
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING OFFLINE MODEL-BASED RL VIA JOINTLY-
OPTIMIZED WORLD-ACTION MODEL PRETRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

A significant aspiration of offline reinforcement learning (RL) is to develop a gen-
eralist agent with high capabilities from large and heterogeneous datasets. How-
ever, prior approaches that scale offline RL either rely heavily on expert trajec-
tories or struggle to generalize to diverse unseen tasks. Inspired by the excellent
generalization of world model in conditional video generation, we explore the
potential of image observation-based world model for scaling offline RL and en-
hancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-
Optimized World-Action model, an offline model-based RL agent pretrained on
multiple Atari games with 6 billion tokens data to learn general-purpose represen-
tation and decision-making ability. Our method jointly optimizes a world-action
model through a shared transformer backbone, which stabilize temporal differ-
ence learning with large models during pretraining. Moreover, we propose a prov-
ably efficient and parallelizable planning algorithm to compensate for the Q-value
estimation error and thus search out better policies. Experimental results indi-
cate that our largest agent, with 150 million parameters, achieves 78.9% human-
level performance on pretrained games using only 10% subsampled offline data,
outperforming existing state-of-the-art large-scale offline RL baselines by 71.4%
on averange. Furthermore, JOWA scales favorably with model capacity and can
sample-efficiently transfer to novel games using only 5k offline fine-tuning data
(approximately 4 trajectories) per game, demonstrating superior generalization.

1 INTRODUCTION

In recent years, building large-scale generalist models capable of solving multiple tasks has become
a dominant research focus in natural language processing (NLP) and multi-modality. Notable exam-
ples include large language models (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023;
Team et al., 2023) and large vision-language models (Zhu et al., 2023; Liu et al., 2024; Bai et al.,
2023), which deliver outstanding performance across a wide range of tasks and adapt quickly to new
ones through few-shot or in-context learning. Their success is largely driven by the scaling law (Ka-
plan et al., 2020), which posits that increasing model size and data leads to improved performance.
However, similar scaling trends have not been extensively observed in reinforcement learning (RL).

Unlike in vision and language domains, RL has traditionally favored smaller models tailored to sin-
gle tasks or multiple tasks within the same environment. Concerningly, previous studies have shown
that scaling model capacity can lead to instabilities or performance degradation (Kumar et al., 2020a;
Ota et al., 2021; Sokar et al., 2023), explaining the continued dominance of shallow CNN networks
in vision-based RL tasks (Mnih, 2013). While some efforts have been made to scale offline RL
across multiple tasks (Lee et al., 2022; Reed et al., 2022; Xu et al., 2022; Wu et al., 2024), they
predominantly rely on supervised learning (SL) approaches, such as conditional behavior cloning,
rather than temporal difference (TD) learning, and heavily rely on large amounts of expert trajecto-
ries. Kumar et al. (2023) scaled offline Q-learning using ResNet-based representation network with
separate Q-heads for each game, but this approach only learns generalizable representations and still
requires substantial data and gradient steps to adapt to unseen games due to reset of Q-heads during
fine-tuning. Therefore, scaling TD-based offline RL for simultaneous general-purpose representa-
tion and decision-making remains a critical challenge. While Hansen et al. (2024) attempted to
address this challenge for continuous control tasks with low-dimensional proprioceptive states using
model-based RL, it lacks generalization due to heterogeneous proprioceptors across task domains.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Meanwhile, world model has decoupled from model-based RL and evolved into a distinct research
area within computer vision and multi-modality, primarily focusing on conditional video genera-
tion (Hong et al., 2022; Blattmann et al., 2023; Yu et al., 2023; Yang et al., 2024; Bruce et al., 2024).
Notably, SORA (Brooks et al., 2024) has demonstrated superior generalization performance as a
world simulator through large-scale training of generative models on time-series image data. This
motivates our investigation into a compelling question: “Can image observation-based world model
scale offline RL across multiple tasks while enhancing generalization to diverse unseen tasks?”

To address this question, we introduce JOWA: Jointly-Optimized World-Action model, an offline
model-based RL agent pretrained across multiple visual games with approximately 6 billion tokens
data. Crucially, JOWA unlocks scaling trends and achieves sample-efficient adaption to novel games.
By utilizing a shared transformer backbone for both the world model and Q-value criticism, JOWA
learns both generalizable representations and decision-making skills. This architecture allows the
transformer to absorb gradients back-propagated from both world modeling and TD losses, enabling
joint optimization. The world modeling loss acts as a regularizer, stabilizing TD-learning for large
models. Additionally, we propose a provably efficient and parallelizable planning algorithm to com-
pensate for the Q-value estimation error, allowing for consistent identification of the optimal policy
at inference time and sample-efficient transfer to novel games.

To evaluate the performance of JOWA, we train a single model to play 15 Atari games, similar to Lee
et al. (2022); Kumar et al. (2023) but using a reduced yet sufficient dataset of 10M transitions per
game—termed as the low-data regime to highlight the data efficiency. This setup presents a signifi-
cant challenge due to the diverse nature of games, each with unique dynamics, rewards, visuals, and
agent embodiments. To further test JOWA’s generalization ability, we perform offline fine-tuning on
5 unseen games, using minimal fine-tuning data.

Our contributions are threefold: First, we introduce JOWA, an offline model-based RL method capa-
ble of training a single high-performing generalist agent across multiple Atari games. JOWA attains
78.9% human-level performance on pretrained games using only 10% of the original dataset (Agar-
wal et al., 2020), outperforming existing state-of-the-art large-scale offline RL baselines by 71.4%
on averange. Second, we demonstrate that JOWA unlocks scaling trends, with performance improv-
ing as model capacity increases. Third, JOWA enables sample-efficient transfer to diverse unseen
games with 64.7% DQN-normalized score using only 5k transitions per game, surpassing baselines
by 69.9% on average. Our ablation studies highlight the significance of two key design features
of JOWA: joint optimization and planning, along with other training choices. Due to the exten-
sive training time, we will release all training, evaluation, and fine-tuning codes, as well as model
weights, to support future research.

2 RELATED WORK

Offline Reinforcement Learning. Offline RL algorithms learn a policy entirely from the static
offline dataset without online interactions. Model-free offline RL incorporates conservatism to miti-
gate extrapolation error (Jin et al., 2021) primarily through policy constraints (Fujimoto et al., 2019;
Kumar et al., 2019; Nair et al., 2020; Kostrikov et al., 2021; Fujimoto & Gu, 2021; Li et al., 2023)
and value regularization (Kumar et al., 2020b). In contrast, model-based offline RL approximates the
environment using learned world models and performs conservative policy optimization (Lu et al.,
2021; Yu et al., 2020b; 2021; Schrittwieser et al., 2021). While these works focus on single-task set-
tings, our work explores scaling offline model-based RL across diverse, challenging multi-task Atari
games (Lee et al., 2022; Kumar et al., 2023; Wu et al., 2024) aiming for sample-efficient transfer
to novel games. We employ CQL (Kumar et al., 2020b) and COMBO (Yu et al., 2021) to estimate
conservative Q-values, leveraging their simplicity and effectiveness on vision-based RL tasks.

Mutli-Task Reinforcement Learning. Multi-task reinforcement learning (MTRL) aims to learn
a shared policy for diverse tasks, with various approaches proposed in the literature (Teh et al.,
2017; Song et al., 2019; Xu et al., 2020; Yang et al., 2020; Li et al., 2020; Sodhani et al., 2021).
A common approach is to formulate the multi-task model as task-condition (Yu et al., 2020a), such
as language-conditioned tasks (Lynch & Sermanet, 2020; Ahn et al., 2022; Jang et al., 2022) and
goal-conditional RL (Plappert et al., 2018). In multi-task offline RL, conditional sequence model-
ing approaches based on decision transformer (Chen et al., 2021) or diffusion model (Janner et al.,
2022) typically rely on large amounts of expert trajectories (Reed et al., 2022; Xu et al., 2022; Lee

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

et al., 2022; Wu et al., 2024; Hu et al., 2024; He et al., 2024). Beyond conditional behavior cloning
(BC) methods, FICC (Ye et al., 2022) pretrains multi-task representation and dynamic models with
action-free videos and then fine-tunes a model-based agent on each task for fast adaptation. Scaled-
QL (Kumar et al., 2023) scales offline Q-learning using a shared feature network across tasks with
separate Q-value heads for each task. Our work advances offline TD learning to multi-task settings
without task-specific Q-value heads through a jointly-optimized world-action model. Table 1 com-
pares experimental environments and open-source status of multi-task offline RL algorithms. Fol-
lowing Lee et al. (2022); Kumar et al. (2023); Wu et al. (2024), we focus on the multi-game regime,
which presents greater challenges due to high-dimensional observations and diverse, stochastic envi-
ronment dynamics. Due to the prohibitive long training time, we advocate for open-sourcing codes
and checkpoints to facilitate progress in this field.

Table 1: Comparison of methods in multi-task offline RL. ♣ and ♠ represent two training paradigms
of agents, conditional BC and TD-learning, respectively.

