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Abstract

We study the problem of explainable k-medians clustering introduced by Dasgupta,
Frost, Moshkovitz, and Rashtchian (2020). In this problem, the goal is to construct
a threshold decision tree that partitions data into k clusters while minimizing the
k-medians objective. These trees are interpretable because each internal node
makes a simple decision by thresholding a single feature, allowing users to trace
and understand how each point is assigned to a cluster.

We present the first algorithm for explainable k-medians under £, norm for every

finite p > 1. Our algorithm achieves an O (p(log k) *1/P~1/ p2) approximation to
the optimal k-medians cost for any p > 1. Previously, algorithms were known only
for p = 1 and p = 2. For p = 2, our algorithm improves upon the existing bound
of O(log®? k), and for p = 1, it matches the tight bound of log k + O(1) up to a
multiplicative O(loglog k) factor.

We show how to implement our algorithm in a dynamic setting. The dynamic
algorithm maintains an explainable clustering under a sequence of insertions and
deletions, with amortized update time O(d log® k) and O(log k) recourse, making
it suitable for large-scale and evolving datasets.

1 Introduction

Artificial intelligence systems play an increasingly important role in everyday life, influencing
decisions that affect individuals, businesses, and society as a whole. As their impact grows, so does
the need for transparency and human oversight. In response, there is a growing emphasis on making
Al decisions understandable to people. This has led to the development of models that aim to present
their decision-making processes in a clear and interpretable manner.

In this paper, we study algorithms for explainable clustering. The notion of explainable k-means
and k-medians clustering was introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (2020) as
a way to make clustering decisions more accessible to humans. Both k-means and k-medians are
classical clustering objectives widely used in practice. Here, we focus on k-medians clustering under
the £, norm. A k-medians clustering of a dataset X C R? is defined by a collection of k centers
ct,c?, ..., c*. Bach point x € X is assigned to the closest center in the £, norm, that is, the center
minimizing ||z — ¢f||,. Consequently, every clustering corresponds to a Voronoi partition under the
¢, norm. The cost of the clustering is defined as

k
cost,(X;ct, ..., cF) = Z Z lz = ¢'ll,,

i=1 x€P;

where P; denotes the set of points assigned to center c!. We refer to this as unconstrained k-medians
clustering.

*Equal contribution.
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While this objective is simple to define and machines can easily compute the nearest centers, the
resulting cluster assignments are often difficult for humans to interpret. To make clustering more
comprehensible to humans, Dasgupta et al. (2020) proposed using threshold decision trees to represent
clusterings. They referred to this approach as explainable k-means and k-medians. For k-medians,
they considered the ¢; norm. In a threshold decision tree, each internal node compares a single
coordinate of the input to a threshold and directs the point to the left or right subtree accordingly.
Each leaf of the tree represents a cluster. We denote the center assigned to z by the decision tree as
T (x). The cost of the clustering is then defined similarly to the unconstrained case:

cost, (X, T) = Z |z —T ()|,

zeX

Assigning a data point to a cluster using a threshold decision tree avoids complex distance compu-
tations and instead follows a simple, transparent process: each decision is based on a sequence of
threshold comparisons. This makes it clear how a particular assignment was made and which features
influenced it.

The central question is how much clustering quality is lost in exchange for interpretability. This
trade-off is captured by the the cost of explainability or competitive ratio, defined as the worst-case
ratio between the cost of the explainable clustering and that of the optimal unconstrained k-medians
clustering:
cost, (X, T)
max ————=
X OPTy ,(X)

where OPT}, ,(X) = min,, ., cost,(X;c1,...,c,) denotes the cost of the optimal (uncon-
strained) k-medians clustering of X.

Dasgupta et al. (2020) showed—perhaps surprisingly—that the competitive ratio for explainable
k-medians under the ¢; norm does not depend on the number of points in the dataset and can be
bounded solely as a function of k; specifically, it is at most O(k). They also established a lower
bound of Q(log k). This result sparked significant interest and led to extensive study of explainable
k-medians under the ¢; norm. Makarychev and Shan (2021) and Esfandiari, Mirrokni, and Narayanan
(2022) improved the upper bound to O(log k); see also Laber and Murtinho (2021) and Gamlath,
Jia, Polak, and Svensson (2021) for related results. The approximation factor was later improved to
O(log k) by Gupta, Pittu, Svensson, and Yuan (2023) and Makarychev and Shan (2023). Finally,
Gupta et al. (2023) established a tight upper bound of (1 + Hy_;) for the ¢; norm, where Hy_;
denotes the (k — 1)st harmonic number. Bandyapadhyay, Fomin, Golovach, Lochet, Purohit, and
Simonov (2022) developed fixed-parameter tractable algorithms that compute the optimal explainable
k-medians clustering under the ¢; norm in time (nd)**°™) and n?¢(nd)°™). They also proved that
the problem is NP-complete and cannot be solved in f(k)n°*) time for any computable function f(-)
unless the Exponential Time Hypothesis (ETH) fails. Gupta et al. (2023) showed that this problem is
hard to approximate better than (1/2 — o(1)) In k unless P=NP.

Beyond the ¢; case, much less was known. For p > 1, the only prior result was due to Makarychev

and Shan (2021), who provided a O(log®? k)-competitive algorithm and a lower bound of (log k)
for the ¢, norm. In this paper, we extend the study of explainable k-medians clustering to general £,
norms with finite p > 1. Specifically, we design an algorithm that constructs a threshold decision tree
with k leaves, such that the cost of the resulting clustering satisfies

Elcost,(X,T)] < O(p- 10g1+1/p—1/p2 k -loglogk) - OPTy ,(X).

This improves upon the best known bound for p = 2, and for p = 1 it matches the optimal guarantee
up to an O(log log k) factor. Note that the exponent of the logarithm, 1 + 1/p — 1/p?, always lies in
the interval [1, 1.25].

We now discuss the second contribution of the paper. In recent years, researchers have turned their
attention to dynamic clustering algorithms, which maintain a high-quality clustering as the dataset
evolves and is continuously updated. Recent work in this area includes papers by Lattanzi and
Vassilvitskii (2017); Chan, Guerqin, and Sozio (2018); Cohen-Addad, Hjuler, Parotsidis, Saulpic,
and Schwiegelshohn (2019); Deng, Li, and Rabani (2022); Bhattacharya, Costa, Lattanzi, and
Parotsidis (2023); Bhattacharya, Costa, Garg, Lattanzi, and Parotsidis (2024); Bhattacharya, Costa,
and Farokhnejad (2025).



Dynamic algorithms are typically evaluated based on two key metrics: the update time for insertions
and deletions, and the recourse—the number of changes made to the solution (in this case, centers
inserted or deleted) in response to each update. Bhattacharya et al. (2025) presented an approximation
algorithm with O(1)-approximation ratio, O(log® A) recourse and O(k) update time (where A is an
aspect ratio of the metric space).

In this paper, we initiate the study of dynamic algorithms for explainable k-medians clustering.
Specifically, we ask whether our explainable algorithm can be combined with state-of-the-art dynamic
k-medians clustering algorithms—and we answer this question affirmatively.

Most known algorithms for explainable k-medians clustering first compute a clustering using an
existing off-the-shelf method, which we refer to as the reference clustering, and then use it to construct
a decision tree. Importantly, this second step is oblivious to the dataset—that is, it relies only on the
reference clustering and not on the actual data points. Our algorithm is no exception: it takes as
input a set of reference centers and outputs a threshold decision tree whose cost is upper bounded by

~ 2
O(p - log't1/P=Y/P" k) times the cost of the reference clustering. However, existing algorithms for
explainable clustering are not designed to operate in a dynamic setting.

We present a dynamic implementation of our algorithm, in which the set of reference centers evolves
over time through insertions and deletions. Our algorithm supports updates in O(d log?’ k) time and
modifies only O(log k) nodes in the tree per update (i.e., it has O(log k) recourse), while maintaining

the same O(p - logl‘s'l/p_l/l72 k) competitive ratio.

Our algorithm can be integrated with the dynamic algorithms for unconstrained k-medians mentioned
above. We begin by updating the set of centers using one of these low-recourse algorithms, and then
apply our dynamic algorithm to update the decision tree for explainable clustering. Our algorithm
can also be used to construct explainable clusterings for multiple values of k£ — for example, when
selecting a suitable k£ within a given range using the elbow method. In such cases, we can run an
algorithm (such as k-means++) that outputs centers incrementally, and feed these centers into our
dynamic algorithm, which updates the decision tree on the fly.

1.1 Techniques

Our static algorithm for explainable k-medians under the £, norm builds on and refines a prior
algorithm by Makarychev and Shan (2021) developed for the /5 norm. In this work, we generalize
the approach to all £, norms with finite p > 1 and provide a tighter analysis. In particular, for the £

norm, we improve the competitive ratio from the previous bound of O(log® k) to O(log*%° k).

As we noted earlier, our algorithm takes as input a set of reference centers produced by an off-the-shelf
clustering algorithm and does not access the dataset points directly.

This algorithm relies on the PARTITION_LEAF procedure. Each call to PARTITION_LEAF takes a
cell of the space containing some subset of centers C,, and constructs a partial threshold decision tree
that partitions the cell into several subcells, each containing at most a  fraction of the input centers,
where v < 1. We apply PARTITION_LEAF recursively, starting with the cell containing all centers
c1,...,Ck, to construct the full decision tree.

PARTITION_LEAF first selects an anchor point within the cell. This anchor, denoted m*", is the
median or an approximate median of the centers in C,, and remains fixed throughout the execution of
PARTITION_LEAF. The procedure partitions the space using random cuts drawn from a specially
crafted distribution. Each time a cut is sampled and applied (some cuts may be discarded), the
algorithm removes the centers that are separated from the anchor and places them into one of the output
parts. Each cut is defined by a coordinate ¢ and a threshold 6, and has the form Left = {z : x; < 0}
and Right = {x : x; > 0}. If a sampled cut does not separate any centers, it is discarded.

Random cuts in the algorithm are drawn as follows: PARTITION_LEAF selects a random coordinate
i € {1,...,d}, a random threshold ¢’ € [0, R;], and a random sign o € {1} (where R; is the
radius of the cell; see Section 2 for details). It lets ¢ = mY + ¢6’. The cumulative density function
for ¢’ is given by xP / RY. The algorithm terminates when fewer than yn centers remain unseparated
from the anchor.



We note that using a uniform distribution for 6 (i.e., selecting a random coordinate ¢ and then
choosing a threshold 6 uniformly at random from [—R;, R;]) would result in a poor competitive
ratio, as illustrated in the following example. Consider a k-medians clustering with the £, norm,
defined by k£ + 1 centers located at the positions ey, . . ., e, and 0, where e; denotes the i-th standard
basis vector. We focus on a single data point = with coordinates (e, ..., ). Suppose we pick cuts
by selecting a random coordinate ¢ € {1,...,d} and a threshold § € [0, 1] uniformly at random. In
this case, a constant fraction of the centers will be separated from the anchor m* in © (k) steps. The
probability that one of the cuts made during these steps separates = from its closest center (the center
located at the origin) is ©(ek), assuming ¢ is sufficiently small. If x is separated from 0, it will be
assigned to a different center, i.e., one of the vectors e;. In that case, the ¢, distance from x to the
new center is approximately 1. Therefore, the expected cost of the clustering produced by this variant
of the algorithm for point x is ©(ek), while the optimal (unconstrained) cost is ek!'/?. Hence, the

competitive ratio of such an algorithm is at least ©(k*~1/7).

In this paper, we prove — through a careful analysis of the algorithm — that the aforementioned

choice of random distribution yields an O(p log!+1/p=1/p ’ log log k) upper bound on the algorithm’s
competitive ratio.

We then show how to implement our static clustering algorithm in the dynamic setting. Our approach
builds on the idea of assigning each decision node a timestamp drawn from an exponential distribution
— a technique previously introduced in Gupta et al. (2023); Makarychev and Shan (2023) solely for
the purpose of analyzing an explainable clustering algorithm under the £; norm. We extend this idea
by integrating the exponential clock directly into the algorithm’s design. Specifically, we assume that
random cuts are selected with arrival rates governed by a Poisson process. Each cut is assigned a
timestamp corresponding to its selection time.

The high-level idea behind the dynamic algorithm is as follows. When a new center is inserted, we
identify the earliest cut — based on its timestamp — that separates the new center from the anchor. To
efficiently find such a cut, we employ data structures that enable this operation in O(d log k) time. We
prove that this earliest cut corresponds to the one that would have been used by the static algorithm
to separate the center ¢ from the anchor m*. There are two possible cases: either the decision tree
already contains a node corresponding to this cut, or it does not. In the latter case, the algorithm
creates a new decision node to incorporate the cut.

Implementing this idea presents several challenges. The dynamic PARTITION_LEAF algorithm is not
permitted to modify the anchor; consequently, it may need to rebuild the entire decision tree for a cell
and its descendants once the number of updates in that cell exceeds a certain threshold. Moreover, the
dynamic algorithm must terminate at a fixed time—one that cannot be adjusted as centers are added
or removed. As a result, unlike the static version, it cannot stop based on the number of remaining
centers falling below a given threshold. In this paper, we address these challenges and present a
complete dynamic algorithm for the problem.

2 Algorithm

In this section, we present our algorithm for constructing an explainable clustering tree for the
k-medians problem in ¢, space. The algorithm takes a set of k centers C as input and produces a
binary threshold tree 7 with k leaves, each leaf containing a distinct center in C. The construction
begins by initializing the root node r of the tree with all centers C', and recursively partitioning the
centers using the procedure PARTITION_LEAF (as shown in Figure 1). We initiate the construction
by calling PARTITION_LEAF(r).

