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ABSTRACT

Multi-camera 3D object detection for autonomous driving is quite challenging
and has drawn great attention from both academia and industry. The core issue
of the vision-only methods is that it is difficult to mine accurate geometry-aware
features from images. To improve the performance of vision-only approaches, one
promising ingredient in the recipe lies in how to use visual features to simulate
the geometry information of LiDAR, since point cloud data inherently carries 3D
spatial information. In this paper, we resort to knowledge distillation to leverage
useful representations from the LiADR-based expert to enhance feature learning
in the camera-based pipeline. It is observed that the joint optimization of expert-
apprentice distillation as well as the target task might be difficult to learn in the
conventional distillation paradigm. Inspired by the great blossom and impressive
results of foundation models in general vision, we propose a pretrained distillation
paradigm, termed as PreDistill, to decouple the training procedure into two stages.
The apprentice network first emphasizes the knowledge transfer from the expert;
then it performs finetuning on the downstream target task. Such a strategy would
facilitate the optimal representation learning with targeted goals and ease the joint
feature learning as resided in conventional single-stage counterpart. PreDistill
serves as a convenient plug-and-play that is flexible to extend to multiple state-of-
the-art detectors. Without bells and whistles, building on top of the most recent
approaches, e.g., BEVFusion-C, BEVFormer, and BEVDepth, we could guarantee
a unanimous gain of 7.6%, 1.0%, and 0.6% in terms of NDS metric on nuScenes
benchmark. Code and model checkpoints would be available.

1 INTRODUCTION

Recognizing objects in 3D space is a fundamental and challenging task in autonomous driving.
Camera-based approaches (Philion & Fidler, 2020; Li et al., 2022b;c; Liu et al., 2022) obsess the
advantage of semantic and visual information of objects, while LiDAR-based methods (Yan et al.,
2018; Lang et al., 2019; Shi et al., 2021; Yin et al., 2021) present better geometry-aware represen-
tation from point cloud data. As the sensor configurations get more diverse, representing features in
bird’s-eye-view (BEV) to indulge the goodness of both modalities in 2D and 3D space is trending
and has drawn massive attention from both academia and industry.

Bear in mind that there is a distinct performance gap between camera-only and LiDAR-based ap-
proaches based on pubic 3D detection benchmarks (Sun et al., 2020; Caesar et al., 2020). The gap
is due to the fact that the LiDAR modality has explicit geometry information but not the case in
camera modality. The core and most challenging part of a superior vision-only 3D detector are to
equip features with well-learned geometry representations in 3D space. However, relying on visual
information only to reconstruct 3D scenes will inevitably cause ambiguity and inaccuracy.

In this paper, we cast the 3D object detection problem using camera input only, and try to mitigate the
performance gap between camera and LiDAR. That is, with the aid of LiDAR information available
during training, how to devise a general pipeline to extract geometry information and incorporate
it into the feature learning of the camera pipeline is a critical problem. As such, among the many
solutions, knowledge distillation could be an option.

Knowledge distillation (Hinton et al., 2015) is proposed to transfer knowledge from the expert model
to guide the apprentice (student) network. The core idea is to learn or mimic the features, or behav-

1



Under review as a conference paper at ICLR 2023

Expert

Apprentice

M1

M2

Expert

Apprentice

Distill Distill ApprenticeM2

M1

M2

(a) Single-stage Distillation (b) Pretrained (Two-stage) Distillation 

Stage I: Pretraining Stage II: Finetuning

Task

Task

Single-stage

Figure 1: Comparison of two different paradigms for knowledge distillation, where M1 and M2
represent different sources of input (modality) for the expert and apprentice respectively. For (a)
single-stage distillation, the target task as well as the learning of apprentice network is optimized
simultaneously within the distillation framework; for (b) pretrained distillation investigated in this
paper, the optimization of apprentice network and downstream task is decoupled into two stages.
This is inspired by the impressive practice from visual pretrained models, benefiting from learning
more representative features with targeted goals.

iors in Robotics terminology, of a target network to a downstream, lightweight apprentice model.
As depicted in Fig. 1, there are two typical distillation paradigms, based on whether the target task
is optimized simultaneously within the distillation framework.