Method
Experimental environment Open source

Benchmark Observation Action Dynamics Train Eval Check-
space space per task across tasks points

MTDIFF♣ (He et al., 2024) Meta-World state continous deterministic same or ✓ ✓ ✗
HarmoDT♣ (Hu et al., 2024) or DMControl similar ✓ ✓ ✗
TD-MPC2♠ (Hansen et al., 2024) ✓ ✓ ✓

FICC♠ (Ye et al., 2022)1

Atari 2600 pixels discrete stochastic diverse

✓✗ ✗ ✗
MGDT♣ (Lee et al., 2022) ✗ ✓ ✓
Elastic DT♣ (Wu et al., 2024) ✓ ✓ ✗

Scaled-QL♠ (Kumar et al., 2023)2 ✓✗ ✓✗ ✗
JOWA (ours)♠ ✓ ✓ ✓

3 PRELIMINARIES AND PROBLEM SETUP

3.1 ONLINE DISTRIBUTIONAL RL (C51)

In distributional RL, the distribution Z over returns replaces the Q-value in the Bellman optimality
equation. The Q-value is the mean of the value distribution Z that can be computed through a
distributional Bellman optimality operator (Bellemare et al., 2017),

T ∗Z(s, a) :
D
= R(s, a) + γZ(s′, argmax

a′
Q(s′, a′)) (1)

where the formula Y :
D
= U denotes equality of probability laws, that is the random variable Y is

distributed according to the same law as U . The C51 algorithm (Bellemare et al., 2017) models
Z(s, a) using a discrete distribution supported on N fixed atoms z1 ≤ · · · ≤ zN uniformly spaced
over a predetermined interval. Given a current value distribution, C51 applies a projection step to
map the target distribution onto its finite element support and optimizes as follows:

LTD = DKL(T ∗Zθ−(s, a)∥Zθ(s, a)) (2)

3.2 VALUE REGULARIZATION BASED OFFLINE RL (CQL AND COMBO)

To be conservatism on unseen actions, CQL (Kumar et al., 2020b) introduces a regularizer to the
TD-loss, which minimizes Q-values for unseen actions while maximizing Q-values for actions in
the dataset to counteract excessive underestimation. The loss function for CQL is given by:

LCQL = α

(
Es∼D

[
log

(∑
a′

exp (Qθ(s, a
′))

)]
− Es,a∼D [Qθ(s, a)]

)
+ LTD (3)

COMBO (Yu et al., 2021), a model-based variant of CQL, uses the following loss function:
LCOMBO = α

(
Es,a∼ρM̂(s,a) [Qθ(s, a)]− Es,a∼D [Qθ(s, a)]

)
+ Es,a,s′∼df

[LTD] (4)

where M̂ is the imagined Markovian Decision Process induced by the world model. ρM̂(s, a) is the
occupancy measure of current policy within M̂. df is an f -interpolation between the offline dataset
and synthetic rollouts from the world model: df = fdD + (1− f)dM̂, where f ∈ [0, 1].

1FICC only open-sourced the world model pretraining code without the agent fine-tuning code.
2Scaled-QL released the preliminary code which is not run-able out-of-the-box.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

⋯
𝔃𝟏

⋯

⋯

⋯

⋯

𝑜" 𝑜$"

enc dec

𝑧"" 𝑧"# 𝑧"$ 𝑎"

𝑒"" 𝑒"# 𝑒"$

𝑝% 𝑝% 𝑝%ℎ& 𝑝'

�̂�"# �̂�"(𝑄" �̂�#" �̂�"

𝑒")
𝑲+𝟏

⋯
𝔃𝑳

⋯

⋯

⋯

𝑧+" 𝑧+# 𝑧+$ 𝑎+

𝑒+" 𝑒+# 𝑒+$

𝑝% 𝑝% ℎ& 𝑝'

�̂�+# �̂�+(𝑄+ �̂�+

𝑒+)
𝑲+𝟏

Transformer Backbone

Network

Inner output

Final output

Transition

Legend:

⋯

𝑜+ 𝑜$+

enc dec

𝑝,

𝑑."

𝑝,

𝑑.+

Figure 1: Architecture of JOWA. We use a shared transformer backbone for both world modeling
and Q-value criticism to enable joint optimization. VQ-VAE tokenizes images into visual tokens.
The sum of vocabulary embeddings, position embeddings and task embeddings forms the input
embeddings space for the transformer backbone.

3.3 PROBLEM SETUP

We consider a multi-task offline RL problem: given a static dataset of transitions D =
{(st, at, rt, dt, st+1)i} collected from various environments with arbitrary behaviour polices, our
goal is to learn a single policy that maximizes the expected return Rt =

∑
k≥t γ

k−trk on all con-
sidered environments and can be efficiently fine-tuned to new tasks, where γ is the discount factor.

Considering the computational budget, we use 15 Atari games for pretraining and 5 games for out-
of-distribution (OOD) experiments. The whole training process took around 12 days on A100 GPUs.
Our offline dataset is derived from the the DQN-Replay dataset (Agarwal et al., 2020), which con-
sists of 84× 84 grayscale images as observations and a full action space with 18 discrete actions.

4 JOINTLY-OPTIMIZED WORLD-ACTION MODEL

In this section, we first detail the architecture of JOWA and the loss functions for joint optimization
in section 4.1. Next, we introduce the provably efficient and parallelizable planning algorithm em-
ployed to compensate for the Q-value estimation error in section 4.2. Finally, we present the overall
training and sample-efficient fine-tuning pipelines in section 4.3.

4.1 WORLD-ACTION MODEL

4.1.1 ARCHITECTURE

Figure 1 illustrates JOWA’s architecture, which uses a transformer backbone (Vaswani, 2017) to
simultaneously learn world dynamics and Q-values across environments. This dual capability is
achieved through distinct prediction heads that process the transformer’s output embedding e. The
world dynamics are modeled via supervised learning using three heads: next observation token
predictor po, reward predictor pr, and termination predictor pd. The Q-values head hQ learns the
Q-function through TD-learning, based on implicit representations of historical trajectories. In the
following sections, we refer to the {transformer, po, pr, pd} components as the ”world-part” with
parameters θ, and the {transformer, hQ} components as the ”action-part” with parameters ϕ.

We use VQ-VAE, a discrete autoencoder, to tokenize image observations, representing high-
dimensional images as a sequence of K tokens. The VQ-VAE is trained with an equally weighted
combination of L1 reconstruction loss, commitment loss (Van Den Oord et al., 2017), and perceptual
loss (Esser et al., 2021). Then the transformer operates on the interleaved observation and action
tokens represented as (z10 , . . . , z

K
0 , a0, . . . , z

1
L, . . . , z

K
L , aL), where L is the maximum timesteps of

the trajectory segments. For multi-task learning, we incorporate learnable task embeddings for both
observation and action tokens.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1.2 TRAINING OF WORLD-PART MODULE

At each timestep t, the world-part module models the following distributions:

Dynamics predictor: ẑkt ∼ po
(
ẑkt | f(z≤t−1, z

<k
t , a≤t−1, u)

)
(5)

Reward predictor: r̂t ∼ pr
(
r̂t | f(z≤t, a≤t, u)

)
(6)

Termination predictor: d̂t ∼ pd
(
d̂t | f(z≤t, a≤t, u)

)
(7)

where f represents the transformer backbone, u is the task ID to index the corresponding task
embedding, k ∈ {1, · · · ,K}, and t ∈ {1, · · · , L}.

To unify the category of loss functions for balanced training (Vandenhende et al., 2021), we convert
scalar rewards to ternary quantities {−1, 0, 1} using the sign function. This allows all three predic-
tors to be optimized as classification problems by cross-entropy loss. Given L-timesteps segments
sampled from the offline dataset, the loss function for the world-part module is formulated as:

Lworld(θ) =
1

L

L∑
t=1

[1
K

K∑
k=1

− ln po
(
zkt | f(z≤t−1, z

<k
t , a≤t−1, u)

)
− ln pr

(
rt | f(z≤t, a≤t, u)

)
− ln pd

(
dt | f(z≤t, a≤t, u)

)]
(8)

4.1.3 TRAINING OF ACTION-PART MODULE

We use CQL for offline TD-learning during pretraining. To ensure training stability and enhance
scaling performance (Farebrother et al., 2024), we employ distributional TD-error (Bellemare et al.,
2017) instead of the mean-square TD-error, maintaining consistency with the Lworld loss category.

The action-part module computes the return distribution for all actions given an observation and
historical information. For an observation-action pair (ot, at), the return distribution Z is formulated
as: Z(ot, at) = hQ(f(z≤t, a<t, u))[at]. The value function Q(ot, at) is the mean of Z(ot, at).
Then the loss function for the action-part module is formulated as:

Laction(ϕ) = α [log (
∑

a exp (Q(ot, a)))−Q(ot, at)] +DKL

(
T ∗Z−(ot, at)∥Z(ot, at)

)
(9)

where T ∗ is the distributional Bellman optimality operator defined in Equation (1), and Z− is the
target distribution computed through a target Q-values head hQ− . We set α = 0.1 in experiments.

Therefore, the joint optimization objective for the world-action model is formulated as:

L(θ, ϕ) = βLworld(θ) + Laction(ϕ) (10)

with the coefficient β > 0. We set β = 0.1 in our experiments.

