REFRAG: Rethinking RAG based Decoding

Xiaogiang Lin'2* Aritra Ghosh! Bryan Kian Hsiang Low?>
Anshumali Shrivastava'® Vijai Mohan'
!Meta Superintelligence Labs ?National University of Singapore 2Rice University
{arighosh, anshumali, vijai}@meta.com
xiaogiang.lin@u.nus.edu, lowkh@comp.nus.edu.sg

Abstract

Large Language Models (LLMs) have demonstrated remarkable capabilities in
leveraging extensive external knowledge to enhance responses in multi-turn and
agentic applications, such as retrieval-augmented generation (RAG). However,
processing long-context inputs introduces significant system latency and demands
substantial memory for the key-value cache, resulting in reduced throughput and
a fundamental trade-off between knowledge enrichment and system efficiency.
While minimizing latency for long-context inputs is a primary objective for LLMs,
we contend that RAG systems require specialized consideration. In RAG, much
of the LLM context consists of concatenated passages from retrieval, with only
a small subset directly relevant to the query. These passages often exhibit low
semantic similarity due to diversity or deduplication during re-ranking, leading
to block-diagonal attention patterns that differ from those in standard LLM gen-
eration tasks. Based on this observation, we argue that most computations over
the RAG context during decoding are unnecessary and can be eliminated with
minimal impact on performance. To this end, we propose REFRAG, an efficient
decoding framework that compresses, senses, and expands to improve latency in
RAG applications. By exploiting this attention sparsity structure, we demonstrate
a 30.85x the time-to-first-token acceleration (3.75x improvement to previous
work) without loss in perplexity. In addition, our optimization framework for large
context enables REFRAG to extend the context size of LLMs by 16x. We pro-
vide rigorous validation of REFRAG across diverse long-context tasks, including
RAG, multi-turn conversations, and long document summarization, spanning a
wide range of datasets. Experimental results confirm that REFRAG delivers sub-
stantial speedup with no loss in accuracy compared to LLaMA models and other
state-of-the-art baselines across various context sizes. Additionally, our experi-
ments establish that the expanded context window of REFRAG further enhances
accuracy for popular applications.

1 Introduction

Large Language Models (LLMs) have demonstrated impressive capabilities in contextual learning,
leveraging information from their input to achieve superior performance across a range of down-
stream applications. For instance, in multi-turn conversations (Roller et al., |2021; [Zhang et al.,
2020), incorporating historical dialogue into the context enables LLMs to respond more effectively
to user queries. In retrieval-augmented generation (RAG) (Guu et al.|, [2020; Izacard et al.| [2022),
LLMs generate more accurate answers by utilizing relevant search results retrieved from external
sources. These examples highlight the power of LLMs to learn from context. However, it is well

*Work done at Meta

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Multi-Turn Interac-
tions in Large Language Models.

established that increasing prompt length for contextual learning leads to higher latency and greater
memory consumption during inference (Yen et al.,[2024). Specifically, longer prompts require ad-
ditional memory for the key-value (KV) cache, which scales linearly with prompt length. More-
over, the time-to-first-token (TTFT) latency increases quadratically, while the time-to-iterative-token
(TTIT) latency grows linearly with prompt length (Liu et al., 2025). As a result, LLM inference
throughput degrades with larger contexts, limiting their applicability in scenarios demanding high
throughput and low latency, such as web-scale discovery. Therefore, developing novel model archi-
tectures that optimize memory usage and inference latency is crucial for enhancing the practicality
of contextual learning in these applications.

Optimizing inference latency for LLMs with extensive context is an active area of research, with
approaches ranging from modifying the attention mechanism’s complexity (Beltagy et al.| 2020) to
sparsifying attention and context (Child et al.,[2019;|Xiao et al.,| 2024} Jiang et al.,[2024)), and altering
context feeding strategies (Yen et al., [2024). However, most existing methods target generic LLM
tasks with long context and are largely orthogonal to our work. This paper focuses on RAG-based
applications, such as web-scale search, with the goal of improving inference latency, specifically, the
TTFT. We argue that specialized techniques exploiting the unique structure and sparsity inherent in
RAG contexts can substantially reduce memory and computational overhead. Treating RAG TTFT
as a generic LLM inference problem overlooks several key aspects: 1) Inefficient Token Allocation.
RAG contexts often contain sparse information, with many retrieved passages being uninformative
and reused across multiple inferences. Allocating memory/computation for all the tokens, as we
show in this paper, is unnecessarily wasteful. 2) Wasteful Encoding and Other Information. The
retrieval process in RAG has already pre-processed the chunks of the contexts, and their encodings
and other correlations with the query are already available due to the use of vectorizations and re-
rankings. This information is discarded during decoding. 3) Unusually Structured and Sparse
Attention. Due to diversity and other operations such as deduplication, most context chunks during
decoding are unrelated, resulting in predominantly zero cross-attention between chunks (see Fig.[7).

1.1 Our Contributions

We propose REFRAG (REpresentation For RAG), a novel mechanism for efficient decoding of
contexts in RAG. REFRAG significantly reduces latency, TTFT, and memory usage during de-
coding, all without requiring modifications to the LLM architecture or introducing new decoder
parameters.

REFRAG makes several novel modifications to the decoding process: Instead of using tokens from
retrieved passages as input, REFRAG leverages pre-computed, compressed chunk embeddings as
approximate representations, feeding these embeddings directly into the decoder. This approach
offers three main advantages: 1) It shortens the decoder’s input length, improving token allocation
efficiency; 2) It enables reuse of pre-computed chunk embeddings from retrieval, eliminating redun-
dant computation; and 3) It reduces attention computation complexity, which now scales quadrat-
ically with the number of chunks rather than the number of tokens in the context. Unlike prior
methods (Yen et al.,|2024), REFRAG supports compression of token chunks at arbitrary positions
(see Fig.[1) while preserving the autoregressive nature of the decoder, thereby supporting multi-turn
and agentic applications. This “compress anywhere” capability is further enhanced by a lightweight
reinforcement learning (RL) policy that selectively determines when full chunk token input is neces-
sary and when low-cost, approximate chunk embeddings suffice . As a result, REFRAG minimizes
reliance on computationally intensive token embeddings, condensing most chunks for the query in
RAG settings.

We provide rigorous experimental validations of the effectiveness of REFRAG in continual pre-
training and many real word long-context applications including RAG, multi-turn conversation with
RAG and long document summarization. Results show that we achieve 30.75x TTFT acceleration
without loss in perplexity which is 3.75x than previous method. Moreover, with extended context
due to our compression, REFRAG achieves better performance than LLaMA without incurring
higher latency in the downstream applications.

2 Model Architecture

We denote the decoder model as Mg, and the encoder model as Mey.. Given an input with 7'
tokens x1, 2, ...,x, we assume that the first ¢ tokens are main input tokens (e.g., questions) and

v Sequence | Decoder-only Foundation Model |
: : '
- poogoop . o dogd A A

f3le ;e
] Token Embedding E : | =) Light-weight RL-trained chunk expansion palicy |
Decoder Tokenizer & : : B Chunk
‘ Embedding { Precomputable i B 1] Embedding
: 1 1 1
| Encoder | Encoder Encoder |

L | Who is the President of USA? |

| | |
emares 0000 0000 0DOOD

Context Text

Donald Trump is He assumed office him the 47th
e EE L LR P > the President of on January 20, President of the
the United States. 2025, making United States.

Figure 1: The main design of REFRAG. The input context is chunked and processed by the light-
weight encoder to produce chunk embeddings, which are precomputable for efficient reuse. A light-
weight RL policy decide few chunks to expand. These chunk embeddings along with the token
embeddings of the question input are fed to the decoder.

the last s tokens are context tokens (e.g., retrieved passages in RAG). We have ¢ + s = T'. For
clarity, we focus on a single turn of question and retrieval in this section.

Model overview. Figure [I] shows the main architecture of REFRAG. This model consists of
a decoder-only foundation model (e.g., LLaMA (Touvron et al.l 2023)) and a lightweight en-
coder model (e.g., Roberta (Liu et all 2019)). When given a question z1,...,x, and context
Tgqy1,..., 27 and , the context is chunked into L := number of k-sized chunks {C1,...,Cr}
where C; = {Zqtkwis - - -, Tgthwitk—1). The encoder model then processes all the chunks to obtain
a chunk embedding for each chunk ¢; = Me,.(C;). This chunk embedding is then projected with
a projection layer ¢ to match the size of the token embedding of the decoder model, €™ = ¢(c;).
These projected chunk embeddings are then fed to the decoder model along with the token embed-
dings for the question to generate the answer y ~ Mgec({e1, ..., e, €™, ..., e™}) where e; is
the token embedding for token x;. In real applications (e.g., RAG), the context is the dominating
part of the input (i.e., s > ¢) and hence the overall input to the decoder will be reduced by a factor
of ~ k. This architectural design leads to significant reductions in both latency and memory usage,
primarily due to the shortened input sequence. Additionally, an RL policy is trained to do selective
compression to further improve the performance which we will defer the discussion to Section [2}
Next, we analyze the system performance gains achieved with a compression rate of k.

TTFT Acceleration TTIT Acceleration Throughput Acceleration
3.0
c 30 c c6
k) O 2s ke
- - -
020 C 20 C,
Q Q@ Q@
2 g g
Q Q O 2
< < 1.0 = P
0 Lo kY Sy Sy SRS
103 104 103 104 103 104
Input Tokens # Input Tokens # Input Tokens
—e— REFRAG (Cached) —-=— REFRAG (Not Cached) —+—- CEPE

Figure 2: Empirical verification of inference acceleration of REFRAG with k = 16.

Latency and throughput improvement. We evaluate three metrics: TTFT, the latency to generate
the first token; TTIT, the time to generate each subsequent token; and Throughput, the number of
tokens generated per unit time. Theoretical analysis (Section[B]) shows that for short context lengths,
our method achieves up to kx acceleration in TTFT and throughput. For longer context length,
acceleration reaches up to k?x for both metrics. Empirically, as shown in Fig. [2| with a context
length of 16384 (mid-to-long context), REFRAG with k£ = 16 achieves 16.53x TTFT acceleration

with cache and 8.59 x without cacheﬂ both surpassing CEPE (2.01 x and 1.04 X, respectively), while
achieving 9.3% performance (measured by log-perplexity) compared to CEPE (Table[I)). We achieve
up to 6.78x throughput acceleration compared to LLaMA, significantly outperforming CEPE. With
k = 32, TTFT acceleration reaches 32.99 x compared to LLaMA (3.75x compared to CEPE) while
maintaining similar performance to CEPE (see Fig. [§] and Table [2). More detailed discussion on
empirical evaluation is in Section [B]

3 Methodology

To align the encoder and decoder, we follow the work of |Yen et al.|(2024) to use the next paragraph
prediction tasks for continual pre-training (CPT). Specifically, for each data data point, it contains
s + o = T number of tokens, which we use for CPT to prepare the model for downstream tasks uti-
lizing chunk embeddings. To further enhance performance, we introduce selective compression via
RL. After aligning the encoder and decoder through CPT, we apply supervised fine-tuning (SFT) to
adapt the model to specific downstream tasks, such as RAG and multi-turn conversation. Additional
details are provided in Section[3]

During CPT, we input the first s tokens x1.s into the encoder and use its output to assist the decoder
in predicting the next o tokens zs11.54,. This task encourages the model to leverage contextual
information for next-paragraph prediction, thereby equipping it for downstream applications. The
objective is to align any encoder—decoder combination so that the generations produced with com-
pressed context closely resemble those generated by the original decoder with access to the full
context.

3.1 Continual Pre-training Recipe

To ensure the success of the CPT phase, we propose a training recipe that incorporates a reconstruc-
tion task and a curriculum learning approach. Ablation studies in Section 4] demonstrate that this
recipe is crucial for achieving strong CPT performance.

Reconstruction task. We input the first s tokens x., to the encoder and learn to reconstruct tokens
T1.s in the decoder. In this task, we freeze the decoder model and only train the encoder and
projection layer. The main objectives are to align the encoder and projection layer so that: 1) en-
coder can compress k tokens with minimal information loss, and 2) projection layer can effectively
map the encoder’s chunk embeddings into the decoder’s token space, allowing the decoder to in-
terpret and accurately reconstruct the original information. The reconstruction task was specifically
chosen to encourage the model to rely on context memory rather than its parametric memory during
training. Once the encoder is aligned with the decoder through this reconstruction task, we initiate
CPT by unfreezing the decoder.

Curriculum learning. The training tasks described in the previous section may seem straightfor-
ward, but they are inherently complex. As the chunk length k increases, the number of possible
token combinations expands exponentially, specifically at a rate of V¥, where V is the vocabulary
size. Effectively capturing this diversity within a fixed-length embedding presents a significant chal-
lenge. Additionally, reconstructing s = k x L tokens from L chunk embeddings further compounds
the difficulty of the task.