While this algorithm is static, we show an efficient dynamic algorithm that achieves the same
behavior as this algorithm in Section 5. To couple the dynamic algorithm with the static algorithm,
we present our algorithm based on two oracles: STOPPING_ORACLE and GET_ANCHOR. The
STOPPING_ORACLE takes a cut w and the current subtree 7, rooted at u as input and outputs a
Boolean value; if it is True, then it stops partitioning centers; otherwise, the algorithm continues
to partition centers. This oracle guarantees that when partitioning stops, every leaf in 7,, contains
at most a 7 fraction of centers in C,,, where 4 < 1. The oracle GET_ANCHOR takes a subset
of centers C, and returns an anchor point m* € R< such that for each coordinate i € [d], at
least 1/4 of centers in C,, lie on either side of m¥, i.e. |{c € Cy, : ¢; > m¥}| > |Cy|/4 and
He e Cy:¢i <mi}| > |Cyl|/4. In the static version, we can simply choose the anchor m* as the



coordinate-wise median of C',, and the STOPPING_ORACLE returns True if and only if the main part
contains fewer than 1/2 of centers in Cy, i.e. |Cy,| < |Cul/2.

Algorithm PARTITION_LEAF

Input: a node v with a set of centers C,, C R?
Output: a threshold tree 7,

1. Set the anchor m* = GET_ANCHOR(C,,).

2. Set the main part up = w and C,,, = C, and step ¢ = 0. Set the subtree 7, to have
only the root u.

3. We iteratively sample cuts w; until STOPPING_ORACLE(wy, Ty,) returns True:
(a) Update t = ¢ + 1 and the radius R; = max.ec,, llc — m™||,.
(b) Sample a threshold cut w; = (i, ;) as follows. Sample i; € {1,2,--- ,d},
or € {—1,1}, and (6;)" € [0, (R¢)P] uniformly at random. Then, set 9J; =
m;‘t + 0',59,5.
(c) If the cut w; separates any two centers in C,,, then
¢ Add two new children uy,, ur to the main part ug and split the centers into
two parts Cy,, = {c € Cy, : ¢;, <V }and Cy,, = {c € Cy, : ¢;, > Iy}
» Update the main part vy = vy, and C,, = C, if o, = 1; otherwise
up = upr and Cy, = C,,, (ug always contains m*).
4. Call PARTITION_LEAF(v) for each leaf v containing more than one center in the
subtree rooted at u.

5. Return the tree 7, rooted at node w.

Figure 1: Algorithm PARTITION_LEAF for explainable k-medians in £,

We now describe the procedure PARTITION_LEAF(u). The procedure PARTITION_LEAF(u) oper-
ates on a node u that contains a set of centers C,,. It first queries the oracle GET_ANCHOR to get an
anchor point m". We always refer to the leaf that contains m" as the main part, and denote it by ug.
Initially, we set ug = u.

PARTITION_LEAF iteratively splits the subset C, using randomized threshold cuts until the
STOPPING_ORACLE returns True. In each iteration ¢, it computes the maximum ¢,, distance from m*
to any center in the current main part Cy,, denoted by ; = max.ec,, |lc — m*"[|,. Then, it samples
a random threshold cut w; as follows. A coordinate i; € {1,2,---,d} and a sign oy € {—1,1}
are chosen uniformly at random. Next, it draws a random variable Z; uniformly from the interval
[0, (R;)P] and set §; = (Z;)'/P. The resulting threshold cut is w; = (i, 9;), where ¥, = my+oy -0y
If this threshold cut separates at least two centers in C,,,, the algorithm partitions the current main
part ug into two disjoint cells. It adds two children ur,ug to the node ug and assigns centers
Cy, = {c € Cyy : ¢i, < Ui} tonode uy, and centers C,,,, = {¢ € Cy, : ¢;, > ¥} to node
upr. The child node, either u;, or up, that contains anchor m" becomes the updated main part u.
This process continues until the STOPPING_ORACLE returns True. Finally, it recursively calls the
PARTITION_LEAF(v) on each leaf v that contains more than one center in the subtree rooted at .

3 Analysis of approximation factor

In this section, we provide the approximation guarantees for our algorithm.

Theorem 3.1. Given a set of points X and a set of k centers C, for any p > 1, Algorithm finds a
threshold tree ‘T with k leaves that has k-medians cost

E[cost,(X,T)] < O (p~ (log /4;)1+%_P% log log k;) cost, (X, C).

We analyze the approximation guarantee by bounding the expected cost incurred by each point x € X.
Fix an arbitrary point z € X and let ¢ € C be its closest center. We show that the expected cost of



assigning z in the constructed threshold tree 7 is bounded by
E[cost,(z,T)] < O (p - (log k)1+%_p%‘ loglog k:) |z — cllp. (1

If x equals its closest center ¢, then x is always assigned to ¢ by any tree 7, and thus incurs zero cost,
costy(z, T) = 0. In this case, the above bound holds trivially. Therefore, we may assume from now
on that x # c.

Consider the path from the root to the leaf in the tree that contains this point . We index the node on
this path by ¢t = 1,2, -- , T, where u; is the root of the tree and uy is the leaf that contains x. Let T;
be the partially built tree when the node u, is generated in the algorithm. Given any tree 7y, let 7; ()
be the closest center in the same leaf as x in tree ;. We define the following upper bound on the
approximation factor.

Definition 3.2. Let Ay, be the smallest number such that the following inequality holds for every
partially built tree Ty,
E [costy (2, T) | Te] < Ak - ||z = Te()]|-

Since all centers are contained in the root u;, we have 71 (2) = ¢. Thus, we have Ay, is an upper
bound on the approximation factor. We then prove the following lemma, which provides a recurrence
relation for bounding Ay.

Lemma 3.3. For some absolute constant > 0, we have for any step t*

costy,(z,T)

E|l— 7
[ = Te- (@)l

(7| <34 2254 5 plog k)5 - log( Ay log? b).

We first show how to use Lemma 3.3 to get the desired bound on Ay, which also provides the
approximation factor for the algorithm.

Proof of Theorem 3.1. By Lemma 3.3 and the definition of Ay, we get the following recurrence
11

relation on Ay, A < 3+ 2‘% + 8 - p(log k)1+5 »% - log(Ay log? k). Then, we have that Ay, is

bounded by Ay < O <p(log k)57 loglog k) By the definition of Ay, we bound the expected

cost of any point € X given by tree 7 as shown in Equation (1). By taking the sum over all points
in X, we get the approximation factor for the algorithm. O

3.1 Radius and diameter bounds

Before proving the main recurrence lemma, we establish several key results that describe how the
radius and diameter of clusters evolve during the recursive partitioning process. These results serve
as essential tools in our main proof. We defer the proofs to Appendix A.1.

We first show that the radius R,, decreases exponentially in one partition leaf call. Consider any
partition leaf call on a node u. Let R; be the radius of the main part before the iteration ¢ of this
partition leaf call. Then, we have R; = R,. We use 7; to denote the partial tree given by the
algorithm before the iteration ¢ of this partition leaf call.

Lemma 3.4. Consider any partition leaf call on node u. Let L = [2PT3dn k]. Then for every t > 1,
we have Pr{Ry, 1, > Ry /2| T{} < 75.

We define the diameter of a node u to be D,, := max, «ecc, ||c — '||,. We use the following relation
between R,, and D,, for a node w at the beginning of a partition leaf call, which generalizes Lemma
6.1 in Makarychev and Shan (2022) to £, norm.

Lemma 3.5 (Lemma 6.1 in Makarychev and Shan (2022)). For every node u on which the algorithm
calls partition leaf, we have Ru/41/p <D, <2R,.

We define l~)u for every node u as follows. If the algorithm calls partition leaf on node u, then
D, = D,. Now consider any node v in the partition leaf call of a node w, on which the algorithm
does not call the partition leaf. Let d(u,v) be the distance from v to w in the tree. We set D,, =

7

max {Dv, D, - %} . By the definition, D, is an upper bound of the diameter D,, for every node



u. We now show that D,, is non-increasing along any path from the root to a leaf in the tree. Since
R, is non-increasing in one partition leaf call, D, is also non-increasing in one partition leaf call.
Moreover, since BU > D, for every node v and 5u = D, on node u where the algorithm calls
partition leaf, we have EU is also non-increasing across partition leaf calls.

Lemma 3.6. For every node u, we have Ru/41/” < l~)u <2R,.

We then show that D,, decreases exponentially along any path from the root to a leaf in the tree.

Lemma 3.7. Let L' = [227%6d1n k). For every node w, let node v be any descendant of u at depth
L' in the tree T. Then, we have Pr{D, > D,,/2 | T,} < 5.

3.2 Recurrence lemma

In this section, we provide a proof overview of Lemma 3.3, which establishes the recurrence relation
of Aj. The details of the proof are deferred to Appendix A.2.

We fix an arbitrary point x € X. Without loss of generality, we consider the step t* = 1 and then
Ti- (x) = cis the closest center to = in C'. We then focus on the nodes in 7 that contain this point
x, which form a path from the root to the leaf containing . We index the node along this path by
stept =1,2,---, T, where u; is the root of the tree and u is the leaf that contains x. Let 7T; be the
partially built tree when the node u; is generated in the algorithm.

‘We now bound the cost of this point « given by the tree 7. We begin by assuming that the radius
R; and the diameter substitute D; decrease by a factor of 2 after every L and L’ steps, respectively.
By Lemma 3.4 and 3.7, and applying the union bound over all iterations, this good event holds with
probability at least 1 — 1/k. If this good event fails to hold, then we simply upper bound the expected
cost of z by A||x — ¢||,,, which contributes the Ay, /k factor.

Consider a node u; such that both  and c are contained in u;, and let w; be the cut sampled at this
node. Let C; be the set of centers contained in u; and D; be the diameter of u;. If  and ¢ are
separated by this cut wy, then x is eventually assigned to a different center in C; by 7. By the triangle
inequality, we have the cost of = in 7 is at most ||z — c||, + D;. Alternatively, we can use a more
refined bound based on the notion of the fallback center, following the approach in Makarychev and
Shan (2021, 2022). If z is separated from c by this cut w;, then we define the fallback center of z to
be the closest center ¢’ € Cy41 to z that is not separated from 2 by this cut w;. This fallback center
depends on the tree 7" and the cut w;. Let M, (w;) denote the distance fro m x to the fallback center.
Then, by the definition of Ay, the expected cost of 2 can also be upper bounded by Ay M (w;).

We now partition the steps {1,2,---, 7T} into three disjoint cases based on the radius R; and the
fallback distance M;(w) as follows. We introduce the following definitions.

Definition 3.8. For a fixed parameter oo > 0, we say that step t is a light step if the radius satisfies
Ry < 6log“k- max{||x - mt||p, llc — mt||p} .

Otherwise, step t is called a heavy step.

If  and c are separated by a cut w;, then we refer to this cut as a light cut if step ¢ is a light step, and
a heavy cut if step ¢ is a heavy step.

Definition 3.9. For each step t, we say a cut wy separating x and c a safe cut if A, My(w;) <
Otherwise, this cut wy is called an unsafe cut.

Ry
6P log? k*

Therefore, if x and c are separated by the tree 7, then exactly one of the following three events must
occur: (1) they are separated by a safe cut; (2) they are separated by a light cut; (3) they are separated
by a heavy and unsafe cut. We then show how to bound the contribution of each case to the expected
cost separately.

Safe cut: Suppose x and c are contained in node w;. The probability that = and c are separated by the
cut w; 1s at most

1 T—c x—mt|E7t + |jc — mt|p~t
Pr{z & c separated by w; | T;} < 2 7l Il ﬂgi | I )
t




In this case, we use Ay M, as the upper bound of the expected cost since it is much smaller than

the radius R;. We show that 3R; > ||z — m!||, + ||c — m!||,. Thus, the expected cost of a safe
cut at step ¢ is at most 5 - % 3771 ||z — ¢||,. In each partition leaf call, we know that M; is
non-decreasing as ¢ increases and R; decreases by a factor of 2 after every L steps. Hence, A M; /R,

forms an increasing geometric series in every L steps. Since Ay M;/R; < 1/(6” log® k) for safe cuts,
the expected cost due to safe cuts in one partition leaf call is at most

p 2 -1 1

L. . 3P . — <Ol — — X
2d 61’ logQ k ||J) CHP — (10gk> ||'T C”P

Combining over all O(log k) partition leaf calls, this case is bounded by O(1) - ||z — ||,

Light cut: Consider the node u; contains x and c. The probability that = or c is separated from the
anchor m! by wy is at least
1 max{|lz — m'|[}, |lc — m'|I}}

Pr{z or c separated from m’ by w; | T;} > — - 7
2d R}

Thus, in each partition leaf call, the probability that x and c are separated by a light cut at the end of
the partition leaf call is most

pllz — cllp(llz — m! 51 + [le — m![[E~1)

max{[|lz —m*[|p, lc — m* ||}

We upper bound the expected penalty by Dy < 2R; < 12log™ k - max {|lz — m!|,, |[c — m'||,} by
the definition of a light cut. Since the number of partition leaf calls is at most O (log k), the expected
cost due to a light cut is at most

pllz = cllp(lz = m! |57 + [lc — m![[571)

O(logk) - Dy < O(plog" ™t k)||z = ¢[|,-

max{[lz —mt(|p, [lc — m*[;}

Heavy and unsafe cut: Consider a heavy step ¢ when x and c are contained in node u;. For
each coordinate i, we define U;(t) = {¥ : (4,9) is unsafe} to be all thresholds ¢ such that the cut
wy = (7,19) is unsafe at step ¢. Let d;(¢) be the Lebesgue measure of the unsafe threshold U (¢). Then,
the probability that z and c are separated by an unsafe cut at the heavy step ¢ is at most

d t tp—1
P max{|z; — m}|, |e; — mi|}P
. i i (1),

Note that all steps in Ps in one partition leaf call s uses the same anchor point m®. Let P, C P
be all heavy steps in the partition leaf call. We define a vector A(s) € R% whose i-th coordinate is
A;(s) = >, ps 0i(t). By summing the above separation probability over all steps in P, and applying
Holder’s inequglity, the probability that = and c are separated by a heavy and unsafe cut in partition

leaf call s is at most 1 p—1
o = me " + fle = m |3

p
RG] 7

In this case, we upper bound the penalty of separation by D; < 2R;. Since R, > 6log®k -
max {||z — m'||,, |lc — m'||,} for heavy steps, we have the expected penalty due to heavy and

unsafe cuts is at most
s

p 2
aq W : Z HA(S)Hp-

s=1

We then bound Ele [IA(s)]|p- Since the number of partition leaf calls is S = O(log k), we show

that
s

> Als)

s=1

S
D Ay <log' 7 k
s=1

p
Consider any fixed cut w = (i,1) that separates x and c. This cut is unsafe at step ¢ if and only
if M;(w) > R;/(67logk - Ay,). Moreover, it always holds M,(w) < D;. By Lemma 3.6, we



have R; > ﬁt and ﬁt > Dy. Since by Lemma 3.7, ﬁt decreases by a factor of 2 after every
L' = [2%%6d1n k] steps, this cut w is unsafe in at most L’ - log(2 - 6” log® k - Ay,) steps. Thus, we

have
S

> A(s)

s=1

<O - dlogk - plog(log” k - Ay))||x — |-

p
Therefore, the expected cost due to heavy and unsafe cuts is at most

0 ((1og k)25~ og(10g2 k Ak)> Iz — ¢,

Finally, combining all three cases and taking v = 1/p — 1/p%, we get the conclusion.