There are some works to distillate the expert to the apprentice for autonomous driving tasks using
single-stage distillation. Some resort to a stereo input setting (Guo et al., 2021) to generate depth
estimation via disparity maps in the camera branch, and the LiDAR information is further incorpo-
rated via BEV feature distillation. Others attempt multi-level (feature and response) distillation in
a monocular setting (Chong et al., 2022) or unify LiDAR and camera voxelized features for fusion
task (Li et al., 2022a). Despite various settings and applications, these literature enjoy impressive
performance gain under the single-stage distillation spirit. However, for cross-modal distillation, the
network might be confused about which part to learn and optimize because of the huge difference
in between, resulting in a marginal or even inferior improvement for challenging scenarios.

Inspired by the two-phase training procedure and great success in visual pretrained models (Bai
et al., 2022b; Kuncoro et al., 2020; Wu et al., 2022), we hypothesize that decoupling the expert-
apprentice distillation from the target task into two stages, might ease the difficulty of joint feature
optimization. That is, instead of performing the task at hand within distillation, we would first
perform pretraining to impose the apprentice network on feature distillation from the expert alone;
the adaptation and finetuning of the target task would then be optimized based on the well-pretrained
knowledge from the preceding stage. To the best of our knowledge, there are few attempts following
this two-stage distillation spirit. Sautier et al. (2022) proposed a similar pipeline to leverage the
benefits of pretraining in a contrastive self-supervised fashion. It utilizes the semantic features from
camera as an expert to guide the representation learning in the LiDAR branch for segmentation task.
Note that we do not intentionally advocate pretrained distillation over the single-stage option; rather
in this paper, we try to investigate another perspective of distillation via a disentangled spirit.

To this end, we present a general pretrained distillation pipeline for knowledge transfer from Li-
DAR to a camera-only detection network, namely PreDistill. The overall pipeline is described in
Fig. 2. It consists of three phases, where two novel refinements are proposed to facilitate feature
representation learning. A selective focus module is devised to emphasize foreground instances and
background information in BEV space; a duplication operation is performed during the finetuning
period, allowing for faster convergence and better feature alignment between two modalities.

The contributions are summarized as follows:

• We propose PreDistill, a pretrained distillation paradigm for knowledge transfer. It decou-
ples the expert-apprentice distillation process from the downstream finetuning task. Such a
scheme would facilitate better representative learning for the apprentice model.

• We provide another perspective to utilize geometry-aware LiDAR information to enhance
the performance of vision-centric object detection. This is achieved by two proposed strate-
gies in the pipeline, namely selective focus and duplication.
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• We demonstrate that PreDistill serves as a plug-and-play module extensible to various
state-of-the-art detectors. Without bells and whistles, building on top of BEVFusion, BEV-
Former, and BEVDepth approaches, we could guarantee an unanimous gain of 7.6%, 1.0%,
and 0.6% in terms of NDS metric on nuScenes benchmark.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Knowledge distillation (Hinton et al., 2015) is initially proposed to transfer the learned knowledge
from a large network to a small one for model compression. This strategy has been proved effective
in various computer vision tasks, such as 2D object detection (Chen et al., 2017; Wang et al., 2019;
Dai et al., 2021; Yang et al., 2022b) as well as 3D domains (Cho et al., 2022; Yang et al., 2022a;
Zhang et al., 2022). As stated in Sec. 1, there are two types of distillation based on whether the task
at hand is optimized alongside the optimization of the apprentice network.

Single-stage Distillation. Most works fall into this category in various forms, and yet in pursuit
of the same purpose to optimize the student network. Gupta et al. (2016) transferred knowledge
between different modalities to facilitate the feature learning in the few labelled or even unlabelled
student task. MonoDistill (Chong et al., 2022) designed a multi-level strategy to provide guidance
from the LiDAR teacher to the camera student, considering from both feature and result space.
LIGA-Stereo (Guo et al., 2021) learned a stereo-based model to imitate the high-level geometry-
aware representation from a LiDAR-based model in 3D and BEV space. The view transformation
process can benefit from the relatively accurate depth information. UVTR (Li et al., 2022a) trans-
ferred knowledge from geometry-rich teacher (LiDAR) to geometry-inferior student (camera) by
minimizing distance without excluding background features. The idea of modality switch and uni-
fied voxelization allows flexible extension for sensor fusion task from a distillation perspective.
These work train the knowledge distillation framework end-to-end alongside the target task in the
student model, which may suffer from the difficulty of feature joint optimization.

