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Abstract—World models enable robots to “imagine” future
observations given current observations and planned actions, and
have been increasingly adopted as generalized dynamics models
to facilitate robot learning. Despite their promise, these models
remain brittle when encountering novel visual distractors such
as objects and background elements rarely seen during training.
Specifically, novel distractors can corrupt action outcome predic-
tions, causing downstream failures when robots rely on the world
model imaginations for planning or action verification. In this
work, we propose Reimagination with Observation Intervention
(ReOI), a simple yet effective test-time strategy that enables
world models to predict more reliable action outcomes in open-
world scenarios where novel and unanticipated visual distractors
are inevitable. Given the current robot observation, ReOI first
detects visual distractors by identifying which elements of the
scene degrade in physically implausible ways during world model
prediction. Then, it modifies the current observation to remove
these distractors and bring the observation closer to the training
distribution. Finally, ReOI “reimagines” future outcomes with
the modified observation and reintroduces the distractors post-
hoc to preserve visual consistency for downstream planning and
verification. We validate our approach on a suite of robotic
manipulation tasks in the context of action verification, where the
verifier needs to select desired action plans based on predictions
from a world model. Our results show that ReOI is robust to both
in-distribution and out-of-distribution visual distractors. Notably,
it improves task success rates by up to 3× in the presence of
novel distractors, significantly outperforming action verification
that relies on world model predictions without imagination
interventions.

I. INTRODUCTION

World models [7, 27] enable robots to predict action-
conditioned future evolutions of their environments given
current observations and planned actions. They have emerged
as powerful generalized dynamics models and are increasingly
used in model-based policy learning [14, 4, 21] as well as
in deployment-time action plan verification [6, 22]. However,
despite their promising potential, current world models in
robotics are brittle against visual distractors such as task-
irrelevant objects or background elements rarely seen during
training. These novel distractors can corrupt the model, lead-
ing to hallucinated imaginations that ultimately compromise
downstream action plan verification and selection. Notably,
this brittleness persists even when models are trained on large,
visually diverse datasets sourced beyond robotics [1, 26].

To illustrate this challenge, consider a robot assistant tasked
with meal preparation, picking up prepped ingredients and
placing them into a cooking pan. The robot uses a world
model, trained on demonstrations from similarly structured
kitchens, to verify candidate action plans proposed by a pre-
trained imitation policy. Specifically, the robot uses the world
model to imagine the future outcomes of each action plan
and evaluates them using a visual reward function to identify
the best action plan (i.e., policy verification). However, in
open-world deployment, novel visual distractors are inevitable.
For example, a user might place an unfamiliar high-pressure
pot between the cutting board and the pan, or leave an
Amazon package box in the background as illustrated in
Figure 1. As the world model rolls out candidate action
plans, these unfamiliar distractors often degrade in visually im-
plausible ways, becoming distorted, disappearing, or warping
unnaturally across predicted frames. These artifacts cause the
model to misrepresent distractors that are critical for ensuring
safety and hallucinate incorrect robot behaviors. As a result,
the downstream plan verifier failed to detect that a planned
motion that would collide with the pot, ultimately leading to
deployment-time failures (Figure 1, top).

These failure cases expose a limitation in current world
model–based robot policy verification pipelines and motivate
the need for strategies that can mitigate the effects of novel
distractors. Our key insight is that relying solely on training-
time solutions is insufficient: the diversity and unpredictability
of distractors, especially in open-world settings, make it im-
practical to fully capture them, even with large-scale datasets.
To this end, we propose Reimagination with Observation Inter-
vention, ReOI, a test-time and plug-in strategy that mitigates
the impact of novel visual distractors on world model-based
robot policy verification. Our key idea is to first identify
and inpaint novel distractors from the current observation to
bring it closer to the world model’s training distribution, then
reimagine future action outcomes using the modified input,
and finally reintroduce the distractors post-hoc at the pixel
level to preserve visual consistency for downstream planning
and verification.