Both Lworld and Laction back-propagate gradients to the transformer. Previous works observed that
TD methods suffer from greater instability with larger model size (Kumar et al., 2020a; Sokar et al.,
2023). However, through jointly optimizing the world-action model, Lworld serves as a regularizer to
stabilize TD-learning in large-scale models. Moreover, the world-part module enables planning at
decision time for optimal inference and sample-efficient transfer, detailed in the following sections.

4.2 PARALLELIZABLE PLANNING AT INFERENCE TIME

The world-part module enables planning at decision time to compensate for inaccurate Q-value
estimates, allowing JOWA to consistently search out the optimal policy. We model this process as a
tree search problem and present a practical, parallelizable search algorithm.

Given an estimated optimal Q-value Q̂∗, a learned world model with dynamic predictor P̂ and
reward predictor r̂, our objective is to find the optimal action a∗0 maximizing the ground-truth optimal
Q-value Q∗, starting from state s0. To do so, we rewrite the Bellman optimality equation as:

Q∗(s0, a0) = max
πQ∗

E
s1,··· ,sH∼P

a1,··· ,aH−1∼πQ∗

[
H−1∑
t=0

γtr(st, at) + γH max
aH

Q∗(sH , aH)

]
(11)

where πQ∗ is the policy induced by the optimal Q-function. For Equation (11), the optimal policy is
the greedy policy based on Q∗. The proof is provided in the Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To derive the search objective function, we follow three steps: (i) replace the ground-truth functions
in the right side of Equation (11) with estimated or learned functions. (ii) leverage the estimated
optimal Q-function Q̂∗ to reduce the policy space for search, restricting the actions to those with
top-K highest Q-values. Denote the constrained policy space as ΠQ̂∗ , where ∀π ∈ ΠQ̂∗ ,∀s ∈
S,∀a /∈ top-K(Q̂∗(s, ·)), we have π(a|s) = 0. (iii) maximize over a0 on both sides of Equation
(11) to find the optimal initial action, considering the restriction in the second step. Finally, the
resulting objective function is formulated as:

max
π∈ΠQ̂∗

E
s1,··· ,sH∼P̂

a0,··· ,aH−1∼π

H−1∑
t=0

γtr̂(st, at)︸ ︷︷ ︸
income-to-date

+ γH max
aH

Q̂∗(sH , aH)︸ ︷︷ ︸
income-to-go

 (12)

Detailed derivation is provided in the Appendix B. Then we show the error bound of search-based
optimal Q-function in Theorem 4.1, with the formal theorem and its proof in Appendix C.
Theorem (Informal) 4.1. Denote the search-based optimal Q-function as f(s, a). Assume the
learned reward function r̂ to be Lr-Lipschitz and the estimated optimal Q-function Q̂∗ to be LQ-
Lipschitz. Assume the estimation errors of the learned state transition, reward, and Q-value are
bounded by ϵs, ϵr, ϵQ respectively. Then we have the error between search-based optimal Q-value
f(s, a) and ground-truth optimal Q-value Q∗(s, a) bounded as:

∥f(s, a)−Q∗(s, a)∥ ≤ 1− γH

1− γ
ϵr +

(
γ − γH

1− γ
ϵr + γHϵQ

)
ϵs + γHϵQ (13)

Under the following condition, the search-based optimal Q-function f has an upper error bound no
greater than the estimated optimal Q-function Q̂∗:

1

1− γ
ϵr +

(
γ

1− γ

Lr − γHLQ

1− γH
− Lr − LQ

1− γ

γH

1− γH

)
ϵs ≤ ϵQ (14)

To optimize objective function (12), we interact with the imagined MDP induced by the learned
world model using the constrained policy π ∈ ΠQ̂∗ for H steps, starting from s0. We then compute
the total income (income-to-date plus income-to-go) for all leaf nodes to identify the optimal path.
The first edge of this path is the optimal initial action.

We implement this search using beam search, an efficient decoding algorithm common in NLP. At
each timestep, we retain only K states with the top-K total income values. The horizon H and beam
width K are hyper-parameters, with K = 1 or H = 0 degenerating to a Q̂∗-based greedy policy.
The algorithm calls the world model K2(H − 1) +K times but only takes H times as long as the
forward propagation of the world model due to parallelizability across K beams.

4.3 TRAINING AND FINE-TUNING PIPELINES

Our multi-task offline RL pretraining consists of two stages:

• Stage 1: Sample trajectory segments from datasets. Train the VQ-VAE tokenizer using image
observations. Train the world-part module using segments with loss (8) for M1 steps.

• Stage 2: Freeze the VQ-VAE tokenizer. Sample segments and jointly optimize the world-
action model with loss function (10) for M2 steps.

We employ this two-stage training approach to stabilize and accelerate the overall training process.
In our pretraining experiments, we set M1 = 250k and M2 = 1.5M, totaling 1.75M gradient steps.

For sample-efficient transfer to unseen games, we adopt a similar two-stage offline fine-tuning
pipeline, but unfreeze all components of JOWA in both two stages. In stage 1, we fine-tune JOWA
using real data for 3k steps. In stage 2, we enable planning to synthesize high-quality data, using
half batch of real and half batch of synthetic data with COMBO (4) as the action-part loss for 7k
steps. Detailed fine-tuning protocol is shown in Appendix E.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We design our experiments to answer the following questions: (1) How does JOWA perform on
multi-games in low-data regime? (2) Can JOWA effectively leverage higher model capacity? (3)
Does the pre-trained JOWA sample-efficiently transfer to new games?

5.1 EXPERIMENTAL SETUP

Dataset. We use the Atari dataset from Agarwal et al. (2020), which contains 50M transitions from
each of 5 separate training runs. Due to the prohibitive long training time on full games, we select a
subset of 20 games, maintaining the difficulty distribution of full games defined by Gulcehre et al.
(2020). These 20 games are introduced in Appendix D. 15 of those games are used for training, and
5 games are held out for OOD generalization experiments. Following Lee et al. (2022), we use data
from 2 out of 5 training runs. To investigate performance in low-data regime, we uniformly draw
10% of transitions at random, as per Agarwal et al. (2020), resulting in 10M transitions per game.
Training and Fine-tuning. We implement our world-action model based on GPT-2 (Brown et al.,
2020). We train three JOWA variants: JOWA-150M (150M parameters), JOWA-70M, and JOWA-
40M. We set the number of visual tokens K to 36, resulting in a total of approximately 6B tokens
in our dataset. The sequence length L is set to 8. We pretrain all JOWA models on A100 GPUs for
1.75M steps. For fine-tuning, we train models for 10k gradient steps with 5k transitions.
Evaluation and Metrics. During evaluation, we enable planning for JOWA, setting the planning
horizon H to 2 for all games and adjust the beam width K based on the valid action space size of each
game. See Appendix E.3 for the detailed evaluation protocol. We measure performance using human
normalized scores (HNS) (Mnih et al., 2015), i.e. (score − scorerandom)/(scorehuman − scorerandom).
To create an aggregate comparison metric across all games, we use inter-quartile mean (IQM) of
human-normalized scores, following evaluation best practices proposed in (Agarwal et al., 2021).

More details on hyperparameters, network architecture, algorithm implementation, and protocols
for fine-tuning, and evaluation are provided in the Appendix E.

5.2 BASELINE METHODS

We compare JOWA with the following baselines: (i) Multi-Task BC (MTBC). Our method can nat-
urally be reduced to a transformer-based multi-task behavioral cloning agent. We train MTBC mod-
els at 3 scales: 34M, 65M, 120M parameters. (ii) Multi-Game DT (MGDT). Lee et al. (2022) used
{ot+i, R̂t+i, at+i, rt+i}3i=0 as input sequences, where R̂ is the target return, and expert-conditioned
return distribution to induce expert-level actions during evaluation. We train MGDT models at 2
scales: 40M and 200M parameters. (iii) Elastic DT (EDT). Based on MGDT, Wu et al. (2024)
removed the reward in the input sequences and dynamically selected history length to address chal-
lenges of trajectory stitching. We train EDT based on the architecture configuration of MGDT-
200M. (iv) Scaled-QL (SQL). Kumar et al. (2023) scaled offline Q-learning through pre-trained
and shared representation network and separate Q-values head for each game. We reproduce the
largest Scaled-QL with 80M parameters using ResNet-101 network. (v) FICC. Ye et al. (2022)
pretrained the dynamic model with videos and then online fine-tuned the agent on each game. To
obtain an offline multi-task policy, we pretrain FICC for 0.5M steps and then primarily fine-tune
the Q-function on 15 games all at once, the same as JOWA’s second pretraining stage, for 1.25M
steps. We replace all residual blocks in FICC’s official code with ResNet-50-style blocks, resulting
in FICC-85M. For fair comparison, all methods use the same batch size of 512 and 1.75M gradient
steps. The implementation details of all baselines are provided in the Appendix E.1.