Pretrained Distillation. As the success of visual pretrained models continues, some attempt to ap-
ply knowledge distillation in the pretraining before finetuning the downstream task. Kuncoro et al.
(2020) distilled the approximate marginal distribution over words in context to inject syntactic biases
in the language model BERT (Devlin et al., 2018). TinyViT (Wu et al., 2022) extracted knowledge
from a large model to a small one in the large-scale data pretraining setting where the small student
model can benefit superior feature learning from massive pretraining data. The tasks are performed
in the general vision domains. Liu et al. (2021) introduced a learned 2D model to pretrain a 3D
counterpart by contrastive learning between two modalities. The proposed method is verified in the
indoor point cloud setting for detection and segmentation tasks. SLidR (Sautier et al., 2022) in con-
trast adopted a camera model as teacher to facilitate the feature learning of a LiDAR network in a
contrastive self-supervised manner. Our work is inspired by the aforementioned pretrained distilla-
tion approaches from various applications, in the sense of decoupling the knowledge distillation and
the downstream task finetuning to better optimize feature learning in the student model.

2.2 3D OBJECT DETECTION

Camera-based 3D Object Detection. Recent years have witnessed a great blossom of vision-
centric approaches to achieve impressive results on many benchmarks. Due to several benefits to
perform perception task in BEV space (Li et al., 2022c), recent methods tend to conduct view trans-
formation first to obtain BEV features, and then predict detection results based on the BEV features.

Lift-Splat-Shoot (LSS) (Philion & Fidler, 2020) proposed leveraging depth distribution to model
uncertainty in depth estimation, and plenty of works follow this paradigm for perspective transfor-
mation (Huang et al., 2021; Li et al., 2022b). To further solve the issue of inaccurate depth estima-
tion, BEVDepth (Li et al., 2022b) utilized explicit depth supervision. BEVFormer (Li et al., 2022c)
performed view transformation by exploiting deformable attention and devised grid-shaped queries
in the BEV space. In this work, we also aim for the camera-based detection task, and propose a
novel distillation paradigm to improve the performance of existent state-of-the-art detectors.
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Figure 2: The proposed PreDistill pipeline is formulated in a pretrained distillation spirit and con-
sists of three phases. View transformation is abbreviated as VT. In (a) expert learning, the LiDAR
network is trained to obtain optimized features in the backbone and detection head respectively. The
core part of PreDistill lies in the (b) pretraining phase, as indicated by solid arrows. The goal is
to learn representative features for apprentice network from its LiDAR counterpart via knowledge
distillation. A selective focus module is introduced to emphasize foreground features of the expert
based on sparsity density in the point clouds. In the last phase (c), we perform the target task with
pretrained apprentice network, and finetune the model with initial parameters in the head duplicated
from those in the expert.

LiDAR- and Fusion-based 3D Object Detection. LiDAR-based approaches (Yan et al., 2018;
Zhou & Tuzel, 2018; Yin et al., 2021; Lang et al., 2019) utilize accurate spatial information from
point cloud data and thus yield superior performance compared to camera solutions. To further boost
performance, fusion-based approaches take LiDAR and camera data as input, leveraging both the
geometry and semantic advantages in two modalities. TransFusion (Bai et al., 2022a) adopted the
bounding box prediction as a proposal to query the image feature, then fused the visual information
to LiDAR features. BEVFusion (Liang et al., 2022) proposed a simple yet effective pipeline to
combine BEV representations from different sensors and achieved impressive results.

3 METHOD

Fig. 2 illustrates the overall pipeline of our method. We first elaborate on the network structures of
the apprentice and expert in Sec. 3.1. Then the training and inference procedures of PreDistill are
presented in Sec. 3.2. Two important refinements on the pipeline are also described in Sec 3.3.

3.1 NETWORK ARCHITECTURE

Apprentice Model. State-of-the-art multi-camera methods usually transform image features into
BEV space, and perform detection based on BEV representation. View transformation is the main
component to construct BEV representations, and it can be categorized either as 2D-3D process or
3D-2D. Recent camera-based approaches (Li et al., 2022c; Huang & Huang, 2022) introduce the
temporal design to further leverage motion and geometry information to boost model performance.