We validate our approach on robotic manipulation tasks in
the context of action plan verification, where a verifier needs to
select action plans based on visual outcome predictions from a
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Fig. 1: Reimagination with observation intervention for distractor-robust world model-based robot planning. A robot
uses a world model (WM) to verify and select action plans proposed by a pre-trained imitation policy. The world model has
never encountered the box, cooker, or teapot during training. Top (baseline): Novel visual distractors become distorted across
predicted observations, causing the model to hallucinate incorrect robot behaviors and erase a critical obstacle. This leads the
verifier to select an unsafe action plan. Bottom (ours): Test-time observation intervention enables the world model to generate
predictions better aligned with reality, allowing the verifier to recognize potential collisions and correctly select a safe action
plan.

world model. Our approach demonstrates strong robustness to
both in-distribution and unfamiliar visual distractors. Notably,
our method improves task success rates by up to 3x when
encountering novel distractors compared to standard policy
verification that directly relies on unmodified world model
predictions.

Contribution. In this work, we raise and tackle the
challenge of mitigating the effects of novel visual
distractors on world model-based robot policy veri-
fication. We illustrate concrete failure cases induced
by such distractors and introduce Reimagination with
Observation Intervention (ReOI), a test-time, plug-in
strategy that enables world models to produce more
reliable action outcome predictions in open-world sce-
narios where novel and unanticipated distractors are
inevitable. To the best of our knowledge, this is the first
work that leverages test-time observation intervention
to address the problem of novel visual distractors
in world model–based robot policy verification and
selection.

II. RELATED WORKS
Mitigating visual distractors in world model learning.

Learning accurate world models in visually cluttered en-
vironments remains a challenge in robotics. Most existing
approaches mitigate visual distractors through training-time
strategies: either by leveraging privileged reward signals to
learn task-relevant representations [24, 5, 18, 28], or by
training separate network branches to model task-relevant and

task-irrelevant components, using only the task-relevant branch
during downstream policy planning or verification [17, 19, 10].
However, these methods primarily target in-distribution visual
distractors and are tightly coupled to the training-time task
context. When the task context shifts at test time, causing
previously irrelevant distractors to become safety-critical or
introducing novel distractors, their performance often de-
grades and even fails entirely [9]. Rather than relying on
task-specific supervision to suppress distractors during world
model training and assuming the same context will hold at
deployment, we propose a test-time observation intervention
strategy to mitigate novel visual distractors’ impact on world
model–based robot policy verification.

Observation intervention for improving robot policy
robustness. Modifying robot observations by masking out
the background or task-irrelevant objects has proven effective
in improving the robustness of imitation policies to visual
distractors. Prior works have explored using separately trained
models [12, 16], VLMs [23], or conformal prediction tech-
niques [8] to identify and inpaint visual distractors to improve
policy performance. Different from these works that focus
on modifying observation to improve model-free imitation
policy robustness, our work focuses on test-time observation
intervention for improving the reliability of model-based visual
planning in the presence of novel visual distractors.

III. PRELIMINARIES

Sampling-based visual model predictive control. We
formulate the robot planning problem as a sampling-based
visual model predictive control problem where the robot uses



a predictive world model to forward-simulate multiple action-
conditioned futures and evaluates them using a reward function
to select the best plan for execution. Mathematically, this
problem is formulated as:

a⋆t = argmaxat∼π(ot,ℓ)
Eot∼fϕ(ot,at)

[
R
(
ot; ℓ

)]
, (1)

where fϕ(ot,at) is a visual dynamics model that predicts a
sequence of future observations (ot := ot:t+T ) conditioned on
an action plan at and the current observation ot, and R is
a reward function that evaluates the predicted outcomes given
the task description (ℓ). This framework is particularly appeal-
ing because it can leverage pre-trained generative imitation-
based policies (π) as action plan samplers and align the robot’s
behavior with deployment-time task context and preferences
without fine-tuning or modifying the base policy.

World model as visual dynamics for action plan verifica-
tion and selection. World models enable robots to “imagine”
future observations given current observations and planned
actions. Typically, a world model consists of three key com-
ponents: an observation encoder model zt = Eϕ(ot) that
maps a visual observation ot into a latent state zt, a for-
ward dynamics model zt+1 = f̃ϕ(zt, at) that predicts the
next latent state conditioned on the current latent state and
action, and an observation decoder model ot = Qϕ(zt) that
decodes a latent state to visual observation. World models have
been increasingly adopted as generalized dynamics models to
produce action-conditioned future outcomes for downstream
robot policy learning [21, 27] or verification under the model
predictive control framework described in (1) [6, 14, 22].