5.3 HOW DOES JOWA PERFORM ON MULTI-GAMES IN LOW-DATA REGIME?

We summarize our main results in Table 2. This table shows the performance of JOWA alongside
all best performing sizes of baselines trained with 10% subsampled dataset. MTBC, MGDT, and
EDT represent (conditional) behavior cloning methods, while Scaled-QL, FICC, and JOWA repre-
sent Q-learning methods. Despite the constraints on the amount of data, JOWA achieves superior
performance with comparable or fewer parameters than baselines. Specifically, JOWA-150M attains
an IQM human-normalized score of 78.9% in low-data regime, surpassing MGDT-200M (49.8%)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Returns on the 15 Atari games for best performing sizes of multi-game models trained with
the 10% subsampled dataset. Bold numbers indicate the top methods.

Game Random Human MTBC MGDT EDT SQL FICC JOWA
120M 200M 200M 80M 85M 40M 70M 150M

Assault 222.4 742.0 1203.5 1741.5 1915.5 2292 925.9 1578.3 1733.9 2302
Atlantis 12850 29028.1 37812.5 2565750 2108166.7 49100 86250 41662.5 570862.5 2690387.5
BeamRider 363.9 16926.5 786 6011.3 4149.8 7023.5 6822 880.3 2547.4 3498
Berzerk 123.7 2630.4 655 444.5 350 312.5 400 395 441.9 739
Carnival 0 3800 5560 2610 3678.8 1940 2820 4685 4070 5316
Centipede 2090.9 12017 4046.6 4604 3389.9 3650.3 3742.2 5669.3 4475.6 4677
ChopperCommand 811.0 7387.8 256.3 3300.8 3443.8 853.8 2835.6 3118.8 2568.8 3812.5
DemonAttack 152.1 1971 2611.3 6549.4 3455.7 7936.5 5806.4 1233.8 4584.4 3547.8
NameThisGame 2292.3 8049 6045 6610.5 7060 6461.7 6236 7335.6 12706.9 11421
Phoenix 761.4 7242.6 1446.9 5120.5 5320 4961.7 3814.5 1608.8 5065 5348
Seaquest 68.4 42054.7 120 2720 3160.4 650 1760 1033.1 1490 2725
SpaceInvaders 148 1668.7 605 742.5 513.8 714.4 641.2 694.7 969.1 744.7
StarGunner 664.0 10250 1493.8 8625.5 9550 4728.6 4936.4 5737.5 21231.3 18150
TimePilot 3568 5229.2 762.5 3866.7 2812.5 4072.7 4166.7 3268.8 3831.3 3669
Zaxxon 32.5 9173.3 0 462.5 325.5 0 312.5 0 225 2163

#Superhuman 0 N/A 4 3 4 3 3 3 4 6
Median HNS 0.000 1.000 0.197 0.391 0.400 0.387 0.390 0.360 0.390 0.456
IQM HNS 0.000 1.000 0.329 0.498 0.502 0.420 0.433 0.371 0.476 0.789

and EDT-200M (50.2%), despite these two models having more parameters and utilizing data aug-
mentation during pretraining. JOWA-70M achieves an IQM human-normalized score of 47.6%,
outperforming Scaled-QL-80M (42.0%) and FICC-85M (43.3%). JOWA maintains its performance
advantage when comparing median human-normalized scores. These results demonstrate JOWA’s
sample efficiency in learning from heterogeneous offline data.

Next, we present experiments highlighting JOWA’s scaling and generalization capabilities. These
two key properties derived from multi-game pretraining align with recent advancements in SL.

5.4 HOW DOES JOWA SCALES WITH MODEL SIZE?

40 60 100 200

Parameters (x1 Millon)

30%

40%

50%

60%

70%

80%

Hu
m

an
-N

or
m

al
ize

d
IQ

M

JOWA
MGDT
MTBC

Figure 2: Scaling trends for different algo-
rithms on training set games.

Scaling law depicts the positive correlation be-
tween model capacity and performance. Follow-
ing Lee et al. (2022); Kumar et al. (2023), we
investigate JOWA’s ability to leverage higher ca-
pacity architectures. For comparison of scaling
trends, we establish 2 baselines: (i) MTBC scaled
to 34M, 65M and 120M parameters. (ii) MGDT
with 40M and 200M parameters. We scale JOWA
by increasing the size of the transformer back-
bone and Q-values heads, resulting in 3 variants
with 40M, 70M, and 150M parameters. Figure
2 shows the scaling trends for the 3 algorithms,
which demonstrates that JOWA’s performance re-
liably increases as the model size grows. Although
previous works observed that TD-learning suffer
from greater instability with larger model size (Lee
et al., 2022; Sokar et al., 2023), JOWA scales TD-
learning through a scalable transformer architec-
ture and an auxiliary regularization loss Lworld to stabilize the TD-learning in large models. Notably,
JOWA exhibits the steepest scaling curve among all algorithms, highlighting the great scalability
potential of offline model-based RL.

Table 3: Fine-tuning performance on unseen games using 5k transitions, measured in terms of DQN-
normalized score, following Lee et al. (2022). See Table 18 in Appendix F for raw scores.

DNS MTBC MGDT EDT SQL FICC JOWA JOWA-150M
120M 200M 200M 80M 85M 40M 70M 150M (scratch)

Mean 0.164 0.422 0.430 0.360 0.543 0.504 0.576 0.647 0.196
Median 0.215 0.354 0.325 0.284 0.565 0.512 0.715 0.615 0.173
IQM 0.205 0.377 0.380 0.355 0.575 0.498 0.603 0.647 0.181

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.5 CAN JOWA SAMPLE-EFFICIENTLY TRANSFER TO NEW GAMES?

Rapid adaptation to downstream tasks is a natural and well-motivated benefit of pretraining. In
this section, we study how the pretrained world-action model enables rapid and sample-efficient
fine-tuning on new games. To investigate this question, we fine-tune pretrained agents on 5
held-out games using uniformly subsampled 5k expert-level transitions (from last 20% of DQN-
Replay (Agarwal et al., 2020)) per game as the benchmark. These tiny amounts of transitions cor-
responding to approximately 4 trajectories from expert-level DQN-Replay per fine-tuned game on
average, which is similar to the settings of few-shot learning and is extremely challenging. For
comparison, we fine-tune the largest agents of baselines alongside a no-pretrained baseline, JOWA-
150M (scratch) trained on each held-out game from scratch. All pretrained agents are fine-tuned
for 10k steps while JOWA-150M (scratch) is trained for 100k gradient steps. Detailed fine-tuning
protocol is shown in Appendix E.2. We report results in terms of DQN-normalized score (DNS),
following Lee et al. (2022); Kumar et al. (2023), in Table 3.

The results show that the fine-tuned JOWA-150M attains 64.7% IQM DNS across 5 held-out games,
outperforming baselines by 69.9% on average. Moreover, comparing the performance of 3 JOWA
variants, the scaling trend on IQM DNS still holds for novel games after fine-tuning. These results
underscore JOWA’s capacity for rapid and sample-efficient transfer to novel games, highlighting the
efficacy of its learned general-purpose representation and decision-making capabilities.

5.6 ABLATION STUDY

In this section, we conduct a series of ablation studies to evaluate the impact of key design choices in
JOWA, including planning, different training losses, and usage of synthetic data. More experiments
can be found in Appendix F. These experiments aim to provide empirical evidence to support our
designs and offer valuable insights for future research in this domain.

Table 4: Performance on the 15 Atari games for 3
variants of JOWA evaluated with or without planning
reported in terms of the IQM HNS.

JOWA-150M JOWA-70M JOWA-40M

without planning 50.8% 45.1% 27.1%
with planning 78.9% 47.6% 37.1%
improvement (↑) +28.1% +2.5% +10.0%

Table 5: Results on 7 games for JOWA-
150M evaluated with different planning
algorithms. See Table 19 for raw scores.

w/o planning MCTS Ours

FPS 10.8 0.12 1.26
Mean HNS -2% 22.1% 37.8%
IQM HNS 3% 13.4% 23.7%

Effects of planning at decision time. We evaluate our 3 variants models with or without plan-
ning and report the IQM HNS across 15 pretrained games in Table 4. Observe that the addition of
planning improves 13.5% performance on average and 28.1% on maximum for JOWA-150M. Even
without planning, JOWA still exhibits scaling trends with increasing model size, but at a slower rate.

To further demonstrate the efficiency of our planning algorithm, we compare it with MCTS. Be-
cause Muzero-style (Schrittwieser et al., 2020) MCTS requires access to the V -function and pol-
icy networks π while JOWA only estimates the optimal Q-function, we use maxa Q(s, a) as the
V -value V (s) and use an energy-based policy to compute the action probability, i.e., π(·|s) =
softmax(Q(s, ·)/t), where t is the temperature. We conduct a grid search on the implementation
choices and hyperparameters for MCTS and show the details in Appendix F. We report the frames
per second (FPS) and HNS on 7 games, where bare JOWA-150M performs poorly, in Table 5. Ob-
serve that ours not only is 10× faster than MCTS but also exceeds MCTS by 71.0% on Mean HNS.
Moreover, we empirically observe that MCTS is highly sensitive to the temperature and max depth
of the tree while the long execution time makes it inconvenient to tune hyperparameters.

The subsequent ablation experiments require training from scratch in multi-game regime. For time-
saving, we consider a subset of 6 games in the following experiments: Assault, Carnival,
Centipede, NameThisGame, Phoenix, SpaceInvaders. We train all models with 10%
randomly subsampled data per game for 1M gradient steps and fix the parameter size to 40M.

