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ABSTRACT

The training and sampling of diffusion models have been exhaustively elucidated
in prior art (Karras et al., 2022; 2024b). Instead, the underlying network architec-
ture design remains on a shaky empirical footing. Furthermore, in accordance with
the recent trend of scaling law, large-scale models make inroads into generative
vision tasks. However, running such large diffusion models incurs a sizeable com-
putational burden, rendering it desiderata to optimize calculations and efficiently
allocate resources. To bridge these gaps, we navigate the design landscape of ef-
ficient U-Net based diffusion models, stemming from the prestigious EDM2. Our
exploration route is organized along two key axes, layer placement and module in-
terconnection. We systematically study fundamental design choices and uncover
several intriguing insights for superior efficacy and efficiency. These findings cul-
minate in our redesigned architecture, EDM2+, that reduces the computational
complexity of the baseline EDM2 by 2× without compromising the generation
quality. Extensive experiments and comparative analyses highlight the effective-
ness of our proposed network architecture, which achieves the state-of-the-art FID
on the hallmark ImageNet benchmark. Code will be released upon acceptance.

1 INTRODUCTION

In recent years, diffusion models have swept the field of generative modeling, catalyzing a plethora
of applications to image (Rombach et al., 2022; Podell et al., 2024; Esser et al., 2024), video (Ho
et al., 2022; Blattmann et al., 2023), and 3D shape generation (Poole et al., 2023; Wang et al., 2023)
in the realm of visual synthesis. Dating back to a decade ago, the advent of diffusion models relies
on a plain Convolutional Neural Network (CNN) architecture (Sohl-Dickstein et al., 2015). The
embarrassingly simple architecture might have posed a hindrance to the immediate blossoming of
diffusion models. During the following period, one has witnessed a meteoric rise of Generative
Adversarial Networks (GAN) (Goodfellow et al., 2014) in yielding photorealistic imagery (Karras
et al., 2018; 2019; 2020b; 2021). In the meantime, the development of diffusion models is sluggish
but has never stood still. Until 2020s, Denoising Diffusion Probabilistic Model (DDPM) (Ho et al.,
2020) resurges, sparking a new wave of deep generative modeling. In this seminal work, DDPM,
the introduction of U-Net (Ronneberger et al., 2015) backbone in tandem with a few modern ar-
chitectural components (e.g., Group Normalization (Wu & He, 2018), self-attention, and position
embedding (Vaswani et al., 2017)) unleashes the potential of diffusion models in producing high-
quality images comparable to other types of generative models. Henceforth, diffusion models make
tremendous strides forward within the ambit of visual generative modeling.

Note that the initial adoption of U-Net in diffusion modeling borrows from other established tem-
plates, i.e., its successful practice in Pixel-CNN++ (Salimans et al., 2017). Coincidentally, Jolicoeur-
Martineau et al. (2021) reveal that U-Net performs substantially better than RefineNet (Lin et al.,
2017) which is extensively utilized by score-based generative models (Song & Ermon, 2019; 2020).
These independent observations disclose the pivotal role of network architecture design in facilitat-
ing generative modeling. In light of that, follow-up works, including iDDPM (Nichol & Dhariwal,
2021) and ADM (Dhariwal & Nichol, 2021), continuously polish the network architecture, thereby
elevating the performance upper bound. These aforementioned architectures are primarily grounded
on convolution operators. More recently, pure attention-based architecture further enriches the net-
work design space, represented by Diffusion Transformer (DiT) (Peebles & Xie, 2023). The ground-
breaking Sora (Brooks et al., 2024) also adopts a spatiotemporal DiT as the foundation model for
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Figure 1: Our architecture EDM2+ achieves performance parity with EDM2 using 2× less compute
across a wide spectrum of model sizes without guidance. Armed with the latest Autoguidance, our
model is located at the bottommost leftmost corner among an array of generative architectures. In
this plot, we use gigaflops per single model evaluation as a criterion of a model’s intrinsic computa-
tional complexity, a similar advantage keeps consistent in terms of parameter count.

text-to-video generation. Simultaneously, Stable Diffusion 3 (Esser et al., 2024) employs a multi-
modal DiT (MMDiT) as the base architecture for text-to-image generation.