Counterintuitively, directly continuing pre-training of the decoder to utilize encoder outputs did
not reduce perplexity, even for the reconstruction task. To address the optimization challenge, we
propose employing curriculum learning for both tasks. Curriculum learning incrementally increases
task difficulty, enabling the model to gradually and effectively acquire complex skills. For the recon-
struction task, training begins with reconstructing a single chunk: the encoder receives one chunk
embedding c; for x1.; and and the decoder reconstructs the k£ tokens using the projected chunk
embedding ei“k. Subsequently, the model reconstructs x1.o5 from ei“k, e%“k, and so forth. To contin-
uously adjust task difficulty, we vary the data mixture over time, starting with examples dominated
by easier tasks (e.g., single chunk embedding) and gradually shifting towards those dominated by
more difficult tasks (i.e., L chunk embeddings). A visualization of the data mixture during curricu-
lum learning is provided in Fig.[6] and the detailed scheduling is presented in Table[§]

REFRAG without cache means that we recompute the chunk embedding for the context and take this
latency into account.

Selective compression REFRAG introduces selective token compression, expanding important
context chunks uncompressed to improve answer prediction. A RL policy, guided by next-paragraph
prediction perplexity as a negative reward, determines which chunks to retain in their original form.
The encoder and decoder are fine-tuned to handle mixed inputs of compressed and uncompressed
chunks. The policy network leverages chunk embeddings and masking to optimize sequential chunk
expansion, thereby preserving the decoder’s autoregressive property and enabling flexible placement
of compression. Further discussion on sequential selection is provided in Section

4 Experimental Results

Training datasets. We use the Slimpajama dataset (Soboleva et al., [2023)), an open source dataset
for LLM pre-training. This dataset contains data from Wikipedia, Arxiv, Books, StackExchange,
GitHub, Commoncrawl, C4. We only use the Book and ArXiv domains from the dataset since these
two domains contain long texts (Yen et al.,[2024). We sampled from this dataset to construct a 20B
token training dataset which contains 50% data from Arxiv and 50% data from Book.

Evaluation datasets. We report the performance on the Book and ArXiv domain from Slimpajama
which are hold out for evaluation only. To inspect the generalization of the model, we also report
results on the PG19 (Rae et al., 2019) and Proof-pile datasets (Azerbayev et al., [2023).

Baselines. All baseline models are based on LLaMA-2-7B (Touvron et al., 2023)), unless other-
wise specified, to ensure fair comparison with prior work (Yen et al.| [2024; Shi et al.,|2024). Each
data point contains 7' = 4096 tokens, split into s = 2048 context and o = 2048 output tokens.
We evaluate perplexity on x,41.54,. Below, we briefly describe the main baselines; further details
are provided in Section [C| LLAMA-NO CONTEXT: LLaMA-2-7B evaluated on x,41.54, With
only output tokens as input. LLAMA-FULL CONTEXT: LLaMA-2-7B evaluated on 41540
with the full sequence x1.7 as input. CEPE: Memory-efficient long-context model (Yen et al.,
2024) a previous SOTA model which share some similarity to REFRAG CEPED denotes its
instruction-tuned variant. LLAMA-32K: LLaMA-2-7B fine-tuned for 32K context length. RE-
PLUG: Retrieval-augmented LLaMA-2-7B (Shi et al.| 2024). REFRAG: Our approach (see Fig-
ure ; REFRAG, denotes compression rate k, REFRAGg uses RL-based selective compression.
LLAMA : LLaMA-2-7B evaluated on xs1.54, With the truncated sequence x_ k.7 as input to
match the token count of REFRAG.

Table E] reports performance for s = 2048 and o € {512,1024,2048}, where, e.g., P512 de-
notes 0 = 512. Bolded results compare baselines, excluding LLAMA-FULL CONTEXT and
LLAMA-32K, which use full context without compression and are expected to perform best. No-
tably, REFRAGg and REFRAG 4 consistently outperform other baselines across nearly all settings,
while also achieving lower latency than CEPE (Fig.[2). For reference, LLAMA 54 uses only the last
256 tokens, matching the number of chunk embeddings in REFRAGs (s/k = 256), yet REFRAGg
consistently surpasses LLAMA 56, demonstrating the effectiveness of compressed chunk embed-
dings.

Table 2| evaluates 0 = 2048 with extended context lengths s € {4096, 8192,16384}. Although
our model is trained on s + o = 6144, both REFRAGg and REFRAG4 maintain superior perfor-
mance at longer contexts. The original Llama-2-7B supports only a 4k context window, whereas our
approach enables extrapolation via chunk embeddings, extending context and supporting broader
applications.

With a compression rate of 16, we achieve a 9.3% average log-perplexity improvement over CEPE
across four datasetaﬂ Meanwhile, our method is 16.53x faster than LLaMA in TTFT and 2.01 X
faster than CEPE (Section [C.4). At a compression rate of 32, our log-perplexity matches CEPE,
while TTFT acceleration increases to 30.85x over LLaMA and 3.75x over CEPE.

Figure [3| presents the performance of various methods for selective compression. We expand p frac-
tion of the chunks in the original token space using the RL policy. The effective compression rate
Tﬁkp decreases when fewer chunks are compressed (i.e., p increases). We compare the perplexity
of z411.5+, using different selection policy under different p. The perplexity-based selection is an
heuristic based selection which compresses chunks with low perplexity (Perplexity-desc) or high
perplexity (Perplexity-asc). The perplexity is measured by the LLaMA-2-7B model. Intuitively, a

LLAMA-NoO CONTEXT—Log-perplexity to inspect

3
Percentage calculated as 573G Context—min (I LAMA-FULL CoNTEXT, LLAMA32K)

Arxiv Book PG19 ProofPile

14
o
N

> > 1.86 > >
2106 ‘i 5 195 *i 0.91
o @ 185 D 1gg B}
5 105 ot e 5 090
@ [Tl @ 193 @
1.04 0.89
oy e @ o
8’103 gl 8\192 g’o.as
- - 1.82 - -
1.02 1.91 0.87
4 8 16 4 8 16 4 8 16 4 8 16
Compression rate Compression rate Compression rate Compression rate
—e— RL Perplexity-desc —e — Perplexity-asc --e-- Random

Figure 3: Log-Perplexity on zs11.5+, under varying compression rates by selectively compress-
ing different percentages of chunks. We compare three selection methods: RL (trained policy),
Perplexity-desc (heuristic: lower perplexity), Perplexity-asc (heuristic: higher perplexity), and
Random (random selection).

chunk with lower perplexity contains less information and can therefore be compressed with min-
imal information loss. Ideally, this approach should outperform random selection, which is indeed
observed in Fig.[3] The RL-based selective compression policy consistently achieves superior per-
formance across varying compression rates p.

Table 1: Log-Perplexity on output tokens x4 1.5+, given context tokens x1.5 for different models.
We use s = 2048 and o € {512,1024, 2048} here. Bolding are based on comparing baselines
excluding LLAMA-FULL CONTEXT and LLAMA-32K since they are expected to be the best (ide-
ally). The lower the better ({.).

Arxiv Book PG19 ProofPile
P512 P1024 P2048 | P512 P1024 P2048 | P512 P1024 P2048 | P512 P1024 P2048 |
LLAMA-FuLL CONTEXT | 1.075 1.074 1.069 | 1.830 1.827 1.826 | 1.947 1.941 1.935 | 0.952 0.940 0.931
LLAMA-32K 1.086 1.084 1.076 | 1.887 1.883 1.880 | 1.988 1982 1975 | 0961 0.948 0.937
LLAMA-NO CONTEXT 1.526 1.371 1.254 | 2.101 1.995 1.927 | 2211 2.102 2.030 | 1437 1.256 1.127
LLAMA2s56 1.267 1.221 1.171 | 1.924 1.897 1.874 | 2.031 2.003 1.978 | 1.156 1.094 1.038
REPLUG 1.526 1.371 1.254 | 2.101 1.995 1.927 | 2211 2.102 2.030 | 1437 1.256 1.127
CEPE 1.196 1.148 1.107 | 1.946 1.896 1.864 | 2.057 2.002 1964 | 1.075 1.014 0.968
T REFRAGs | 1124 1091 1.062 | 1.905 '1.868 ~1.844 | 1.996 1.956 1.927 | 0.997 0952 0916
REFRAG 6 1.157 1114 1.076 | 1925 1.882 1.853 | 2.016 1971 1.938 | 1.034 0.976 0.931
REFRAG32 1.215 1.154 1103 | 1946 1.896 1.862 | 2.039 1987 1949 | 1.097 1.020 0.961

Table 2: Log-Perplexity on output tokens x41.5+0 given different length of context. We use s €
{4096,8192,16384} and o = 2048 here. Bolding are based on comparing baselines excluding
LLAMA-FULL CONTEXT and LLAMA-32K since they are expected to be the best (ideally). The
lower the better (|).

Context Length =4096 Context Length=8192 Context Length=16384
Arxiv Book PGI9 ProofPile | Arxiv Book PGI9 ProofPile | Arxiv Book PGI19 ProofPile |
LLAMA-FULL CONTEXT | 6.751 6.956 6.829 6.701 9.675 9.069 8.963 9.401 9.043 8913 8.848 8.989
LLAMA-32K 1.037 1.862 1.960 0.898 0965 1.867 1.947 0.834 0.865 1.840 1.943 0.770
LLAMA-NO CONTEXT 1253 1925 2.030 1.126 1226 1.949 2.032 1.110 1.174 1939 2.041 1.081
REPLUG 1253 1925 2.030 1.126 1226 1.949 2.032 1.110 1.174 1939 2.041 1.081
CEPE 1.085 1.856 1.959 0.945 1.032 1.878 1.958 0.904 0.960 1.864 1.966 0.863
T REFRAGs | 1.042 1.837 1922 0.894 | 0983 1.839 1922 0.858 | 0977 1.840 1939 ~ 0891
REFRAG ¢ 1.058 1.847 1.934 0.910 0994 1.845 1.932 0.871 0942 1.840 1.945 0.850
REFRAG32 1.088 1.857 1.946 0.944 1.032 1.860 1.945 0.912 0.969 1.852 1.955 0.880

4.1 Ablation Study

Curriculum learning is essential for effective training in the reconstruction task. The recon-
struction task, while intuitive, is particularly challenging when multiple chunks must be recon-
structed. Table [11] shows the performance of the reconstruction task with and without curriculum
learning (i.e., reconstruction of 1.5 from s/k chunk embedding directly). The results indicate that
curriculum learning is essential for the success of the reconstruction task.

Reconstruction task is essential for the model to learn the continual pre-training task. Table[12]
shows the performance of the continual pre-training task with and without initialization from the
reconstruction task. The results indicate that pre-training on the reconstruction task is important for
the success of continual pre-training.

Advantages of RL-based selective compression. Figure [3| under various compression rates,
achieved by varying the number of chunks to compress (i.e., adjusting p). Notably, a compression

5Pserformance vs. Retrieved Passages Performance vs. Latency Performance vs. Retrieved Passages Performance vs. Latency
54 54

AN e

0 10° 10* 10? 0 10° 10t 10?2 10° 0 10° 10! 10? 0 10° 10t 102 10°
Number of Passages Input Length (Latency) Number of Passages Input Length (Latency)

u
>
u
>

Performance
Performance
v
o
Performance
Performance

v
N

v
=3
v
=3

—&— Llama REFRAG 8 x compression —8— Llama REFRAG 8 x compression

Figure 4: RAG performance comparison under a strong retriever scenario (left) and a weak retriever
scenario and a strong retriever scenario (right). REFRAG perform similarly to LLaMA model under
the same retrieved passages (slightly better in a weaker retriever case) while outperform significantly
under the same latency.

rate of 8 can be obtained either by configuring REFRAG ¢ to compress the appropriate number
of chunks, or by employing REFRAGg with full compression, which is natively trained at a com-
pression rate of 8. This raises a natural question: does the former approach outperform the latter?
Table |13| demonstrates that REFRAG ¢ with RL-based selective compression consistently outper-
forms REFRAGg across different datasets and context lengths. This finding is particularly surpris-
ing, as REFRAG ¢ achieves a compression rate of 8 without recomputing chunk embeddings, yet
still surpasses the performance of REFRAGg. These results further highlight the effectiveness of
the RL-trained policy and underscore the practicality of dynamically adjusting the compression rate
without compromising performance.

