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Abstract

Bayesian optimization is a class of data efficient model based algorithms typically1

focused on global optimization. We consider the more general case where a user is2

faced with multiple tasks that each need to be optimized, find the global optima3

within each task, all the task conditional optima. For example given a range of4

cities with different patient distributions, we optimize the ambulance locations for5

each and every city; given subclass partitions of CIFAR-10, we optimize CNN6

hyperparameters for each partition. Similarity across tasks boosts optimization of7

each task in two ways: in modelling by data sharing across objectives, and also in8

acquisition by quantifying how a single point on one task can help learn the optima9

of similar tasks. For this we propose a framework for conditional optimization:10

ConBO. This can be built on top of a range of acquisition functions and we propose11

a new Hybrid Knowledge Gradient acquisition function. The resulting method is12

intuitive and theoretically grounded, either matches or significantly outperforms13

recently published works on a range of problems, and thanks to the unique nature14

of conditional optimization, is easily parallelized to collect a batch of points.15

1 Introduction16

Expensive stochastic black box functions arise in many fields such as fluid simulations [1], engineering17

wing design [2], and machine learning parameter tuning [3]. Bayesian optimization is a powerful set18

of tools to optimize such functions, finding the input with highest long term average performance19

x∗ = arg maxx E[f(x)], (the expectation represents averaging over the performance noise). In this20

work we consider an under-explored generalization of the standard setting previously referred to as21

“conditional optimization" [4] where a user has a collection of functions, or tasks, and simply seeks22

the peak of each function/task. Formally, we have an expensive black box f that takes as arguments23

both a task s ∈ S and an input x ∈ X , typically box-constrained continuous variables, and returns a24

noisy scalar performance25

f(s, x) : S ×X → R. (1)

At each iteration an algorithm determines both task and input (s, x) then observes performance26

y = f(s, x) and the goal is to learn the input with highest average performance for each task27

x∗(s) = arg max
x

E[f(s, x)]. (2)

x∗(s) is referred to as the optima conditioned on s, see Figure 1 black line. In certain applications,28

one may want to give higher priority to particular tasks hence a task weighting function W (s) may29

also be specified. In this work we consider the following applications.30

CNN hyperparameters: the CIFAR-10 dataset contains 10 classes, this is split into five mutually31

exclusive binary classification datasets and for each we train a CNN, each CNN is a task in S =32
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{1, ..., 5}. For each CNN, we optimize dropout rates, batch size and Adam parameters, so X ⊂ R733

and f(s, x) is the validation accuracy. We assume all five CNNs have equal priority, W (s) = 1/5.34
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Figure 1: Top: GP model. Each task (vertical
slice) is an objective function to maximise. A new
sample (s, x)n+1 provides information about the
optima of similar tasks. Bottom: the acquisition
function value of each task using hybrid Knowl-
edge Gradient.

Ambulances in a square: [5] given a range of35

30km×30km cities, each city is a task with a36

different population centre s ∈ [0, 30]2. For37

a given city, we optimize the 2D location of38

three ambulance bases, x ∈ [0, 30]3×2 ⊂ R6.39

Given a city s and ambulance bases x, a vir-40

tual environment randomly generates patients41

for a simulated day and the average ambulance42

journey time, f(s, x), is returned. Inland cities,43

like Paris or London, with population centres44

in the middle are more common than coastal45

cities, like Singapore or Dubai, with a popula-46

tion centre on a boundary. Thus, W (s) mirrors47

this distribution of city centres, a Gaussian cen-48

tred at s = (15, 15) with 7km standard deviation49

and truncated to [0, 30]2.50

Assemble to order: [6, 7] a company owns51

many stock warehouses and each one faces a52

different level of demand s ∈ [0.5, 1.5]. Equal53

priority is given to all warehouses and so W (s)54

is uniform. At each warehouse, stock levels are55

controlled by setting targets of a control pol-56

icy x = [0, 20]8. Given a demand level s and57

control parameters x, a simulator generates cus-58

tomer orders according to demand, the ware-59

house stock is sold and replenished according to policy x, and profit over a simulated month is60

returned as f(s, x).61

The closely related multi-task Bayesian optimisation or Bayesian Quadrature optimisation methods62