To prove the generalization ability of our proposed pipeline, we consider multiple models under
different settings as our baselines. BEVFusion-C (Liang et al., 2022) serves as a baseline model
of 2D-3D view transformation without temporal information. BEVDepth (Li et al., 2022b) task
multiple frames as input and utilizes 2D-3D view transformation. With temporal information, BEV-
Former (Li et al., 2022c) using deformable attention as a 3D-2D view transformation method is also
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taken into account. As our method can be applied to camera models which have the explicit BEV
representation, without loss of generality, we abstract the network modules before the BEV feature
map as the backbone of the apprentice. The rest of the network is denoted as the detection head.

Expert Model. We adopt the LiDAR backbone from TransFusion-L (Bai et al., 2022a), which is a
popular and efficient architectural design. Since we aim to align the BEV representation between
LiDAR and camera data, the same detection head network was adopted in both expert and apprentice
models, for better utilizing the consistency of BEV features. Note that the expert would first be
trained to secure a decent performance on the 3D detection task, ensuring an distinct performance
upper bound for the apprentice distillation pipeline.

3.2 PREDISTILL: TRAINING AND INFERENCE

Due to the lack of spatial and structural cues, 3D detection methods taking RGB images as input
hardly provide satisfactory perception results. To bridge the performance gap between LiDAR- and
camera-based methods, we propose a general training pipeline, which utilizes LiDAR information
to guide the training process of camera models. As depicted in Fig. 2, the proposed pipeline can be
divided into three steps: expert learning, pretraining, and finetuning.

Expert Learning. An expert network, which consists of an off-the-shelf LiDAR backbone bL and
a detection head hL, is first trained on the 3D object detection task. Taking a LiDAR point cloud
P ∈ RN×K as input, where N is the number of points and K is the number of dimensions of input
data, the backbone produces a BEV representation bL(P ) ∈ RD×X×Y , where D is the number of
channels, and the spatial shape is defined as X and Y . A common detection loss is utilized to
supervise the expert model on the output hL(bL(P )). The learned backbone and detection head are
denoted as b̃L and h̃L respectively.

Pretraining. We denote the input data of the apprentice as I ∈ RM×3×H×W , which are multi-view
RGB images in the resolution of H and W ; they are supposed to cover the entire horizontal FOV
(field of view) of the surrounding environment with M images. Taking images I as input, the
backbone bC of the apprentice outputs BEV feature bC(I) ∈ RD×X×Y , owning the same shape as in
the expert network. The selective focus module, which would be described in next section, provides
a weighted mask S ∈ RX×Y to describe the density information of the point cloud. Given a learned
LiDAR backbone, the weighted L2 pretraining loss is denoted as:

Lpretrain =
1

X · Y

X∑
i

Y∑
j

Sij

∣∣∣∣b̃L(P )ij − bC(I)ij
∣∣∣∣2. (1)

Finetuning. The apprentice network is trained for the 3D detection task, where the camera head hC

shares identical architecture with that of LiADR’s hL. Since the semantic and geometry information
of BEV features between the expert and apprentice is already aligned, we can directly duplicate
the detection head of expert model to the apprentice models towards a better startpoint for weight
initialization. This allows for fast convergence to an optimal learning.

Without any extra cost, the inference process of the well trained apprentice network follows the same
procedure as does in conventional camera-based approaches. Our proposed PreDistill framework is
a general plug-and-play module that can be flexible to multiple detectors.

3.3 REFINEMENTS

Selective Focus in Pretraining. Given the outputs after view transformation, the BEV features
bC(I) contain some noise due to the inaccurate depth information. In contrast, the sparse point
cloud data provides more attentive feature representations bL(P ) in the BEV space. The gap be-
tween these two BEV representations makes it difficult to transfer knowledge directly. As regions
with a small number of points in LiDAR data are less likely to provide useful features with high con-
fidence, distilling knowledge in these regions may deviate the network from the right optimization
objective. Thus we leverage the statistical hints from the density of point cloud data to restrict the
distillation areas. Specifically, we define a weighted mask S ∈ RX×Y with the same spatial shape
as the BEV feature. Sij represents the weight counted according to the number of points within a
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pillar at location (i, j). With the newly introduced selective focus module, our proposed PreDistill
significantly improves the performance on top of several state-of-the-art detectors.

Duplication in Finetuning. The learned detection head h̃L of the expert, which is compatible with
the LiDAR BEV feature maps, remains representative after being trained on the detection task. As
the objective of the pretraining phase is to align the BEV representations from two modalities, the
learned camera BEV representation b̃C(I) is supposed to follow the same distribution as in b̃L(P ).
Thus, we regard the learned detection head of the expert model as an ideal initial weight for the head
of the apprentice. In practice, duplication not only makes the optimization easier but also brings a
faster convergence speed.