4 Lower bounds

In this section, we present two lower bound results for explainable k-medians under ¢, norms. First,
we provide an Q(log k) lower bound on the competitive ratio of explainable k-medians under ¢,
norm, for any fixed p > 1. Second, we show that no explainable clustering algorithm can, without
knowing p in advance, achieve a good competitive ratio simultaneously for all p > 1. In particular,
there exists an instance on which any such algorithm incurs a competitive ratio of Q(dl/ 4) for some
p=>1

We extend the lower bound instance for explainable k-medians in ¢5 by Makarychev and Shan (2021)
to all £, norms with p > 1. The proof is provided in Appendix D.

Theorem 4.1. For every p > 1, there exists an instance X C R?, such that for every threshold tree
T, its clustering cost is at least cost, (X, T) = Q(log k)OPTy, ,(X), where OPTy, ,(X) is the ¢,

cost of the optimal (unconstrained) k-medians clustering of X.

The competitive ratio of our algorithm is upper bounded by O(p(log k)1+1/P=1/P*)_ Thus, for ever
p g pp y g y
p > 1, there remains an O((log k)*/?~1/7") gap, which is maximized at p = 2 as O(log'/* k).

We then investigate whether it is possible to design an explainable clustering algorithm that, without
knowing p in advance, produces a single threshold tree (or a distribution over threshold trees) with a
good competitive ratio for all p > 1 simultaneously. The following theorem shows that this is not
possible. The proof is in the Appendix C.

Theorem 4.2. There exists an instance X C RY, such that for any distribution over threshold trees,
the expected competitive ratio is at least Q(dl/ 4) for some p > 1.

S Dynamic algorithm

In this section, we present a dynamic algorithm for the setting where the input set of points X and
centers C' change over time. We show that after each update, our algorithm maintains a threshold tree
with low k-medians cost and analyze its update time and recourse.

Let X1, Xo,..., X4, ... denote a changing data set after each update ¢ and let C;,C5, ..., Cy, ...
be the corresponding sequence of center sets. Our goal is to output after each update ¢ a threshold
tree 7; with |C;| leaves that approximates the clustering of X; with centers C;. Similarly to the static
setting, our dynamic algorithm only depends on the center sets to construct the trees 7;. Thus, we
focus on the setting where the center sets change through a sequence of insertion or deletion requests,
i.e. Cy = Cy_1 U{c}, if ¢ is an insertion request of a new center ¢, or C; = Cy_1 \ {c}, if tisa
deletion request of an existing center ¢ € C;_1. We show the following theorem, with the proof in
Appendix B.

Theorem 5.1. Given a sequence of requests, where each request is either an insertion or a deletion
of a single center in R, there is a dynamic algorithm that for each center set Cy, outputs a threshold
tree T; such that for any data set X C RY,

E[cost, (X, T;)] < O(p - (log kt)lﬂ/”*l/p?' log log k¢) cost, (X, Cy),

where k;, = |Cy|. The amortized update time of the algorithm is O(dlog® k) and the amortized
recourse (number of tree nodes updated) is O(log k), where k = max!_, |C;|.



Note that naively classifying a data point x using a threshold tree 7; takes O(k) time in the worst case,
if T; has height O(k). In contrast, our dynamic algorithm efficiently updates the current threshold

tree in only O(d log® k) time, by modifying on average O(log k) nodes after each request.

Moreover, our dynamic algorithm extends naturally to the fully-dynamic explainable clustering
setting, where the input is a stream of insertion or deletion requests of data points instead of centers.
Specifically, we invoke a fully-dynamic clustering algorithm by Bhattacharya et al. (2025) to maintain
a sequence of center sets C; that provide a constant-factor approximation on X;. Since the algorithm
of Bhattacharya et al. (2025) guarantees that only O(1) centers change on average after each update,
our dynamic algorithm applies directly by treating each center change as a center update request and
invoking Theorem 5.1. See Corollary B.6 for the formal statement.

To implement our dynamic algorithm, we reinterpret the PARTITION_LEAF procedure (Figure 1)
in an equivalent but more convenient way using the exponential clock. This version generates all
random cuts in advance. Without loss of generality, we assume that all centers lie within [—1, 1]¢;
otherwise, we rescale the instance accordingly. The procedure generates an infinite sequence of
candidate cuts wy,ws, . . ., where each cut w; = (i;,¥;) is constructed as follows: a coordinate i;, a
sign oy € {—1,1}, and a parameter Z, € [0, 27] are sampled uniformly at random. The threshold is
then set to ¥, = m;, + oy - (Zt)l/ P where m denotes the anchor point. Additionally, each cut w; is
assigned an arrival time p, such that p; < py < ... follows the arrival times of a Poisson Process
with rate A = 1.

The algorithm attempts the next cut (wy, p;) in the sequence until the STOPPING_ORACLE returns
True. If w; separates at least two centers from the main part, the cut is made; otherwise, it is ignored.
Since the arrival times p, are independent of cut choices wy, this version yields the same distribution of
threshold trees as the original PARTITION_LEAF procedure. These arrival times p; are crucial for the
design of our dynamic algorithm. In the following discussion, we assume there is a data structure that
stores this sequence of cuts with their arrival times. It also provides a function GET_EARLIEST_CUT
that takes a center ¢ and returns the earliest cut w from the sequence that separates c and the anchor m.

We provide a dynamic implementation of the PARTITION_LEAF procedure, which we apply recur-
sively to obtain a fully dynamic version of the entire clustering algorithm. The dynamic variant of
PARTITION_LEAF supports three operations: (1) REBUILD, (2) INSERT CENTER, and (3) DELETE
CENTER. We now briefly describe each of these operations.

Rebuild: Reconstruct the subtree rooted at node wu, partitioning all centers in C,, into distinct leaves
via recursive calls to the PARTITION_LEAF procedure. In particular, GET_ANCHOR(C,,) returns the
true coordinate-wise median of the centers C,, and STOPPING_ORACLE(w;, 7;) returns True if and
only if the main part after w; contains at most |C,,|/2 centers. The REBUILD operation is initially
called for C;. Next, for every node u where a REBUILD has been called, we keep the number of
centers k,, = |C,,| contained in u at the timestep it was last rebuilt, and also track the number of
updates (insertions / deletions) of u since that timestep. If this counter exceeds k,, /4, the operation
REBUILD is called again at node .

Insert: Suppose a new center c is inserted. The algorithm calls GET_EARLIEST_CUT to find the
earliest cut w in the pre-generated sequence with its arrival time p that separates ¢ from the anchor
m®. Let (W], p}), -+, (wl, pl.) be the cuts currently used in this partition leaf call. Let p* be the
stopping time assigned to this partition leaf call during its most recent rebuild. We consider three
cases as follows: (1) p = p); for some j € [r]; (2) p > p*; (3) p < p* and p # p); for any j € [r].

Case (1): Assign this new center c to the node v generated by cut w§ and recursively maintain the
partition leaf call rooted at v.

Case (2): This new center ¢ remains in the main part ug until this partition leaf call ends. We then
recursively maintain the partition leaf call on the main part ug.

Case (3): It finds the smallest index j € [r] such that p < p’; or sets j = 7 + 1 if no such index exists.
Then we insert this new cut w at position j and add a new leaf node containing c to the tree.

Delete: Now suppose a center ¢ € C, is deleted. We locate the leaf node containing c in this partition
leaf call. If this leaf contains only one center ¢, we remove both the leaf and the cut that created it.
Otherwise, we delete ¢ from the leaf and maintain the next partition call recursively.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide complete proofs of all the claims we make in the abstract, intro-
duction, and other sections of the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
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Justification: The performance of the algorithms is analyzed without making any assump-
tions about the data.

Guidelines:

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide complete proofs of all our results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and confirm that this
research was conducted in accordance with it.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on the development and analysis of approximation algo-
rithms for explainable k-medians clustering under general £, norms. It does not develop
any technology that has harmful or malicious applications. As such, we believe there are no
direct negative societal impacts resulting from the work in its current form.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release any assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs in Section 3

A.1 Proofs in Section 3.1

Lemma 3.4. Consider any partition leaf call on node u. Let L = [2PT3dn k]. Then for every t > 1,
we have Pr{Ry, 1, > Ry /2 | T;} < 5.

Proof of Lemma 3.4. Let C; be the centers contained in the main part before the iteration ¢ of the
partition leaf call. Then, we have C; = C, be the set of centers contained in node u. Let m* be
the median of centers in C,,. Consider any center ¢ € Cy with ||c — m"||, > R;/2. Suppose the
algorithm chooses the coordinate ¢ at iteration ¢. Then, this center c is separating from m* at iteration
t if and only if oy = sgn(c; —m}) and 6, € (0, |c; — m¥|]. Thus, we have

1le; —mi'f?

Pr{c,m" are separated att | T;,i; = i} = 7
2 R}

Combining all coordinates, the probability that c is separated from m™" at iteration ¢ is at least

Pr{c,m" are separated at ¢t | T;} = - Pr{c, m" are separated at ¢ | Ty, i, =i}

=
e

i=1

u

1 e —m@P 1 [le—m"|5 11
« 2d R 24 RY T 2d-20  2rtid’

?

Since in one partition leaf call, the radius R, is non-increasing as ¢ increases, for any iteration t' > ¢,
we have ||c—m"||, > Ry /2. Hence, conditioned on 7, if ¢ is not separated from m* before iteration
t' > t, then c is separated from m™ at iteration ¢’ with probability at least 1/27+14. Therefore, the
probability that c is not separated from m* after L = [2P73d In k] iterations is at most

L
- 1) cewno L
vtlq )~ B

Since there are at most & centers with distance to m™ greater than R, /2, by the union bound over all
such centers, we have

1
O

We show the following relation between the radius R,, and the diameter D,, for each node u on which
the algorithm calls the partition leaf.

Lemma 3.5 (Lemma 6.1 in Makarychev and Shan (2022)). For every node u on which the algorithm
calls partition leaf, we have Ru/41/” <D, <2R,.

Proof of Lemma 3.5. It is easy to get the second bound from the triangle inequality of the £, norm.
Let m" be the median of centers in C,,. We have for any two centers ¢, ¢’ € C{,

le = llp < lle=m*[lp + [[m* = ll, < 2Ru.

We then show the first bound. For any function f : C,, — R, let avg,c, f(c) = ﬁ >eec, f(e)

be the average of f(c) over all centers in C,,. Let ¢’ = arg max, ., |lc —m"|, be the center that is
farthest from the median m™ in £, norm. For any pair of centers ¢, ¢ € C,, the distance between c
and ¢ is at most the diameter of u, ||c — é||, < D,,. Thus, we have

d d

Dy > avgeec, I — clly = avg.ee, Z ¢ —al” = Z avgeec,
i=1 i=1

/
c; — ¢ |P.
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Since m™ is the output of GET_ANCHOR which always returns an approximate median of the centers
in C,, at least % of the centers ¢ € C,, lie on the opposite side of the hyperplane {z : z; = m¥} from
the center ¢’. Thus, for these centers ¢ € Cu, we have |c] — ¢;| > |} — m}|. As aresult

d
1 1
D> ) avgeec, I — >Z e —milr = - = mtp = TR,

=1

which implies R, /4'/? < D,,. O

Lemma 3.6. For every node u, we have Ru/41/p < ﬁu <2R,.

Proof of Lemma 3.6. For any node u on which the algorithm calls the partition leaf, we have D, =
D,. By Lemma 3.5, we have R, /4"/? < D, < 2R,.

We then consider any node v which is not a partition leaf call node. Let u be the node of partition leaf
call that generates the node v. Since D < 2R,, we have D Ry / R, <2R,. Note that D, < 2R,,.
Thus, we have D,, < 2R,. Since D,, > R, /4*/?, we have D,, > D, - R,/R, > R, /4/?. O

We then show that Eu decreases exponentially along any path from the root to a leaf in the tree. First,
we show that any pair of centers that are far apart in the node are separated with high probability. Let
T, be the partial tree when node w is generated in the algorithm.

Lemma A.1. For every two centers ¢’ and ¢ in Cy, at distance at least D,, /2,

1
/ 1
Pr{c’, " are separated at u | T, } > T o
Proof. Suppose the algorithm picks coordinate ¢ at node . For every two centers ¢/, ¢’ € C,,, we
consider the following two cases: (1) ¢’ and ¢”” are on the same side of the median m™ in coordinate
1; (2) ¢ and ¢’ are on the opposite side of the median m* on coordinate 3.