[8, 9, 10, 11] aim to find a single peak that maximises the weighted sum/integral over tasks, x∗ =63

arg maxx
∫
E[f(s, x)]W (s)ds. However, as they are fundamentally designed for a different purpose,64

we observe that they struggle to find the peak of each and every task, see experiments in Supplementary65

Material 6 (SM 6).66

Also closely related are contextual optimization algorithms [12, 13, 14], conditional optimization67

has also been referred to as “offline contextual" [15]. In contextual applications, at iteration n the68

next task (called context) sn is passed from the black box to a contextual algorithm that intelligently69

determines xn. Then the black box returns both performance yn and the next task/context sn+1. One70

could “hotfix" a contextual algorithm for conditional optimization problems by randomly choosing71

sn+1 ∼ P[s] ∝W (s) at each iteration. However, we empirically show that, unsurprisingly, randomly72

choosing the task in each iteration is significantly worse than intelligently choosing the task.73

Multi-fidelity and multi-information source methods [16, 17, 18, 19] assume there is a single known74

constant target task s∗ ∈ S corresponding to the highest fidelity level or most expensive information75

source that must be optimized, x∗ = arg maxx E[f(s∗, x)]. If the cost of evaluation varies across the76

function domain, c(s, x), cheaper regions of the domain can be evaluated improving sample efficiency.77

Again, such methods may be hotfixed for the setting we consider by artificially designating a target78

task, e.g. the highest priority task s∗ = arg maxsW (s). However, we observe that if cost is constant79

across the domain (as is commonly assumed in the BO literature), these methods greedily optimise80

the artificial target task s∗ and blindly neglect all other tasks, see SM4. This desirable behaviour in81

multi-fidelity optimization problems leads to failure in conditional optimization problems.82

To the best of our knowledge, there exist only a small number of works that propose algorithms83

specifically designed for the conditional setting.84

The Surrogate Collaborative Tuning (SCoT) algorithm [20] optimizes a finite set of tasks. It iteratively85

visits each task, s, in a round-robin fashion and determines the input x by expected improvement (EI).86

The authors apply this to optimize the hyperparameters of an ML model for multiple datasets. The87
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Profile Expected Improvement (PEI) and Profile Expected Quantile Improvment (PEQI) algorithms88

[21, 4] consider continuous tasks and significantly improve upon SCoT by dynamically determining89

the task in each iteration. The acquisition value of a given point (s, x) is the expected improvement90

of a new output over the best predicted output within the same task.91

The REVI algorithm [22] at each iteration discretizes both task S and input X spaces. Given a new92

hypothetical point, (s, x)n+1, for each task in the discretization, si, the discrete Knowledge Gradient93

over the X discretization quantifies how (s, x)n+1 will benefit task si. Summing the benefits over the94

tasks yields the acquisition value of (s, x)n+1. REVI was designed to account for how all tasks can be95

optimized by each sample. However, this comes with exponential cost, increasing problem dimension96

leads to exponentially increasing discretization size with corresponding exponential space and time97

requirements. On the other hand, sparse discretizations can lead to poor and arbitrary measures98

of acquisition value. Consequently, REVI has only successfully been applied to low-dimensional99

synthetic problems.100

Most recently, the Multi-task Thompson sampling (MTS) method [15] uses a novel kernel with a101

length scale that varies across tasks. This is combined with a Thompson sampling method for col-102

lecting new data and showed performance improvements over REVI. However, Thompson sampling103

also does not account for how one sample provides benefit for optimizing all tasks, a fundamental104

structural property of conditional optimization.105

We propose a method that exploits the basic structure of conditional optimization while also being106

highly scalable, and therefore applicable to more challenging real-world problems. We make the107

following contributions:108

1. A framework for conditional Bayesian optimization with theoretical guarantees: ConBO.109

2. A new, fast global optimization method: Hybrid Knowledge Gradient.110

3. State-of-the-art performance on open source problems including CNNs and simulators.111

2 The Conditional Bayesian Optimization Algorithm112

We first discuss the fitting of the Gaussian process model and the predicted conditional optima. We113

then motivate the acquisition value for a single task and how this is integrated over tasks yielding the114

acquisition function. Because integrating over tasks multiplies the computational burden, we propose115

Hybrid Knowledge Gradient as a solution. See Algorithm 1 in the SM 2 for a high level summary.116