Different training losses. We train models with each of the following 5 loss functions to in-
vestigate the impact of each loss term: (i) original loss defined in Equation (10), (ii) No CQL
regularization in Laction, which means no conservative constraints, (iii) No Lworld, which means
training a model-free transformer-based critic network using Laction, (iv) gradients of Laction not

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: The mean, median, and IQM human-normalized score on the 6 Atari games for various
training choices. See Tabel 20 in Appendix F for raw scores.

Game Origin Different training losses Synthetic data
No CQL No Lworld sg(Laction) MSE in pretraining

Mean HNS 1.183 0.613 0.917 0.293 0.189 0.448
Median HNS 1.078 0.696 0.489 0.304 0.118 0.452
IQM HNS 1.123 0.637 0.659 0.307 0.126 0.464

back-propagated to transformer backbone, denoted as sg(Laction) for short, which means optimizing
the world model and critic network separately, (v) mean square error (MSE) instead of distributional
TD-loss. The results of different training losses are shown in the third main column of Table 6.

Observe that the sg(Laction) and MSE loss fail to train qualified multi-game agents. We empirically
observe that agents trained with MSE TD-loss always over-optimize the CQL regularization term
regardless of the value of coefficient α (tested with α ∈ {0.01, 0.05, 0.1}), resulting in extremely
high Q-values for in-domain state-actions and low Q-values for OOD actions. The fail of sg(Laction)
underscores the importance of joint-optimization in the world-action model. Comparing the original
loss with the no Lworld configuration demonstrates that scaling model-based multi-game RL is more
efficient than model-free RL. Additionally, the CQL conservatism regularizer is also necessary in
multi-game pretraining. Overall, the original loss outperforms all variant losses by a large margin,
indicating the effectiveness of every loss terms.

Effects of synthetic data in pretraining. By default, we do not employ planning or synthetic
data during pretraining due to the significant increase in training time (approximately 10× slower,
extending training to months). For this ablation study, we enable synthetic data in pretraining for
JOWA-40M and train on 6 games for 1M steps, which takes 31 days. Specifically, we sample batch
of 4-step segments and interact in the imagined MDP with ϵ-greedy policy to synthesis the last 4
steps. Then we optimize JOWA with half real data and half synthetic data using COMBO loss in
Equation (4) as Laction. The results are shown in the last main column of Table 6.

Suprisingly, we observe negative gains from the usage of synthetic data. We hypothesize twofold
reasons: (i) accumulation of inference errors over steps causes later synthetic steps to deviate signif-
icantly from the ground-truth distribution, (ii) COMBO’s over-penalization of Q-values for unseen
state-action pairs results in overly conservative agents. Due to the unbearable training time, further
investigation into more effective methods of utilizing synthetic data is left for future work.

6 CONCLUSION

In this work, we introduce JOWA: Jointly-Optimized World-Action model, a single offline model-
based RL agent capable of playing multiple Atari games. JOWA uses a shared transformer backbone
for both the world modeling and the Q-value criticism, enabling joint optimization. We propose a
provably efficient and parallelizable planning algorithm to consistently identify the optimal policy
during inference. As we hoped, by increasing model parameters, JOWA unlocks scaling trends in
performance and exceed prior large-scale offline RL methods in multi-games regime. Furthermore,
by training a large-capacity model on a diverse set of games, we show that JOWA can sample-
efficiently adapt to novel games, leveraging its generalizable world model for planning. Our ablation
studies validate the efficacy of joint optimization and our planning method, while also demonstrating
that scaling offline model-based RL is more efficient than offline model-free RL. To facilitate future
research, we will release all training and evaluation codes, along with pretrained model checkpoints.

Limitations. Due to the computation resources required, we could not experiment on full Atari
2600 games with complete datasets (Agarwal et al., 2020), as this would take 2 months for training.
Additionally, while using synthetic data to train agents is common in single-task online model-based
RL, we observe it yields negative gains in multi-game RL pretraining. Therefore, how to effectively
use synthetic data for multi-task pretraining is an interesting direction for future work. Lastly, al-
though we observe the scaling trend on IQM aggregated scores, the raw scores in some games
are against this trend, i.e.,increasing model parameters leads to decreasing performance in specific
games. We hypothesis that this inconsistence is an inherent problem of offline RL. Unfortunately, to
our knowledge, neither increasing model size nor extending training iterations can solve this issue.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. An optimistic perspective on offline
reinforcement learning. In International Conference on Machine Learning, pp. 104–114. PMLR,
2020.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449–458. PMLR, 2017.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In International Conference on Machine Learning, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing Systems, 34:15084–15097, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taı̈ga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in Neural Information Processing Systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Process-
ing Systems, 33:7248–7259, 2020.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for contin-
uous control. In International Conference on Learning Representations, 2024.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in Neural Information Processing Systems, 36, 2024.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
training for text-to-video generation via transformers. In International Conference on Learning
Representations, 2022.

Shengchao Hu, Ziqing Fan, Li Shen, Ya Zhang, Yanfeng Wang, and Dacheng Tao. Harmodt: Har-
mony multi-task decision transformer for offline reinforcement learning. In International Confer-
ence on Machine Learning, 2024.

Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch, Sergey Levine,
and Chelsea Finn. Bc-z: Zero-shot task generalization with robotic imitation learning. In Confer-
ence on Robot Learning, pp. 991–1002. PMLR, 2022.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning, pp. 9902–9915.
PMLR, 2022.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and
super-resolution. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part II 14, pp. 694–711. Springer, 2016.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning Rep-
resentations, 2020a.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020b.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. International Conference on
Learning Representations, 2023.

Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio Guadar-
rama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game decision trans-
formers. Advances in Neural Information Processing Systems, 35:27921–27936, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and Hao
Su. Multi-task batch reinforcement learning with metric learning. Advances in neural information
processing systems, 33:6197–6210, 2020.

Jiachen Li, Edwin Zhang, Ming Yin, Qinxun Bai, Yu-Xiang Wang, and William Yang Wang. Of-
fline reinforcement learning with closed-form policy improvement operators. In International
Conference on Machine Learning, pp. 20485–20528. PMLR, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in Neural Information Processing Systems, 36, 2024.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and Stephen J Roberts. Revisiting
design choices in offline model based reinforcement learning. In International Conference on
Learning Representations, 2021.

Corey Lynch and Pierre Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. In International Conference on Learning Representations, 2022.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning. arXiv preprint arXiv:2102.07920, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn Pow-
ell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal reinforce-
ment learning: Challenging robotics environments and request for research. arXiv preprint
arXiv:1802.09464, 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021.

Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pp. 9767–9779. PMLR,
2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. In International Conference on Machine Learning, pp.
32145–32168. PMLR, 2023.

H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy
maximum a posteriori policy optimization for discrete and continuous control. arXiv preprint
arXiv:1909.12238, 2019.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas
Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. Advances in
Neural Information Processing Systems, 30, 2017.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems, 30, 2017.

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(7):3614–3633, 2021.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. Efficientzero v2: Mastering
discrete and continuous control with limited data. arXiv preprint arXiv:2403.00564, 2024.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. Advances in
Neural Information Processing Systems, 36, 2024.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In International Con-
ference on Machine Learning, pp. 24631–24645. PMLR, 2022.

Zhiyuan Xu, Kun Wu, Zhengping Che, Jian Tang, and Jieping Ye. Knowledge transfer in multi-task
deep reinforcement learning for continuous control. Advances in Neural Information Processing
Systems, 33:15146–15155, 2020.

Jiazhi Yang, Shenyuan Gao, Yihang Qiu, Li Chen, Tianyu Li, Bo Dai, Kashyap Chitta, Penghao Wu,
Jia Zeng, Ping Luo, et al. Generalized predictive model for autonomous driving. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14662–14672,
2024.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

Weirui Ye, Yunsheng Zhang, Pieter Abbeel, and Yang Gao. Become a proficient player with lim-
ited data through watching pure videos. In The Eleventh International Conference on Learning
Representations, 2022.

Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G
Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, et al. Magvit: Masked generative video
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 10459–10469, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020a.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020b.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in Neural Information
Processing Systems, 34:28954–28967, 2021.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. In International Conference
on Learning Representations, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A PROOF OF EQUATION (11)

Given the initial state-action pair (s0, a0), the bellman expectation equation (Sutton, 2018) is written
as:

Qπ(s0, a0) = E
s1∼P (·|s0,a0)

[r(s0, a0) + γV π(s1)]

= E
s1,··· ,sH∼P

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr(st, at) + γHV π(sH)

]
(15)

According to the definition of optimal Q-value: Q∗(s0, a0) = maxπ Q
π(s0, a0), we have:

Q∗(s0, a0) = max
π

E
s1,··· ,sH∼P

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr(st, at) + γHV π(sH)

]

= max
π

E
s1,··· ,sH∼P

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr(st, at) + γH max
π

V π(sH)

]

= max
π

E
s1,··· ,sH∼P

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr(st, at) + γHV ∗(sH)

]

= max
π

E
s1,··· ,sH∼P

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr(st, at) + γH max
aH

Q∗(sH , aH)

]
(16)

For Equation (16), we derive the optimal policy π is the greedy policy selecting actions with the
greatest Q*-value as follows:

Q∗(s0, a0) = max
π

E
s1,··· ,sH∼P

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr(st, at) + γH max
aH

Q∗(sH , aH)

]

= max
π

E
s1,··· ,sH−1∼P
a1,··· ,aH−2∼π

[
H−2∑
t=0

γtr(st, at) + γH−1 max
aH−1

E
sH∼P

[
r(sH−1, aH−1) + γmax

aH

Q∗(sH , aH)

]]

= max
π

E
s1,··· ,sH−1∼P
a1,··· ,aH−2∼π

[
H−2∑
t=0

γtr(st, at) + γH−1 max
aH−1

Q∗(sH−1, aH−1)

]
(17)

Therefore, we have aH−1 = argmaxa Q
∗(sH−1, a). Similarly, continuing to use dynamic pro-

gramming on Equation (17), we finally get: ai = argmaxa Q
∗(si, a), (i = 1, 2, · · · , H − 1). Thus

we claim that the optimal policy is induced by the optimal value and use the symbol πQ∗ instead of
π in Equation (16) to obtain Equation (11).