For the ﬁrst case, without loss of generality, we assume that c;' > cg > m;'. Then, two centers
¢ and ¢ are separated by the cut at node u if and only if the algorithm picks o, = 1 and 6, €

(¢, —m¥, ¢! —m¥]. Let T, be the partial tree when node u is generated. Then, we have
. . 1 (! —m¥)P — (¢ — m¥)P
Pr{c,c" are separated at u | i, =i, T, } == - (cs ) p( g )
2 Ry
(e =
jtl 2Rﬁ )
where the inequality is because a? is convex and increasing on [0, 00).
For the second case, cg and c are on the opposite side of m;'. Assume that cg >mi > c ' Thus,
centers ¢’ and ¢ are separated by the cut at node v if and only ifo =+1,60 € ( ; — m}'] or
o=-1,0 € (0,c] —m}]. Thus, we have
. ) 1 |/ —m¥P + |t — m¥P
Pr{c, " are separated at u | i,, = 4, T, } =3 i i Rp‘ ! i
| 1 /|p/2p 1
2—17,
2Ry

where the inequality is from (a? + b?)/2 > ((a + b)/2)? for a,b > 0 since 2? is convex on [0, 00).

Combining all coordinates, we have the probability that ¢’ and ¢’ are separated at node u is at least

d /" /
1| =g " =5
o 7 (] p
Pr{c’, " are separated at u | T, } > ; 7 R, 2 dRR.)P
Since D,, > R, /4'/?, we have for every two centers ¢/, ¢’ € C,, with ||¢” — dlp > D /2,
R 11
~ 420 d(2R,)r  22+24

Pr{c, " are separated at u | T,
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Lemma 3.7. Let L' = [22P%SdIn k]. For every node u, let node v be any descendant of u at depth
L' in the tree T. Then, we have Pr{D, > D, /2 | T,} < 7.

Proof of Lemma 3.7. Let v’ be the node at which the algorithm calls the partition leaf that generates
the node v. Then, we consider two cases: (1) d(v',v) > 4 - L; (2) d(v',v) < 4 - L, where
L = [2P*3dIn k] used in Lemma 3.4.

In the first case, by Lemma 3.4, we have with probability at least (1 — 1/k3)* > 1 —4/k> (where we
used Bernoulli’s inequality),
Ry 41/»p,, D’

. < Zu

<2 ——-
24 — 24 -2

E1)§2RUS2'

In the second case, we have d(u,u') > d(u,v) — d(v,u’) > 2??*5dInk. Thus, by Lemma A.1,
we have every two centers in node u at distance of at least D,, /2 are not separated at node u’ with

probability at most
2275 qIn k
1 1 < 1
d- 2202 =k

By the union bound over all pairs of centers and all nodes, we have with probability at least 1 — 1/k3,
all such pairs are separated at node u’. Thus, we have with probability at least 1 — 4/k3

L D,
Dv < Du’ = Du/ < 7

A.2 Proof of Lemma 3.3

Lemma 3.3. For some absolute constant 3 > 0, we have for any step t*

costy(z, T)

24y 1_ 1
e T@l, | <3+ =FE 4+ B pllogh)' "7 -log(Ay log” k).
* P

k

Proof of Lemma 3.3. Fix an arbitrary point x € X. Without loss of generality, suppose the step
t* = 1, in which case T« () = c is the closest center to x in C. Otherwise, if t* > 1, then
conditioned on 7;~, we consider the subinstance consisting of centers that lie in the same leaf of 7+
as .

We consider all steps in which the algorithm samples a cut to split the node containing x in the partial
tree. With a slight abuse of notation, we index these steps by ¢ = 1,2, .... Note that some of these
sampled cuts may be rejected by the algorithm if they fail to separate any centers within the node.
Let 7; be the partially built tree before the cut at step ¢ and let u; be the node containing z in 7.
The sequence of nodes w1, us, ... thus form a path from the root to the leaf in the final tree 7 that
contains z.> We divide the iterations into consecutive parts Py, - - - , Pg, each corresponding to one of
the S partition leaf calls. Within each part Ps, all steps ¢ € P, for ¢ € P, occur in the same partition
leaf call and share the same anchor point m?. Since the STOPPING_ORACLE ensures that for each
PARTITION_LEAF call, when partitioning stops, each leaf contains at most a 7 fraction of the centers
in its root for some constant 4 < 1, the number of partition leaf calls is bounded by O(log k).

Suppose that at step ¢, the point x and the center c are contained in the same node wu; before the cut
is applied. Let w; = (7,9) be the cut selected by the algorithm at this step. We define the penalty
@+(wy), or equivalently ¢, (%, ), for the cut (¢,9) at step t as follows. If 2 and c are not separated by
cut (4,7), then we set ¢, (i, 9) = 0. Otherwise, the penalty is given by

(i 0) = Blcosty(z, T) | T, wr = (i,9)] — [l — ¢llp.

We now show two upper bounds on this penalty term. Conditioned on the partial tree 7;, we know
that in the final tree 7, the point  must eventually be assigned to a center in C,,, the set of centers

2Some of the nodes in the path may appear multiple times in the sequence since certain cuts may be rejected
by the algorithm, leaving the node containing x unchanged.

22



contained in node u,. By the triangle inequality, the final cost for x is at most ||z — ¢||, + Dy,
where D, is the diameter of node u;. Thus, the penalty is at most D;. If z and c are separated
by cut (i,9) at iteration ¢, then we call the center ¢’ closest to x in us41 as the fallback center.
Define M (i,9) = ||z — ¢/||, as the distance from z to its fallback center. By the definition of
Ay, we have the penalty in this case is at most Ay, - M;(7,19). Combining both bounds, we obtain
d)t (Z, 19) S Inin{Dt, AkMt (’L, 19)}

Let L = [2P*3dInk] and L' = [22PT6d1n k]. We define the stopping time 7 to be the first step ¢
such that one of the following events happens: (1) R, < ||z — ¢||,; (2)  and ¢ are separated by the

cut chosen at step t; (3) D, > D,y /2fort > L'; (4) Ry > Ry_r,/2 fort > L. We define four
disjoint events as follows,

« & ={R: <|lz—c|p},

* & = {z and c are separated by the cut chosen at step 7} \ &1,

e &5 = {57— > 5.,-,[//2,7’ > LI} \ (51 Ugg),

c&i={R; > R;_/2,7> L}\ (E1UE U E).
We call &, & good events and &3, &4 bad events. By Lemma 3.4 and 3.7, we have that the events 3
and &£, happen with probability at most Pr{&€3} < 1/k and Pr{&,} < 1/k. If either &5 or &, occurs,

we upper bound the expected cost of  in 7 by Ay, - ||z — ¢|,, since = and ¢ remain unseparated at
step 7. Therefore, the expected cost of point x given by the tree 7 is at most

E[costy(z, T)] = Elcosty(z, T) 1{& U E}] + Elcosty,(z, T) | E3 U E4] Pr{&€3 U &}

2
< Efcost,(x, T) 1{& U &} + Agllx — ¢, - s

We then bound the expected cost of point 2 under the good events, E[cost, (z, T) 1{&1 U &}].

When the event £ happens, we have x and ¢ are not separated before step 7. Since the diameters of
nodes containing x are non-increasing, the final cost for z in this case can be bounded by

le —clly + D <l — clly + 2R, < 3]l — cl|,.
Thus, we have

Efcosty(z, T) 1{&1}] < 3[lw —cfl, - Pr{&r} < 3|z — cflp.

We now turn to analyzing the event £. We further partition this event based on the step at which x
and c are first separated. For each step t > 1, we define
&>+ = {x and c are separated by the cut chosen at step 7 & 7 =t} \ &1.

These events &, ; are disjoint and we have & = Ut>1 &y.+. Therefore, the expected cost of = under
&, can be expressed as

(oo}

E[cost,(z, T) 1{&}] = Z E[cost,(z,T) 1{&,. }].

t=1
We upper bound the expected cost of = under event £ by Lemma A.2.

By combining all events &1, &, £3, £4, we have that the expected cost of x is at most

E[cost,(z, T)] =E[cost,(z, T) 1{&E1}] + E[cost, (z, T) 1{&E2}] + E[cost, (z, T) 1{E3 U E4}]

< (3+ 285 ) o el + Y- Bloutwn (&2

t=1
24 1
< (3 + Tk + 5 - p(log k)H?l” ” -log(Ay log? k)) |z — cllp,

where (3 is an absolute constant. We now proceed to prove Lemma A.2. O
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Lemma A.2. For some absolute constant 3 > 0, we have

S Elgi(wr) 12} < 8- pllogk) 77 -log(Ax log? k) & — -

t=1

Proof. Under the event &;, the point = and the center ¢ are separated by a cut. We classify the cut
that separates x and c into three cases as follows. We first recall the definitions of light and heavy
steps, as well as safe and unsafe cuts, given in Definitions 3.8 and 3.9.

Fix a parameter o > 0 which is specified later. We say that the step ¢ is a light step if
Ry < 6log® kmax{||x — m'|,, [|c — m'[|,},

where m! is the anchor of the node u;. Otherwise, we call it a heavy step. Furthermore, if the cut
separates = and c at a light step, then we call it a light cut; otherwise, it is a heavy cut. Additionally,

at step ¢, we say that a cut w; = (¢,19) that separates x and c is safe, if
Ry

ApMe(3,9) < ————.
kM(3,9) 6P log2 k

Otherwise, we call this cut unsafe.

Then, we split the analysis into three cases: (1) safe cuts; (2) light and unsafe cuts; (3) heavy and
unsafe cuts.

Case 1 (Safe cuts): Suppose the event &, happens and x and c are separated by a safe cutw; = (i, 7).
By definition, a safe cut satisfies that the distance from z to the fallback center ¢’ after separation is
significantly smaller than the current radius, specifically Ay M;(i,9) < R;/(6P log? k). In this case,
we use Ay M;(i,19) as an upper bound on the penalty incurred by separating x and c.

For each step ¢, coordinate ¢ € {1,2,-- -, d}, and direction o € {—1, 1}, we define the safe cut set
R, Ry st
Girio =10 AM(i,m; +00) < ———— & (i,m; + o) separates z and ¢ ¢ ,
6” log” k

which contains all parameters @ € R such that the corresponding cut w; = (i, m! + o) is safe. Then,
the expected penalty due to safe cuts is at most

M8

E [¢1(we) 1{w, is safe} 1{&2 ; }]

~
Il
—

M

E [A My (it, m; + 040;) 1{6; € Gt 4, 0.} 1{E2,1}]

t=1
= ¢ ]. ¢ - 017_1
SZZ Z ?d/G | AkMt(’»mz‘"‘Ue)‘Tf'l{gz,t}-de
t=1i=1oe{-1,1} tyi,o
oo d .
1 A M, tyoh . gr—1
Y ¥ g AHEEEOLER e
N 2d G, Rt Rp ’
t=11i=1o0e{-1,1} tii,o t
Here, the second inequality uses the fact that the coordinate i is chosen uniformly from {1,2,--- ,d}

and the direction o is chosen uniformly from {—1, 1} and that 6 is drawn from a distribution with
density p#?~1/RY. The safe cuts are those with § € Gt

Now we derive an upper bound for 6/ R; to control the integral. Since center ¢ lies in node wu;, we
have ||c — m!||, < R;. Additionally, since the event £; does not occur, we have R; > ||z — ¢||,.
Using the triangle inequality, we have

|z — mt”p <z - CHp + [le — thp < 2R;.
Therefore, we have

3Ry 2 [l —m'[|p + [le = m"[lp.
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Furthermore, for any 6 € Gy ; ., the cut (4, mf + o0) separates x and ¢, which implies
0 < max{|z; — mt|, |e; — mi|}.
Therefore, conditioned on the event 1{& ¢} = 1, we have for any § € G, ; .,

0 3max{|z; — mt|, |c; — mt|}

B = o= mly+ e —mi,

We now analyze each partition leaf call separately. Fix a partition leaf call Ps. Throughout this
partition leaf call, the anchor m?® stays the same. Thus, the expected penalty due to safe cuts within
this call is at most

Z E [¢(wy) 1{w, is safe} 1{&> ; }]

“max{|z; — m$|, |c; — mg[}P~! Z Z / A My(i,m$ + o0) . df

P o 3P
<— - TRV
20 2 (el + om0 5 iy Jes R,

By Holder’s inequality, the expected penalty above is at most

p—1

i%mmm msl, e —ms |}
(lz = m*[l, + [l = m=[l,)?

=1

p

T =

d A M (i,m? + o6

i=1 \teP, oe{—1,1}’Ctic Ry
Then, we bound the two terms in the above formula separately. First, we have

d
> max{|a; —m;l, e —mi [} < |lz —m?||p + [l — m?|Jp.
i=1

Thus, we have the first term is

) p=1
Z3pmax{|x¢*mf|a|0i*mf|}p ’ < 3p1,
(lz — mo|lp + [l — mo[|, )P

i=1

We now bound the second term. Note that for any fixed cut w = (7, 9), the fallback distance M, (i, )
is non-decreasing with respect to the step ¢. Meanwhile, within each partition leaf call P, the radius
Ry is non-increasing and decreases by a factor of 2 after every L steps under event . Therefore, for
each coordinate i € {1,2,--- ,d}, we have

Z Z / AkMt Z m +O’9) .do

tePs oc{—1,1} Grio Ry

/Z Z AkMt((lRm +0'9)) 1{0€tha.} a0

tePs oe{—-1,1}

1
S4L S |l‘1 - Ci‘,
6 log” k
where the last inequality follows from the definition of safe cuts, which ensures that Ay M (i,9) <
ﬁ;% whenever 0 € Gy ; -, and %}”ﬁ) forms a geometric sequence increases by a factor of 2

every L steps. Therefore, we have the second term is at most

1
P\ »

d
A My ( 1
Yy oy [ ARCEETa) | car oo e
= 67 log” k

tePs oe{—1,1} Y Grio Ry

25



Since there are at most O(log k) partition leaf calls and L = [2P3d In k], the expected penalty due
to safe cuts is at most
p -1 1
O(logk) - — -3 -4L - — <O(p) - ||z —cllp-
(10g k) - 2 ol ellp < 0W) o =l

Case 2 (Light and unsafe cuts): In this case, we have that the radius R; is relatively small compared
to |z — m'||, and ||c — m?||,, specifically, R, < 6log™ k max{||z — m'|,, ||c — m!||,}. Therefore,
in this case, we use D; < 2R; as an upper bound on the penalty. Then, the expected penalty due to a
light and unsafe cut is

[M]8

i E [¢1(wy) 1{¢ is light} 1{w; is unsafe} 1{& ;}] <

t=1

E [¢1(wy) 1{¢ is light} 1{&5 ; }]

~
Il
-

M8

<Y E[2R, 1{t is light} 1{&,,,}].