At a stage after having observed n data points, {(si, xi, yi)}ni=1 where yi = f(si, xi), a Gaussian117

process is fit over the joint space S × X to scalar outputs y. Let X̃n = ((s, x)1, ..., (s, x)n) and118

Y n = (y1, ..., yn). A Gaussian process is defined by a prior mean and prior covariance function,119

µ0(s, x), k0((s, x), (s′, x′)) which are chosen for each application, for more information see [23].120

Let the data covariance matrix be K = k0(X̃n, X̃n) ∈ Rn×n, the posterior mean is given by121

µn(s, x) = µ0(s, x) + k0((s, x), X̃n)
(
K + σ2

0I
)−1

(Y n − µ0(X̃n))

and the posterior covariance is given by122

kn((s, x),(s′, x′)) = k0((s, x), (s′, x′)) + k0((s, x), X̃n)
(
K + σ2

0I
)−1

k0(X̃n, (s′, x′)).

At the end of data collection, in standard BO, often the peak posterior mean is returned as the123

predicted best input. Generalizing to the conditional setting we simply condition on s,124

x∗N (s) = arg max
x

µN (s, x). (3)

During data collection, a new data point yn+1 at (s, x)n+1 will update the Gaussian process over the125

whole domain S ×X . To construct an acquisition function for conditional optimization, we start126

by looking for standard acquisition functions that account for how the model changes at unsampled127

locations (s′, x′) 6= (s, x)n+1. Specifically, the popular Expected improvement (EI) [24] and upper128

confidence bound (UCB) [25] methods are both functions of the mean and kernel at the sampled point129

only, i.e. of
(
µn((s, x)n+1), kn((s, x)n+1, (s, x)n+1)

)
, hence would require non-trivial modification130

to be able to account for how a sample affects similar tasks. Methods that do utilise the mean and131

kernel at unsampled points include Entropy search (ES [26, 27] and PES [28]) that measures the132
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Figure 2: Methods for computing KG(xn+1) at xn+1 = 7. Left: µn(x) and samples of µn+1(x)
determined by a scalar Z ∼ N(0, 1). Centre-left: KGd replaces X with up to 3000 points xi ∈ Xd

and µn+1(xi) is linear in Z. Centre-right: KGMC samples up to 1000 functions µn+1(x) functions
and maximises each of them numerically. Right: KGh samples up to 5 functions µn+1(x) and
maximizes them numerically, the arg max points x∗1, .., x

∗
5 are used as Xd in KGd.

mutual information between the new output P[yn+1|xn+1] and the (uncertain) location of the peak133

P[x∗|X̃n, Y n], Max-value entropy search (MES) [29] that measures mutual information between134

the new output P[yn+1|xn+1] and the (uncertain) largest output P[max y|X̃n, Y n], and Knowledge135

Gradient (KG) [30] that measures the expected peak of the new posterior mean E[maxµn+1(x)]136

caused by a new yn+1 at xn+1.137

Each single task s defines a single global optimization problem over x ∈ X . Given a proposed138

sample (s, x)n+1 = (sn+1, xn+1), the acquisition benefit for task s may be computed using ES, PES,139

MES or KG. In this work we adopt KG for its Bayesian decision theoretic derivation that extends140

seamlessly to the conditional setting. For KG, the benefit for a given task is the expected increase in141

peak predicted performance within the task. We denote the task-conditioned KG as142

KGc(s; (s, x)n+1) = Eyn+1 [max
x′

µn+1(s, x′)|(s, x)n+1]−max
x′′

µn(s, x′′).

We discuss numerical evaluation of KGc(·) in Section 2.1. Similar expressions for conditioned143

entropy methods, ESc(·), PESc(·), MESc(·), are derived in SM 7. Integrating over all tasks s yields144

the total acquisition value145 ∫
S

KGc(s; (s, x)n+1)W (s)ds. (4)

For discrete S the integral is replaced by summation. For continuous S, the integral over tasks s146

cannot be computed analytically so we use Monte Carlo with importance sampling. When using147

a kernel that factorises k(s, x, s′, x′) = σ2
0kS(s, s′)kX(x, x′), like squared exponential or Matérn,148

similarity across tasks is encoded in kS(s, s′). This naturally leads to the proposal distribution149

q(s|sn+1) ∝ kS(s, sn+1). In our continuous task experiments, we use the Matérn kernel and a150

Gaussian proposal distribution with mean sn+1 and the task kernel length scales, ls, as standard151

deviations,152

q(s|sn+1) ∼ N (s|sn+1, diag(l2s)). (5)
We generate ns = 20 samples SMC = {s1, ..., sns}, finally the acquisition function is153

ConBO(sn+1, xn+1) =
∑

si∈SMC

W (si)

q(si|sn+1)
KGc(si; (s, x)n+1).