4 EXPERIMENTS

In this section, we first introduce our experimental setups, including dataset, metrics, and imple-
mentation details. Then experiments on various multi-camera methods are conducted to validate the
effectiveness of our proposed pipeline.

4.1 DATASET AND METRICS

The nuScenes dataset (Caesar et al., 2020) is a large-scale autonomous driving dataset, which con-
tains 1000 driving scenes, in which 700, 150, and 150 scenes are for training, validation, and testing
respectively. Each scene has a duration of about 20 seconds and is sampled at 2Hz for annotation.
Each frame consists of RGB images with a resolution of 900×1600 from 6 cameras covering the
entire horizontal FOV.

Two main metrics are provided for the 3D detection task, namely mean average precision (mAP)
and nuScenes detection score (NDS). The mAP is computed using the center distance on the ground
plane to match the predicted results and ground truths. The nuScenes dataset defines five types of
true positive (TP) metrics, namely mean Average Translation Error (mATE), mean Average Scale
Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity Error (mAVE),
and mean Average Attribute Error (mAAE), to measure translation, scale, orientation, velocity, and
attribute errors respectively. The NDS is defined as a weighted sum of mAP and five TP metrics.

4.2 IMPLEMENTATION DETAILS

In the phase of expert learning, we follow the common usage of data augmentations, including
random rotation, scaling, translating, and flipping. The input point clouds of expert models are
filtered by the range of [−51.2m, 51.2m], except that the range of BEVFusion-C follows the open-
source implementation as [−54m, 54m]. Since the BEV features of different camera models are in
different shapes, the voxel sizes of LiDAR models are changed accordingly. In the phase of pretrain,
augmentation in both modalities is turned off to spatially align BEV representations. Apprentices are
pretrained by 12 epochs by the AdamW optimizer. To make a fair comparison to baseline models,
settings in the phase of finetuning like data augmentations and training epochs are kept the same
for each camera network, despite smaller learning rates of 5e−5, 2e−4, and 5e−5 for BEVFusion-C,
BEVDepth, and BEVFormer respectively. For all phases of the training pipeline, we only use data
from the nuScenes dataset without introducing any external data.

BEVFusion-C. BEVFusion-C (Liang et al., 2022) uses Dual-Swin-Tiny (Liu et al., 2020) as the
image backbone. The BEV feature map is in the shape of 512×180×180, where 512 is the number
of channels and 180 is the spatial shape along two axes. Input images have a resolution of 448×800.

BEVDepth. BEVDepth (Li et al., 2022b) adopts Res-50 (He et al., 2016) as its image backbone.
It has a BEV representation in 256 channels and the shape of 128×128, and takes images with a
resolution of 256×704 as input.

BEVFormer. BEVFormer (Li et al., 2022c) is trained with the same settings as the submitted
version to the nuScenes leaderboard that VoVNet-99 (Lee et al., 2019) is used as the image backbone
and the BEV feature is set to the size of 200×200 with 256 channels. The image backbone consumes
RGB images in the shape of 900×1600 as input.
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Table 1: 3D detection improvement on nuScenes val set. DST denotes the Dual-Swin-Tiny back-
bone. VoVNet-99 is pretrained on the depth estimation task with extra data (Park et al., 2021). The
results indicate that our pipeline benefit various multi-camera methods.

Method Backbone mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
BEVFusion-C DST 0.344 0.358 0.703 0.296 0.740 1.249 0.400

+ PreDistill gain +4.2% +7.6% +6.0% +1.8% +18.9% +34.9% +18.3%

BEVDepth Res-50 0.361 0.484 0.650 0.276 0.497 0.340 0.199
+ PreDistill gain +0.6% +0.6% +2.4% +0.1% -1.3% +0.2% +1.1%

BEVFormer VoVNet-99 0.435 0.534 0.667 0.276 0.339 0.360 0.195
+ PreDistill gain +1.1% +1.0% +6.3% +1.3% -5.7% +1.4% +1.2%

Table 2: Comparisons among different distillation approaches on nuScenes val set with BEVFusion-
C. Following MonoDistill (Chong et al., 2022), Sce. denotes the scene-level distillation in feature
space and Obj. denotes the object-level distillation in result space. The results show the merit to use
pretrained distillation compared to single-stage distillation.