~
I
—

For each step ¢, suppose both « and ¢ are contained in the node u;. We define the new event &/ as the
event that either z or c is first separated from the anchor m! by the cut chosen at step ¢. To bound the
expected penalty above, we show that

oo

> E[R, 1{tislight} 1{&,}] < 24plog® k- [lz — c[, - Y B[1{tis light} 1{&]}] .

t=1 t=1
To show this, we define the stochastic process {Yt}tzo as follows. Let Yy = 0 and for any ¢ > 1,

t

Yi =Y (Re &} — |z —cll, - 24plog® k 1{&],}) 1{t’ is light}.

t'=1

We now show that this stochastic process {Y}}+>o forms a supermartingale. Note that for each step
t > 1, we have

Y, =Y+ (Re 1€} — ||z —cll - 24plog™ k 1{&]}) 1{t is light}.

If step t is heavy, then Y; = Y;_;. In the following analysis, we focus on the case where ¢ is a light
step and both x and c are contained in the node u;. In this case, we first analyze the probability that
the chosen cut separates 2 and ¢, and the probability that separates either z or ¢ from the anchor m?.

Claim A.3. Suppose both x and c are contained in the node u; at this step t. Then, the probability
that x and c are separated by the chosen cut is at most

lz — m! |57 + [le — m! |7

Ry

Pr{x and c are separated at step t | T;} < ng —cllp

The probability that either x or c is first separated from m' by the cut chosen at step t is at least

max{||z —m|[7, [lc — m'|[}}

Ry

1
Pr{& | Ti} > 2

Thus, we have for a light step ¢,
E[Y, | Ti] = Yi—1 = Ry Pr{&, | Tt} — 24plog™ k - ||z — c||, Pr{&; | Ti}

= g + fle = mt

<Pl —c| o - o 22poa "k et Z ol e mll)
—d P RV P d RY

Py g, 2l e g (e = e )
—d P Rf_l Ry

<0

)
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where the last inequality follows from the definition of a light step. Therefore, {Y;}:>0 is a su-
permartingale. Hence, E[Y7] < E[Yy] for every fixed T'. Since E[Y;] = 0, we have E[Y7] < 0
and

T T
> E[R, 1{tislight} 1{&,}] < 24plog®k - [lz — c[, - Y B[1{tis light} 1{&]}] .
t=1 t=1
Letting T" — o0, we obtain

> E[R, 1{tislight} 1{&,;}] < 24plog® k- [|lz — c[, - Y B[1{tis light} 1{&]}].

t=1 t=1
To bound the right-hand side, it suffices to control the expected number of times the event £; occurs.
Recall that £/ denotes the event that either x or c is first separated from the anchor m? at step .

We begin by noting that the number of partition-leaf calls is at most O(log k). Within each partition-
leaf call, the anchor point m® remains fixed, and once x is separated from m?, it will no longer be
involved in further cuts associated with that anchor. Therefore, z can be separated from m! in at
most one step per partition-leaf call, contributing at most O(log k) occurrences of &/. Additionally,
observe that the center ¢ can be separated from the anchor m! without x being separated at most once.
After such a separation, ¢ will no longer lie in the same node as z and will not contribute to future
events &;.

Combining these observations, we conclude that the expected number of steps where £/ occurs is at
most O(log k), which yields

E Z di(we) 1{t is light} 1{w; is unsafe} 1{&>,}| < O (plog" "™ k) ||z — c|,-

t=1

Case 3 (Heavy and unsafe cuts): Suppose the event & ; occurs and that x and c are separated by an
unsafe cut w; = (4,1). For each step ¢, coordinate ¢ € {1,2,--- ,d}, and direction o € {—1,1}, we
define the the corresponding unsafe cut set as

Uiio = {0 s A My (i, mt + o0) > LtQ & (i, m} + o0) separates x and c} ,
' 6P log” k

that is, the set of threshold 6 for which the cut (7, m! + o) is both unsafe and separates  from c. Let
0i,0(t) = w(Ut,i,0) denote the Lebesgue measure of the set Uy ; » and define J;(t) = 6;,—1(¢)+6;,1(t)
as the total measure across both directions for coordinate .

Thus, the probability that w, is an unsafe cut is at most

1 .gp—1
Pr{w, is unsafe} =24 / P
U

-df
Ry

Jio

d
v max{lies = i, e ~ mt [}~
<2y Y i)

D
— R,
i=1oe{-1,1}

) ]
_p g max{le - mil o - milpt g
2d & Ry o

In this case, we use the radius 2R, as the upper bound on the penalty for separating = and c. Therefore,
the expected penalty incurred from heavy and unsafe cuts is bounded by

Z E [¢(w) 1{w, is unsafe} 1{¢ is heavy} 1{&s ; }]

t=1

< Z E [2R; Pr{w, is unsafe} 1{¢ is heavy} 1{&; ; }]

t=1
00 d ot v at[1p—1

<M E thgai(t)max{m m}'{;"l M s heavy} 1{Ex0} | -
t=1 i=1 t

27



Since step ¢ is heavy, we have R; > 6log® k - max{||z — m'|,, ||c — m?||,}, which implies
1
(61og™ k)P=t max{[lz — mylp, [l — me[lp 1=t

——1 H{tisheavy} <
t

Substituting this into the previous bound, we obtain that the expected penalty in this case is at most

oo

Z E [¢¢(w:) 1{w; is unsafe} 1{¢ is heavy} 1{&s ; }]

t=1
oo
<) E
t=1

Note that all steps within the same partition leaf call P share the same anchor point. Let m® denote
the anchor point used in the partition leaf call Py, and define A;(s) = >, p d;(t). Then, the
expected penalty above is at most ‘

P ma e, — mgl, e — imi [}~
1)55> Z T : et e
log ™t mas{ e — me Ty e 7,7

s=1teP, i=1

d t t|ip—1
max{|z; — mi|, |c; — m}
2 :p {l ‘ ‘ ‘} 1{52,t}‘| )

610ga k)=t maxt||z — mylp, e — 3P

5 _ _
D max{|z; —m$|,|c; — m3|}P~L
<E ENTA(s) _ L0 e &}
; d ; (6log® k)P=t max{[|z — m>||p, [lc — m=[|,}P~* t
Let A(s) denote the d-dimensional vector with coordinates A;(s) fori € {1,2,--- ,d}. Applying

Holder’s inequality, we get

Z E [¢¢(w;) 1{w, is unsafe} 1{¢ is heavy} 1{&s ; }]

t= l
p=1 p=1

B |So2, (zizl jos - mip) T+ (Sl —mip) T
< £
B 1) 1O G g b T — el o el Je T )

[ P, lz — me|2=1 + [le — ms 5!

<E = 1{&
: gd Mo G Tog™ T T max (e — mell Jle — molpr 1 Lo

W [Z 1Al - 1{52}] .

Finally, we use the following claim to bound the expected penalty.

Claim A.4. We have

ZIIA )y - 1{E} =0(4”'d-log2*%k-log<6p~Ak-1og2k>) Iz = cllp-

By Claim A.4, we have that the expected penalty in this case is at most

Z A - 1{52,t}]

p 9-1
SW -0 (4p -d- log » k- 10g(6p . Ak . 1og2 k)) ||1' _ CHp

<0 ((log k)> 7572~V -log( A - log” k) ) | = ]l

(61log” kp Id

Combining all three cases and setting o = 1/p — 1/p® we get the conclusion.

To complete the proof, we prove Claim A.3 and A.4 below. O
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Proof of Claim A.3. We first analyze the probability that z and c are separated by the cut chosen at
step t. To bound the separation probability, we fix a coordinate ¢ € {1,2,--- ,d} and consider the
probability that the cut on coordinate ¢ separates = and c.

Suppose z and c are on the same side of anchor m! in coordinate i. Then, the threshold cut

wy = (i,m! + o) separates z and c if and only if o has the same sign as z; — m! and 6 is between
|#; —m!| and |¢; — m}|. Thus, the separation probability on this coordinate is at most
t); t); t|p—1 t|p—1
1 e —milP — | = milP| _ p-maxfle; —mi|P—7 |ei —mi[P "}
2 RY - RY

where the inequality is from the mean value theorem.

|xi - ci|7

Suppose x and c are on the opposite side of anchor m! in coordinate 7. Then, the separation probability
on this coordinate is at most

U Jei = milP + o — mifP_ p-max{la; — miP~! e — miPTt}

2 RY = RY i =il
Combining all coordinates and applying Holder’s inequality, we obtain
d
1 . a P t p—1 R t p—1
,Zp m X{|.’,EZ m7,1|:ip 7|Cl mz| }'|xi_ci‘
i=1 t
p—1 p—1
P d P d P
<Lz el (Z 7 —mﬂp) + (Z e —mw)
t i=1 i=1
Py, S e
—d P R?

For point z, the probability that it is separated from m? at step ¢ is given by

1 im—mﬂp 1 e —mtp
2d~ R} 2 RV

An identical argument applies to the center ¢, yielding the same expression with ||c —m?*||». Therefore,
the probability that either z or c is separated from m! by the threshold cut at step ¢ is at least

1 max{flz —m!|]p, lc —m'|}}
2d RY ’

as claimed. O

To prove Claim A.4, we first show the following lemma.

Lemma A.5. For k vectors v',--- ,v* € R? that are entrywise non-negative, we have
k k
S o, < K[|
i=1 =1 |lp

Proof. We first upper bound the left-hand side. By Holder’s inequality, we have

k k . k % L k
S ol = 31 ol < (z wng) e (z wg)
=1 =1 =1 =1

We then lower bound the right-hand side. Since vectors v!, - - -, v* are nonnegative in every coordi-

nate, we have for any coordinate 7,

1
P

(2) =g



Combining all coordinates, we have

k p d k p d k k
RS 10 31 IED ) ST o{ 1
i=1 lp =1 \i=1 j=1i=1 i=1
Combining the two parts, we get the conclusion. O

Proof of Claim A.4. By Lemma A.5 and the number of partition leaf calls is at most O(log k), we
have

S S
E| > I1As)], - 14&}| <0 (log' 7 k) E |||SAes)| - 1{&}
s=1 s=1 p
For any fixed coordinate ¢, we have
S S o) 0o
DSTA) =D D6t =) 6i(t) = 2/1{9 € Uy }do +/1{9 € Ui _1}db.
s=1 s=1teP; t=1 t=1

We now show that each cut w = (4, ) that separates x and ¢ is unsafe in at most L” = L’ - log(6” -
Ay, -log® k) steps. Consider any cut w = (4,) that separates = and c. This cut w is unsafe at step ¢ if
and only if R; < 6P log2 k- Ax M, (i,9). For every step t, by the triangle inequality, the penalty to
the fallback center is at most M;(i,9) < Dy < ﬁt. We know that M (i,19) is non-decreasing as ¢
increases. Let ,, be the first step when w is unsafe. Let ¢/, be the last step when w is unsafe. Then,
by the definition of unsafe cut, we have R, < 67 log” k - A, M;_(i,9). Then, we have

~ R
Dy > My (w) > M (w) > +
¢ © 6P -log“ k - A
Since R;/4'/P < D; < 2R;, we have
Rtw Etw

Et/ 2 2 2 2 .
“ 6P -log"k- A~ 2-6P-log” k- A

By Lemma 3.7, we have D, decreases by a factor of 2 after L' = [22P*6dIn k| steps. Thus, we have
that the number of unsafe steps is at most

t —t, <L -logy(2- 67 -log>k - Ay) < O(4F - d - logk - plog(Ay - log® k)).

Therefore, we have that when the event £ happens,
s
Z Ai(s) < O(4P - d - logk - log(6P - Ay -log? k))|z; — cil.
s=1

Hence, combining all coordinates, we have

s
E||D A%s)| 1{&}] =04 d-logk log(6” - A - log® k)| — cll,,
s=1 P
which completes the proof. O

B Dynamic algorithm implementation and analysis

In this section, we provide the full description of the dynamic algorithm, along with an analysis of its
approximation guarantee, update time, and recourse.
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B.1 Dynamic algorithm and approximation guarantee

We begin by presenting the detailed dynamic algorithm and proving that, after each update, the
distribution of its output is equivalent to that of a corresponding static algorithm.

Lemma B.1. Given a sequence of k requests, where each request is either an insertion or a deletion
of a single center, let Ty be the threshold tree maintained by the dynamic algorithm for the center set
C. Let T be the tree constructed by the static algorithm PARTITION_LEAF (Figure 1) with specific

. . . d
oracles on centers Cy. Then, the two trees are identically distributed Ty = T

The following corollary is immediate from Lemma B.1 and Theorem 3.1.

Corollary B.2. Given a sequence of requests, where each request is either an insertion or a deletion
of a single center, the dynamic algorithm provides a threshold tree Ty for each center set Cy such that
for any set of points X,

E[cost, (X, T7)] = O (p(log kt)l“‘%_
where ky = |Cy|.

1
2

»2 log log kt) cost, (X, Ct),

We provide a dynamic implementation of the PARTITION_LEAF procedure in Figure 2, which is
applied recursively to obtain a fully dynamic version of the entire clustering algorithm. The dynamic
variant of PARTITION_LEAF supports three operations: (1) REBUILD, (2) INSERT CENTER, and (3)
DELETE CENTER.