B DERIVATION FROM EQUATION (11) TO EQUATION (12)

Given the learned dynamic preditor P̂ , reward predictor r̂, and estimated optimal Q-value Q̂∗, we
first substitute these three functions for the ground-truth functions in the right side of Equation (11):

max
πQ̂∗

E
s1,··· ,sH∼P̂

a1,··· ,aH−1∼πQ̂∗

[
H−1∑
t=0

γtr̂(st, at) + γH max
aH

Q̂∗(sH , aH)

]
(18)

However, due to the estimation error between learned functions and ground-truth functions,
Q̂∗(st, at) is typically not equal to Est+1∼P̂

[
r̂(st, at) + γmaxa Q̂

∗(st+1, a)
]
. Therefore, instead

of using dynamic programming to derive that the optimal policy is the greedy policy as in Proof A,
we have to use search to solve formula (18).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

However, we can use the conclusion derived with ground-truth functions to make assumptions to
reduce the policy space for search. We assume that the optimal policy for formula (18) maps states
to actions with top-K highest Q-values. Denote the constrained policy space as ΠQ̂∗ , where ∀π ∈
ΠQ̂∗ ,∀s ∈ S,∀a /∈ top-K(Q̂∗(s, ·)), we have π(a|s) = 0. we make the following assumption:
the optimal policy of formula (18) is in the constrained policy space, i.e.,π∗

Q̂∗ ∈ ΠQ̂∗ . Under this
assumption, formula (18) is equivalent to:

max
π∈ΠQ̂∗

E
s1,··· ,sH∼P̂

a1,··· ,aH−1∼π

[
H−1∑
t=0

γtr̂(st, at) + γH max
aH

Q̂∗(sH , aH)

]
(19)

Then we maximize formula (19) over a0 to find the optimal initial action. Considering the above
assumption, a0 ∈ top-K(Q̂∗(s0, ·)). Thus we have the objective for search as:

max
π∈ΠQ̂∗

E
s1,··· ,sH∼P̂

a0,··· ,aH−1∼π

[
H−1∑
t=0

γtr̂(st, at) + γH max
aH

Q̂∗(sH , aH)

]
(20)

C UPPER BOUND OF SEARCH-BASED Q-VALUE ESTIMATION

Let function f(s0, a0) be equal to formula (19) and let π∗
Q̂∗ be the optimal policy of formula (19).

We have:

f(s0, a0) = E
s1,··· ,sH∼P̂

a1,··· ,aH−1∼π∗
Q̂∗

[
H−1∑
t=0

γtr̂(st, at) + γH max
aH

Q̂∗(sH , aH)

]
(21)

We make the following assumption similar to EfficientZero-v2 (Wang et al., 2024):

Assumption C.1. Assume the state transition, reward, and Q-value estimations error are upper
bounded by ϵs, ϵr, ϵQ respectively. The error bound of each estimation is formulated as:

max
n∈[N],t∈[H(n)]

E [∥ŝt − st∥] ≤ ϵs (22)

max
n∈[N],t∈[H(n)]

E [∥r̂(st)− r(st)∥] ≤ ϵr (23)

max
n∈[N],t∈[H(n)]

E
[
∥Q̂∗(st)−Q∗(st)∥

]
≤ ϵQ (24)

Theorem C.2. Define st, at to be the states and actions resulting from current policy using ground-
truth dynamics P and reward function r and similarly define s

′

t, a
′

t using learned functions P̂ and r̂.
Assume the learned reward function r̂ to be Lr-Lipschitz and the estimated optimal Q-function Q̂∗

to be LQ-Lipschitz. Assume the estimation errors of learned functions are bounded as in Assumption
C.1. Then we have the error between search-based Q-value estimation f(s0, a0) and ground-truth
Q-value Q∗(s0, a0) bounded as:

∥f(s0, a0)−Q∗(s0, a0)∥ ≤ 1− γH

1− γ
ϵr +

(
γ − γH

1− γ
ϵr + γHϵQ

)
ϵs + γHϵQ (25)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof.

∥f(s0, a0)−Q∗(s0, a0)∥

=

∥∥∥∥∥E
[
H−1∑
t=0

γtr̂(s
′

t, a
′

t) + γH max
aH

Q̂∗(s
′

H , aH)

]
− E

[
H−1∑
t=0

γtr(st, at) + γH max
aH

Q∗(sH , aH)

]∥∥∥∥∥
≤E

[∥∥∥∥∥r̂(s0, a0)− r(s0, a0) +

H−1∑
t=1

γt
(
r̂(s

′

t, a
′

t)− r(st, at)
)
+ γH

(
max
aH

Q̂∗(s
′

H , aH)−max
aH

Q∗(sH , aH)

)∥∥∥∥∥
]

≤E [∥r̂(s0, a0)− r(s0, a0)∥] +
H−1∑
t=1

γt
∥∥∥r̂(s′

t, a
′

t)− r(st, at)
∥∥∥+ γH E

[∥∥∥∥max
aH

Q̂∗(s
′

H , aH)−max
aH

Q∗(sH , aH)

∥∥∥∥]

≤ϵr +

H−1∑
t=1

γt
∥∥∥r̂(s′

t, a
′

t)− r(st, at)
∥∥∥+ γH E

[∥∥∥∥max
aH

Q̂∗(s
′

H , aH)−max
aH

Q∗(sH , aH)

∥∥∥∥] (26)

For the second term in inequality (26):∥∥∥r̂(s′

t, a
′

t)− r(st, at)
∥∥∥

=
∥∥∥r̂(s′

t, a
′

t)− r̂(st, at) + r̂(st, at)− r(st, at)
∥∥∥

≤
∥∥∥r̂(s′

t, a
′

t)− r̂(st, at)
∥∥∥+ ∥r̂(st, at)− r(st, at)∥

≤Lr

∥∥∥s′

t − st

∥∥∥+ ϵr

≤Lrϵs + ϵr (27)

For the third term in inequality (26), let a1H = argmaxaH
Q̂∗(s

′

H , aH) and a2H =
argmaxaH

Q∗(sH , aH). Then we have:

E
[∥∥∥∥max

aH

Q̂∗(s
′

H , aH)−max
aH

Q∗(sH , aH)

∥∥∥∥]
=E

[∥∥∥Q̂∗(s
′

H , a1H)−Q∗(sH , a2H)
∥∥∥]

=E
[∥∥∥Q̂∗(s

′

H , a1H)− Q̂∗(sH , a2H) + Q̂∗(sH , a2H)−Q∗(sH , a2H)
∥∥∥]

≤E
[∥∥∥Q̂∗(s

′

H , a1H)− Q̂∗(sH , a2H)
∥∥∥]+ E

[∥∥∥Q̂∗(sH , a2H)−Q∗(sH , a2H)
∥∥∥]

≤LQ

∥∥∥s′

H − sH

∥∥∥+ ϵQ

≤LQϵs + ϵQ (28)

Substitute inequalities (27) and (28) into (26):

∥f(s0, a0)−Q∗(s0, a0)∥

≤ϵr +

H−1∑
t=1

γt(Lrϵs + ϵr) + γH(LQϵs + ϵQ)

=
1− γH

1− γ
ϵr +

(
γ − γH

1− γ
ϵr + γHϵQ

)
ϵs + γHϵQ (29)

Analysis. We expect the search-based Q-values f(s, a) have an upper error bound no greater than
the estimated Q-values Q̂∗(s, a), which is formulated as the following inequality:

1− γH

1− γ
ϵr +

(
γ − γH

1− γ
ϵr + γHϵQ

)
ϵs + γHϵQ ≤ ϵQ (30)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Based on inequality (30), we derive the following condition:

1

1− γ
ϵr +

(
γ

1− γ

Lr − γHLQ

1− γH
− Lr − LQ

1− γ

γH

1− γH

)
ϵs ≤ ϵQ (31)

The inequality (31) means that if the weighted sum of rewards estimation error ϵr and state transition
estimation error ϵs are less than or equal to the Q-values estimation error ϵQ, then the search-based
optimal Q-values have a lower upper-bound of error than estimated optimal Q-values.