On the one hand, notwithstanding the flexibility and scalability of Diffusion Transformer, the final
generation quality is largely dictated by its voracious appetite for the training resource. On the other
hand, the top-performing diffusion models built upon relatively lightweight CNNs still prevail, e.g.,
EDM2 (Karras et al., 2024b) showcases performance lead over Transformer-based architectures on
ImageNet. Overall, EDM2 copies the U-Net macro architecture acknowledged by preceding works.
Despite a few retouches of the network layers, the existing micro architecture is yet underexplored
and there leaves considerable room for advanced architecture design accordingly. To fulfill this gap,
we delve into the design principles and architectural choices critical for visual generation via in-
depth analysis and ablation experiments. Benefiting from its streamlined and modular architecture,
EDM2, as a good starting point, would ease the exploration of network design space. Startng from
EDM2, we launch our investigation from the perspective of layer arrangement and inter-module
connection, and eventually craft a tailored model architecture, coined as EDM2+, with on-par or
even better generation quality and enhanced efficiency compared with the EDM2 counterpart.

In our design roadmap (§3), we apply the changes step-by-step to the EDM2 architecture and eval-
uate the impact of these individual ingredients. Our findings are in general two-fold: first, decom-
posing the spatial/channel mixing operations and shifting the computation focus from spatial to
channel dimension strikes a better balance; second, through the lens of information bottleneck, con-
tracting the output dimension of the embedding network concentrates the most expressive condition
information to facilitate the entire information flow and naturally diminishes the parameter amount.
The above conclusions are then materialized in an innovative network block, which encompasses a
sequence of depthwise and pointwise convolutions, with the condition embedding sandwiched be-
tween the narrow convolution layers, as visualized in Figure 3. Our EDM2+ model architecture is
comprised of dozens of such building blocks, outperforming existing top-tier diffusion models and
GANs in the FID evaluation metric while remarkably reducing the model computation and storage
consumption, as portrayed in Figure 1. Equipped with better utilization of guidance (Karras et al.,
2024a), our endeavor sets new record FID on the ImageNet 64 × 64 benchmark, albeit using fast
deterministic sampling.

Our core contributions could be summarized as:
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• We conduct comprehensive experiments on the basis of EDM2 and meticulously identify
the limitations in the crucial architecture components.

• We further conceptualize performance-optimized solutions, for the purpose of strengthen-
ing both the generation quality and efficiency.

• The devised architecture EDM2+ excels other leading diffusion models and GANs on the
ImageNet benchmark, offering a new standard to the generative modeling field.

2 RELATED WORK

We provide a skim-through of several important aspects revolving around diffusion models in prior
literature, spanning from training and sampling to network architecture design. We also clarify their
similarities and differences compared with our work.

2.1 DIFFUSION TRAINING

Drawing inspiration from nonequilibrium thermodynamics (Sohl-Dickstein et al., 2015), diffusion
models decompose the entire generative process into progressive denoising transitions from standard
Gaussian noise to clean images. In stark contrast to other explicit likelihood-based models (e.g.,
Variational AutoEncoder (Kingma & Welling, 2014), Autoregressive models (van den Oord et al.,
2016; Salimans et al., 2017), and Non-Autoregressive models (Chang et al., 2022; Yu et al., 2023))
or implicit likelihood-based models (e.g., GAN (Goodfellow et al., 2014)), diffusion models pose
the generation task as a supervised learning scheme, greatly enhancing training stability and thus
scalability. In practice, the likelihood-induced Evidence Lower Bound (ELBO) is simplified to an ℓ2
regression learning objective. Depending on this realization, different regression targets, including
image (Sohl-Dickstein et al., 2015), noise (Ho et al., 2020), and velocity (Salimans & Ho, 2022),
simply translate to different loss function weights (Kingma & Gao, 2023). In consequence, scaling
up diffusion models to billions of parameters and web-scale training data becomes more frictionless
compared to the previous prevalent GANs (Kang et al., 2023), incubating a bunch of text-to-image
commercial products, such as Stable Diffusion series (Rombach et al., 2022; Podell et al., 2024;
Esser et al., 2024), DALL·E 2&3 (Nichol et al., 2022; Ramesh et al., 2022; Betker et al., 2023),
and Imagen series (Saharia et al., 2022; Imagen-Team-Google et al., 2024). In the present work, we
inherit the EDM (Karras et al., 2022) preconditioning framework for training due to its well-behaved
training dynamics.