We begin with the REBUILD operation, which reconstructs the subtree from scratch using the
PARTITION_LEAF procedure as follows.

REBUILD: Reconstruct the subtree rooted at node u, partitioning all centers in C,, into distinct
leaves via recursive calls to the PARTITION_LEAF procedure. During each such PARTITION_LEAF
call on node v in this operation, the following oracle outputs are used and remain fixed throughout
subsequent updates until the next rebuild:

¢ GET_ANCHOR sets the anchor m" as the coordinate-wise median of centers in C,.

* STOPPING_ORACLE determines whether to stop accepting further cuts based on a stopping
time p”. It returns True if and only if the the timestamp p of the input cut w satisfies p > p*.
The stopping time p is defined during the rebuild as the timestamp of the last accepted cut
such that the main part vy contains at most half of centers in C,, i.e. |Cy,| < |Cy|/2.

We now describe the condition under which the rebuild operation is triggered in the dynamic algorithm.
Let u be the node on which this operation is applied. Suppose a center c is inserted into or deleted
from the set of centers assigned to u. For each partition leaf call, we maintain a counter that tracks the
number of such updates since the last rebuild. Let k¥’ be the number of centers in node w at the time
of the last rebuild. When the update count exceeds &’/4, we rebuild the partial tree rooted at node w.

We now proceed to handle the update.

INSERT CENTER: Suppose a new center c is inserted in the subtree rooted at a node w. The algorithm
calls GET_EARLIEST_CUT to find the earliest cut w in the pre-generated sequence with its arrival
time p that separates ¢ from the anchor m". Let (wi, p}), -, (w.., pl.) be the cuts currently used
in this partition leaf call. Let p* be the stopping time assigned to this partition leaf call during its
most recent rebuild. We consider three cases as follows: (1) p = p; for some j € [r]; (2) p > p"; (3)

p < p*and p # p’; forany j € [r].

Case (1): Assign this new center c to the node v generated by cut w;. and recursively maintain the
partition leaf call rooted at v.

Case (2): This new center ¢ remains in the main part u( until this partition leaf call ends. We then
recursively maintain the partition leaf call on the main part ug.

Case (3): It finds the smallest index j € [r] such that p < p’; or sets j = 7 + 1 if no such index exists.
Then we insert this new cut w at position j and add a new leaf node containing c to the tree.

DELETE CENTER: Now suppose a center ¢ € C, is deleted. We locate the leaf node containing ¢ in
this partition leaf call. If this leaf contains only one center ¢, we remove both the leaf and the cut that
created it. Otherwise, we delete ¢ from the leaf and maintain the next partition call recursively.
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Algorithm DYNAMIC_PARTITION_LEAF

Input: A sequence of updates Q@ = (q1, g2, - - . ), Where each ¢ is either: INSERT(¢): insert a
new center ¢ € R?; or DELETE(c): delete a center c.

Output: For each update ¢; in ), maintain a threshold tree 7; over the current center set C;.
Main(Q):

1.
2.

Initialize the root r to be empty.
For each update ¢; at time ¢:

o If ¢; is INSERT(c): call INSERT_CENTER(c, ) where r is the root.
o If ¢; is DELETE(c): call DELETE_CENTER(c, ) where r is the root.
 Output the updated tree 7.

Procedure REBUILD(u):

1.

Let C,, be the current center set at u, set anchor m* be the coordinate-wise median
of centers C),. Initialize the main part ug = u.

2. Initialize an update counter at u to be Cnt,, = 0 and set k,, = |C,,|.

Compute a sequence of candidate cuts {(w¢, p¢)} using an exponential clock:

For each t, sample i, € [d], oy € {—1,1}, Z; ~ Unif[0,27]. Define the cut
wt = (it,V¢), where ¥y = m;, + at(Zt)l/ P Assign the timestamps p; as the arrival
times of a Poisson process.

Iterate over the cuts w; in increasing order of their timestamps p;. Accept it iff w;
separates two centers in the main part ug. After each accepted cut, update the main
part ug to the side containing the anchor. Stop when the main part contains fewer
than |C,,|/2 centers. Then, set the stopping time p“ to be the timestamp of the last
accepted cut,

p" = max{p; : cut w; is accepted}.

Call REBUILD(v) for each leaf v containing more than one center in the subtree
rooted at u.

Procedure INSERT_CENTER(c, u):

1.

2

Increment update counter at u; if updates exceed k,, /4, call REBUILD(u).

2. Get the earliest cut (w, p) = GET_EARLIEST_CUT(c) that separates ¢ and m*.
3.
4. If p = p; for some j:

Let (wi, p}),- ., (wl, pl.) be cuts used by u and p* be the stopping time.

Assign c to node v separated by the cut w;», and call INSERT_CENTER(c, v).

If p > p*: Assign c to the main part ug, and call INSERT_CENTER(c, ug).

6. If p < p" and p # pj for every j:

Insert new cut w into the sequence of cuts used by u, maintaining increasing order
by p. Create a new leaf node containing ¢, and attach it to the tree at the cut point.
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Procedure DELETE_CENTER(c, u):
1. Increment update counter at u; if updates exceed k,, /4, call REBUILD(u).
2. Locate the leaf node v containing c.
3. If the leaf contains only c: Remove both the leaf and its parent cut.
4. Else: Delete ¢ from the leaf v and call DELETE_CENTER(c, v).

Figure 2: Dynamic algorithm for explainable k-medians in £,

Proof of Lemma B.1. We describe an implementation of the static algorithm on the set of centers C',
using specific oracles GET_ANCHOR and STOPPING_ORACLE.

To couple with the dynamic algorithm, we mirror each partition leaf call currently maintained in the
dynamic algorithm solution. We begin with the partition leaf call at the root node. Let ¢’ < ¢ denote
the time of the most recent rebuild of this root partition leaf as of time ¢, and let k = |Cy/| be the
number centers present at that rebuild time. Assume both the dynamic and static algorithms use the
same infinite sequence of candidate cuts with associated timestamps for the root PARTITION_LEAF
call.

For any fixed sequence of cuts with timestamps, let m” be the anchor and p” be the stopping time
used by the dynamic algorithm for this root partition leaf. In the static algorithm, we adopt the same
oracles as the dynamic one: the oracle GET_ANCHOR returns m" and STOPPING_ORACLE returns
True if and only if the timestamp of the input cut exceeds p”. As a result, the static algorithm accepts
exactly the same sequence of cuts as the dynamic algorithm. Therefore, the partial tree rooted at r
produced by this PARTITION_LEAF call in the static algorithm is identical to that maintained by the
dynamic algorithm. We will show that these two oracles are valid for the static algorithm, which
means they satisfy the required properties in Section 2.

We first show that GET_ANCHOR returns an approximate median of centers C;. Because this is the
most recent rebuild of the root node r, there have been fewer than k;/ /4 updates since then. Note
that the anchor m” is chosen as the coordinate-wise median of all centers in Cy at time ¢'. For each
coordinate ¢, at most half of the centers in Cy lie on either side of m". Hence, even after k; /4
updates, there remain at most 3k; /4 centers in C; on either side of m” along every coordinate.’
Therefore, the anchor m” remains an approximate median for the current set of centers C}.

We next show that the STOPPING_ORACLE guarantees that when partitioning stops, every leaf
contains at most a 3/4 fraction of centers in C;. Consider any leaf that is separated from the main
part during the partitioning. Each such leaf contains only centers that lie on one side of the anchor m”
along the coordinate used by the cut that separates it. Since the anchor m" is an approximate median
of centers in Cy, at most 3k/4 centers lie on either side of m" along every coordinate. Therefore,
each separated leaf contains at most a 3/4 fraction of centers in C;. As for the main part, recall that
at the stopping time p" during the last rebuild, it contains at most k; /2 centers in Cy.. After at most
k /4 updates, the main part contains at most a 3/4 fraction of centers in C;.

At each recursive step, we use the same sequence of cuts and adopt the corresponding anchor and
stopping time used by the dynamic algorithm. This guarantees that the static algorithm mirrors the
behavior of the dynamic one at every level of the recursion. Therefore, the static algorithm constructs
exactly the same threshold tree as the dynamic algorithm. This completes the coupling argument
and establishes that the output of the dynamic algorithm is identically distributed to that of the static
algorithm on input C}.

O

3Consider any fixed coordinate 7 and one side of m]. The fraction of centers lying on this side of m" is
maximized when all k; /4 updates remove centers from the opposite side. Thus, the fraction of centers lying on
this side is at most 2/3 after updates.
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B.2 Efficient implementation and analysis

In this section, we present a practical implementation of dynamic algorithm as shown in Figure 2.
We evaluate the efficiency of the algorithm from two perspectives: update time and recourse.

First, the update time at request g; refers to the time required to modify the threshold tree 7;_1 in
response to the ¢-th request ¢, (either an insertion or deletion of a center), resulting in a new tree 7.
Second, the recourse at request ¢; is defined to be the number of nodes that differ between 7;_; and
T¢, i.e., the size of their symmetric difference between the two trees.

We focus on bounding these quantities in the amortized sense, i.e., the total update time and total
recourse over all requests, averaged across the requests. The following lemma summarizes the
performance guarantees of the dynamic algorithm.

Lemma B.3. Given a sequence of requests, where each request is either an insertion or a deletion of
a single center, the dynamic algorithm satisfies with probability 1 the following guarantees for every
t>1

1. the amortized recourse is O(log k),
2. the amortized update time is O(dlog® k),
where k = max!_, |C|.

We first describe an efficient implementation of the dynamic algorithm. For each node u where
REBUILD is called, we maintain a self-balancing binary search tree that stores all cuts with timestamps
(wi, p), (Wh, ph), ... (wl, pl.) used in the partial tree rooted at w. This data structure enables efficient
updates. When a new request arrives to insert or delete a center ¢, we call GET_EARLIEST_CUT(c)
to compute the earliest cut that separates ¢ from the anchor m®, and then search the binary search
tree to locate where this separation occurs in the partition leaf path of w.

‘We now describe an efficient implementation of the function GET_EARLIEST_CUT. Without loss
of generality, we assume that all centers are in [—1, 1]d. The function GET_EARLIEST_CUT takes
a center c as input and outputs the earliest cut (w, p) that separates ¢ from the anchor m* among a
sequence of candidate cuts (w1, p1), (w2, p2), . ... Each cut w; = (44, 19;) is generated by sampling
a coordinate 7, a sign o € {—1, 1} uniformly at random, and a parameter ¢ € [0, 2] drawn from
the distribution with density f(x) = pzP~!/2P. The threshold is then set as J; = m¥ + o6. The
associated timestamps p; follow the arrival times of a Poisson Process with rate A = 1.

To facilitate efficient implementation, we first observe that the problem naturally decomposes across
coordinates. Specifically, for each coordinate i € {1,2,--- , d}, we can independently maintain and
query the earliest cut that separates ¢ from m* along coordinate i. We then return the cut with the
minimum timestamp across all coordinates.

To achieve this, we maintain an independent stream of candidate cuts for each pair of coordinate ¢
and direction o € {—1, 1}. Each such stream consists of cuts w = (i, ¥) where ¢ = m} + 06 and
the timestamps given by the arrival times of a Poisson process with rate 1/24. This decomposition is
formally justified by the Coloring Theorem (see, e.g. Kingman (1992), page 53 or Mitzenmacher and
Upfal (2017), page 223), which states:

Theorem B.4 (Coloring Theorem). Let I1; be a Poisson process on the real line with rate \. Assign

to each event of the process a color from a finite set {1,- - - , M}, where each event is independently
colored with probability p; of receiving color i. Then the counts of events of each color;, 111, - - - , 1)y,
form independent Poisson processes, with rates A\p1,- -+ , A\pyr, respectively.

The original sequence of candidate cuts has timestamps given by the arrival times of a Poisson
process with rate 1. Each cut is independently assigned a pair (4, o) with uniform probability 1/24
over all 2d possible combinations. By the Coloring Theorem, the subset of cuts corresponding to
any fixed pair (7, o) forms an independent Poisson process with rate 1/24 and these 2d streams are
independent. Therefore, the union of all these subsequences of cuts has the same distribution as the
original sequence of candidate cuts.

We then formulate the earliest cut along each coordinate as the following general problem. We are
given a fixed anchor value m € [—1, 1], and a sequence of random cuts specified by thresholds ¥,
drawn from [m, m + 2] according to a probability density function f(x), with associated timestamps
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pt, corresponding to the arrival times of a Poisson process with rate \g. For a query point y € [m, 1],
we aim to find the earliest cut that separates y and m, i.e., the cut with the smallest timestamp such
that its threshold 9 lies in (m, y]. This formulation arises naturally in our setting, where Ao = 1/24,
the density function f(x) = p(x —m)P~1 /2P, m represents the i-th coordinate of the anchor, and y
corresponds to the ¢-th coordinate of some center c. A simple approach for solving this problem is to
simulate the sequence of cuts with timestamps and return the first one that lies in (m, y]. We refer to
this as the static algorithm.

We now describe a data structure that efficiently retrieves the earliest cut along a given coordinate.
This data structure maintains a self-balancing binary search tree. Given an anchor m and a set of k
valuesm < y; < y2 < --- < yr < 1, this binary search tree maintains these values in increasing
order. Each node in the binary search tree stores a value y along with the earliest cut that separates y
from the anchor m, including the timestamp of that cut. If the queried value y is present in the tree,
the associated earliest separating cut can be retrieved in O(log k) time.

Now suppose we need to insert a new value y € [m, 1] into this data structure. Assume the binary
search tree currently stores k values m < y; < yo < --- <y < 1. We first locate the position of y
in the tree in O(log k) time, either identifying the smallest index j such that y < y;, or determining
that y > y. Let yo = m. If there exists some 1 < j < k such that y;_; < y < y;, then we first
retrieve the earliest cut (9, p) that separates y; from m. We consider two different cases:

l. yj—1 <y <y, forsomel < j<kand (9,p) also separates y from m, (i.e. ¥ < y);
2. either y;_1 < y < y; and (¢, p) does not separates y from m (i.e. ¥ > y)oryy <y < 1.