Distillation mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
- 0.344 0.358 0.703 0.296 0.740 1.249 0.400

Sce. 0.357 0.363 0.685 0.293 0.742 1.273 0.434
Sce. & Obj. 0.359 0.363 0.679 0.293 0.772 1.280 0.426
PreDistill 0.386 0.434 0.643 0.278 0.551 0.900 0.217

4.3 BUILDING ON TOP OF STATE-OF-THE-ARTS

As shown in Tab. 1, the proposed pipeline brings performance improvement to various state-of-the-
art methods on the 3D detection task on nuScense val set, validating the generalization ability of
our method. The most significant improvement is by the BEVFusion-C with a gain of 4.2% mAP
and 7.6% NDS. Without the use of temporal information, BEVFusion-C has limited performance on
various attributes, particularly on the mAVE. While the LiDAR network consumes 10 consecutive
frames as input, the implicit temporal information credits to the model performance and thus serves
as better guidance for the BEVFusion-C model. Note that only marginal improvement is observed
in BEVDepth. This might result from the small image backbone of Res-50 and the smallest input
resolution among all baseline models. The results also demonstrate the importance of a strong image
backbone for feature extraction. By using our method, we improve the performance of BEVFormer
by a clear margin of 1.1% mAP and 1.0% NDS, showing the effectiveness of our pipeline.

For all methods, mATEs improve significantly, which credits to the precise localization information
of point cloud data. By contrast, mASEs are just slightly better than baselines. The reason is that
camera models can already achieve competitive scale estimation performance to LiDAR methods.
This can also apply to the improvement of mAVE and mAAE. However, the proposed pipeline
exerts a negative effect on the orientation estimation. Since LiDAR point clouds are usually sparse
for objects at a far distance, it leads to large orientation errors.

To further validate our results, based on the best-submitted setting of BEVFormer, we upload the
results of the model trained by our pipeline. The reported scores on nuScenes test split are 49.1%
mAP and 57.8% NDS, outperforming its original version by 1.0% mAP and 0.9% NDS.

4.4 ABLATION STUDY

Distillation Paradigm. In Tab. 2, we follow the use of different distillation techniques at differ-
ent stages of the network as in MonoDistill (Chong et al., 2022), using the typical single-stage
distillation paradigm. MonoDistill projects point clouds into perspective space and utilizes 2D con-
volutional operations, shrinking the gap between two modalities. On the contrary, in our case, the
backbone architectures of the expert and apprentice differ to a large extent. Therefore, directly uti-
lizing the distillation modules from MonoDistill to our network in an end-to-end fashion (Row 2
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Table 3: Comparisons among different pretraining strategies on nuScenes val set with BEVFormer,
which uses VoVNet-99 as image backbone. Depth denotes that VoVNet-99 is pretrained on the
depth estimation task with extra data (Park et al., 2021).

Depth PreDistill mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
0.324 0.433 0.784 0.287 0.524 0.482 0.212

✓ 0.403 0.504 0.651 0.275 0.490 0.369 0.191

✓ 0.435 0.534 0.667 0.276 0.339 0.360 0.195
✓ ✓ 0.446 0.544 0.604 0.263 0.396 0.346 0.183

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%
Percentage of Data

34

36

38

40

42

44

N
D

S

35.8 36.3

39.4

43.4

(a) Dependency of data scale in pretraining and
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Figure 3: During pretraining, our method requires a small amount of data to outperform the baseline,
while during finetuning, it takes fewer iterations to converge.

& 3) brings a marginal improvement. By contrast, our method (Row 4) outperforms the baseline
significantly. This confirms the superiority of our method compared to single-stage methods.

Backbone Pretraining. Park et al. (2021) demonstrates that depth pretraining using the large-scale
DDAD15M dataset significantly improves the performance on 3D detection task. Experimentally
in Tab. 3, though BEVFormer only pretrained by our method (Row 2) does not outperform the
depth-pretrained version (Row 3), it is significantly better than the baseline (Row 1). Nevertheless,
DDAD15M contains approximately 15M image frames, and only part of the data is open-sourced.
Our method can be served as an alternative pretraining strategy for powerful image backbones.