Figure 1 shows a set of sampled tasks and the KGc(·) for each one. Each KG term directly measures154

increase in predicted performance for one task, e.g. if y values are dollar amounts, ConBO with155

KGc(·) is the sum of dollar increases over all tasks. However, for entropy based methods, ConBO156

becomes a sum of Shannon information units thereby indirectly optimizing the dollar amounts.157

The randomly sampled tasks SMC may be resampled with each call to ConBO(s, x) and gradients158

estimated enabling the optimal (s, x)n+1 to be found with a stochastic gradient ascent optimizer such159

as Adam [31]. Selecting each point according to maximising ConBO is also myopically optimal in a160

value of information framework:161

Theorem 1 Let (s∗, x∗) ∈ arg max ConBO(s, x) be a point chosen for sampling. (s∗, x∗) is also162

the point that maximises the myopic Value of Information, the increase in predicted performance.163

Further, in finite search space, with an infinite sampling budget all points will be sampled infinitely:164
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Algorithm 1 Computing ConBO(s, x). For each call with a candidate (task, input) point, similar
tasks are sampled. For each sampled task a cheap acquisition function, hybrid KG, is evaluated.
The output is the importance weighted average of hybrid KG values. Details and full numerical
expressions are given in SM 3.
Require: candidate point (s, x)n+1, parameters ns, nz

Sample ns tasks similar to sn+1, SMC ∼ q(s|sn+1)
Initialize output value Q← 0
parfor si in SMC do

Initialize X̃∗i ← {}
parfor j in 1, ..., nz do

zj ← Φ−1
(
(2j − 1)/2nz

)
yn+1
j computed with (s, x)n+1 and zj
µn+1
j (s, x) constructed by rank-1 update with (s, x, yj)

n+1

x∗j ← arg maxx µ
n+1
j (si, x) with Optimizer()

X̃∗i ← X̃∗i ∪ (si, x
∗
j )

end parfor
αi ← KGd(X̃∗i )

Q← Q+ αiW (si) / q(si|sn+1)
end parfor
return average over tasks Q/ns

Theorem 2 Let S and X be finite sets and N the budget to be sequentially allocated by ConBO.165

Let n(s, x,N) be the number of samples allocated to a point (s, x) within budget N . Then for all166

(s, x) ∈ S ×X we have that limN→∞ n(s, x,N) =∞.167

The law of large numbers ensures that the algorithm learns the true expected performance for all168

points. Proofs are given in the SM 1.169

2.1 Hybrid Knowledge Gradient170

By definition, KG is more expensive than EI and UCB. Further, the function KGc(si, (s, x)n+1)171

must be computed once for each sampled task si, the computational cost is therefore ns times the172

global acquisition function equivalent. To alleviate this cost, we propose a novel, efficient algorithm173

for computing KG. In the following section we assume constant s for brevity, reducing to the174

global optimization setting. Given a hypothetical location xn+1, KG quantifies the value of a new175

hypothetical observation yn+1 by the expected increase in the peak of the posterior mean176

KG(xn+1) = Eyn+1

[
max
x′

µn+1(x′)
∣∣xn+1

]
−max

x′′
µn(x′′). (6)

However, maxx′ µn+1(x′) has no explicit formula and approximations are required which we describe177

next. At time n, the next posterior mean is unknown, however, it may be written as µn+1(x) =178

µn(x) + σ̃(x;xn+1)Z where σ̃(x;xn+1) is a deterministic function and the scalar Z ∼ N (0, 1)179

captures the randomness of yn+1, see SM 2. Previously, KG(x) has been computed in two ways.180

KG by discretization [30, 32]: in Equation 6, the maximizations may be performed over a discrete
set of d points Xd ⊂ X . Denoting µ = µn(Xd) ∈ Rd and σ̃(xn+1) = σ̃(Xd;x

n+1) ∈ Rd, then

KGd(xn+1) = EZ
[
max{µ+ σ̃(xn+1)Z}

]
−maxµ.