REFRAG trained under different compression rates. Figure[I0]illustrates the training trajectory
of REFRAG under different compression rates in the continual pre-training task. We observe a
performance regression as the compression rate increases; however, even at a compression rate of
32, our model remains competitive (as shown in Table . In contrast, a compression rate of 64
appears to be overly aggressive, resulting in diminished performance. These findings suggest a
practical limit to the compression rate beyond which the model’s capability is significantly reduced.

Different combinations of encoder and decoder models for REFRAG. We employ LLaMA-2-
7B and LLaMA-2-13B as decoders, and RoOBERTa-Base and RoBERTa-Large as encoders, to inves-
tigate how model performance varies with different encoder and decoder sizes. Figure [IT] presents
results for various encoder-decoder combinations. We observe that increasing the number of param-
eters in the decoder leads to a substantial reduction in loss, whereas enlarging the encoder yields only
a modest improvement. This discrepancy may be attributed to the relatively minor increase in size
from RoBERTa-Base to RoOBERTa-Large compared to the substantial jump from 7B to 13B in the
decoder. Additional results in Fig. [I2]indicate that a larger encoder may not always be advantageous
when training with limited data in the continual pre-training setting. This observation aligns with
previous findings by [Li et al.|(2024), which demonstrate that larger encoders in multi-modal models
can negatively impact performance when data is scarce. To further validate our training approach on
other decoder models, we conduct experiments with LLaMA-3.1-8B and LLaMA-3.2-3B. Table @]
reports the performance of these models paired with RoOBERTa-Base and RoBERTa-Large encoders
on the Arxiv domain. Models trained with our recipe achieve performance comparable to the Full
Context setting (i.e., without context compression). Moreover, increasing the context length contin-
ues to benefit our model, as evidenced by lower perplexity for a context length of 4096 compared to
2048.

5 Contextual Learning Applications

In this section, we investigate fine-tuning the model obtained from the pre-training stage to address
various downstream tasks, including RAG, long document summarization, and multi-turn conver-
sation with RAG. For each application, we curate an instruction-tuning dataset to facilitate model
fine-tuning.

5.1 Retrieval Augmented Generation
Training dataset. We follow the work of [Lin et al.| (2024) and use a combination of question an-

swering datasets from 5 domains to fine-tune our model, which contains 1.1 million data points.
Dialogue: OpenAssistant Conversations Dataset. Open-Domain QA: CommonsenseQA, MathQA,
Web Questions, Wiki Question Answering, Yahoo! Answers QA, FreebaseQA, MS MARCO.
Reading Comprehension: Discrete Reasoning Over Paragraphs, PubMedQA, QuaRel, SQuADv2.

Chain-of-thought Reasoning: Algebra QA with Rationales, Explanations for CommonsenseQ,
Grade School Math 8K, MathQA, StrategyQA.

Evaluation dataset. We hold out 5% of the data for each dataset in the training dataset for evalu-
ation. Additionally, we use the datasets that are commonly used in RAG literature (Izacard et al.,
2023b; Lin et al., |2024)), including MMLU (Hendrycks et al., [2021), BoolQ (Clark et al., [2019),
SIQA (Sap et all 2019), PIQA (Bisk et al.l 2020), and Knowledge Intensive Language Tasks
(KILT) (Petroni et al., |2020) (including HellaSwag, Winogrande, TQA, FEVER, NQ). We evalu-
ate our performance on 2 settings: 1) Strong Retriever: In this setting we use a strong retriever and
retrieve the K-nearest neighbors to answer the question; 2) Weak Retriever: In this setting we re-
trieve 200 passages and pick random K passages to answer the question. The weak retriever setting
closely resembles real-world systems, as RAG retrieval systems often suffer from error accumula-
tion across subsystems. A table summarizing the evaluation metrics for each dataset is included in
Table[/| Retriever and retrieval corpus. We follow the work of |Lin et al.|(2024)) to use Wikipedia
dumps and CommonCrawl dumps to create a retrieval corpus with 400 million passages. Each
passage contains less than 200 words. We use the DRAGON+ model Lin et al|(2023) as our re-
triever and use the implementation of |Izacard et al.[(2023a)) to retrieve the K-nearest neighbors as
the retrieved passages for each question.

Result analysis. Table[3|shows the performance of different baselines under short and long contexts
(i.e., varying number of retrieved passagesﬂ (1/4# tokens) is inverse for the number of tokens in the
decoder model. This is used as a metric to gauge the latency of the model (the higher, the lower
latency). LLAM Apt is the original LLaMA-2-7B model that is fine-tuned on the same RAG dataset
used to train our model. We compare the performance under both the short context and the long
context scenarios. For the short context, we use 1 passage for LLAMAgr and use 8 passages for
all our models. The baseline of REFRAGg will have the same latency as the LLAMApr model.
However, due to the compression, we are able to have more context information and hence achieve
better performance. Surprisingly, REFRAG;s and REFRAGj3;2 both outperform the LLAMApy
model despite having 2x and 4x fewer tokens in the decoder (i.e., lower latency). The same result
occurs in long context scenarios. Our model has even higher performance gains in multi-choice
tasks. Table [I5] shows the performance of our model under different numbers of passages. The
result suggests that most tasks still benefit from more passages in our model. Figure f] shows the
performance averaged over all 16 tasks in Table[3|for both strong retriever and weak retriever setting.
The result demonstrates that under the same number of retrieved passages, we are able to match
the performance of LLaMA in the strong retriever setting and even outperform LLaMA under the
weak retriever setting. This is because our model enables larger context and hence enables extract
more useful information when the retrieved passages are less relevant. Under equivalent latency
constraints, REFRAG consistently outperform LLaMA on both settings as the saved context can be
reinvested to include additional information within the same latency budget.

Figure [compares the performance of REFRAG and the LLaMA model under two conditions: 1)
an equal number of retrieved passages, and 2) equal latency, for both strong and weak retriever
settings. With a strong retriever and a maximum of 10 passages, REFRAG matches LLaMA’s
performance while achieving a 5.26 X speedup in TTFT. At equal latency (8 passages for REFRAG
vs. 1 for LLaMA), REFRAG attains a 1.22% average improvement across 16 RAG tasks. With a
weak retriever setting, at 10 passages, REFRAG improves performance by 0.71% and accelerates
TTFT by 5.26 x compared to LLaMA. At equal latency (8 passages for REFRAG vs. [for LLaMA),
REFRAG achieves a 1.93% average gain over 16 RAG tasks.

5.2 Multi-Turn Conversation

We use three different knowledge-intensive multi-turn conversation datasets: TopiOCQA (Adlakha
et al., [2022), ORConvQA (Qu et al., [2020), and QReCC (Anantha et al.l [2021). For each con-
versation turn, we retrieve K passages using the same retriever and retrieval corpus as described
in Section[3.1]

Result analysis. Table [4] presents results across varying numbers of conversational turns and re-
trieved passages. Our model outperforms LLAMAFgt on two out of three datasets in the 5-passage
setting, and on all three datasets in the 10-passage setting. This improvement is attributable to
the limited 4k-token context window of LLAM Agr, which necessitates truncating portions of the

“Note that the implementation of our exact match is stricter than other works. We follow the work of [Lin
et al.| (2024) to use the stricter version and hence the reported numbers are lower in general.

Table 3: Comparison of model performance of different models with different number of retrieved
passages for RAG under the strong retriever scenario.

Generation NQ FEVER TQA WebQA FreebaseQA GSMSK StrategyQA BoolQ T \ (1/ # tokens)

Short context with the same latency

LLAMAGF + 1 passage 23.96 62.04 9.64 37.33 75.18 7.38 64.44 29.24 1x

REFRAGgs+ 8 passages 22.96 66.59 13.05 38.67 73.46 7.38 75.56 3.30 1x

REFRAG 6+ 8 passages 22.94 62.88 12.97 42.67 71.50 9.40 71.11 5.87 2%

REFRAG32+ 8 passages 22.11 64.24 12.57 41.33 71.74 12.75 73.33 1.99 4x
“Longeontext oo oo oo oo ToTToTmTTTTTTmmT T T

LLAMAGFr + 10 passages 26.08 65.44 9.68 40.00 76.17 6.71 68.89 30.00 1x

CEPED +80 passages 0.03 65.68 0.01 0.00 0.00 0.00 0.00 57.80

REPLUG +80 passages - - - - - - 64.44 -

LLAMA-32K +80 passages 1.24 0.14 0.52 10.67 9.83 0.00 0.00 0.03

REFRAGgs +80 passages 24.15 68.83 13.06 37.33 74.20 7.38 71.11 7.03 1x

REFRAG 6 +80 passages 23.30 66.01 12.65 38.67 7543 12.08 73.33 12.23 2x

REFRAG32 +80 passages 23.02 68.48 12.14 38.67 71.74 9.40 68.89 6.42 4x

Multi-Choice MMLU CommonsenseQA MathQA ECQA HellaSwag SIQA PIQA Winogrande 1

Short context with the same latency

LLAMAFt + 1 context 50.23 85.05 99.50 84.77 41.80 68.12 67.36 55.64 1x

REFRAGs + 8 passages 50.29 92.27 99.66 94.70 45.23 68.94 71.38 57.70 1x

REFRAG ¢ + 8 passages 49.84 89.18 99.66 98.01 39.33 68.42 70.29 56.67 2x

REFRAGs3; + 8 passages 49.51 91.75 99.50 97.35 42.86 68.17 68.34 56.75 4x
“Longcontext oo

LLAMAGFr + 10 passages 48.66 82.99 68.46 84.11 41.77 67.45 68.01 5391 1x

CEPED +80 passages 26.26 26.29 23.66 24.50 24.95 32.86 48.53 44.51

REPLUG +80 passages - 78.35 - 76.16 - 65.51 - -

LLAMA-32K +80 passages ~ 22.21 16.49 19.80 16.56 23.76 24.16 34.17 48.86

REFRAGs +80 passages 50.42 92.27 99.66 97.35 44.61 68.22 69.37 57.54 1x

REFRAG 6 +80 passages 50.88 89.69 99.66 96.69 38.50 68.47 70.89 56.99 2x

REFRAG32 +80 passages 49.77 90.72 99.50 98.01 43.37 68.47 69.04 56.99 4x

- means the corresponding model has out-of-memory error.

conversational history in longer contexts, resulting in the loss of crucial information required to an-
swer subsequent questions. In contrast, our model, trained on the same LLAMA model without
extending its effective positional encoding, maintains robust performance even with a large num-
ber of passages, owing to the benefits of our compression approach. Table [5 further reports the
performance of different models under varying numbers of passages, with our model consistently
achieving superior results on two out of three datasets for the reasons outlined above.

Table 4: Performance on multi-turn RAG tasks for # Passages = 5 and # Passages = 10.

Turns (>) ORConvQA QReCC TopiOCQA 1 #Turns (>) ORConvQA QReCC TopiOCQA 1
Passages = 5 # Passages = 10
LLAMAGFr 2 20.73 18.72 26.98 LLAMAGFT 2 16.52 17.31 23.02
REFRAGs 2 21.17 17.73 28.04 REFRAGs 2 21.15 17.92 27.97
REFRAGs 2 20.19 17.30 27.89 REFRAGs 2 20.79 17.37 28.45
REFRAG3; 2 19.70 17.35 28.67 REFRAG3, 2 19.67 17.16 28.31
LLAMAGFr 4 20.33 16.42 23.50 LLAMAGFr 4 16.90 14.69 20.23
REFRAGs 4 22.78 15.61 26.93 REFRAGs 4 22.63 15.68 25.95
REFRAGs 4 21.94 15.27 27.03 REFRAGis 4 21.84 15.21 26.12
REFRAG3; 4 21.68 15.45 26.45 REFRAGs3> 4 21.75 15.33 25.77
LLAMAGFr 6 20.76 11.92 23.10 LLAMAGET 6 14.44 10.72 19.52
REFRAGs 6 23.11 10.88 25.37 REFRAGs 6 20.59 11.00 25.16
REFRAGis 6 21.69 10.75 26.17 REFRAGis 6 21.05 10.50 24.96
REFRAG32 6 21.19 10.69 25.51 REFRAGs3> 6 21.67 10.79 25.23

Table 5: Performance on multi-turn RAG tasks with different number of passages.

REFRAG LLAMAGFr
#Passages ORConvQA QReCC TopiOCQA 1 | ORConvQA QReCC TopiOCQA 1
0 19.27 15.32 28.19 19.16 15.49 28.22
5 20.18 17.37 28.24 19.65 18.71 27.08
8 20.52 17.60 28.17 16.87 18.05 25.36
10 19.67 17.41 27.62 15.72 17.42 23.60

6 Conclusion

In this work, we introduced REFRAG, a novel and efficient decoding framework tailored for RAG
applications. By leveraging the inherent sparsity and block-diagonal attention patterns present in
RAG contexts, REFRAG compresses, senses, and expands context representations to significantly
reduce both memory usage and inference latency, particularly the TTFT. Extensive experiments
across a range of long-context applications, including RAG, multi-turn conversations, and long doc-
ument summarization, demonstrate that REFR AG achieves up to 30.85x TTFT acceleration (3.75x
over previous state-of-the-art methods) without any loss in perplexity or downstream accuracy. Our
results highlight the importance of specialized treatment for RAG-based systems and open new di-
rections for efficient large-context LLM inference. We believe that REFRAG provides a practical
and scalable solution for deploying LL.Ms in latency-sensitive, knowledge-intensive applications.