2.2 DIFFUSION SAMPLING

For diffusion models, the sampling procedure typically demands thousands of consecutive steps to
synthesize a high-quality image. Theoretically, the diffusion backward process could be interpreted
as a reverse Stochastic Differential Equation (SDE) or the corresponding Probability Flow Ordinary
Differential Equation (PF-ODE) (Song et al., 2021b). Therefore, there naturally exists a trade-off
between the discretion error and step size. The straighter the sampling trajectory, the larger step size
can be tolerated. As such, much endeavor has been devoted to straightening the trajectory (Song
et al., 2021a; Karras et al., 2022; Liu et al., 2023) and inventing advanced ODE solvers (Liu et al.,
2022a; Lu et al., 2022; Zhang & Chen, 2023). In parallel, a growing body of diffusion distillation
techniques (Salimans & Ho, 2022; Meng et al., 2023; Luo et al., 2023; Yin et al., 2024) is proposed
to reduce the number of sampling steps. In addition, the overall sampling cost could also be re-
duced by cutting down the model latency per step in the denoising trajectory. Our work goes along
this research vein, contributing to a compact yet high-performing model via reworking the network
structure from scratch. Hence, our work distinguishes itself from post-hoc pruning (Li et al., 2023b),
quantization (Li et al., 2023a) and cache (Wimbauer et al., 2024) methodology but is complementary.

2.3 NETWORK ARCHITECTURE ENGINEERING

U-Net is ubiquitously applied to low-level vision tasks, including visual segmentation (Chen et al.,
2018), generation (Kingma et al., 2016) and so on. Skip connections in the network always play an
instrumental role in transmitting the high-resolution signal to the output end for detailed refinement,
either in CNN or Transformer (Bao et al., 2023). Building upon a U-Net backbone, DDPM (Ho et al.,
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2020) interleaves convolution blocks with self-attention modules (Vaswani et al., 2017), effectively
gathering long-range pixel dependence. iDDPM (Nichol & Dhariwal, 2021) extends single-head
self-attention to multi-head ones and widens its usage over a broader range of feature resolutions.
Adaptive Group Norm (AdaGN) is involved as well, resembling AdaIN (Huang & Belongie, 2017).
ADM (Dhariwal & Nichol, 2021) additionally steals the network topology and scaled residual con-
nections from the GAN literature (Brock et al., 2019; Karras et al., 2020b). Several hyperparameters
are ablated here, including the network depth/width and the number of attention heads. EDM2 (Kar-
ras et al., 2024b) emphasizes standardizing the magnitudes of network weights, activations, gradi-
ents, etc., in the same spirit of pioneering magnitude-focusing image recognition networks (Brock
et al., 2021a;b). Diffusion Transformers (DiT) position themselves as appealing alternatives to the
de facto standard U-Net, attracting enthusiasm from both academia and industry (Peebles & Xie,
2023; Hoogeboom et al., 2023). Subsequently, DiffuSSM (Yan et al., 2024) supplants the attention
mechanism of DiT with the State Space Model (SSM) (Gu et al., 2022) blocks to promote the effi-
ciency. Our work takes root in a hybrid architecture, EDM2, that alternates convolution blocks with
attention modules and manifests as an outstanding denoiser architecture.

3 DESIGN ROADMAP

We first give a brief recap on the network design of preeminent diffusion models. Next, we provide
our intuition about model design and present the roadmap to an efficient architecture while preserv-
ing the generation quality, in which the design path could be split into two branches, layer placement
in the denoising network and its synergy with the embedding network.

3.1 PRELIMINARY

EDM1 and EDM2 commonly employ the encoder-decoder paradigm in the denoising network, into
which a noise-perturbed image is fed and from which a reparameterized denoised image is retrieved.
Each network block stacks two 3 × 3 regular convolutions for feature extraction or mixing. Differ-
ently, Group Normalization (Wu & He, 2018) and SiLU nonlinearity (Ramachandran et al., 2018)
precede convolution in EDM1 while EDM2 revokes such normalizations and substitutes SiLU with
MP-SiLU. A skip connection is indispensable to facilitate smooth training (He et al., 2016). For-
mally, a network block either in the encoder or decoder of EDM2 could be formulated as

o = conv(φ(conv(φ(x)))) + γ(x), (1)