The max{µ + σ̃(xn+1)Z} is a piece-wise linear function of Z and the expectation is analytically181

tractable. The output is a lower bound of the true KG(x). REVI [22] and the MiSo algorithm182

[17] used KGd with 3000 uniformly random distributed points. This method suffers the curse of183

dimensionality as Xd must grow exponentially with dimension. Further, the discretization may likely184

contain many useless points in uneventful regions of X , see Figure 2 centre-left plot.185

Hybrid Knowledge Gradient

186
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KG Type of Estimate nz = 3 nz = 5 nz = 7 nz = 50

Discrete lower bound 0.24 (1.37) 0.41 (1.49) 0.55 (1.91) 2.03 (2.2)
MC unbiased 3.54 (4.79) 3.73 (4.51) 3.50 (3.39) 3.36 (1.18)

MC++ unbiased 2.97 (3.78) 3.50 (2.68) 3.22 (1.69) 3.32 (0.2)
Hybrid lower bound 3.15 (0.00) 3.28 (0.00) 3.31 (0.00) 3.34 (0.00)

Table 1: We collect 20 points on the Rosenbrock function, a point was randomly selected and KG
computed by the different methods. Each calculation is repeated 50 times and we report mean and
two standard deviations. The Monte Carlo methods suffer from high variance, the discrete method is
volatile and returns a very loose lower bound. Hybrid KG is very stable with errors too small to show.

KG by Monte Carlo [33, 34]: given xn+1, the method samples up to nz = 1000 Gaussian values187

of Z. For each Zj , construct the posterior mean, µn+1
j (x), find the maximum with a continuous188

numerical Optimizer() like L-BFGS or CG. Averaging the maxima from all Zj yields189

KGMC(xn+1) =
1

ns

∑
j

Optimizer
x′

(
µn+1
j (x)

)
− Optimizer

x′′

(
µn(x′′)

)
.

The result is an unbiased estimate of true KG(x) and scales better to higher dimensional X , the190

univariate Z is discretized by Monte Carlo samples instead of X . However, for a good estimate, nz191

must be large, many Optimizer() calls are required. See Figure 2 centre right.192

We instead propose a simple mixture of the two approaches above that both scales to higher dimen-193

sional X and drastically reduces the number of Optimizer() calls.194

Hybrid KG: given xn+1, following KGMC we use nz = 5 values of Zj , construct µn+1
j (x) and use

Optimizer() to find the peak location x∗j . The set of peak locations X∗d = {x∗1, ..., x∗nz
} is used

as a dynamic optimized discretization in KGd thus analytically computing an extremely tight lower
bound of the true KG(x). Let µ∗ = µn(X∗d ) and similarly for σ̃∗(xn+1), Hybrid KG is given by

KGh(xn+1) = EZ [maxµ∗ + σ̃∗(xn+1)Z
]
−maxµ∗.

Compared to KGd, the hybrid method removes redundant points in the discretization Xd, all X∗d195

points contribute to maxµn+1(X∗d ) and there are far fewer points. Compared to KGMC that samples196

many Zj and optimizes many x∗j , Hybrid KG uses far fewer Zj and optimizes far fewer x∗j . See197

Algorithm 1 for a summary of evaluating ConBO with Hybrid KG. ConBO can be reduced to the198

REVI algorithm by replacing the dynamic importance sampled tasks with a pre-frozen discretization199

of tasks and the (dynamic optimized) hybrid KG with discrete KG over a pre-frozen discretization of200

inputs. These changes drastically improve scalability enabling ConBO to be applied to a far broader201

range of applications.202

To ensure asymptotic convergence, in a discrete domain, we require that the acquisition function203

is non-negative, KGh(x) ≥ 0, and the acquisition function is zero where GP variance is zero,204

KGh(x) = 0 ⇐⇒ kn(x, x) = 0. Therefore, always choosing xn+1 = arg max KGh(x) ensures205

only points with GP variance will be revisited until all points have no variance i.e. the true function is206

known for all points. We can ensure these properties by setting nz ≥ 2 and at least one Zj is equal to207

zero.208

Theorem 3 Let nz ≥ 2 and let Z = {Zj |j = 1, ..., nz}. If 0 ∈ Z then KGh(x) ≥ 0 for all x ∈ X209

and if x is sampled infinitely often KGh(x) = 0.210

Proof is in the SM 1. The Zj values can be fixed, for nz = 5 we use equal Gaussian quantiles211