References

Vaibhav Adlakha, Shehzaad Dhuliawala, Kaheer Suleman, Harm de Vries, and Siva Reddy. Topi-
OCQA: Open-domain conversational question answering with topic switching. Transactions of
the Association for Computational Linguistics, 10:468-483, 04 2022. ISSN 2307-387X. doi:
10.1162/tacl_.a_00471. URL https://doi.org/10.1162/tacl_a_00471.

Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu, Shayne Longpre, Stephen Pulman, and Srini-
vas Chappidi. Open-domain question answering goes conversational via question rewriting. Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 2021.

Zhangir Azerbayev, Edward Ayers, and Bartosz Piotrowski. Proofpile: A pre-training dataset
of mathematical texts. https://huggingface.co/datasets/hoskinson—center/
proof-pile, 2023. Dataset available on Hugging Face. The dataset is 13GB and contains 8.3
billion tokens of informal and formal mathematics from diverse sources including arXiv.math, for-
mal math libraries (Lean, Isabelle, Coq, HOL Light, Metamath, Mizar), Math Stack Exchange,
Wikipedia math articles, and more.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In Workshop track of the International Conference on
Learning Representations (ICLR), 2017.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark,
Diego De Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang,
Loren Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irv-
ing, Oriol Vinyals, Simon Osindero, Karen Simonyan, Jack Rae, Erich Elsen, and Laurent
Sifre. Improving language models by retrieving from trillions of tokens. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 2206-2240. PMLR, 17-23 Jul 2022. URL |https:
//proceedings.mlr.press/v162/borgeaud22a.html.

Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
to compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 3829-3846,
Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
emnlp-main.232. URL https://aclanthology.org/2023.emnlp-main.232.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J Colwell, and Adrian Weller. Rethinking attention with per-
formers. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ua6zuk OWRH.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long

10

https://doi.org/10.1162/tacl_a_00471
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://huggingface.co/datasets/hoskinson-center/proof-pile
https://proceedings.mlr.press/v162/borgeaud22a.html
https://proceedings.mlr.press/v162/borgeaud22a.html
https://aclanthology.org/2023.emnlp-main.232
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH

documents. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings of the 2018 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 2 (Short Papers), pp. 615-621, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-2097. URL
https://aclanthology.org/N18-2097/.

Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems
(NeurIPS) 30, pp. 6348-6358, 2017.

Yuhong Dai, Jianxun Lian, Yitian Huang, Wei Zhang, Mingyang Zhou, Mingqi Wu, Xing Xie,
and Hao Liao. Pretraining context compressor for large language models with embedding-based
memory. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 28715-28732, Vienna, Austria, July 2025. Association for Com-
putational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1394. URL
https://aclanthology.org/2025.acl-1long.1394/.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929-3938.
PMLR, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In Proc. ICLR, 2021.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceed-
ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
guistics: Main Volume, pp. 874-880, Online, April 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.eacl-main.74. URL https://aclanthology.org/2021.
eacl-main.74/.

Gautier Izacard, Mostafa Dehghani, Sina Hosseini, Holger Schwenk, Fabio Petroni, and Sebas-
tian Riedel. Few-shot learning with retrieval augmented language models. arXiv preprint
arXiv:2208.03299,2022. URL https://arxiv.org/abs/2208.03299.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Edouard Grave, and Sebastian Riedel. Atlas: Few-shot learning
with retrieval augmented language models. J. Mach. Learn. Res., 24:37:1-37:37, 2023a.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):
1-43, 2023b.

Huiqgiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua: Compressing
prompts for accelerated inference of large language models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 13358-13376, Singapore, De-
cember 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
825. URL https://aclanthology.org/2023.emnlp-main.825/.

Huiqgiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
compression. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Bangkok, Thailand, August 2024. Association for Compu-
tational Linguistics.

Yuri Kuratov, Mikhail Arkhipov, Aydar Bulatov, and Mikhail Burtsev. Cramming 1568 tokens into a
single vector and back again: Exploring the limits of embedding space capacity. In Wanxiang Che,
Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 19323-19339, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN
979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.948. URL https://aclanthology.
org/2025.acl-1ong.948/.

11

https://aclanthology.org/N18-2097/
https://aclanthology.org/2025.acl-long.1394/
https://aclanthology.org/2021.eacl-main.74/
https://aclanthology.org/2021.eacl-main.74/
https://arxiv.org/abs/2208.03299
https://aclanthology.org/2023.emnlp-main.825/
https://aclanthology.org/2025.acl-long.948/
https://aclanthology.org/2025.acl-long.948/

Bozhou Li, Hao Liang, Zimo Meng, and Wentao Zhang. Are bigger encoders always better in vision
large models? arXiv preprint arXiv:2408.00620, August 2024. Preprint.

Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance inference
efficiency of large language models. In Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 6342—6353, Singapore, December 2023. Association for
Computational Linguistics. URL https://aclanthology.org/2023.emnlp-main.
391 .pdf.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz, Jimmy Lin, Yashar Mehdad, Wen tau Yih,
and Xilun Chen. How to train your dragon: Diverse augmentation towards generalizable dense
retrieval. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
URL https://openreview.net/forum?1d=d00kbjbYv2.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Richard James, Pedro
Rodriguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis, Luke Zettlemoyer, and Wen tau Yih.
RA-DIT: Retrieval-augmented dual instruction tuning. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
220Tbutug9l

Barys Liskavets, Maxim Ushakov, Shuvendu Roy, Mark Klibanov, Ali Etemad, and Shane Luke.
Prompt compression with context-aware sentence encoding for fast and improved llm inference.
arXiv preprint arXiv:2409.01227, 2024. URL https://arxiv.org/abs/2409.01227.
Accepted at AAAI 2025.

Jingyu Liu, Beidi Chen, and Ce Zhang. Speculative prefill: Turbocharging TTFT with lightweight
and training-free token importance estimation. In Forty-second International Conference on Ma-
chine Learning, 2025. URL https://openreview.net/forum?id=bzbuZ0ItBq.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, et al. Kilt: a benchmark for knowl-
edge intensive language tasks. arXiv preprint arXiv:2009.02252, 2020.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce Croft, and Mohit Iyyer. Open-Retrieval
Conversational Question Answering. In SIGIR, 2020.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe Hillier, and Timothy P. Lilli-
crap. Compressive transformers for long-range sequence modelling. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
Sy1KikSYDH.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle
Ott, Eric Michael Smith, Y-Lan Boureau, and Jason Weston. Recipes for building an open-
domain chatbot. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, pp. 300-325, Online, April 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.eacl-main.24. URL https://aclanthology.org/2021.eacl-main.
24/

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Common-
sense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun

12

https://aclanthology.org/2023.emnlp-main.391.pdf
https://aclanthology.org/2023.emnlp-main.391.pdf
https://openreview.net/forum?id=d00kbjbYv2
https://openreview.net/forum?id=22OTbutug9
https://openreview.net/forum?id=22OTbutug9
https://arxiv.org/abs/2409.01227
https://openreview.net/forum?id=bzbuZ0ItBq
https://arxiv.org/abs/1911.05507
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://aclanthology.org/2021.eacl-main.24/
https://aclanthology.org/2021.eacl-main.24/

Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 4463-4473, Hong Kong, China, November 2019. Association for Computational
Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. REPLUG: Retrieval-augmented black-box language models.
In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp. 8371-8384, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.463. URL
https://aclanthology.org/2024.naacl-1ong.463/.

Xiaoxiang Shi, Colin Cai, and Junjia Du. Proactive intra-gpu disaggregation of prefill and decode
in llm serving, 2025. URL https://arxiv.org/abs/2507.06608.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-

tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama—-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
June 2023. URL |https://huggingface.co/datasets/cerebras/
SlimPajama-627B.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
encoding. In Association for Computational Linguistics (ACL), 2024.

Davis Yoshida, Allyson Ettinger, and Kevin Gimpel. Adding recurrence to pretrained transformers,
2021. URL https://openreview.net/forum?id=taQNxF9Sj6.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao,
Jingjing Liu, and Bill Dolan. DIALOGPT : Large-scale generative pre-training for conversational
response generation. In Asli Celikyilmaz and Tsung-Hsien Wen (eds.), Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp.
270-278, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
acldemos.30. URL|https://aclanthology.org/2020.acldemos.30/.

13

https://aclanthology.org/2024.naacl-long.463/
https://arxiv.org/abs/2507.06608
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=taQNxF9Sj6
https://aclanthology.org/2020.acl‑demos.30/

A Related Works

Retrieval-Augmented Language Modeling. Recent research has extensively investigated novel
model architectures to improve retrieval-augmented generation. |Guu et al.| (2020) introduced pre-
training for retrieval-augmented masked language models. Building on this, Borgeaud et al.| (2022)
proposed a new architecture and pre-training paradigm for generative LLMs, leveraging cross-
attention and end-to-end pre-training with retrieval from a trillion-token data store, achieving strong
performance. Subsequent work by |Shi et al.| (2024) and |Lin et al.| (2024)) focused on fine-tuning
existing LLMs by prepending retrieved passages to prompts and employing ensemble methods for
response generation. Additionally, [zacard & Grave| (2021) introduced fusion-in-decoder, which
uses an encoder to process each passage in parallel and concatenates the hidden states for genera-
tion via a decoder. This approach accelerates attention computation by removing cross-document
attention, but does not apply compression in the decoder, which could further reduce latency.

Efficient Long-Context LLMs. Recent research has investigated various strategies to reduce
memory usage and accelerate latency in long-context generation for LLMs. [Choromanski et al.
(2021) introduced compressed attention, reducing attention complexity from quadratic to linear;
however, this method does not address memory requirements. It is complementary to our approach
and can be integrated to further improve latency. StreamingL. L M(Xiao et al., 2024) proposed atten-
tion sinks to decrease KV cache memory for long-context generation, though this does not reduce
latency during the pre-filling stage. CEPE (Yen et al.,[2024) employs cross-attention to token embed-
dings from context tokens, reducing both KV cache memory and attention computations. However,
CEPE is limited to prefix context applications, as it disrupts the causal structure of the context,
making it unsuitable for tasks such as multi-turn RAG or summarization. Additionally, CEPE does
not utilize token compression, resulting in similar or even increased decoding latency. Concur-
rently with our work, |Dai et al.| (2025) proposed PCC, an embedding-based memory mechanism
that summarizes past context into compact vectors, enabling retrieval of salient information during
subsequent processing. Like CEPE, PCC is limited to prefix context applications and does not sup-
port arbitrary folding or expansion of contexts at any position. Interestingly, Kuratov et al.| (2025)
investigated the capacity of LLMs to encode long contexts into a single embedding, demonstrating
minimal information loss for sequences up to 1500 tokens. Their work examines the extent to which
information can be compressed into a single embedding, offering a complementary perspective to
REFRAG, which is designed for decoding from multiple compact embeddings within the standard
decoder architecture.

Compressive transformer. Rae et al.|(2020) first introduced the compressive transformer, which
compresses the KV cache to reduce memory requirements for long-context applications. However,
this approach only decreases KV cache memory usage, does not improve time-to-first-token latency,
and requires training the model from scratch. [Yoshida et al.|(2021) extended this idea by employing
recursive context compression, generating a summary hidden state for each chunk to inform the
next chunk’s computation. The recursive nature, however, prevents pre-computation and reuse of
chunk embeddings, and does not reduce decoding latency. (Chevalier et al.|(2023)) proposed recursive
compression for documents, using compressed embeddings for prediction, similar to our method.
However, their sequential compression process results in high latency when the summary vector is
not cached, and their approach only supports applications where the summary token is restricted to
the prefix of the language model (e.g., RAG), limiting applicability. In contrast, our work is the
first to enable pre-computation of chunk embeddings and their use at arbitrary positions within the
prompt, supporting diverse applications such as RAG and multi-turn conversation. Furthermore, our
method learns where to apply compression, allowing for adaptive compression rates at inference
time without recomputing chunk embeddings.