where φ denotes the MP-SiLU activation function and γ refers to a potential linear projection that
compresses channels only in the decoder part (otherwise it is identity in the encoder part). o and x
enumerate the input and output feature tensor of the considered network block. Moreover, for con-
ditional generation, a condition embedding is utilized to rectify the midway representation, written
as

o = conv(φ(conv(φ(x))× ϕ(c))) + γ(x), (2)
where c defines the condition information and ϕ symbolizes the mapping network that transforms
it into a high-dimensional embedding. A self-attention module is suggested to append to this con-
volution block in case that the feature resolution is low, for example, 1/4 and 1/8 of the input noisy
image resolution. Since self-attention does not occupy a majority of the computation in our context,
we omit to discuss it in the sequel.

Reminiscent of the classical Progressive GAN (Karras et al., 2018), EDM2 draws a wealth of lessons
from it: standard normal weight initialization, constant input channel concatenation, pixel normal-
ization, and magnitude-preserving learned layers (aka equalized learning rate). EDM2 also echoes
certain modern architecture design philosophies: pixel norm analogous to RMSNorm (Zhang &
Sennrich, 2019), magnitude-preserving layers to weight standardization (Qiao et al., 2020) and co-
sine attention to QK Normalization (Dehghani et al., 2023). In turn, EDM2 now serves as a starting
point for our redesigned architecture. To hit our ultimate design, we also additionally tap wisdom
from other celebrated model architectures.

We shall revise the existing network details and present thorough experimental results of our ex-
ploration journey in Table 1 and 2. Concretely, the revisions are enabled one by one on top of the
baseline EDM2 and we delineate the stepwise quality metric accompanied by the model parameters
and computational complexity. Figure 2 and 3 sketch the architecture layout of each intermediate
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Table 1: Ablated architectures of the denoising network block. † reproduction with the official code.
“c” stands for the base channel number of the first block in the entire network, while “e” the channel
expansion ratio of the first pointwise convolution inside a block and “k” the kernel size of the only
depthwise convolution. The same in Table 2.

Architecture Mparams GFLOPs FID-50K

baseline (original publication) 280.21 101.90 1.58
A conv, c192 (baseline reproduced†) 280.21 101.90 1.63
B dwconv, c384 252.28 51.13 1.81
C dsconv, e6 273.99 72.52 1.75
D dsconv, e6, linear bottleneck 273.99 72.44 1.57
D⋆ dsconv, e4, linear bottleneck 195.59 51.09 1.60
E mbconv, e6 273.76 72.27 1.63
E⋄ mbconv, e6, k7 278.05 75.27 1.64
F +dwconv at the end 195.76 51.26 1.68
G −dwconv in the middle 195.11 50.61 1.66

configuration. We perform our evaluation on the class-conditional ImageNet (Deng et al., 2009)
64 × 64 dataset, with the identical training recipe and data processing strategy to EDM2, in order
to isolate the influence of network design. For fast prototyping, we choose a modest-sized model,
EDM2-S with approximately 300M trainable parameters as the baseline (reproduced by ourselves
as CONFIG A in Table 1), with more results for scaled-up models presented later. We follow the
evaluation protocol of common practice and measure the final performance with Fréchet Inception
Distance (FID) (Heusel et al., 2017) on 50,000 synthesized images (i.e., FID-50K). We defer more
implementation details to Section 4.

3.2 DENOISING NETWORK DESIGN

Our overarching goal is to slim the model architecture without prejudice to the generation quality.
Recall that previous lightweight network designs usually resort to a couple of depthwise and point-
wise convolutions, supporting spatial and channel information mixing respectively. On this premise,
we further posit that at the heart of a visual synthesis task is not only spatial pattern mixing or re-
finement but also composing semantically meaningful components for a high-fidelity imagery. In
essence, this task is complicated by reasoning from the interaction between scene and objects, which
cannot be solely reflected from superficial spatial patterns. Thus, once within a tight computational
budget, we advocate trading the spatial representation mixing for stronger semantic representation
learning in the channel dimension.

First, as a pilot experiment, we replace the regular convolution with depthwise convolution. Mean-
while, the channel number throughout the entire network is doubled to keep a reasonable model
capacity. Then, each building block can be derived as

o = dwconv(φ(dwconv(φ(x))× ϕ(c))) + γ(x). (3)

We observe that after roughly halving the computational complexity, the FID sacrifices not too much,
which is shown as CONFIG B in Table 1. It indicates the relative importance of spatial and channel
mixing, prompting us to allocate more computing resources to channel mixing.