For the first case, we store this cut (¢, p) at the node y as the earliest cut that separates y from m.

For the second case, we first sample a new cut as follows. If y > yy, then let y;_1 = y;. Sample a
new threshold 9" € (y;_1,y] using the weighted density function

W
1@ = 5w~ 7 fo

y_y—l

, o€ (yj-1,y].

We then sample a timestamp for this cut as p’ = p + z, if y < yy, otherwise if y > yx, p’ = 2, where
z ~ exp(A) with rate

A=Xo-Pr{d € (yj—1, 4]} = Ao f(t)dt,
Yji-1
where )\ is a parameter of the data structure. Let (9, p”’) be the earliest cut that separates y;_1 from
m. We then compare the two cuts and store at node y the one with the smaller timestamp. If p’ < p”,
then we store the new cut (¢, p) at node y as the earliest cut; otherwise, we store the cut (9", p’).

Lemma B.5. Given a sequence of query points y1, s, - - -, the earliest cuts maintained by the data
structure are distributed identically to those returned by the static algorithm.

Proof. We prove this lemma by induction. For the first query point, the data structure and the static
algorithm samples the earliest cut that separates this point from the same distribution. We now
assume that for the first & query points y1, - - - , yx, the earliest cuts returned by the data structure are
distributed identically to those returned by the static algorithm. By coupling these two algorithms,
we further assume that the data structure and the static algorithm return exactly the same earliest cuts
for these query points.

We now consider a new query point y1 and argue that the earliest cuts returned by two algorithms
are distributed identically. Let y(1),¥(2), " ,Y(x) be the first k query points sorted in increasing
order. Let y) = m. Suppose this new query point is in the first case, which means there exists
1 < j < ksuchthat y(;_1) < yrt1 < ¥y(;) and the earliest cut (J;, p;) that separates ;) maintained
by the data structure also separates yy 1. Since yr 41 < y(;) and this cut (J;, p;) is the earliest cut
that separates y(;) in the static algorithm, this cut is also the earliest cut for y; 1 returned by the
static algorithm.

We now consider this new query point is in the second case, either y(;_1) < yr+1 < y(;) and the
earliest cut (¢, p;) that separates y(;) does not separates yx11 Of Yr)y < Ye+1 < L I ypp1 > yoys
we set y(;—1) = Yr)- We decompose the sequence of cuts used in the static algorithm into three
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disjoint subsequences. These three subsequences contain all cuts in three disjoint intervals (m, y(;—1)].
(Y(j—1)» Yr+1]> and (Y41, m + 2] respectively. By the Coloring Theorem, the timestamps of these
subsequences follow the arrival times of three independent Poisson processes. Since the cut is sampled

from (y(;_1), Yx+1] with probability p = yy(’“fll) f(t)dt, the timestamps of all cuts in (y(;_1y, Yx+1]

follows the arrival times of a Poisson process with rate

Yk+1
A= X0 Pr{d € (y;-1), yrt1]} = Ao - / f(t)dt.

Yu-1

Suppose there exists 1 < j < & such that y(;_1) < yr+1 < ¥(;)- Since the earliest cut (J;, p;) that
separates ;) does not separate ¥ 1 in the static algorithm, the first cut in the interval (y(; 1y, Yx+1]
must arrive after p;. The time of the first arrival of this subsequence follows an exponential distribution
with rate \. Due to the memoryless property of the exponential distribution, the first arrival of cuts
in (y(j—1),Yry1] follows p; + z, where 2z ~ exp(A). Suppose yry1 > Yk). Then, the time of
the first arrival in this subsequence is z ~ exp(A). Therefore, in the static algorithm, the first cut
in (y(j—1), Yx+1] has the exact same distribution as the new cut sampled in the data structure. If
Y(j—1) 7 m, then the first cut in (12, y(;_1)] is the same in the data structure and the static algorithm.
Combining two parts, the earliest cut that separates yj,; returned by the data structure has the same
distribution as that returned by the static algorithm. O

Remark. The assumption that all centers lie in [—1,1]¢ is made for the ease of exposition. The
algorithm can be implemented without this assumption. Under the £,, norm, the threshold 6 is drawn
from a distribution with density f(z) = pxP~!/RP where R > y is the bounding radius. Conditioned
on z € (yj_1,y], the probability density function becomes

R I C) B plz —m)P~!
J(@) = [P fydt (y—m)P = (yj—1 —m)P’

Yj—1

To sample a threshold ¢ following this distribution, we draw a uniform random variable U €
[(y;—1 — m)P, (y — m)P] and set ¥ = U'/P. Moreover, multiplying all timestamps by the same
positive number does not affect the analysis of B.5. Thus, we can equivalently sample z ~ exp(\)
with A = (y — m)? — (y;—1 — m)P, without altering the analysis. With these minor modifications,
the algorithm no longer depends on the boundedness assumption that the centers lie in [—1, 1]¢.

We now analyze the recourse and the update time of the dynamic algorithm with the above implemen-
tation.

Proof of Lemma B.3. Fix t > 1 and condition on the randomness of the algorithm until time ¢. Since
the subsequent argument holds for any fixed randomness, the guarantees hold with probability 1.

Recourse: Let R(4) be the recourse incurred by request i. We partition the requests into two sets:
Let S; C [t] be the set of requests for which the REBUILD operation is not called during the update
due to this request. Let Sy = [t] \ S1 be the remaining requests where the REBUILD operation is
called. We analyze each case separately.

Case 1 (¢ € S1): In this case, the request does not trigger a REBUILD operation, and the recourse is
at most R (%) < 2. This is because if the request is an insertion, at most two nodes are added to 7;_1;
if it is a deletion, at most two nodes are removed, i.e., the leaf that contains the center ¢ and its parent
in both cases. As a result, the total recourse over all such requests is bounded by

> R(i) <2/ < 2t ©)

1€S,

Case 2 (i € S2): The REBUILD will only be called on one node u; for each request . Let C,,, be the
set of centers contained in the node u; of 7;_1, and let k&’ = |C,,|. Since REBUILD(u;) is called, all
2k’ — 1 nodes in the subtree rooted at u; are removed from 7;_;. If the request ¢ is an insertion of a
center ¢, a new threshold tree is constructed at u; using the updated center set C,, U {c}, which has
size k' + 1. This results in inserting 2(k’ + 1) — 1 = 2k’ 4 1 nodes back into the tree. Therefore, the
recourse is R(i) = 2k’ — 1 + 2k’ + 1 = 4k'. If the request ¢ is a deletion of a center ¢, the updated
center set is C,,, \ c of size k' — 1, and the rebuilt threshold tree contains 2(k’ — 1) — 1 =2k’ — 3

36



nodes. The recourse in this case is R(i) = (2k' — 1) + (2k’ — 3) = 4k’ — 4. In either case, we have
the bound R (i) < 4k’

We now analyze the total recourse for So. Each node v on which the algorithm calls a REBUILD
stores an update counter Cnt,,. This update counter is initialized to zero when the node is rebuilt and
is incremented by one each time an update (insertion or deletion) involves node u. This node u also
stores the number of centers k,, in this node when it is rebuilt. Since the dynamic algorithm rebuilds
this node v after k,, /4 updates, we have k' < k,, + k., /4. Therefore, we have Cnt,,, = k,, /4 > k' /5.

Hence, we have
> R@E) <> 20 Cot(u,). 3)
1€S> 1€Ss

The right-hand side of (3) is bounded by the total number of times any node’s counter is incremented.
According to the analysis in Lemma B.1, the dynamic algorithm guarantees that after the partition
leaf call of a node u, each leaf has at most a 3/4 fraction of the centers contained in u. Let
k = max!_, |C;| be the maximum number of centers during the first ¢ requests. Therefore, each
update request is involved in at most O(log k) calls of INSERT_CENTER or DELETE_CENTER. Thus,
the total number of times any node’s counter is incremented is bounded by O(tlog k). Combining
this with (2) and (3), we conclude that ', R(i) = O(t log k) and thus the amortized recourse is
O(logk).

Update Time: As in the amortized recourse analysis, let S; C [t] be the set of time steps where
REBUILD is called on some node u;, and let So = [t] \ S1. We now split the analysis into two cases,
depending on whether or not a rebuild is triggered.

Case 1 (i € S1): Suppose the request 4 is an insertion of center ¢;. Let uq, us, . .., u; be the nodes
for which INSERT_CENTER(c;, u;) is called. Each such call on node u takes O(d log k) time, where
k = max!_, |C;]. Tt takes

* O(dlog k) time to update the d self-balancing binary search trees stored in u;
* O(dlog k) time to compute the earliest cut through GET_EARLIEST_CUT(¢;);

* O(log k) time to locate this earliest cut and insert the center by searching the self-balancing
binary search tree that maintains all cuts (w}, p}), (W, p5), - .., (W, pl.) currently used in
the partition leaf call of w.

Since the center ¢; is involved in at most O(log k) INSERT_CENTER calls, the update time for an
insertion request i € S is Time(i) = O(dlog® k). The same asymptotic bound holds for deletions,

as finding the leaf that contains the deletion center ¢; takes O(d log? k) time, and the removal takes
constant time. Thus, we have

> Time(i) = O(|Si| - dlog” k). 4)

i€Sq

Case 2 (i € S3): Let u; be the node that is rebuilt at request ¢. As in Case 1, the time to process the
request before the rebuild is O(d log? k). If u; contains & centers at this request 4, then REBUILD (u;)
takes O(k'd log® k) time.

Since when REBUILD(u;) is triggered, we have the update counter Cnt,,, > k’/5. Thus, we charge

the rebuild time to the update counter. That is the update time Time(i) < O(Cnt,, - dlog® k).
Therefore, we have

> Time(i) < O(dlog’k) - > Cnt,,. 5)

1€S2 1€S2

By the analysis in recourse, we have »
that the total update time is at most

ies, Cnty, < O(tlog k). Combining (4) and (5), we obtain

t
> Time(i) = O(tdlog® k)
i=1

and so the amortized update time is O(d log® k). O
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We now prove the main theorem of the dynamic algorithm.

Proof of Theorem 5.1. By Corollary B.2 and Lemma B.3, we get the approximation guarantee,
amortized recourse, and the amortized update time of the dynamic algorithm. O

B.3 Fully Dynamic Explainable Clustering Algorithm

In this section, we provide a fully dynamic explainable clustering algorithm for the setting in which
the clustering data set evolves over time through insertions or deletions of data points. This algorithm
maintains an explainable k-clustering that is competitive against the optimal (unconstrained) k-
clustering. This setting contrasts with Sections B.1 and B.2, where the cluster centers change over
time.

Formally, the input is a stream of updates on the data set, where each update is an insertion or deletion
of a data point. This generates a sequence of datasets X1, Xo,.... If ¢ is an insertion request of a
new data point z;, then X; = X;_1 U {x;}, whereas if ¢ is a deletion request of an existing data point
2t € Xy—1,then Xy = X;_1 \ {«;}. We obtain our fully dynamic explainable clustering algorithm
by combining our dynamic algorithm from Section 5 with the fully dynamic k-medians algorithm
of Bhattacharya et al. (2025). This fully dynamic k-medians algorithm maintains a constant-factor
approximation while changing only O(1) centers per update.

Corollary B.6. Given a positive integer k and a stream of updates that are insertion or deletion

requests of data points in R?, for every p > 1 there exists a fully-dynamic explainable clustering
algorithm that outputs a threshold tree T; for every t > 1 satisfying

1. Elcost, (X, T)] < O (p(log k)“‘%_p% log log k) OPTy ,(Xy),

2. the expected amortized update time is O (kd + (log A)2dlog® k),

3. the expected amortized recourse is O((log A)? log k)

where A is the aspect ratio* of all data points in X = Ule Xi, OPTy ,(Xy) is the ¢, cost of an

optimal (unconstrained) k-medians clustering of Xy and O hides polylogarithmic factors in A, k and
n=|X|.

To prove Corollary B.6, we first show how to combine any fully-dynamic (unconstrained) k-medians
clustering algorithm under the ¢, norm with our dynamic algorithm from Section 5 to get a fully-
dynamic explainable clustering algorithm.

Definition B.7. An algorithm A is an (o, u,r) dynamic k-medians clustering algorithm under the
¢, norm, if for every stream of updates that are insertion or deletion requests of data points, the
algorithm outputs k centers C after each update t, such that E[cost, (X, T;)] < a OPTy ,(Xy),
the expected amortized update time is u and the expected amortized recourse is r.

Fix an iteration ¢ of an («, u, r) dynamic k-medians clustering algorithm under the ¢, norm for p > 1.
After processing the ¢-th update request, the algorithm updates the current set of centers from C;_;
to C;. To apply Theorem 5.1, we treat each ¢ € C;_; \ C} as a deletion from the current center set
C;—1 and each ¢ € C; \ C}_1 as an insertion into it. Algorithm 3 formalizes this procedure, and its
performance guarantees are proved in Proposition B.8.

Proposition B.8. Given a positive integer k, a stream of updates that are insertion or deletion
requests of data points in R%, and an (v, u, r) dynamic k-medians clustering algorithm A under the
£, norm for some p > 1, Algorithm 3 outputs a threshold tree T; for every time t > 1 satisfying

1. Elcost, (X, Tr)] < O (a - p(log kz)H%fp% log log k;) OPTy ,(Xt)

2. the expected amortized update time is O(u + 1 - dlog® k)

3. the expected amortized recourse is O(r - log k).

maxg yex |[2—yllp
ming ye X, z#y l2—ylp”

“The aspect ratio of a set of points X under £, normis A =
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Algorithm FULLY _DYNAMIC_PARTITION_LEAF

Input: an integer k, a number p > 1, a stream of update requests of data points ¢, go, - . -
and an (o, u, ) dynamic k-medians clustering algorithm .A under the ¢, norm.
Output: threshold trees 771, 7a, - . .

