sketches
	Sketch-DP at work

	Convergence analysis
	Concrete example

	Experiments
	Deep reinforcement learning

	Related work
	Conclusion
	Proofs
	Further details and extensions
	Categorical imputation
	Choices of feature function
	Choices of regression distribution
	Knowledge of rewards
	Mathematical properties of Bellman coefficients
	Computational properties of Bellman coefficients
	Comparison with other approaches to distributional RL

	Experimental details
	Tabular environments
	Deep reinforcement learning implementation details

	Further experiments
	Extended tabular results
	Extended results on Atari suite
	Temporal-difference learning with polynomial features
	Comparison with statistical functional dynamic programming