Z =
{

Φ−1(0.1),Φ−1(0.3), . . . ,Φ−1(0.9)
}

where Φ(·) is the Gaussian CDF. Using quantile spacing212

and odd nz ensures Zj = Φ−1(0.5) = 0 is included which satisfies the assumptions of asymptotic213

convergence. See Fig.2 (right).214

The computational complexity of a single call to ConBO requires the posterior variance (O(n2)) and215

nsnz runs of Optimizer(). Let ncalls be the number of times that Optimizer() calls the posterior216

mean costing O(n). Thus, ConBO total complexity is O(n2 + nncalls nsnz). Note this is linear in217

nsnz , the size of the (small) dynamic optimal discretization over S ×X . Thompson sampling with218
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conditional algorihtms, MTS, REVI and ConBO methods all perform significantly better. ConBO-3
is outperformed by ConBO-5 demonstrating the improvement with more accurate KGh.

discretization uses one operation that scales cubically as O(n2(nsnz) + n(nsnz)
2 + (nsnz)

3) in219

the worst case and to reduce cost special techniques are required e.g. Fourier features, CG matrix220

inversion.221

3 Experiments222

We consider synthetic benchmarks and the three applications described in Section 1. In SM 4 we223

also present parallelization batch sampling results, and experiments with contextual, multi-task and224

multi-fidelity methods in SM 6. We also briefly test Hybrid KG for global optimization, SM 5, and225

observe that KGMC performs worse in the same computation time hence we exclude KGMC methods226

from the conditional experiments. For each benchmark, for evaluation, held out test tasks are sampled227

from P[s] ∝W (s), for each test task, stesti , the predicted optimal input is computed, x∗(stesti ) and228

we report the true black box output averaged over all test tasks, see SM 3 for details.229

3.1 How Accurate is Hybrid Knowledge Gradient?230

The theoretical Knowledge Gradient cannot be analytically computed and must be approximated231

(similarly, entropy based methods are not fully tractable). To illustrate the quality of the approxima-232

tions, we collected 20 points from the Rosenbrock test function and fit a Gaussian process. Another233

point was then randomly selected and true KG was estimated by the different methods, keeping the234

20 + 1 points fixed and only varying the nz parameter. Each estimate of KG was recalculated 50235

times and Table 1 shows the mean and two standard deviations. Discrete KG results in an extremely236

loose, volatile bound. The (state of the art) MC method with nz = 50 has a run-to-run variance of237

±35%, variance reduction techniques used in MC++ (latin hypercube inverse sampling and control238

variates) can reduce this to ±6%. Hybrid KG with nz = 3 is extremely stable, run-to-run variance239

is too small to show, and is within the error margins of MC++ with nz = 50 which is ∼ 17× more240

expensive to compute. Increasing nz tightens the bound, hybrid KG with nz = 5 has 98.2% of the241

value of nz = 50. As a result, Hybrid KG is much easier to optimize, the Adam optimizer may be242

used with a much higher learning rate and lower momentum and thus converges much faster.243

As an aside, the recently proposed one-shot KG [34] enhances the optimization of KGMC . By244

freezing the Z values between calls to KGMC thus X̃∗ may be reused, this enables joint gradient245

ascent of (xn+1, X̃∗). In the global optimization use case (a constant single task) one-shot KG and246

Hybrid KG can be combined. In the conditional setting, the X̃∗i of past sampled tasks may be saved,247

however each call to ConBO must sample new tasks that are not in the saved history, one-shot KG248

style joint optimization is not possible. In our implementation we utilise caching of X̃∗i from old249

tasks to heuristically warm start finding X̃∗i for new tasks, see SM 3.250

3.2 Synthetic Functions251

We perform low-dimensional toy experiments in an ideal setting as a sanity check where we expect252

all conditional methods to perform similarly. We use the popular Branin-Hoo and Rosenbrock test253

functions in 2D defining the (task, input) domain as displayed in Figure 1.254
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Figure 4: Left: validation accuracy. Centre-left: validation accuracy after 50 samples. Centre-right:
validation accuracy after 100 samples. Right: algorithm overhead in seconds. After 50 samples, none
of the multi-task models outperform the baseline, EI + Tr (dashed line) suggesting all datasets can
use similar hyperparameters. For the larger budget 100, all models outperform the baseline by 0.1%
suggesting that for more fine-tuning, each dataset requires different hyperaparameters. In all cases,
performing data optimization significantly increases performance.