1. Initialize the root root to be empty.
2. Initialize Cj to be an empty set of centers.
3. Forevery t > 1:

* Run algorithm A to process request ¢; and get a new set of centers C}.

* For every center ¢ € Cy_1 \ Cy:
Call DELETE_CENTER(c, root) in Figure 2.

* For every center ¢ € Cy \ Cy_1:
Call INSERT_CENTER(c, root) in Figure 2.

* Output the threshold tree 7; rooted at root.

Figure 3: Fully Dynamic algorithm for explainable k-medians in £,

Before we prove Proposition B.8, we show how it yields Corollary B.6 by choosing the fully dynamic
k-medians algorithm .4 by Bhattacharya et al. (2025).

Proof of Corollary B.6. The dynamic algorithm for k-medians from Bhattacharya et al. (2025)

achieves an O(1) approximation. It has O(log* A) expected amortized recourse and O(kd) ex-
pected amortized update time.> As a result, by Proposition B.8, we get the conclusion. O

We proceed to prove Proposition B.8.

Proof of Proposition B.8. Fix any t > 1. Forevery i € {1,2,...,t}, let C; denote the set of centers
produced by A after processing the i-th request. Let r; = |C; AC;_1| denote the recourse at time
i. During iteration 7, Algorithm 3 produces r; intermediate center sets C; ;,C},,...,C} . = C;
corresponding to the individual center update requests applied to C;_;. Since deletions are processed
before insertions, each intermediate set has size at most k. Let 7y, 7/5,..., 7T/, denote the
intermediate threshold trees produced by Algorithm 3 after each center update durlng 1terat10n 1. For

the rest of the proof, we condition on a fixed sequence of center sets C'} ;,C1 o, ...,C} ., = Cy.

Approximation: Applying Theorem 5.1, for every ¢ € {1,2,...t} and j € {1,2,...,7;} the
following inequality holds:

Elcost, (X3, T7;) | C14,-..,C1,,] <O ( (logk)H% ” loglogk> costy (X3, O ;).

Therefore, choosing j = r; we obtain

1_1
Elcost, (X, T7) | C1 5. .., Cp,,] <O ( (logk)' "7~ 9% loglog k) cost, (X¢, Cy).

Taking the expectation at both sides of the inequality and using the fact that A is an c-approximation
algorithm, the approximation guarantee follows.

Recourse: By Theorem 5.1, the amortized recourse of DYNAMIC_PARTITION_LEAF is O(log k)
with probability 1. Hence, after processing ¢ requests, the total number of tree nodes modified is
O(Rlogk), where R = Z::l r; denotes the total recourse of algorithm A, i.e., the total number of
center update requests. Therefore, the expected total number of tree nodes modified up to the ¢-th
request is O(E[R]log k) = O(rtlog k), which corresponds to the expected total recourse. Dividing
by t, we obtain the expected amortized recourse of O(rlog k).

>The algorithm introduced in Bhattacharya et al. (2025) is aimed for the metric k-medians problem and it’s
amortized update time is O(k). For our purposes, the amortized update time incurs an extra O(d) factor to
calculate the ¢,, distances. O hides polylogarithmic factors in n, A, and k.
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Update Time: The total update time of Algorithm 3 equals the sum of the running time of 4 for pro-
cessing all requests and the time taken by DYNAMIC_PARTITION_LEAF to handle all R = 2321 75
center update requests. By Theorem 5.1, the amortized update time of DYNAMIC_PARTITION_LEAF
is O(dlog® k) with probability 1. Thus, the total update time is O(U + Rdlog® k), where
U= Zle uy 18 the total running time of A. Since the expected amortized update time and recourse

of A are u and r respectively, the total expected update time of Algorithm 3 is O(ut + rt - d log® k)
and the expected amortized update time guarantee follows. O

C Lower bound for universal algorithms

In this section, we provide a lower bound on the competitive ratio for any universal explainable
clustering algorithm. A universal algorithm is required to output a distribution over threshold trees
that perform well for all p > 1 without the prior knowledge of p.

Our algorithm for explainable k-medians clustering under £, norm samples threshold cuts from a
carefully designed distribution that depends crucially on p. A natural question is whether there exists
an explainable clustering algorithm that is independent of p while achieving a good approximation to
the optimal £, cost for all p > 1 simultaneously. We answer this question in the negative by showing
an Q(dl/ 4) lower bound on the worst-case competitive ratio of any universal explainable clustering
algorithm.

Theorem 4.2. There exists an instance X C R%, such that for any distribution over threshold trees,
the expected competitive ratio is at least Q(dl/ 4) for some p > 1.

Proof. The instance has two centers, one at the origin ¢; = (0,0, ...,0), and the other at co =
(1+ FAZ T 1), along with many data points co-located at each center and one special point
x=(1,1,...,1). We show that any distribution D over threshold trees (a single threshold cut in this

case) yields an explainable clustering such that either the /1 or the /5 cost is in expectation Q(d'/%)
times the corresponding unconstrained clustering cost.

Case 1: If distribution D assigns x to ¢; with probability at least 1/2, then the expected ¢; cost of the
explainable clustering is at least d/2, while the optimal ¢; clustering cost is d®/* (by assigning z to
02).

Case 2: If distribution D assigns x to co with probability at least 1/2, the expected 5 cost of the
explainable clustering is at least d%/4 /2, while the optimal ¢5 clustering cost is V/d (by assigning x to
C1 ) O]

D Lower bound for explainable k-medians under /, norm

In this section, we present a lower bound on the competitive ratio for the explainable k-medians
problem under £, norm for all p > 1. In particular, we extend the lower bound instance for explainable
k-medians clustering under £3 norm in Makarychev and Shan (2021) to £, norm for all p > 1.

Theorem 4.1. For every p > 1, there exists an instance X C R, such that for every threshold tree
T, its clustering cost is at least cost,(X,T) = Q(log k)OPTy, ,(X), where OPTy, ,(X) is the ¢,
cost of the optimal (unconstrained) k-medians clustering of X.

We construct the lower bound instance X as follows. Consider the grid G = {0, €, 2e, . . . l}d that
is obtained by discretizing the hypercube, where d = [64p*Ink] and ¢ = 1/Ink. We choose
k centers C uniformly at random from the grid G and for each ¢ € C, we place two data points
Ze1 = ¢+ (6€,...,¢) and x.o = ¢ — (€€, ..., €). Moreover, for every ¢ € C, we place n data
points x.j, j = 3,4,...,n + 2 that coincide with c (i.e. z.; = ¢). We will show that the clustering
instance X = {J co{zcj, J € [n + 2]} satisfies with positive probability two properties captured by
Lemma D.1 and Lemma D.2 and then show that these properties suffice to prove Theorem 4.1.

The first property we show is that the with high probability all centers in the random set C' are well
separated.
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Lemma D.1. With probability at least 1 — k%, for any two distinct centers c, ¢’ € C, it holds that

1
o
lle=cllp = 55
Proof of Lemma D.1. An equivalent way to choose a center from the grid {0, €, 2¢, . . ., 1}% uniformly
at random, is to first choose ¢ € [—5,1+ g}d uniformly at random and then choose c to be the closest

center of ¢ in the grid. Consider ¢, ¢’ € C be two distinct centers of the instance and let ¢ and ¢ be
their corresponding uniform random variables in [—§, 1 4 §]%. We have

d

E[|c - &5 =) El& — "] =

i=1

2d(1 + €)?
(p+1D(p+2)’

where we used that for each coordinate 7, ¢; and 5; are independent uniform random variables in
[—%5,1+ 5]. Moreover, the variables |¢; — ¢;| are independent for different 7 and are bounded in
[0, %1 + €)P]. By Hoeffding’s inequality, we have

< 2d(1 4+ €)? 1
1 i Sl A, p < — .
Pr{|c alp < TESrES) (1+e) \/2d1nk} <

d(1+€)?
Because d > 64 p* In k, we get that (1 + €)Pv2dInk < m, thus

o d(1 + e)? |

This means that with probability at least 1 — 1/k*,
(14 €e)d»
(p+1)7(p+2)»

Because c is the closest point in the grid G to ¢, then ||c — ¢||, < %d% (the same holds for ¢’ and &').
Thus, by the triangle inequality

(p+1)7(p+2)7 2

The second inequality holds for sufficiently large k, since ¢ = 1/ In k can be made arbitrarily small

by increasing &, and because the function ((p+ 1)(p + 2))*/? is decreasing for p > 1 and thus attains
its maximum value 6 at p = 1. By applying the union bound over all pairs of centers in C, the claim
follows. O

1 1
1 dr dr
le—dll, > —LH gt

To describe the second property, we introduce some notation. Consider a threshold tree 7 and a node
u of this tree. Let F;, C C be the set of undamaged centers contained in u, i.e. the set of centers c in
the node such that all the points in the optimal cluster of ¢ are contained in the node u. We also define
a path sequence as any sequence of tuples (i1, 01, 01), (i2,02,02), ... (it,0;,01), such that ¢t > 1 is
an integer, i; € [d], §; € R and o; € {£1}. Note that any node w is fully specified by the path from
the root of 7 to u and thus by a path sequence 7(u), where (i;, 8;) is the j-th threshold cut in the
path and o indicates the direction of the next node in the path. Inversely, for a given path sequence 7
we denote u(7) as the node that 7 specifies, i.e.

u(m) = ﬂ {reR: o(zx; —0) > 0}.
(,0,0)em

log, k

Lemma D.2. With probability at least 1 — L, for every t < 2=, for every path sequence T =
(11,01,01), ... (31,0, 00) with i; € [d],0; € fCO, 1], 05 € {£1}, one of the following holds:

1. the number of undamaged centers in () is at most | Fyy ()| < Vk; or

2. any cut that separates two centers in u(r) damages at least €|F,, ()| /2 centers in F(y).
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Proof of Lemma D.2. Tt suffices to prove the lemma for path sequences such that 6; € {§, %, R
5}. This restriction is without loss of generality, since for every coordinate i € [d] and for every

r € {0,1,..., 1}, all the cuts in the interval (re, (r + 1)e] are equivalent, in the sense that they
induce the same partition of the grid points and thus of the instance X.

Fix any path sequence 7 of size t < ng and denote u = u(w) for simplicity. Assume that the
total number of undamaged centers in w is |F,| = k' > v'k. Given a threshold cut w = (i, 0), we
define Z,, to be the number of undamaged centers ¢ € F, that are damaged by w. Conditioned on
|F,| = k', the undamaged centers contained in u are distributed as k’ points drawn independently
and uniformly from the grid points G inside u, excluding the leftmost and rightmost grid points in
each coordinate. Consider each undamaged center ¢ € F'(u). The new cut w damages this center ¢ if
and only if ¢; € {0 — €/2,0 + €/2}. Since there are at most 1/¢ possible grid positions for ¢;, this

undamaged center c is damaged by the cut w with probability at least €. Therefore, we have
E[Z, | |Fu| =K' > €K,
where the expectation is taken over the randomness of centers in F'(«). Thus, by the Chernoff bound

Pr{Zw < %k’ IFy| = k’} <e ¥ <o

By taking the union bound over all possible cuts in u (at most d/e = O(p*In? k) in total), we
obtain some cut damages less than ek’ /2 undamaged centers in F'(u) with probability at most e 5%
for sufficiently large k. Thus, the probability that both (1) and (2) do not hold is at most e 9%,
Moreover, the number of different path sequences at a fixed size ¢ is at most ( )t O(p* In* k).

Thus, by taking the union bound over all possible path sequences for every ¢ < 10g2 , the probability
that both (a) and (b) do not hold is at most
logo k
logo b (2d * o~ S _ O(og(v” 1
4 € k’
where the inequality holds for any fixed p when £ is sufficiently large. O

By Lemma D.1 and D.2 there exists an instance X with k centers and d = [64p* In k] such that both

properties of these lemmas hold. Moreover, the optimal clustering has /£, cost OPT}, ,, < 2ked » ,as
we can assign each data point x.; to center c. Consider any threshold tree 7 with k leaves. We will
show that cost, (X, T) = Q(log k)OPTy, .

First, we consider the case where 7 does not separate all centers in C, that is, there exists a leaf of
the tree that contains two centers ¢ and ¢’. Note that there are n data points located at each of the
centers ¢ and ¢’. Hence, the cost of this leaf is at least n|jc — ||, /2 > nd» /24 by Lemma D.1. This
cost can be arbitrarily large since n can be arbitrarily large.

Next, consider the threshold tree 7 in which each leaf contains exactly one center from C'. We divide
it into the following two cases. In the first case, suppose there exists a level 1 < ¢t < log? that

contains at least g damaged centers. For each damaged center, there is a data point that was a551gned
to it in the optimal solution but is reassigned to another center by 7. Each such reassignment incurs a
cost of Q(d!/P). Thus, the total cost of 7 is at least Q(£d'/?) = Q(log k)OPT , since e = 1/ In k.

In the second case, assume that for every 1 < ¢ < 1°g2

, the number of undamaged centers at level ¢
of 7 is at most g We call a node u small if it contalns at most v/k undamaged centers, and large
otherwise. Fix any ¢ in {1,2,... Llog? |}. Since the total number of nodes at level ¢ is at most ki,
the small nodes together contain at most k1 undamaged centers. Hence, the large nodes contain at

least & 5 — k1 >k % undamaged centers for sufficiently large k. Because 7 contains exactly one center
from C, all thresholds of cuts lie within [0, 1]. By Lemma D.2, the number of undamaged centers

that become damaged at level ¢ of T is at least %. Since each damaged center incurs a reassignment
cost of Q(d'/?) by Lemma D.1, the total cost at level ¢ is Q(ekd'/?). By summing over all levels
1<t< 10%12 k the total cost is

Q (log k- ekd%) = Q(log k)OPT}, ,.
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