D GAMES

We select 20 Atari games maintaining the difficulty distribution of full Atari 2600 games defined
by Gulcehre et al. (2020), which includes 9 easy games, 9 medium games, and 2 hard games.
We use 15 out of 20 games for training and the remaining 5 for OOD generalization experi-
ments. The 15 training games are: Phoenix, Centipede, SpaceInvaders, Carnival,
NameThisGame, Assault, Atlantis, DemonAttack, BeamRider, ChopperCommand,
Seaquest, TimePilot, StarGunner, Berzerk, Zaxxon. The 5 held-out games are: Pong,
Robotank, YarsRevenge, Gravitar, MsPacman. Details about the size of action spaces and
game difficulties are shown in Table 7.

Table 7: Atari Games: Name, Game difficulty, Action Space, and Type.

Game Difficulty Action Space Type

Assault Medium 7 Train
Atlantis Hard 18 Train
BeamRider Medium 9 Train
Berzerk Hard 18 Train
Carnival Medium 6 Train
Centipede Medium 18 Train
ChopperCommand Easy 18 Train
DemonAttack Easy 6 Train
Gravitar Easy 18 Fine-tune
MsPacman Medium 9 Fine-tune
NameThisGame Easy 6 Train
Phoenix Easy 8 Train
Pong Medium 6 Fine-tune
Robotank Medium 18 Fine-tune
Seaquest Easy 18 Train
SpaceInvaders Easy 6 Train
StarGunner Medium 18 Train
TimePilot Easy 10 Train
YarsRevenge Medium 18 Fine-tune
Zaxxon Easy 18 Train

E EXPERIMENTAL DETAILS

E.1 IMPLEMENT DETAILS

E.1.1 JOWA

We implement JOWA based on the codes of IRIS (Micheli et al., 2022)1. We train the tokenizer
VQ-VAE using the following loss function:

L(E,D, E) = ∥x−D(z)∥1 + ∥sg(E(x))−E(z)∥22 + ∥sg(E(z))−E(x)∥22 +Lperceptual(x,D(z))

where E,D, E are encoder, decoder, and embedding table respectively. sg(·) is the stop-gradient
operator. The last term is the perceptual loss (Johnson et al., 2016). We list the hyperparameters of
VQ-VAE in Table 8 and 9. After the first stage of pretraining, the VQ-VAE is frozen.

1https://github.com/eloialonso/iris

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: Encoder / Decoder hyperparameters.
We list the hyperparameters for the encoder, the
same ones apply for the decoder.

Hyperparameter Value

Frame dimensions (h, w) 84× 84
Layers 3
Residual blocks per layer 2
Channels in convolutions 64
Self-attention layers at resolution 6 / 12

Table 9: Embedding table hyperparameters.

Hyperparameter Value

Vocabulary size 2048
Tokens per frame (K) 36
Token embedding dimension 512

In addition to the vocabulary embedding and position embedding, we add a learnable task embed-
ding for observation tokens and action tokens respectively. Our transformer are based on minGPT2

with FlashAttention (Dao et al., 2022) for acceleration. The hyperparameters of JOWA’s transformer
backbone are listed in Table 10 and 11.

Table 10: Same hyperparameters of transformer
for 3 JOWA variants.

Hyperparameter Value

max sequence tokens 296
dropout rate 0.1

Table 11: Different hyperparameters of trans-
former for 3 JOWA variants.

Model Layers Hidden size Heads

JOWA-40M 4 512 8
JOWA-70M 6 768 12
JOWA-150M 12 768 12

Table 12: Hyperparameters of Q-heads for 3 JOWA variants.

Model Layers MLP Hidden dimension Number of heads Dropout

JOWA-40M 3 768 1 0.01
JOWA-70M 3 1024 1 0.01
JOWA-150M 3 1792 3 0.01

The observation predictor, reward predictor, and terminal predictor are 2-layers MLP. The Q-heads
are MLP with dropout, layer normalization, and Mish activations from Hansen et al. (2024). The
hyperparameters of Q-heads for JOWA are shown in Table 12. The training hyperparameters of
JOWA are shown in Table 13.

E.1.2 MTBC

We implement MTBC based on JOWA. We remove the observation predictor, reward predictor,
and terminal predictor. We change the output dimension of Q-heads to 18 and train the heads as a
18-class classification problem. All hyperparameters are kept the same as JOWA.

E.1.3 EDT

We use the official code for EDT3. We implement EDT-200M based on the architecture configu-
ration of MGDT-200M, which is shown in Table 14. We change the batch size to 512 and keep
other hyperparameters the same as its original configuration. We enable data augmentation (random
cropping and random rotation) for EDT.

E.1.4 MGDT

We implement MGDT based on the codes of EDT. We use {ot+i, Rt+i, at+i, rt+i}3i=0 as the input
sequences, remove the expectile regression loss Lmax and observation prediction loss Lobservation, and

2https://github.com/karpathy/minGPT
3https://github.com/kristery/Elastic-DT

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 13: Training hyperparameters of JOWA.

Hyperparameter Value

Optimizer (VQ-VAE) Adam
Optimizer (except VQ-VAE) AdamW
Learning rate (VQ-VAE) 0.0001
Learning rate (except VQ-VAE, stage 1) 0.0001
Learning rate (except VQ-VAE, stage 2) 0.00005
Batch size (VQ-VAE) 2048
Batch size (except VQ-VAE) 512
Weight decay (except VQ-VAE) 0.01
Gradient clip 1.0
Discount factor (γ) 0.99
Target Q update frequency 1000
Distributional Q [-10, 30]
Number of atoms 51
Coefficient of CQL (α) 0.1
Coefficient of Lworld (β) 0.1

Table 14: Hyperparameters of transformer for 2 MGDT variants.

Model Layers Hidden size Heads

MGDT-40M 6 768 12
MGDT-200M 10 1280 20

add the reward prediction loss to rewrite the codes of EDT into MGDT. We enable data augmentation
(random cropping and random rotation) for MGDT. The hyperparameters of transformer for two
MGDT variants are listed in Table 14.

E.1.5 SCALED-QL

We implement a pytorch version of Scaled-QL from scratch, referring to the jax version of its official
preliminary codes4. We use ResNet-101 as the representation backbone, followed by 3-layers MLP
with 1024 hidden neurons and an output layer. We replace the batch normalization in ResNet with
group normalization and use a learnable spatial embeddings to aggregate the outputs of the ResNet
instead of global mean pooling. Before the output layer, we normalize the feature e as e

∥e∥2 . The
training hyperparameters of Scaled-QL are listed in Table 15.

For fair comparison, all methods are trained with the same batch size of 512 for 1.75M gradient
steps. For reporting results, we report the performance of the agent at the end of pretraining.

E.2 FINE-TUNING PROTOCOL

We uniformly draw 5k transitions from expert-level DQN-Replay (Agarwal et al., 2020) (last 20%
of the original dataset) for each held-out game. Each game was fine-tuned separately to measure the
model’s transfer performance for a fixed game. we fine-tuned all methods using a batch size of 32
and learning rate of 0.00005 for 10k gradient steps. For reporting results, we report the performance
of the agent snapshot that obtain the highest score during fine-tuning.

For JOWA in the second fine-tuning stage, we set both the planning horizon and the beam width
to 2 for all fine-tuning experiments. Thus we sample batch of 6-steps segments, using planning
algorithm to synthesis the last 2 steps. Then we update JOWA with half real data and half synthetic
data using COMBO loss rather than CQL loss as the Laction. For other baselines, we enable random
cropping and random rotation for data augmentation.

4https://tinyurl.com/scaled-ql-code

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 15: Training hyperparameters of Scaled-QL.

Hyperparameter Value

Optimizer Adam
Learning rate 0.0002
Batch size 512
Gradient clip 1.0
Discount factor (γ) 0.99
Target Q update frequency 2000
Distributional Q [-20, 20]
Number of atoms 51
Coefficient of CQL (α) 0.05
n-step returns 3

Table 16: Evaluation settings of Atari.

Hyperparameter Value

Sticky actions No
Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Frame skip (Action repetitions) 4
Terminal condition Game Over
Max frames per episode 108K
Evaluation noise ϵeval 0.001

E.3 EVALUATION PROTOCOL

For all methods, each game score is calculated by averaging over 16 model rollout episode trials.
To reduce inter-trial variability, we do not use sticky actions during evaluation following Lee et al.
(2022); Kumar et al. (2023). Following standard protocols on Atari, we evaluate a noised version of
the policy with an epsilon-greedy scheme, with ϵeval = 0.001. The evaluation settings of Atari are
shown in Table 16.

For the expert action inference of MGDT and EDT, we set the inverse temperature κ to 10. For
the planning of JOWA, we set the planning horizon H to 2 for all games. The beam width are set
according to the size of valid action space of each game. Specifically, we set beam width K to 2 if the
valid action space size is less than 10, otherwise we set K in {3, 4}. The planning hyperparameters
for each game are shown in Table 17.

Table 17: Planning hyperparameters of JOWA during evaluation.