Second, we speculate the optimal way to arrange the computation of channel mixing is not evenly
distribute it to all layers as above. Following renowned models for efficient network design including
Xception (Chollet, 2017), MobileNet series (Howard et al., 2017; Sandler et al., 2018; Howard et al.,
2019; Qin et al., 2024) and EfficientNet series (Tan & Le, 2019; 2021), we substitute depthwise sep-
arable convolution (dsconv) for regular convolution, where we only expand the channel dimension
in the first pointwise convolution (expansion ratio set to 6). The building block now becomes

o = pwconv(φ(dwconv(φ(pwconv(φ(dwconv(φ(x))))))× ϕ(c))) + γ(x). (4)

This variant achieves a decent performance but is still not satisfactory, demonstrated as CONFIG C
in Table 1. Motivated by the linear bottleneck principle in MobileNetV2 (Sandler et al., 2018), we
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Figure 2: Block specifications of CONFIGS A–D. A (EDM2 baseline) regular convolution. B depth-
wise convolution. C, D depthwise separable (depthwise + pointwise) convolution, MP-SiLU in gray
indicates only existence in CONFIG C. E mobile convolution as MobileNetV2 (Sandler et al., 2018).
The width of each layer is proportional to the number of channels. Best viewed in color.

remove the MP-SiLU in the narrow layers1. It also accords with the argument of “fewer activa-
tion functions” in ConvNeXt (Liu et al., 2022b). This simple modification results in the following
transformation

o = pwconv(φ(dwconv(φ(pwconv(dwconv(φ(x)))))× ϕ(c))) + γ(x), (5)

and effectively mitigates the representation bottleneck. Hence, CONFIG D in Table 1 improves the
quality metric obviously compared to CONFIG C and has already surpassed the baseline CONFIG A.

3.3 QUO VADIS, SPATIAL MIXING PRIMITIVES?

All the above taken into account, a question arises: to what extent do spatial mixing primitives work?
To answer this question, we fade in or out depthwise convolution to scrutinize its impact.

Fade Out We erase one depthwise convolution at the start of CONFIG C block, leaving only a single
depthwise convolution and leading to a lite edition CONFIG E,

o = pwconv(φ(dwconv(φ(pwconv(φ(x))))× ϕ(c))) + γ(x). (6)

We find that the generation quality holds, corroborating our hypothesis that channel mixing opera-
tions outweigh spatial ones under a limited computational budget. Intriguingly, we notice that at this
moment the network block looks pretty like MBConv (Tan et al., 2019), so we abuse the notation to
term CONFIG E as mbconv in Table 1.

In addition, there appears a tendency to employ larger kernel sizes, such as 5 × 5 (Tan et al., 2019)
or 7 × 7 (Liu et al., 2022b). We make an attempt to enlarge the kernel size of the only depthwise
convolution to 7×7 but observe a neutral effect in terms of the quality metric, shown as CONFIG E⋄

in Table 1. This phenomenon is possibly attributed to the existence of self-attention that has already
effectively captured long-range feature correspondences.

As an episode, we step a little back to scale down the channel expansion ratio of the current best-
performing variant CONFIG D from 6 to 4, so as to constrain the computational cost to nearly 50%
of the baseline. This action makes the subsequent experiments more affordable and guarantees that
the generation quality is still superior to the baseline, marking a promising checkpoint CONFIG D⋆.
We shall engage with CONFIG D⋆ in the remaining.

Fade In We attach another depthwise convolution at the end of CONFIG D⋆ block, calculated as

o = dwconv(φ(pwconv(φ(dwconv(φ(pwconv(dwconv(φ(x)))))× ϕ(c))))) + γ(x), (7)

which even causes performance regression, illustrated as CONFIG F in Table 1.
1narrow means a small channel dimension while wide means a large one, following Sandler et al. (2018).
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Table 2: Ablated architectures of the interplay between embedding and denoising networks.