Prompt compression. Prompt compression seeks to reduce input token length to lower la-
tency and cost while maintaining task performance. A prominent approach is LLMLingua(Jiang
et al.l 2023)),which employs coarse-to-fine, budget-controlled compression with token-level itera-
tive refinement, achieving high compression ratios with minimal performance loss. LongLLMLin-
gua (Jiang et al.l 2024) extends this method to long-context scenarios, demonstrating significant
cost and end-to-end speed improvements. Complementary approaches rank or prune context by es-
timated informativeness, e.g., Selective Context uses self-information to drop low-value tokens, and
sentence-level methods learn context-aware encoders for question-specific compression and faster

14

inference [Li et al.|(2023)); Liskavets et al.|(2024). These approaches are complementary to our work
and can be integrated to further reduce the latency of REFRAG.

B Additional Discussion

Analysis on latency and throughput improvement. We denote the following parameters: s as
the context length, o as the output length, b as the batch size, d as the dimensionality of the hidden
states, [as the number of layers in the decoder, and n as the number of model parameters. The flop
rate of the GPU is f, and the high bandwidth memory of the GPU is m and we use the compression
rate of k in our encoder. We assume that all our chunk embeddings are precomputed and cached.
The model is loaded with bfloat16 precision. We focus our analysis on LLaMA-2-7B model. The
results should be generalizable to other models. We use the following metrics: TTFT which is the
latency for the system to generate the first token; TTIT which is the time that it takes to generate
iterative token after the first token; Throughput which is the number of tokens that are generated
from the system in a unit time. Table[6]shows that with short context length s we are able to achieve
kx acceleration in TTFT and up to k£ x acceleration in throughput. With longer context length s, we
are able to achieve up to k% x acceleration in both TTFT and throughput. The details on the latency
and throughput calculation are in Section[C.4]

Empirical verification of latency/throughput improvement. Figure 2]shows the empirical mea-
surement of the acceleration of REFRAG compared with CEPE, a previous work that achieves
significant acceleration in inference (Yen et al.,[2024)). Under the context length of 16384 (i.e., mid-
to-long context), REFRAG achieves 16.53x acceleration in TTFT with cache and 8.59 x without
cache. Both higher than CEPE (i.e., 2.01 x and 1.04 x acceleration respectively) while having better
model performance (see Table[I). With longer context, we are able to achieve up to 32.99x accel-
eration in TTFT. The reason why we get such acceleration even without cache is that the encoder
is light-weight (e.g., Roberta-large is 355M-sized) and the chunks are processed parallel without
attending to each other. In terms of TTIT, we achieve 3x acceleration in long context scenario in
both cached and not cached scenarios. This is expected since they have the same number of KV
caches to attend to. However, CEPE is worse than original LLaMA in TTIT since it require the ad-
ditional computation of KV cache projection in the inference time. Overall we achieve upto 6.78 %
and 6.06x acceleration in throughput much higher than CEPE in the long context scenario.

Acceleration/Save Short s Long s
KV cache memory Retlho 1~ kx kx
TTFT b Gdetel) kx k2x
rrin e VR
Throughput bttt U e e

Table 6: The acceleration in latency/save in memory of REFRAG compared to the original LLaMA
model.

B.1 Modeling REFRAG Selective Compression

In this section, we introduce selective token compression, based on the hypothesis that different
context segments contribute unequally to answer prediction. Less critical segments are compressed,
while essential ones remain intact, as illustrated in Fig.[5] We employ RL to train a policy that
optimally determines which segments to compress.

To enable selective compression, we continue pretraining the encoder and decoder to process a
combination of token and chunk embeddings. Given a context of s tokens x1,...,xs, chunked
into L fixed-length chunks C',...,C}, we achieve a compression fraction of 1 — p by randomly
selecting 7" := pL chunks to remain uncompressed for the decoder. This pretraining allows the
model to effectively handle mixed inputs at arbitrary positions, which is essential for the subsequent
RL policy learning.

We sequentially pick 7" chunk indices | = {lj}jll, where [, € [L]. The input arrange-
ment is E(x, {lj}]ll) = {Ey,...,EL}, with E; = e if i ¢ {lj}jll (compressed), and

15

E; = {€kuiy- - €huitk—1} if 1 € {lj}]ll (uncompressed). This arrangement is input to the de-
coder M e to predict z511.54,. The decoder’s auto-regressive property is maintained, and compres-
sion can be applied at any position within the input, not just at the beginning. Within our selective
compression framework, the objective is to choose 7" chunks from L total chunks to maximize
a specified reward. Formally, this can be expressed as the following combinatorial optimization
problem:
Given [L]:=1{1,2,...,L},
ey !
st. |I|=T

This problem is non-differentiable due to its discrete nature, and exact solutions are NP-hard. Con-
sequently, prior work has proposed greedy approaches that incrementally construct solutions by
modeling the task as a sequential decision-making problem (Dai et al., 2017; Bello et al., [2017).
These studies show that such greedy formulations enable the use of RL to achieve near-optimal solu-
tions and generalize well across diverse settings. Motivated by these findings, we adopt a sequential
formulation for selective compression and employ RL to train an effective policy (see Section 2)).

We learn a policy network 7y that takes chunk embeddings {c;}~ ; and sequentially selects 7"
chunk indices Iy, ..., 7/, where l; € [L]. At stage t, the policy samples from:

exp(s; — n;)

7 .
Zj:l exp(s; — n;)

mo(le = ila, {I;}2)) = mo(l = il{c; Yoy, {1;}521) =

where n; = oo iff j € {l;}!Z] and 0 otherwise®

s = 99({Ci}ie[L],i¢{lj}§;i) is the output of a two-
layer transformer network over chunk embeddings, producing logit s; for each chunk. In practice,
we reuse chunk embeddings {c; }~_, as transformer input and do not recompute logits s; after each

selection, as state changes have minimal impact and this improves training speed.

We use GRPO (Shao et al.,2024) style baseline to use grouped reward as baseline to reduce variance
and to minimize contamination across different segment prediction task. Specifically, for each x
we randomly select G' number of length 7" action sequences {I()}$% | . We have the following
objective:

_ 1% Lt e e 0D) (el (YD) (@)
Jo=GLin B eep@o. 2 min Lg (@ qyen At P o amyy L me e J A
Oy ~mo (L)) o 7 o Y
)

where € is the clipping hyperparameter in PPO (Schulman et al., [2017) for stable training, € is the
current policy and 64 is the policy fro the previous iteration, A; is the advantage function. We
define our advantage function using the negative log-perplexity on the o tokens Xsy1:540:

ro=r (2 1Y) = ~ M (Tarriasol B, (10YE))

We compute the advantage function following GRPO as:
r; — mean ({r;}{,)
std ({ri}Z2,)

AP =

C Additional Details on Experimental Settings

C.1 Additional Details on Baselines

All baseline models are based on the LLaMA-2-7B model (Touvron et al.l [2023)), unless otherwise
specified, to ensure a fair comparison since the previous methods are trained based on this modelf_’]

SWe adopt the masking mechanism from Pointer Networks (Bello et al.l 2017) to constrain the action space.

SUnless specified, we use the pre-trained checkpoint. The reason of choosing this model is that existing
baselines (Yen et al.} 2024; |Shi et al., [2024) adapts LLaMA-2-7B. If we use other base model, we will have to
retrain their model for fair comparison. We show the effectiveness of our training recipe in Table [E

16

Reward = - Log(Perplexity)
Sequence 4 \

1000000 ~0000 -4 A

Ie

Token Embedding : :
| Token Embecing i © RL-trained ¢hunk expansion policy |
Decoder Tokenizer & : 1 n 1 N]
Embedding -
@ I I Chunk I
Precomputable Embedding
I Who is the President of USA? l 1 1 t
Decoder Input Text Context Text Answer

Figure 5: A demonstration of selective token compression. For all chunks, by default, we compress
them to a single token, while for crucial chunks, we expand them.

We do provide results on other encoder-decoder combinations in our ablation experiments (see Sec-
tion . Each data point contains 7' = 4096 tokens, where the first s = 2048 tokens are referred to
as the context tokens, and the remaining o = 2048 tokens are the output tokens, such that s+o0 =T
We evaluate the perplexity on x4 1.5+, in this section.

LLAMA-NO CONTEXT: The original pre-trained LLaMA model evaluated directly on Zs11.540
with only 44 1.54, as input.

LLAMA-FULL CONTEXT: Similar to the LLAMA-NO CONTEXT, we evaluate the perplexity on
Ts41:5+0; however, we also input the whole sequence to the model, including the context tokens, i.e.,
z1.7. Therefore, the perplexity of this model is expected to be lower than LLAMA-NO CONTEXT.
The perplexity of this model serves as a reference, showing the upper bound of the performance of
our model.

LLAMA : Similar to the LLAMA-FULL CONTEXT, we pass last K tokens x5, .s in addition
t0 Tsy1.5+0 tO compute perplexity in Tgi1.54,- The performance of LLAMA falls between
LLAMA-NO CONTEXT and LLAMA-FULL CONTEXT, making it a strong baseline for comparison
with REFRAG when the number of context tokens is matched.

CEPE: A memory-efficient long-context model modified from the LLaMA model (Yen et al.
2024)). The model architecture is similar to TS. We feed x ., into their encoder model and evaluate
the perplexity on the output tokens zs1.5+,. CEPED refers to its instruction fine-tuned variant.

LLAMA-32K: A fine-tuned version of the original LLaMA-2 7B model that extends the context
length from the original 4K to 32K.

REPLUG: A retrieval-augmented language modeling framework that uses different retrieved con-
texts to perform ensemble generation. We use REPLUG to refer to applying this framework on the
LLaMA pre-trained model, REPLUGy, to refer to applying this framework on the LLaMA chat
model (i.e., instruction fine-tuned), and REPLUGgr to refer to applying it on the LLaMA model
fine-tuned on the downstream tasks (see Section[5).

REFRAG: Our approach is illustrated in Fig. [l We use RoBERTa-large (Liu et al [2019) as the
encoder, feeding x.; tokens and evaluating the perplexity on the output tokens x441.54,. We use
REFRAG¢, to denote our model with compression rate of k. We use REFRAGg(to refer to the
model with selective compression using our RL policy.

C.2 Additional Details on Hyperparameters and Experimental Settings for CPT

Hyperparameters. For reconstruction stage, we use a peak learning rate of 2e — 4 since we only
train the encoder model. For the next paragraph prediction we use a peak learning rate of 5e —5 since
we train all the parameters in the model, including the decoder parameters. For all the instruction-
tuning tasks, we use the peak learning rate of 2e — 5. We use a 4% linear warm-up stage for learning
rate, AdamW optimizer (Loshchilov & Hutter| |2019), cosine learning rate scheduler and a batch
size of 256 for all the experiments. For the projection layer, we use a 2-layer multi-layer perception

17

(MLP) with an hidden size that is equivalent to the output size (i.e., 4096 for LLaMA-2-7B). For
both tasks we train our model for 4 epochs on the dataset using the curriculum learning schedule

(see Fig.[6).

Computational Resources. We train all our models in Bfloat16 precision. We adopt Fully
Sharded Data Parallel (FSDP) for all the experiments and train our model on 8 nodes with 8 H100
cards on each node.

Evaluation metrics in RAG. Table[7] provides a summarization of the evaluation metrics we use
for each dataset in RAG experiments.

Experimental setting for fine-tuning model to take a combination of token and chunk embed-
ding as input. We continue the model training from the continual pre-training checkpoint. To
fine-tune the model, we set p = 0.1 (i.e., compression 90% of the chunks) and randomly select pL
chunks to keep their original token in the decoder. The input arrangement is the same as what we
describe in Section 2l

Dataset Metric
OpenAssistant Conversations F1
CommonsenseQA Accuracy
MathQA Accuracy
Web Questions Exact Match
WikiQA F1

Yahoo! Answers QA Fl1
FreebaseQA Exact Match
MS MARCO Fl1
PubMedQA Exact Match
QuaRel Accuracy
GSMSK Exact Match
StrategyQA Exact Match
MMLU Accuracy
BoolQ Exact Match
SIQA Accuracy
PIQA Accuracy
HellaSwag Accuracy
Winogrande Accuracy
TriviaQA Exact Match
FEVER Exact Match
NQ Exact Match

Table 7: Metrics used for each dataset in RAG experiments in Table

C.3 Curriculum learning data mixture

100 Context

1xk
2xk
4 xk
8 xk
16 x k
32xk
64 x k
128 x k
256 x k

50

Percentage
i

0
Stage 1 Stage 3 Stage5 Stage7 Stage9
Training Stage

Figure 6: The data mixture in curriculum learning during the training.