Game planning horizon beam width Action space

Assault 2 2 7
Atlantis 2 3 18
BeamRider 2 2 9
Berzerk 2 4 18
Carnival 2 2 6
Centipede 2 4 18
ChopperCommand 2 4 18
DemonAttack 2 2 6
NameThisGame 2 2 6
Phoenix 2 2 8
Seaquest 2 3 18
SpaceInvaders 2 2 6
StarGunner 2 3 18
TimePilot 2 3 10
Zaxxon 2 3 18

F MORE EXPERIMENTS AND RAW SCORES

We summarize the raw scores of fine-tuning experiments, ablation studies on planning algorithms
and training choices in Table 18, 19 and 20 respectively.

Details of the comparison of planning algorithms. We implement both planning algorithms in
python rather than C++ for fair speed comparison. Note that Muzero-style (Schrittwieser et al.,
2020) MCTS requires access to the V -function and policy networks π while JOWA only estimates
the optimal Q-function. Therefore, we conduct a grid search on the following choices for MCTS:

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 18: Offline fine-tuning performance on unseen games using 5k transitions, measured in terms
of DQN-normalized score, following Lee et al. (2022); Kumar et al. (2023).

Game Random DQN MTBC MGDT EDT SQL JOWA JOWA-150M
120M 200M 200M 80M 150M (scratch)

Gravitar 173.0 473.0 35.7 250.0 253.3 137.5 273.3 83.3
MsPacman 307.3 3085.6 905.0 1290.3 1210.7 1040.2 2016.7 786.7
Pong -20.7 19.5 5.8 9.7 11.3 13.7 17.7 8.8
Robotank 2.2 63.9 6.8 16.0 15.5 19.7 25.0 11.0
YarsRevenge 3092.9 18089.9 7987.5 10886.3 11276.9 10838.5 17506.2 6507.0

Mean 0.000 1.000 0.164 0.422 0.430 0.360 0.647 0.196
Median 0.000 1.000 0.215 0.354 0.325 0.284 0.615 0.173
IQM 0.000 1.000 0.205 0.377 0.380 0.355 0.647 0.181

Table 19: Raw scores on 7 games for JOWA-150M evaluated with different planning algorithms.

Game Random Human w/o planning MCTS Ours

BeamRider 363.9 16926.5 864.5 1137.0 3498
Berzerk 123.7 2630.4 396.9 440.0 739
Carnival 0 3800 5560.0 3340.0 5316
ChopperCommand 811.0 7387.8 806.2 1850.0 3812.5
Seaquest 68.4 42054.7 267.5 760.0 2725
TimePilot 3568 5229.2 662.5 4100.0 3669
Zaxxon 32.5 9173.3 12.5 50.0 2163

#Mean HNS 0.000 1.000 -0.02 0.221 0.378
IQM HNS 0.000 1.000 0.03 0.134 0.237

1. Compute the V -value using Q.mean() or Q.max().
2. We employ an energy-based policy to compute action probability, i.e., π(·|s) =

softmax(Q(s, ·)/t), where t is the temperature. We search t in {0.01, 0.1, 0.5, 0.7, 0.8, 0.9, 1,
2, 3, 5, 10}.

3. Use the action of most visited or most valuable children of the root state as the optimal action.

4. Search the max depth of the tree H in [1, 7].

Finally, we use the configuration with V=Q.max(), t = 0.9, and action of most valuable children
as the optimal action for all games while searching H in {1, 2, 4, 6} for each game. Even though we
believe that we conduct a sufficiently adequate hyperparameter search, MCTS still performs worse
than ours, as shown in Table 19.

We compare these two algorithms on 7 games where bare JOWA-150M (i.e., without planning)
performs poorly. The results show that our planning algorithm exceeds MCTS by 71.0% Mean
HNS. Moreover, we find that MCTS is highly sensitive to the temperature t and max depth H , and
inappropriate values of hyperparameters can even degenerate the policy into a randomized policy.
However, its long execution time makes it inconvenient to tune hyperparameters. Because of this,
we have not yet found hyperparameters that can make MCTS perform reasonably on the other 8
pretrained games. We will include MCTS as an optional planning algorithm in our open-source
evaluation code.

Ensemble of Q-value heads. We run JOWA-40M with ensembled Q-heads, where the return dis-
tribution is a weighted sum of distributions from multiple Q-heads. The original configuration of
JOWA-40M uses a single Q-head. In this experiment, we set the number of Q-heads to 3 and com-
pare 2 ensemble approaches: equal weights or random weights like REM (Agarwal et al., 2020).
We report the results in the forth main column of Table 20. Although the equal weighted ensem-
ble slightly outperforms random weights, we have not observed significant improvements of multi
Q-heads over single Q-head. We leave the better way of distributional-Q ensemble for future work.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 20: Raw scores on the 6 Atari games for various training choices. The mean, median, and
IQM human-normalized score are shown in the last 3 rows and the best scores are markded in bold.

Game Origin Different training losses Q-heads ensemble No task Synthetic data
No CQL No Lworld sg(Laction) MSE Equal Random embedding in pretraining

Assault 1423.5 857.9 1650 452.7 637.6 1628.8 1258.6 1428.5 655.7
Carnival 5560 4144.6 5560 2120 620 5154.3 4160 5974.2 3492.9
Centipede 5018.9 1494.1 8146 5568.7 4097.3 5592.5 6450 3725.4 3253
NameThisGame 12208.1 9307.1 4407.3 2108.8 1315 12148.6 9420 7700 5080
Phoenix 4740 140 2036.7 1920 1190 4610 4941.7 4020 193.3
SpaceInvaders 1201.7 605 323.4 539.3 260 958.4 1283.3 575.4 786.3

Mean HNS 1.183 0.613 0.917 0.293 0.189 1.209 1.026 0.964 0.448
Median HNS 1.078 0.696 0.489 0.304 0.118 0.975 0.921 0.721 0.452
IQM HNS 1.123 0.637 0.659 0.307 0.126 1.049 0.931 0.824 0.464

Table 21: Offline fine-tuning performance of JOWA-150M on unseen games with various data qual-
ity, measured in terms of DQN-normalized score, following Lee et al. (2022); Kumar et al. (2023).

Game Random DQN Expert Suboptimal Highly-suboptimal

Gravitar 173.0 473.0 273.3 317.8 296.0
MsPacman 307.3 3085.6 2016.7 1005.5 1126.8
Pong -20.7 19.5 17.7 13.2 13.8
Robotank 2.2 63.9 25.0 14.6 8.5
YarsRevenge 3092.9 18089.9 17506.2 15085.0 9755.4

Mean 0.000 1.000 0.647 0.516 0.422
Median 0.000 1.000 0.615 0.483 0.410
IQM 0.000 1.000 0.647 0.511 0.383

Effects of task embedding. We run JOWA-40M without task embedding, using only the sum of
vocabulary embedding and position embedding as input for transformer. We report results in the
fifth main column of Table 20. Observe that the addition of task embedding improves 21.9% and
35.7% for mean and median human-normalized score respectively.

Fine-tuning with non-expert data. Comparing with fine-tuning using expert-level data, we addi-
tionally fine-tune JOWA-150M using 5k suboptimal and highly-suboptimal transitions. Specifically,
the suboptimal and the highly-suboptimal transitions are uniformly sampled from the complete and
the initial 20% of the DQN-Replay dataset, respectively. The results in Table 21 show that the fine-
tuning performance strongly correlates with data quality. The mean DQN-normalized scores for
expert, suboptimal, and highly-suboptimal data are 0.647, 0.516, and 0.422 respectively.

Discussion of emergent behaviors. Capability emergence refers to the phenomenon where large
models suddenly exhibit new abilities or significantly enhanced performance, typically occurring
after reaching certain scale thresholds in model size. For example, JOWA-150M achieves a sig-
nificantly higher score than JOWA-70M and other baselines on Zaxxon, which seems like the
“emergent” phenomenon. However, after examining the reward of Zaxxon, we conclude that this
“emergent behavior” is actually attributable to the nonlinear reward function. In addition to the com-
mon rewards of around 100, Zaxxon also defines a huge reward of nearly 5000. JOWA-70M gets
this huge reward in 1 of the 16 rollouts while JOWA-150M gets it in 7 rollouts during evaluation.
When we clip the rewards to the range [−1, 1], JOWA-70M and JOWA-150M achieve scores of 0.08
and 0.44 respectively, indicating no true “emergent” phenomenon. Schaeffer et al. (2024) draws a
similar conclusion that “nonlinear or discontinuous metrics cause the emergent abilities”.

24

	Introduction
	Related work
	Preliminaries and problem setup
	Online distributional rl (C51)
	Value regularization based Offline rl (CQL and COMBO)
	Problem setup

	Jointly-Optimized World-Action Model
	World-Action Model
	Architecture
	Training of World-part Module
	Training of Action-part Module

	Parallelizable planning at inference time
	Training and Fine-tuning pipelines

	Experiments
	Experimental Setup
	Baseline Methods
	How does JOWA perform on multi-games in low-data regime?
	How does JOWA scales with model size?
	Can JOWA sample-efficiently transfer to new games?
	Ablation Study

	Conclusion
	Proof of Equation (11)
	Derivation from Equation (11) to Equation (12)
	Upper bound of search-based Q-value estimation
	Games
	Experimental Details
	Implement Details
	JOWA
	MTBC
	EDT
	MGDT
	Scaled-QL

	Fine-tuning protocol
	Evaluation protocol

	More experiments and Raw scores