Synthetic Functions Using the Rosenbrock and Branin-Hoo functions, we consider a uniform and a255

triangular task weighting W (s). For baselines, we adopt two policy based methods. KNN: (dummy256

baseline) randomly collect data, x∗KNN (s) takes a task, s, and returns the best input from 10 nearest257

neighbor tasks. PG: policy gradient, a parametric quadratic policy x∗PG(s) = πθ(s) is learnt by258

maximising observed performance values, each iteration samples a task from P[s] ∝W (s) then x is259

sampled with an ε-greedy strategy. For a controlled ablation study, all the BO methods fit the same260

GP and for evaluation use the same definition of x∗N (s) (Equation 3), methods only differ by their261

data acquisition strategy. UNI: random data collection, the most recent conditional methods PEQI,262

REVI, MTS with all parameters given in SM 3. ConBO-nz: given (s, x), 20 tasks are importance263

sampled, KGh with nz = 3, 5 points is used. EI: expected improvement that treats (s, x) as inputs to264

be optimized.265

Results are shown in Figure 3. Policy based methods KNN and PG consistently perform worse than266

the Gaussian process methods. Surprisingly, the conditional BO algorithm PEQI performs similarly to267

UNI and much worse than EI. All other conditional methods outperform all non-conditional methods.268

3.3 CNN Training Hyperparameters269

We apply MTS, REVI, and ConBO variants, and we adopt the recently proposed kernel used for BO270

with Common Random Numbers [35],271

k((s, x), (s′, x′)) = σ2
0M(x, x′; l) + δs′s(σ

2
1M(x, x′; l) + σ2

3).

where M(x, x′; l) is a Matérn 5
2 kernel with length scales l. The first term models a common trend272

function across all tasks and the second term models how each task independently differs from the273

trend. The differences are composed of another Matérn and the constant kernel to model a global274

offset e.g. one dataset may have universally higher validation accuracy. This kernel has far fewer275

parameters than a full multi-task product kernel, it is easy to fit and scales to an arbitrary number of276

tasks (or datasets) without adding extra parameters.277

In this problem setting, learning hyperparameters over similar datasets, one may expect that the278

optimal hyperparameters would be the same for all datasets. Therefore, as a baseline we apply EI279

to learn the hyperparameters of the first dataset (task 1). We then evaluate the objective function280

(validation accuracy) on the rest of the datasets using the best observed hyperparameters from dataset281

1, we refer to this as EI + Transfer.282

Argument Optimization versus Data Optimization In continuous task settings, it is not possible to283

evaluate every task. In discrete task settings with large sampling budgets N � |S|, a user may desire284

a single high (although stochastic) output value, max y, for every task. For example, in network285

hyperparameter optimization, the network with the best validation error, max y, will be deployed286

(and the hyperparameters x may or may not be reused). We refer to this is data optimization (DO).287

For simulated environments, the input (or “action") that generalizes providing the best long-term288

average performance, maxx E[f(s, x)], is deployed and we refer to this is argument optimization289

(AO). Past work [22] has shown that argument optimization finds inputs that generalize better but290
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Figure 5: Left: average journey times across a range of cities. Right : average profit across a range of
warehouses. ConBO-5 and EI perform best on these benchmarks.

may not provide optimal max y for all tasks during the optimization run. The authors propose a “DO291

trick”, use an AO method for N − |S| iterations, then finally allocate one sample per task with input,292

xn+1, determined by EI within the task. We apply this trick to all algorithms in this experiment.293

Results are shown in Figure 4. For the medium budget of 50 samples, ConBO performs best of294

the standard algorithms yet it is still worse than the EI+Tr baseline. Applying the final round of295

DO improves all results to match the baseline. For the large budget of 100 samples, all methods296

outperform the baseline suggesting dataset specific fine-tuning of hyperparameters is required to297

achieve best results. Again, DO provides a significant boost to performance for all methods.298

Gaussian process kernel parameter learning required approximately 2–5 seconds using Tensorflow. In299