18

Factor | Stage 1 | Stage2 | Stage 3 | Stage 4 | Stage 5 | Stage 6 | Stage 7 | Stage 8 | Stage 9 | Summation
1x8 1333 445 148 49 16 6 2 1 0 2000
2x8 333 298 267 238 213 191 171 153 137 2000
4x8 83 102 126 156 193 238 293 362 447 2000
8% 8 20 35 61 106 185 324 565 985 1719 4000
16 x 8 5 11 23 48 103 220 468 997 2125 4000
32 %8 1 3 7 19 50 133 353 939 2496 4000
64 x 8 1 3 9 25 73 212 618 1802 5259 8000
128 x 8 1 3 9 25 73 212 618 1802 5259 8000
256 x 8 1 3 9 25 73 212 618 1802 5259 8000
Table 8: The geometry curriculum learning scheduling. The whole training is split into 9 stages.

In each stage, we have a combination of different data (e.g., 1X8 means reconstructing 8 tokens,
2X8 means reconstructing 16 tokens). For each type of data, the number of samples in each stage
is determined by a geometric sequence which sums up to the total number of samples in the last
column. As training proceeds, the data mixture has more and more longer sequences.

Table [§] presents the number of data points used at each training stage of our model. We employ a
geometric sequence for each type of data point, based on the intuition that training should begin with
a greater proportion of easier examples and gradually introduce more challenging ones as training
progresses. The right-most column indicates the total number of data points for each type. We
allocate more data points to longer-context examples to encourage the model to focus on learning
more difficult tasks.

C.4 Detailed Calculation of Acceleration in Latency and Throughput of Our Model

In this section, we provide a detailed analysis of the TTFT and generation latency for the LLaMA-2
model. We denote the following parameters: s as the context length, o as the output length, b as
the batch size, d as the dimensionality of the hidden states, [as the number of layers in the decoder,
and n as the number of model parameters. The flop rate of the GPU is f, and the high bandwidth
memory of the GPU is m. The model is loaded with bfloat16 precision. We focus our analysis on
LLaMA-2-7B model. The results should be generalizable to other models.

TTFT: Computationally Bounded Analysis Existing work (Liu et al.| 2025) has shown that the
TTFT latency is primarily limited by computation. The primary computations in each layer of
LLaMA-2 involve attention calculations and feedforward layers. We follow the analysis in (Liu
et al., 2025) to calculate the TTFT. Note that each operation involves both a multiplication and an
addition, hence we multiply the flop count by 2.

¢ Attention Calculation:

- OKYV Projection: Transforms input from [b, s, d] to [d, 3d], requiring 6bsd? flops.

— Attention Score Calculation: QK™ operation from [b, h,s,d/h] x [b, h,d/h, s], re-
quiring 2bds? flops.

— Atrtention Output Calculation: Weighted average of the value hidden state, [b, h, s, s] X
[b, h, s, d/h], requiring 2bds? flops.

— Output Projection: [b, s,d] x [d, d], requiring 2bsd? flops.

The total flops for attention is 8bsd? + 4bds>.
* Feedforward Layer: In LLaMA-2-7B, the MLP layer first projects to 2.6875d with a

gated function and then back to d. Each projection requires 5.375bsd? flops. With three
such operations, the total is 16.125bsd2.

* Total Computation per Layer: Summing the above, each layer requires approximately
24bsd? + 4bds? flops.

For a sequence length s, number of layers [, and batch size b, the total computation for pre-fill is
(24d? +4ds)lbs. Given the flop rate f, the latency for pre-fill is dominated by computation, yielding

2
a final latency of M.

19

Generation analysis: Memory bounded Analysis For generation latency, existing work have
shown that the generation process is memory bounded (Shi et al., 2025) which requires transferring
KV cache and model parameter to high-bandwidth memory, we analyse the data transfer latency as
follows:

* Memory Latency:
— KV Cache Data: Requires 4dlb(s + o) bytes (bfloat16 uses 2 bytes per number, and
there are separate key/value copies).
— Model Parameters: Require 2n bytes.

2n+4dlb(s+o0)

The data transfer latency to high-bandwidth memory is po—

Throughput Calculation The throughput, defined as the number of tokens generated per unit
time, is given by:

b
Throughput = .
TTFT 4 DL
where DL is the data latency.
Before After
KV cache memory 4dlb(s + o) 4dlb (+ o)
TTFT (24d>+4ds)lbs (24d2+4;d%)lb%
TTIT 2n+4dlb(s+0) 2n+4dlb(; +o)
bo bo

Throughput TTF Tyt £ T Tpetre TTF Ty HTTT T
Table 9: Comparison of KV cache memory usage, TTFT, generation latency and throughput between

the original LLaMA model and our model.

C.5 Additional details on empirical measurement of latency and memory improvement
in Fig. 2} Fig.[9and Fig.

We measure the latency and memory usage in a controlled environment which aims to reduce other
environmental factors that could make certain method advantageous.

To this end, our implementation uses the same modelling file which means different baselines share
the same hyper-parameter and acceleration (e.g., flash-attention). Therefore, we restrict the factors
that affect the resource usage only among the model designs. We use the batch size of 1 and use a
single A100 card to measure the system performance.

D Additional Experimental Results

Sparse attention across different retrieved passages. We retrieve 200 passages using the query
“how bruce lee died” from our retrieval corpus. We choose 5 passages that are different from each
other (Table [I0) to simulate the de-duplication process in real RAG applications. We concatenate
these 5 passages and feed it to LLaMA-2-7B-Chat model to see the attention values between differ-
ent tokens. Figure[7shows that the attention values for tokens within each passages are significantly
larger than attention values for tokens in different passages which suggests redundancy in the current
attention computation for RAG applications.

Additional results in latency measurement. Figure 9] and Fig. [§ shows the latency comparison
of different models when using k = 8 and k = 32 compression rate for REFR AGrespectively.

Ablation study result for curriculum learning. Table[TT|shows the necessity of curriculum learn-
ing to the success of reconstruction task.

Ablation study result for reconstruction task. Table [12|shows the performance comparison in
CPT with and without continuing from reconstruction task.

20

Table 10: The 5 retrieved passages for the query “how bruce lee died”.
Content

PO “Water is necessary to survive, but as we all know, sometimes too much of a good thing (even water) can be
harmful. In 2022, a group of kidney specialists from Madrid, Spain, revisited the death of Kung Fu legend
Bruce Lee and concluded that water intoxication was the most likely cause of his untimely death. Bruce
Lee, the martial arts legend and iconic figure in the history of cinema, died on July 20, 1973, at the young
age of 32. The official cause of death at the time was reported as a probable drug reaction and classified
as “’death by misadventure.” Hours before his death, Lee complained of a headache while visiting a fellow
actress Betty Ting Pei at her apartment. She gave him one of her own prescription painkillers (one that
contained aspirin and meprobamate), and he laid down to take a nap. He never woke up and was unable
to be resuscitated even after being transferred to a Hong Kong hospital. In the years since Lee’s death,
many theories have been put forward as to the true cause of his passing. These theories include murder by
gangsters or a jilted lover, a family curse, epilepsy, heatstroke, and possibly

P1 Bruce Lee May Have Died From Drinking Too Much Water, Claims Study The *Enter The Dragon’ actor,
who helped bring martial arts into popular culture, died in July 1973 at the age of 32. American martial
arts legend and actor Bruce Lee might have died from drinking too much water, scientists have claimed
in a new study. The "Enter The Dragon’ actor, who helped bring martial arts into popular culture, died in
July 1973 at the age of 32 from cerebral oedema, a swelling of the brain. At the time, doctors believed
the brain swelling was due to a painkiller. The oedema, according to a group of researchers, was brought
on by hyponatraemia. In their study, which was published in the Clinical Kidney Journal, the researchers
proposed that Bruce Lee died because his kidneys were unable to eliminate extra water. The findings are
very different from old theories about how died, such as those regarding gangster assassination, jealous lover
poisoning, curses, and heatstroke. According to scientists, the actor may have died from hyponatraemia,
which develops when the body’s sodium levels get diluted as a result of consuming too much water. The
cells in the body, particularly those in the brain,

P2 circumstances, you're bound to get some truly insane conspiracy theories, and there are plenty about Bruce
Lee. The crazy Bruce Lee murder theories Producer Raymond Chow made a big mistake after Bruce Lee’s
death. Hoping to protect Lee’s image, Chow’s production company claimed the actor died at home with
his wife, Linda. But once the press found out the truth, the tabloids got going. In fact, a lot of people
pointed the finger at Betty Ting Pei, claiming she was responsible for Lee’s death and that perhaps she’d
even poisoned him. Unfortunately, that wasn’t the only rumor involving murder. One of the most popular
theories says other martial artists were angry at Lee for teaching their secrets to Westerners, so they decided
to bump him off. Some say ninjas were responsible, and others claim Lee was killed with the "Dim Mak,” a
mythical martial arts move that supposedly kills a victim with one fateful blow. Others believe he was killed
after refusing to pay protection money to the Triads, while others claim the Mafia did the deed because Lee
wouldn’t let them control his career. The more mystical conspiracy theorists even say there’s a family curse
that took the life

P3 Bruce Lee complained of a headache, was given an Equagesic — a painkiller that contains both aspirin and
the tranquilizer meprobamate — and went down for a nap. He never woke up. His death was said to be an
allergic reaction to the tranquilizer resulting in a cerebral edema (he had suffered a previous edema months
before), though others claim his death was due to a negative reaction to cannabis, which Lee consumed
regularly to reduce stress. Because he was so young, news of his death invited wild media speculation,
from murder to a family curse. 5. Brandon Lee Sadly, Bruce Lee’s son Brandon also died young, at age 28,
and also under strange circumstances. While filming the horror film The Crow, Lee was accidentally killed
by a prop gun that, due to a malfunction in a previous scene, was accidentally loaded with a dummy bullet
and a live primer. When the gun was fired, the bullet was ejected with virtually the same force as if loaded
with a live round. Lee was hit in the abdomen and died in surgery later that day, on March 31, 1993. Like
his father, Brandon’s abrupt death fed rumors. Conspiracy theorists believe Illuminati

P4 Bruce Lee moved to a house in Hong Kong’s Kowloon Tong district, it was said that the building suffered
from bad feng shui. According to Lee biographer Bruce Thomas, the house’s two previous owners had
financial issues, and the building “faced the wrong way,” and had disturbed natural winds. To fix this
problem, a feng shui adviser ordered a mirror to be put on the roof. This was supposed to deflect the bad
energy, but the mirror was knocked off during a typhoon. Ominously, Lee died just two days after the charm
was blown away. While some of Lee’s neighbors apparently linked the two events at the time, the problem
with this theory is that feng shui is nothing but a superstition. There’s no scientific evidence for any of its
tenets, including qi. At most, feng shui could be regarded as a kind of art. Lee’s death after the loss of
his mirror is a simple coincidence. Moreover, Lee died in Betty Ting’s apartment, not in his own house.
2. Murder The abruptness of Bruce Lee’s death, combined with his extraordinary fitness, made some fans
wonder whether something more sinister was at work. People who believe that Lee was murdered

Table 11: Performance comparison on reconstruction task with and w/o curriculum learning. Log-
Perplexity is reported as average of Arxiv and Book domain.
P16 P32 P128 P2048 |
LLAMA-FuLL CoNTEXT 1.397 0.734 0.203 0.021
LLAMA-NO CONTEXT 3.483 2981 2249 1590
REFRAG w/o curriculum 3.719 3.098 2272 1.599
REFRAG with curriculum 0.669 0.451 0.230 0.135

Ablation study result for the advantage of RL. Table [I3] shows the advantage of using our
selective compression policy via RL compared to using a lower compression rate.

Ablation study result of different compression rates. Figure |10| shows the loss trajectory for
different compression rate of REFRAG.