Architecture Mparams GFLOPs FID-50K

A conv, c192 (baseline) 280.21 101.90 1.63
D⋆ dsconv, e4, linear bottleneck 195.59 51.09 1.60
F +dwconv at the end 195.76 51.26 1.68
F∗ +dwconv at the end, embed bottleneck 154.61 51.05 1.60
G −dwconv in the middle 195.11 50.61 1.66
G∗ −dwconv in the middle, embed bottleneck 153.97 50.41 1.58

Fade Out Given the redundancy of depthwise convolution in CONFIG F, one of the three depth-
wise convolutions could be safely removed without observable drawbacks. Since eliminating the
depthwise convolution at the starting position does not provide a clear gain (remember CONFIG E
vs.CONFIG D), it is tentative to exclude the one in the middle, described as CONFIG G

o = dwconv(φ(pwconv(φ(pwconv(dwconv(φ(x)))× ϕ(c))))) + γ(x). (8)

It gives rise to slightly improved performance and reduced computation overhead, as validated in
Table 1.

In response to the question raised in the beginning: excessive spatial mixing primitives are indeed
unnecessary for a better generation quality (CONFIG F), while too few of them deteriorate the per-
formance (CONFIG E). Therefore, CONFIG G is taken for granted in the following exploration.

3.4 EMBEDDING NETWORK DESIGN

The condition embedding is the crux of injecting external condition signals into the main stream of
the denoising network. The condition information might be a timestamp (Ho et al., 2020) or a noise
level (Song & Ermon, 2019), a class label (Dhariwal & Nichol, 2021) or a more verbose textual
description (Rombach et al., 2022). In this work, we operate on the noise level and the class label
information, since our exploration is set out on the ImageNet benchmark for class-conditioned image
synthesis. Typically, an input numeral, representative of the condition information, is appropriately
scaled and mapped to a high-dimensional space using non-learnable Fourier feature (Tancik et al.,
2020) or sinusoidal embedding, in concert with a (few) learnable linear projection layer(s). This
stack of neural layers is collectively dubbed as the embedding network.

It is trendy that the embedding network is gradually minimized, exemplified by the shallower map-
ping network in StyleGAN2-ADA (Karras et al., 2020a) or StyleGAN3 (Karras et al., 2021) and the
trimmed embedding network in EDM2 (Karras et al., 2024b). The model capacity of this tiny net-
work is presumably sufficient to extract semantic information from a single scalar condition, while a
shorter path here permits the denoising network to be better informed of the condition information.
Provided the network depth is extremely truncated by design, we are particularly interested in how
to maximize its cooperation with the denoising network from other factors, for instance, whether
the network width of their junction makes a difference to the generation quality and parameter effi-
ciency.

Regarding the above CONFIGS F–G, the condition embedding is mixed with a wide feature map. The
conventional wisdom is that the condition embedding is responsible for steering the style of synthe-
sized images in a global manner (Huang & Belongie, 2017; Karras et al., 2019). From the viewpoint
of information bottleneck theory, integrating such condition information into a narrow feature map
would be more effective, yielding more targeted and predictable control of the entire information
flow. To substantiate our hypothesis, we reposition the embedding network after the last pointwise
convolution, constructing an “embed bottleneck” in CONFIG G∗ (similar for CONFIG F∗)

o = dwconv(φ(pwconv(φ(pwconv(dwconv(φ(x)))))× ϕ(c))) + γ(x). (9)

Notably, this step shoots two hawks with one arrow, not only reducing the network parameters by
over 20% but also meliorating the generation quality. Thanks to the boosted bottleneck represen-
tation, the FID metric is again elevated beyond the baseline CONFIG A, as exhibited in Table 2
CONFIG F∗ and CONFIG G∗.
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Figure 3: Block specifications of CONFIGS F–G. CONFIGS F∗–G∗ rewire the embedding network to
a narrow feature tensor in the denoising network, shaping an “embed bottleneck”. G∗ ours EDM2+.

In a nutshell, the key to both efficacy and efficiency is modulating the condition embedding into the
denoising network’s bottleneck layers. A proof by contradiction occurs in CONFIG E, where there
are two optional positions for embedding modulation, that are, following the first pointwise convo-
lution or the first depthwise convolution. Indeed, we do not find a noticeable difference between
them (with the same FID of 1.63). It is supposed that both feature maps are of equal width, without
a bottleneck of information flow in the mainstream denoising network.