Figure 4 (right) we show the runtime of each algorithm excluding model fitting and network training,300

purely acquisition function optimization time. MTS and ConBO-3 are quickest while Conbo-5301

increases linearly over ConBO-3 and REVI takes much longer.302

3.4 Ambulances and Warehouses303

We apply all methods from Section 3.2 to two benchmarks from the www.SimOpt.org library for304

simulation optimization problems. The ambulance problem (AMB) is 8-dimensional and consists of305

a range of cities and one must optimize ambulance locations for each city. The Assemble-to-order306

problem (ATO) is 9-dimensional consisting of a range of warehouses and one must optimize target307

stock level for each warehouse. Results are shown in Figure 5. Of the policy based methods, PG308

performs poorly and does not show on the plots whilst KNN performs poorly on AMB and performs309

well on ATO suggesting that AMB is a more difficult problem. Of the GP based methods, EI performs310

well for smaller budgets. Although it is not a conditional algorithm we include it to highlight that311

sometimes the simplest idea can also work. Of the conditional methods, MTS, REVI, and ConBO-3312

all perform similarly, either slightly (AMB) or largely (ATO) outperforming UNI. These methods313

struggle in higher dimensions while ConBO-5 uses a more accurate acquisition function and is the314

only method that consistently performs well across all problems. We hypothesize that these problems315

are more difficult than the synthetics and CNN and truly stress test conditional algorithms.316

4 Conclusion317

Potential Limitations and Broader Impact there are multiple ways in which ConBO may fail, in318

this work we have not investigated how ConBO or Hybrid KG suffers with poorly learnt Gaussian319

process hyperparameters. In many applications, a poorly chosen kernel or unoptimized hyperparame-320

ters can lead to poor performance and our proposed methods may be more sensitive or more robust to321

these failures than alternative approaches. We propose a general purpose optimization algorithm and322

analysis, we do not currently see any immediate societal impact.323

We investigate Conditional Bayesian optimization and propose ConBO. ConBO is designed from324

the ground up to fully exploit the structure of conditional problems, namely that optimizing one task325

helps optimize similar tasks. Hence every point should be collected to maximise the benefit of all326

tasks. However, this can lead to excessive computational cost, particularly in higher dimensions.327

Thus we also propose Hybrid KG that mixes past methods to be both fast and scalable.328
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Checklist420

1. For all authors...421

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s422

contributions and scope? [Yes] ConBO is theoretically grounded, see Theorems 1-3.423

ConBO outperforms recently published works on a range of problems, see Section 3,424

ConBO is easily parallelizable, see SM Section 4.425

(b) Did you describe the limitations of your work? [Yes] see Section 4426

(c) Did you discuss any potential negative societal impacts of your work? [Yes] see Section427

4428

(d) Have you read the ethics review guidelines and ensured that your paper conforms to429

them? [Yes]430

2. If you are including theoretical results...431

(a) Did you state the full set of assumptions of all theoretical results? [Yes] see SM Section432

1433

(b) Did you include complete proofs of all theoretical results? [Yes] see SM Section 1434

3. If you ran experiments...435

(a) Did you include the code, data, and instructions needed to reproduce the main exper-436

imental results (either in the supplemental material or as a URL)? [Yes] All code is437

submitted with the SM438

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they439

were chosen)? [Yes] all parameters for all baselines are given in SM section 3.440

(c) Did you report error bars (e.g., with respect to the random seed after running experi-441

ments multiple times)? [Yes]442

(d) Did you include the total amount of compute and the type of resources used (e.g., type443

of GPUs, internal cluster, or cloud provider)? [Yes] SM section 3444

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...445

(a) If your work uses existing assets, did you cite the creators? [Yes] code from Simopt.org446

is cited.447

(b) Did you mention the license of the assets? [N/A]448

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]449

the benchmark test problems.450

(d) Did you discuss whether and how consent was obtained from people whose data you’re451

using/curating? [N/A]452

(e) Did you discuss whether the data you are using/curating contains personally identifiable453

information or offensive content? [N/A]454

5. If you used crowdsourcing or conducted research with human subjects...455

(a) Did you include the full text of instructions given to participants and screenshots, if456

applicable? [N/A]457

(b) Did you describe any potential participant risks, with links to Institutional Review458

Board (IRB) approvals, if applicable? [N/A]459

(c) Did you include the estimated hourly wage paid to participants and the total amount460

spent on participant compensation? [N/A]461
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