21

layer 0 I layer 1 I layer 2 I

° o
g g
= o
& &
N N
N N
o o
2 2
<+ <
g g

°
g
-
g
N
N
m
e
s
3

B

P4 P3 P2 P1 PO

PO P1 P2 P3 P4

layer 4 I layer 5 I layer 6 I

PO P1 P2 P3 P4 PO P1 P2 P3 P4

° °
g g
& &
N N
N N
o o
2 2
<+ <
T g

P4 P3 P2 P1 PO
P4 P3 P2 P1 PO

PO P1 P2 P3 P4 I

PO P1 P2 P3 P4I PO P1 P2 P3 P4I
I layer 11 I

layer 8 I I layer 10

P4 P3 P2 P1 PO
P4 P3 P2 P1 PO
P4 P3 P2 P1 PO
P4 P3 P2 P1 PO

layer 12 I layer 13 I layer 14 I layer 15 I

PO P1 P2 P3 P4 PO P1 P2 P3 P4

PO P1 P2 P3 P4 PO P1 P2 P3 P4

P4 P3 P2 P1 PO
P4 P3 P2 P1 PO

P4 P3 P2 P1 PO

F

P4 P3 P2 P1 PO

PO P1 P2 P3 P4I PO P1 P2 P3 P4I PO P1 P2 P3 P4I PO P1 P2 P3 P4I

layer 16 I layer 17 I layer 18 layer 19 I

P4 P3 P2 P1 PO
P4 P3 P2 PL PO
P4 P3 P2 P1 PO

P4 P3 P2 P1 PO

PO P1 P2 P3 PAI PO P1 P2 P3 PAI PO P1 P2 P3 F4I PO P1 P2 P3 P4I

layer 20 I layer 21 I layer 22 layer 23 I

° °
4 g
z &
N N
2 2
5 s
b4 b4

P4 P3 P2 P1 PO
P4 P3 P2 P1 PO

PO P1 P2 P3 P4I PO P1 P2 P3 P4I PO P1 P2 P3 P4I PO P1 P2 P3 P4I

layer 24 I layer 25 I layer 26 layer 27 I

P4 P3 P2 P1 PO

P4 P3 P2 P1 PO
P4 P3 P2 P1 PO
P4 P3 P2 P1 PO

PO P1 P2 P3 PAI PO P1 P2 P3 PAI PO P1 P2 P3 F4I PO P1 P2 P3 P4I

layer 28 I layer 29 I layer 30 layer 31 I

P4 P3 P2 P1 PO

P4 P3 P2 P1 PO
P4 P3 P2 P1 PO

P4 P3 P2 P1 PO

F

Figure 7: Attention value visualization for different retrieved passages for different layers for
LLaMA-2-7B-Chat model. The diagonal values are the averaged attention value for tokens within
each passage while the off-diagonal values are the averaged attention value between tokens from
different passages. The detail of retrieved passages is in Tablerlljl

PO P1 P2 P3 P4

PO P1 P2 P3 P4

PO P1 P2 P3 P4 PO P1 P2 P3 P4

Table 12: Performance comparison on continual pre-training task with and w/o continued from
reconstruction task. Log-Perplexity is reported as average of Arxiv and Book domain.
P16 P32 P128 P2048 |
LLAMA-FULL CONTEXT 1.448 1.458 1.464 1.449
LLAMA-NO CONTEXT 3483 2981 2.249 1.590
REFRAG w/o reconstruction ~ 3.272 2789 2.119 1.544
REFRAG with reconstruction 2.017 1.837 1.632 1.453

Ablation study result of different combination of encoder and decoder models. Figure
shows the performance of CPT with different combination of encoder and decoder models. Table
shows the performance on LLaMA-3.1-8B and LLaMA-3.2-3B model.

Additional results in RAG. Table shows the performance of different baselines under the
same number of context. The performance of our model is similar to other methods, in other words
no model significantly outperforms others. Table [T3] shows the performance of REFRAG under
different number of context for strong retriever setting.

22

TTFT Acceleration TTIT Acceleration Throughput Acceleration

60 3.0
c C c
h=l Qs o6
- - -
© 40 © ©
2 G0 2
2 9 Q4
Y2 Ys g
O »T o 0,
< - < 1.0 == <

o L N

103 104 103 104 10° 104
Input Tokens # Input Tokens # Input Tokens

—e— REFRAG (Cached) —-#- REFRAG (Not Cached) —+- CEPE

Figure 8: Empirical verification of inference acceleration of REFRAG with k = 32.

TTFT Acceleration TTIT Acceleration Throughput Acceleration
c 15 c 30 c °
o o o
E= S 25 E=
D10 LN o4
<9 @~ <@
S s B1s o
[v] [v] O 2
< < 1.0 <
0 At ekl el bl =l sekde sbin
10° 10 10° 10* 10° 104
Input Tokens # Input Tokens # Input Tokens

—e— REFRAG (Cached) —=a- REFRAG (Not Cached) —+—- CEPE

Figure 9: Empirical verification of inference acceleration of REFRAG with k = 8.

1.52 x 100 A = x8 Compression
151 x10° A — x16 Compress?on
= x32 Compression
(U
» 1.5x10 64 Compression
2 1.49x10°
—
1.48 x 10° A
1.47 x 100
1.46 x 100

T
10000 20000 30000 40000 50000 60000 70000
Training Steps

Figure 10: Training trajectory for our model with different compression rate.

1.51 A
—— Llama-2-7B —— Roberta-Base
1.50 1 —— Llama-2-13B 1.50 - —— Roberta-Large
1.49 A
» 1.48 4 .
8 8
S S 1.48 o
1.46 o 147 4
1.44 1.46 o
T T T T T T T T T T T T
10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000
Training Steps Training Steps

Figure 11: Training trajectory for different encoder and decoder combinations. On the left, we have
two different decoder the Roberta-Base encoder. On the right we have two different encoder for
LLaMA-2-7B decoder model.

23

Table 13: The performance of REFRAG under the same compression rate with full compression
(i.e., REFRAGg) and selective compression (i.e., REFRAGg4Rrp).

| | Arxiv Book
| Compression Rate | P512 P1024 P2048 | P512 P1024 P2048
Context Length=2048

PG19
P512 P1024 P2048

ProofPile
P512 P1024 P2048 |

REFRAGsg 8 1.124 1.091 1.062 | 1.905 1.868 1.844 | 1.996 1.956 1.927 | 0.997 0.952 0916
REFRAG 64rL 8.258 ‘ 1118 1.090 1.062 ‘ 1.878 1.856 1.840 ‘ 1.978 1952 1.930 ‘ 0.992 0.951 0916
Context Length=4096

REFRAGsg 8 1.098 1.065 1.042 [1.895 1.860 1.837 [1.989 1950 1.922 [0.965 0.923 0.894
REFRAG 64rL 8.0157 ‘ 1.065 1.048 1.033 ‘ 1.851 1.837 1.828 ‘ 1.952 1934 1918 ‘ 0.932 0.905 0.883

Table 14: Log-Perplexity of continual pre-training for different encoder-decoder combinations.
Lower log-perplexity indicates better performance.

LLaMA-3.1-8B LLaMA-323B
Encoder-Decoder Context Length 5517570557 3048 [P52 PI024 P2048 |
Full Context 2048 1000 0989 0972 | 1.092 1080 1.062

" NoContext 0 | 1445 1286 1.162 | 1559 1392 1262
Roberta-Base 2048 1109 1067 1.026 | 1.175 1133 1.093
Roberta-Large 2048 1107 1065 1.025 | 1.170 1130 1.091
Roberta-Base 4096 1067 1032 0999 | 1.142 1105 1.070
Roberta-Large 4096 1065 1031 0998 | 1.130 1096 1.064

Demonstration of generated summary for Arxiv and Pubmed articles. Table[20/and Table
shows the ground true abstract for different articles and the generated summary from REFRAG.
These results complement the perplexity results we have shown in CPT and accuracy/F1 perfor-
mance we have shown in RAG and other applications.

D.1 Additional Contextual Application - Summarization Task

We fine-tune our model on the long document summarization dataset (Cohan et al.| [2018)). This
dataset contains long scientific articles from Arxiv and Pubmed, and the task is to generate the
abstract given the entire article. This application is challenging due to the long-context nature of
the task. We fine-tune the REFRAG and LLAMA models on these two datasets and report the
performance on the validation set. The summarization task provides an ideal condition to inspect
whether it is beneficial to bring more information with compressed representation or less information
without compression, since correct summarization requires complete information from the whole
document.

Result analysis. Table[21|shows the performance of different baselines under the same number of
tokens in the decoder. REPL UGyt means that we adopt the REPLUG framework using LLAM AFr,
and REPLUGcp, means that we adopt the LLaMA-2-7B-Chat model for REPLUG. We did not re-
port some of our methods for certain decoder token counts since there were not enough input tokens
for those compression rates. Our model achieves the best performance under the same number of
decoder tokens (i.e., same latency). Additionally, REFRAG¢ performs better than REFRAGg at
a decoder token count of 128, since the former model is able to incorporate more information from
the document with a higher compression rate.

Table 15: Performance of our model under compression rate of 16 with different number of retrieved

passages in RAG under the strong retriever scenario.
#Passages MMLU NQ FEVER WebQA FreebaseQA CommonsenseQA ECQA StrategyQA HellaSwag SIQA PIQA T

0 48.07 18.73 65.80 34.67 60.20 89.18 87.42 68.89 43.72 67.25 70.18
1 50.49 21.39 69.46 37.33 68.06 86.60 89.40 80.00 43.26 68.17 70.08
3 50.49 22.01 66.02 38.67 71.01 89.18 95.36 71.11 45.50 68.73 71.44
5 50.62 23.00 66.07 41.33 72.48 91.75 96.03 75.56 45.48 68.17 71.38
8 50.29 2296 66.59 38.67 73.46 92.27 9470 75.56 4523 68.94 7138
20 51.01 2430 67.77 40.00 75.18 91.75 98.01 75.56 45.09 68.53 71.00
50 51.08 2476 69.39 40.00 75.92 91.75 97.35 75.56 44.78 67.81 69.97
80 50.42 24.15 68.83 37.33 74.20 92.27 97.35 71.11 44.61 68.22 69.37
100 50.23 2399 69.80 36.00 74.45 92.27 97.35 71.11 44.57 68.07 69.75

24

Table 16: Comparison of model performance of different models with different number of retrieved
chunks for RAG. The number of contexts in all the evaluation here is 5.

Generation NQ FEVER TQA WebQA FreebaseQA GSMS8K StrategyQA BoolQ 1
LLAMAgr 21.88 61.85 7.96 34.67 72.97 8.72 71.11 29.54
CEPE 0.05 60.68 0.01 0.00 0.25 0.00 0.00 56.70
REPLUG 14.96 71.56 11.01 25.33 53.32 4.70 66.67 3.15
LLAMA-32K 2.26 0.23 2.17 14.67 9.83 0.67 4.44 0.06
REFRAGg 20.86 63.44 12.37 38.67 65.60 11.41 73.33 3.06
REFRAG 6 20.60 60.45 11.86 40.00 66.09 11.41 73.33 5.57
REFRAG32 21.39 61.97 12.03 40.00 67.32 12.75 68.89 1.80
Multi-Choice MMLU CommonsenseQA MathQA ECQA HellaSwag SIQA PIQA Winogrande 1
LLAMAGgr 49.97 84.02 97.48 86.09 42778 67.09 68.39 54.78
CEPE 26.06 20.62 24.16 19.87 24.99 33.57 49.13 46.96
REPLUG 47.35 77.84 99.50 79.47 49.26 64.99 71.98 56.04
LLAMA-32K 24.17 18.04 22.32 15.89 24.09 16.84 28.02 48.78
REFRAGg 49.90 91.24 99.66 97.35 45.03 68.27 70.95 57.22
REFRAG 6 49.84 90.21 99.66 96.69 39.52 68.63 70.95 56.35
REFRAG32 49.84 91.24 99.50 97.35 42.71 68.32 68.72 56.12
1.50
Roberta-Base
1.49 1 —— Roberta-Large
1.48 o
2 1.47 A
=}
~ 1.46
1.45
1.44 o

T T T T T T
10000 20000 30000 40000 50000 60000
Training Steps

Figure 12: Training trajectory for different encoder paired with LLaMA-2-13B decoder.

Table 17: Comparison of model performance of different models with different number of retrieved
passages for RAG under the weak retriever scenario.

Generation NQ FEVER TQA WebQA FreebaseQA GSMSK StrategyQA BoolQ T \ (1/ # tokens)
Short context with the same latency
LLAMAGt + 1 passage 20.20 57.70 8.32 32.00 67.08 6.71 62.22 31.25 1x
REFRAGs+ 8 passages 21.22 63.21 11.77 42.67 67.57 8.72 68.89 3.24 1x
REFRAG 6+ 8 passages 20.73 60.86 11.60 40.00 66.83 11.41 77.78 6.36 2x
REFRAGs32+ 8 passages 21.08 62.65 11.69 42.67 66.58 1141 68.89 2.35 4x
“Lengcontext oo oo oo oo TTmm T
LLAMAFr + 10 passages 2227 60.40 8.32 38.67 71.50 9.40 71.11 29.94 1x
CEPED +80 passages 0.02 65.18 0.02 0.00 0.00 0.00 0.00 59.33
REPLUG +80 passages - - - - - - 64.44 -
LLAMA-32K +80 passages 1.03 0.12 0.37 5.33 9.34 0.00 0.00 0.03
REFRAGs +80 passages 22.92 67.87 12.22 46.67 71.99 10.07 68.89 7.19 1x
REFRAG 6 +80 passages 22.63 65.07 12.12 38.67 71.74 8.72 68.89 12.05 2%
REFRAG32 +80 passages 21.86 67.24 11.54 41.33 70.76 8.72 66.67 6.30 4x
Multi-Choice MMLU CommonsenseQA MathQA ECQA HellaSwag SIQA PIQA Winogrande 1
Short context with the same latency
LLAMAFr + 1 context 48.86 82.99 99.50 84.77 42.08 67.91 67.46 55.49 1x
REFRAGs + 8 passages 50.10 91.24 99.66 96.03 45.15 68.17 70.40 57.46 1x
REFRAG 6 + 8 passages 49.77 90.21 99.66 96.69 39.32 68.73 70.46 56.43 2x
REFRAG3; + 8 passages 50.10 91.75 99.50 96.03 42.36 68.83 68.28 55.80 4x
B T
LLAMAGr + 10 passages 45.20 83.51 63.42 85.43 4143 67.60 67.36 54.30 1x
CEPED +80 passages 26.52 24.74 23.83 22.52 24.97 32.86 48.80 44.20
REPLUG +80 passages - - - 76.16 - 65.46 - 5533
LLAMA-32K +80 passages 22.01 18.04 19.97 16.56 23.69 23.80 33.19 48.62
REFRAGgs +80 passages 50.03 90.72 99.66 97.35 44.44 67.66 69.48 56.91 1x
REFRAG 6 +80 passages 49.77 90.21 99.66 95.36 38.29 68.12 70.57 56.91 2x
REFRAGs3: +80 passages 50.03 91.24 99.50 98.01 43.02 68.58 68.55 57.22 4x

- means the corresponding model has out-of-memory error.