4 EXPERIMENTS

4.1 DATASETS

We adopt ImageNet (Deng et al., 2009) pixel-space diffusion at 64×64 resolution as the benchmark.
Before training, we follow ADM (Dhariwal & Nichol, 2021) protocol to pre-process the raw Ima-
geNet dataset for a fair comparison to previous works. Specifically, the images are resized along the
short edge and then cropped at the center to a desired square shape. No data augmentation is applied
during training, since a large-scale dataset like ImageNet is deemed to be challenging enough to fit
for most visual generation models.

4.2 EVALUATION

The evaluated checkpoints are constructed post-hoc through power-function Exponential Moving
Average (EMA) over a group of snapshots with the recommended length by EDM2. The evaluation
metric is the widely recognized FID (Heusel et al., 2017). It compares the distribution statistics
of 50K synthesized samples against all the 1,281,167 real images in the training dataset, in line
with common practice. The class labels for the 50K synthesized images are drawn from a uniform
distribution. For feature extraction, we use the pre-trained Inception-v3 (Szegedy et al., 2016) model
provided by StyleGAN3 (Karras et al., 2021). Limited by the computational resource, we compute
FID only once, which may even put us at a disadvantage in comparison to EDM2 (because EDM2
computes FID three times and reports the minimum).

4.3 IMPLEMENTATION DETAILS

We implemented our network architecture based on the PyTorch (Paszke et al., 2019) library and
EDM2 codebase2. All training runs are conducted on 32 NVIDIA A100-SMX4-80G GPUs, while
each evaluation run is executed on a single node with 8 GPUs. The entire training traverses either

2https://github.com/NVlabs/edm2
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Table 3: State-of-the-art comparison on ImageNet at 64×64 resolution. NFE states the Number that
the score Function is Evaluated to synthesize a single image. ↓ hints lower is better. GFLOPs tell
the floating-point operations per function call. The entries with Autoguidance combine an S-sized
model with an XS-sized unconditional one, taking the guidance model’s cost into consideration.

Architecture Deterministic Stochastic Model size
FID↓ NFE FID↓ NFE Mparams Gflops

ADM (Dhariwal & Nichol, 2021) – – 2.07 250 296 110
+ EDM1 sampling (Karras et al., 2022) 2.66 79 1.57 511 296 110
+ EDM1 training (Karras et al., 2022) 2.22 79 1.36 511 296 110
VDM++ (Kingma & Gao, 2023) – – 1.43 511 296 110
RIN (Jabri et al., 2023) – – 1.23 1000 281 106
StyleGAN-XL (Sauer et al., 2022) 1.52 1 – – 134 549

EDM2-S (Karras et al., 2024b) 1.58 63 – – 280 102
+ Autoguidance(XS, T/8) (Karras et al., 2024a) 1.01 63 – – 405 147
EDM2-M (Karras et al., 2024b) 1.43 63 – – 498 181
EDM2-L (Karras et al., 2024b) 1.33 63 – – 777 282
EDM2-XL (Karras et al., 2024b) 1.33 63 – – 1119 406

EDM2+-S 1.58 63 – – 154 50
+ Autoguidance(XS, T/8) (Karras et al., 2024a) 1.00 63 – – 213 73
EDM2+-L 1.33 63 – – 426 138
EDM2+-XL 1.33 63 – – 613 199

2147.5M or 671.1M images with a mini-batch size of 64 per device. We adopt the Adam (Kingma
& Ba, 2015) optimizer with a peak learning rate of ∼0.01 and constant betas β1 = 0.9, β2 = 0.99.
The learning rate is linearly warmed up over the first 10M images and decayed after 70K train-
ing iterations following a reciprocal square root schedule (Zhai et al., 2022). Larger models enjoy
a moderately lower learning rate and higher dropout rate. Mixed-precision training (Micikevicius
et al., 2018) is allowed to take full advantage of the tensor cores in NVIDIA Ampere architecture.
Almost all activation values are cast to the 16-bit floating point (FP16) format during network for-
ward/backward. To avoid the risk of under/overflows, it is sufficient to only cast the NaN and Inf
gradient values to zeros. The second-order Heun sampler is adopted for ODE sampling, with all the
hyperparameters aligned with the original EDM1 setup. The EDM2+-S model is built upon network
blocks of CONFIG G* in Figure 3. The L-sized and XL-sized versions are obtained by scaling up
the network width of EDM2+-S to 320 and 384 respectively.