Data Scale. We study the model performance using 10%, 50%, and 100% of training data in the
pretraining phase. 0% denotes that the model is trained without our method. In Fig. 3a, with the
growth of data used in the pretraining stage, the model performance improves roughly in a linear
manner, indicating the increase of data might further impose a positive influence. It is also observed
that increasing the number of pretraining epochs does not mask an obvious impact. Thus, the amount
of data plays an important role in our proposed pipeline.

Convergence Speed. Given the pretrained distillation, the camera network requires fewer training
epoches to reach a satisfying performance. As shown in Fig. 3b, approximately taking only half of
the number of epochs, BEVFormer achieves higher performance than its original version.

4.5 DESIGN CHOICES

The selective focus module generates weighted masks for the pretraining process. Intuitively, since
the task of object detection concentrates on foreground objects, distilling object features refines the
object-level representation. We design an object-level weight (Obj.), which is a heatmap indicating
the locations of predicted objects. Another weight, the Den. weight, denotes the confidence based
on point cloud density. As shown in Tab. 4a, both Obj. and Den. improve model performance
compared to the baseline. However, Obj. only gains 1.6% of NDS while Den. improves mAP and
NDS by 2.2% and 3.4%. The results demonstrate that the task of object detection not only focuses
on foreground objects but also requires proper background information. Moreover, as the point
cloud density varies in different locations, the maximal value of the weighted mask reaches about
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Table 4: Comparisons among different design choices on nuScenes val set with BEVFusion-C.

(a) Distillation Weight: The Den.
weight has a better improvement.

Obj. Den. mAP↑ NDS↑
0.364 0.400

✓ 0.364 0.416
✓ 0.386 0.434

✓ ✓ 0.387 0.421

(b) Weight Scaling: Values of
weight that defer too much or

too little bring negative effect.

Scaling mAP↑ NDS↑
- 0.355 0.409

sigmoid 0.381 0.425
log 0.386 0.434

(c) Pretraining Loss: The
choice of loss is important

for distillation.

Loss mAP↑ NDS↑
L1 0.334 0.348
L2 0.386 0.434
KL 0.376 0.410

(d) Normalization: Normalizing pretraining
target causes significant difference.

Normalization mAP↑ NDS↑
0.361 0.391

✓ 0.386 0.434

(e) Duplication: Duplicating detection head
improves performance with free lunch.

Duplication mAP↑ NDS↑
0.380 0.411

✓ 0.386 0.434

3,000. The extremely divergent distribution hinters the distillation process. As shown in Tab. 4b,
predictions of the raw weighted mask (Row 1) are just slightly better than the baseline. We utilize
the log and sigmoid operations to scale the mask and find that log achieves a better performance.

Besides, as shown in Tab. 4c, we explore different distillation losses in the pretraining stage. Dif-
ferent from the common distillation setting where KL is used most frequently, in our case, the L2

loss achieves the highest performance. Instead of directly mimicking the LiDAR BEV feature, a
channel-wise normalization is conducted to regularize feature maps. In Tab. 4d, the model perfor-
mance benefits from the normalized BEV target by a large margin.

In the finetuning stage, Tab. 4e demonstrates the importance of duplicating the detection head from
the expert to the apprentice. Credit to a better initialization of the detection head, an improvement
of 0.6% mAP and 2.3% NDS can be observed.

4.6 VISUALIZATION

We present BEV representations of BEVFormer with and without our method in Fig. 4 in the ap-
pendix. As shown in the results, the proposed method refines the locations of predicted results and
removes some false positive predictions. Visually, the salient heatmaps for each foreground instance,
which might be caused by the inaccurate view transformation, are greatly refined, leading to more
accurate detection results.

5 DISCUSSION AND CONCLUSION

In this work, we propose the PreDistill, which is an effective training pipeline to improve the perfor-
mance of multi-camera methods on the task of 3D object detection. With its simplicity, our method
serves as a plug-and-play module for various models. For its limitation, as currently we only con-
sider annotated data for all training stages, unlabeled data in the nuScenes dataset remains unused.
Moreover, our pretraining stage shows the ability to leverage large-scale LiDAR-Camera data pairs
without object annotations for better performance, which is critical for autonomous driving.
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A VISUAL BEV REPRESENTATIONS

Figure 4: Qualitative results of BEV representations in BEVFormer. Blue and red boxes denote the
ground truth and predictions respectively. The predictions of our method are more accurate.
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