Table 18: Performance of our model under compression rate of 16 with different number of retrieved

passages in RAG under the weak retriever scenario.
#Passages MMLU NQ FEVER WebQA FreebaseQA CommonsenseQA ECQA StrategyQA HellaSwag SIQA PIQAT

0 48.14 19.09 61.40 30.67 59.71 85.05 86.75 55.56 36.57 6459 68.82
1 49.97 20.08 64.15 38.67 64.62 87.63 9272 7111 39.08 68.58 70.57
3 49.64 20.63 60.80 40.00 68.55 89.69 95.36 75.56 3941 69.40 71.11
5 49.84 20.60 60.45 40.00 66.09 90.21 96.69 7333 39.52 68.63 70.95
8 49.77 20.73 60.86 40.00 66.83 90.21 96.69 7778 39.32 68.73 70.46
20 50.03 2129 62.32 36.00 68.06 89.69 95.36 75.56 38.58 69.29 70.62
50 49.84 22,12 63.54 37.33 71.99 89.69 96.69 75.56 38.11 68.53 70.84
80 49.77 22,63 65.07 38.67 71.74 90.21 95.36 68.89 38.29 68.12 70.57
100 50.62 22.80 65.17 37.33 73.46 89.69 96.03 68.89 38.51 68.37 70.18

25

Ground True Abstract

Generated Abstract

background : timely access to cardiovascular health services is neces-
sary to prevent heart damages . the present study examined inequality
in geographical distribution of cardiovascular health services in iran .
methods : present study is a cross - sectional study conducted using de-
mographic data from all iranian provinces (31 provinces) from 2012
census by the statistics center of iran (sci) . the gini coefficients of ccu
beds and cardiologists were used to assess equality in access to cardio-
vascular health services in iran . ms excel software was used to calculate
gini coefficients . results : the proportions of ccu bed and cardiologist
per 100,000 population were 4.88 and 1.27 , respectively ; also the gini
coefficients were 0.129 and 0.045 , respectively . conclusion : descrip-
tive statistics showed a skewness in distribution of pubic cardiovascular
health services in iran , though gini coefficient revealed no significant
inequality . however , equal distribution of ccu beds and cardiovascular
specialists does not mean they are sufficiently available in iran .

background : this study aimed to investigate the inequality of distribu-
tion of cardiac care units (ccu) and cardiologists in iran . methods :
this study used demographic data from national statistics collected by
the central statistics of iran (sci) in 2012 . the number of ccu beds
and cardiologists per 100,000 individuals and the number of cardiolo-
gists per 10 ccu beds were explored . the gini coefficient was applied to
measure inequality . results : the mean number of ccu beds per 100,000
individuals in iran was 4.88 , which is out of a total of 31 provinces be-
low the national mean . the mean number of cardiologists per 100,000
individuals was 1.27 and the mean number of cardiologists per 10 ccu
beds was 2.6 . the gini coefficient of cardiologists in 2012 was 0.045
and the gini coefficient of ccu beds was 0.129 . conclusion : our de-
scriptive statistics showed that there is a skewness in the distribution
of pubic cardiovascular health services in iran . moreover , the equal
distribution of cardiovascular health facilities such as ccu beds is not
necessarily provided in iran .

lumbar spinal stenosis is a commonly treated with epidural injections
of local anesthetics and corticosteroids , however , these therapies may
relieve leg pain for weeks to months but do not influence functional sta-
tus . furthermore , the majority of patients report no substantial symp-
tom change over the repeated treatment . utilizing balloon catheters ,
we successfully treated with three patients who complained persistent
symptoms despite repeated conventional steroid injections . our results
suggest that transforaminal decompression using a balloon catheter may
have potential in the nonsurgical treatment of spinal stenosis by modi-
fying the underlying pathophysiology .

epidural injection is a common treatment for spinal stenosis . however ,
there is little information on the optimal management of spinal stenosis
. we describe the use of epidural balloon catheters to decompress the
intervertebral foramen in three patients with spinal stenosis . patients
were followed - up for 24 weeks . one patient reported moderate pain
relief , three patients reported symptom improvement and one patient
reported no change in symptoms . this report suggests that transforam-
inal balloon decompression using a balloon may have potential in the
nonsurgical treatment of spinal stenosis by modifying the underlying
pathophysiology of segmental spinal stenosis .

we describe a 26-year - old woman who presented with a nodular rash
on the elbows following an insect bite . two days later , she devel-
oped erythema nodosum . both these lesions were treated symptomat-
ically . one week later , she had purpura , abdominal pain , hematuria
, and arthralgias , following which steroids were administered . her in-
vestigations revealed only microscopic hematuria that disappeared with
therapy . this pattern of sequential appearance of rash and a nodular
morphology are both unique features not previously reported .

we report a case of herpes simplex purpura (hsp) that presented with a
sequential pattern of rashes following an insect bite . the patient was a
26-year - old woman who presented to our outpatient department (opd
) with a nodular rash on her elbows and erythema nodosum on her lower
limbs following an insect bite . she had purpura on her lower limbs 2
weeks later . she had similar lesions on both upper and lower limbs
1 week after a second insect bite . this pattern of rashes has not been
previously reported in hsp .

Table 19: Comparison of ground true abstract and abstract generated by REFRAG for PubMed.

Ground True Abstract

Generated Abstract

memory - based learning , keeping full memory of learning material ,
appears a viable approach to learning nlp tasks , and is often superior in
generalisation accuracy to eager learning approaches that abstract from
learning material . here we investigate three partial memory - based
learning approaches which remove from memory specific task instance
types estimated to be exceptional . the three approaches each implement
one heuristic function for estimating exceptionality of instance types : (
i) typicality , (ii) class prediction strength , and (iii) friendly - neigh-
bourhood size . experiments are performed with the memory - based
learning algorithm ib1-ig trained on english word pronunciation . we
find that removing instance types with low prediction strength (ii) is
the only tested method which does not seriously harm generalisation
accuracy . we conclude that keeping full memory of types rather than
tokens , and excluding minority ambiguities appear to be the only per-
formance - preserving optimisations of memory - based learning .

memory - based learning is a prominent and successful approach to ma-
chine learning . however , its use in nlp tasks has been limited by its
over - generalisation properties . this paper investigates two optimisa-
tions that can be applied to memory - based learning in order to improve
its generalisation performance : (1) replacing instance types (memory
tokens) by instance types with frequency information , and (2) re-
moving redundant information (i.e. , instance types with low predictive
power) . we perform experiments on a large data set of english word
pronunciations . we show that both optimisations yield improvements
in generalisation performance . our results also indicate that atypical-
ity , non - typicality , and friendly - neighbourhood size are estimates
of the importance of instance types for their classification , rather than
their removability .

machine learning methods are applied to finding the green s function of
the anderson impurity model , a basic model system of quantum many
- body condensed - matter physics . different methods of parametrizing
the green s function are investigated ; a representation in terms of leg-
endre polynomials is found to be superior due to its limited number of
coefficients and its applicability to state of the art methods of solution .
the dependence of the errors on the size of the training set is determined
. the results indicate that a machine learning approach to dynamical
mean - field theory may be feasible .

ewe demonstrate how machine learning techniques can be used to solve
the quantum many - body problem . we apply the method to the ander-
son impurity model , where we use the exact diagonalization method to
train the machine learning algorithms . we show that machine learning
is an efficient and accurate method to compute the self - energy of the
model and to predict the spectral function of the model . we also show
that machine learning algorithms can be used to efficiently compute the
self - consistent green s function starting from any hybridization func-
tion .

particle swarm optimization is used in several combinatorial optimiza-
tion problems . in this work , particle swarms are used to solve quadratic
programming problems with quadratic constraints . the approach of par-
ticle swarms is an example for interior point methods in optimization as
an iterative technique . this approach is novel and deals with classifi-
cation problems without the use of a traditional classifier . our method
determines the optimal hyperplane or classification boundary for a data
set . in a binary classification problem , we constrain each class as a
cluster , which is enclosed by an ellipsoid . the estimation of the op-
timal hyperplane between the two clusters is posed as a quadratically
constrained quadratic problem . the optimization problem is solved in
distributed format using modified particle swarms . our method has the
advantage of using the direction towards optimal solution rather than
searching the entire feasible region . our results on the iris , pima ,
wine , and thyroid datasets show that the proposed method works bet-
ter than a neural network and the performance is close to that of svm .
* keywords * quadratic programming ; particle swarms ; hyperplane ;
quadratic constraints ; binary classification .

support vector machines are used for classification of data in machine
learning . support vector machines use quadratic programming formula-
tion for minimizing the objective function . the quadratic programming
problem is solved by particle swarm optimization . the proposed method
is compared with khachiya s and karman s support vector machine al-
gorithms for linear and neural networks and quadratic programming .
the results show that the proposed method is better than the other two
methods .

Table 20: Comparison of ground true abstract and abstract generated by REFRAG for ArXiv.

26

Table 21: Performance on summarization tasks under the same latency.

Arxiv Pubmed

Rouge-1 Rouge-2 Rouge-L. Rouge-1 Rouge-2 Rouge-L T
Decoder tokens = 128
LLAMAgr 29.69 6.89 18.28 29.79 8.37 18.41
CEPED 12.67 1.66 8.39 12.01 1.41 7.74
REPLUGgr 5.30 0.78 3.77 5.11 0.81 3.55
REPLUGchy 15.11 1.58 9.80 14.94 1.51 9.40
LLAMA-32K 2.83 0.48 2.11 7.94 1.63 5.31
REFRAGs 36.50 12.48 22.21 38.27 13.91 23.20
REFRAG 5 38.48 12.50 22.66 38.93 12.83 23.07
Decoder tokens =512
LLAMAgr 36.03 11.16 21.49 38.15 14.36 23.27
CEPED 19.28 3.16 12.22 17.60 2.43 10.89
REPLUGgt 28.33 6.42 17.04 28.29 7.59 16.97
REPLUGcpy 31.41 7.00 18.32 30.67 7.13 17.56
LLAMA-32K 3.03 0.65 2.28 8.49 2.54 5.47
REFRAGg 41.95 15.56 24.84 43.55 17.53 26.38
Decoder tokens =1024
LLAMAGgr 41.24 15.07 24.45 42.45 17.58 26.11
CEPED 25.20 5.07 15.45 23.00 3.94 13.71
REPLUG¢gr 19.32 3.18 12.73 17.07 2.93 11.20
REPLUGcpy 27.38 5.46 16.84 27.89 5.16 15.93
LLAMA-32K 4.34 0.95 3.35 10.19 3.11 6.47
REFRAGg 43.88 17.03 26.01 44.43 18.06 26.85

27

	Introduction
	Our Contributions

	Model Architecture
	Methodology
	Continual Pre-training Recipe

	Experimental Results
	Ablation Study

	Contextual Learning Applications
	Retrieval Augmented Generation
	Multi-Turn Conversation

	Conclusion
	Related Works
	Additional Discussion
	Modeling REFRAG Selective Compression

	Additional Details on Experimental Settings
	Additional Details on Baselines
	Additional Details on Hyperparameters and Experimental Settings for CPT
	Curriculum learning data mixture
	Detailed Calculation of Acceleration in Latency and Throughput of Our Model
	Additional details on empirical measurement of latency and memory improvement in fig:acceleration-empirical, fig:additional-latency-8 and fig:additional-latency-32

	Additional Experimental Results
	Additional Contextual Application - Summarization Task