4.4 QUANTITATIVE RESULTS

Comparison to deterministic sampling. As depicted in Table 3, under the scenario of deterministic
sampling without guidance, we rival the generation quality of prior art diffusion models, EDM2. Of
note is that the on-par quality is acquired with merely half of the computational load and parameter
count. In a horizontal comparison to the GAN family with deterministic sampling, Inception-v3
based FID measurement is blamed for unfairly favoring GANs rather than diffusion models (Stein
et al., 2023). Therefore, previous diffusion models have to exchange more than double parameters
for lower FID-50K than the best-in-class StyleGAN-XL. Still with better FID, EDM2+, among the
diffusion models, is the first to preserve the same magnitude of model size as StyleGAN-XL.

Comparison to stochastic sampling. Although stochastic sampling is still at the forefront of cutting-
edge diffusion models, it suffers from laborious parameter tuning and a cumbersome sampling tra-
jectory. To outperform EDM1 using stochastic sampling, EDM2-L using deterministic sampling
spends nearly triple FLOPs on a single model evaluation, partially canceling out the benefit of fewer
sampling steps, while our EDM2+-L could limit the single model FLOPs to the same level as EDM1.
In lieu of stochastic sampling, some concurrent works push the performance frontier of determin-
istic sampling with advanced Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) techniques,
such as guidance interval (Kynkäänniemi et al., 2024) and autoguidance (Karras et al., 2024a). Now
that this work on neural architecture design is orthogonal to them, our generation performance is
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Table 4: Runtime and memory profiling. CPU latency is timed with a batch size of 1 while the GPU
throughput with a batch size of 32. The GPU throughput is measured in Frames Per Second (FPS).

Architecture CPU Latency (s)↓ GPU Throughput (img/s)↑ GPU Memory (MB)↓
EDM2 2.069 642 1273
EDM2+ 0.998 (−52%) 836 (+30%) 1114 (−13%)

Figure 4: Uncurated images at 64× 64 resolution from EDM2+-XL without guidance.

ready to be further improved using these complementary tricks. As a consequence, the combina-
tion of EDM2+ and autoguidance secures an FID of 1.00, reaching the state-of-the-art performance.
With evidently fewer sampling steps and total compute, we are able to beat the record FID of 1.23
achieved by stochastic sampling of RIN.

Runtime analysis. Figure 1 and Table 3 mainly quantifies the model cost using FLOPs. Neverthe-
less, it is more practical to inspect the wall clock runtime (Ma et al., 2018). The model inference
is profiled on an NVIDIA A100 GPU after warmup, with torch.compile and TensorFloat32
(TF32) tensor cores enabled, as well as on an Intel Xeon Platinum 8468V CPU. An apple-to-apple
comparison to EDM2 on runtime and memory is collected in Table 4. The hardware execution speed
is of great interest, that is improved by 52% on CPU and 30% on GPU device with our EDM2+. As
a byproduct, the GPU memory volume during inference time is also shrunk by 13%.

4.5 QUALITATIVE RESULTS

We display uncurated class-conditional generation samples in Figure 4. These images are generated
with our EDM2+-XL model without guidance. At a glimpse of various samples, the illustrated re-
sults embrace a variety of classes represented in the ImageNet dataset, demonstrating great diversity.
Looking into each individual sample, though at a low resolution, these synthesized images maintain
high fidelity in comparison to real-world photographs.

5 CONCLUSION AND LIMITATION

This work invests effort into the rapidly evolving arena of diffusion model architectures, via un-
dertaking a systematic exploration and unraveling practical guidelines for efficient network design.
The valuable discoveries, pinpointing the significance of layer placement and module interconnec-
tion, are leveraged to deliver a model family named EDM2+. Our presented EDM2+ architecture
achieves pronounced efficiency gains against the EDM2 counterpart and redefines the state-of-the-
art performance of generative modeling.

Despite promising, the practical runtime is expected to be further optimized for real-time deploy-
ment. Probing more fine-grained architecture design options, such as the preference discrepancies
between the network encoder and decoder, or even the per-block design regime, is intended as the
next step in our research agenda. Neural Architecture Search (NAS) (Zoph & Le, 2017; Zoph et al.,
2018) is a plausible avenue to reach this goal. Marrying our EDM2+ architecture to the latent-space
diffusion for high-resolution image synthesis is also left as our future work.
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