Challenge: novel visual distractors cause hallucinations
and compromise planning. While world models enable
robots to imagine future visual outcomes and inform policy
learning, the accuracy and confidence about their imaginations
heavily depend on the consistency between the training envi-
ronment and the deployment environment. The existing effort
on exploring world models for robotics applications mostly
focuses on training-testing consistent conditions [6, 14, 22];
however, real-world deployment inevitably involves open-
world environments where novel visual distractors (such as
objects and background elements rarely seen during training)
are inevitable. Current world models are brittle under such
conditions: these novel distractors can corrupt the model, lead-
ing to hallucinated imaginations that ultimately compromise
downstream action plan verification and selection (refer to the
motivating example in Figure 1).

IV. WORLD MODEL REIMAGINATION WITH TEST-TIME
OBSERVATION INTERVENTION FOR VISUAL MODEL

PREDICTIVE CONTROL

We propose Reimagination with Observation Intervention
(ReOI), a test-time and plug-in strategy that mitigates the
impact of novel visual distractors on world model-based policy
verification and selection, where a verifier needs to select
desired action plans based on visual outcome predictions from
a world model.

Since mitigating dynamic distractors remains a largely open
and underexplored challenge, in this work, we focus on
mitigating the impact of static novel visual distractors on world
model–based robot planning. We define visual distractors as
static objects and background elements that are not directly
related to the task from the task specification. Different from
the definition in [8], we do not assume that distractors do not
affect the robot’s motion to reach the goal. Our key idea is to
first identify and inpaint problematic novel distractors from the
current observation to bring it closer to the training distribu-
tion, then reimagine future outcomes using the modified input,
and finally reintroduce the distractors post-hoc to preserve
visual consistency for downstream planning and verification.

A. Observation Intervention Strategy

Identify novel visual distractors from world model pre-
dictions. Since the original training data is typically unavail-
able at deployment time, we identify novel visual distractors
using only the world model’s predicted observations. Our key
insight is that visual distractors underrepresented in the train-
ing distribution tend to exhibit physically implausible behavior
in world model rollouts: although initially visible, they quickly
become distorted, disappear, or warp unnaturally as the rollout
progresses, even when the input actions are in the distribution
(shown in Figure 2). This phenomenon arises because the
latent dynamics model prioritizes consistent and predictable
visual features learned from its training distribution. When a
novel distractor appears, the model lacks an accurate latent
representation of its dynamics, resulting in initial prediction
errors. As predictions unfold autoregressively, these errors
compound, causing the distractor’s latent representation to
degrade progressively. Consequently, pixels corresponding to
unfamiliar distractors fail to be reliably propagated through the
model’s latent dynamics, leading to rapid visual distortion.

Building on this insight, we leverage a VLM’s (GPT-4o)
visual reasoning ability to identify problematic visual distrac-
tors through visual reasoning. Given the current observation,
the world model first rolls out an in-distribution “safety-check”
action plan to generate a sequence of predicted observations.
The VLM is then prompted to analyze this predicted sequence.
Leveraging its open-world visual reasoning capabilities, the
VLM examines the temporal evolution of objects and flags
those that undergo rapid distortion across frames as potential
novel visual distractors. The output from the VLM is a string
of object proposals deemed as novel visual distractors (shown
in Figure 2).

Segmentation and inpainting. Once distractors are iden-
tified, we use a segmentation model [15] to localize and
segment the corresponding regions. These regions are then
passed to an image inpainting model [2], which removes the
distractors and fills in the masked areas to produce a modified
observation (shown in Figure 2). This intervention yields an
input that more closely aligns with the world model’s training
distribution, alleviating hallucinations caused by artifacts from
novel distractors.
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B. World Model Reimagination with Modified Observation

After intervention, we use the original world model again
to predict the action plan outcomes given the modified input
observation. While this mitigates hallucinated robot behaviors
caused by spurious distractor artifacts, the resulting predictions
no longer model the novel visual distractors since they were
inpainted. To preserve visual consistency for downstream robot
policy verification, we reintroduce the removed distractors into
each predicted observation post-hoc.

Specifically, we first decompose each predicted observation
into a set of object layers using Grounded-SAM2 [15], sep-
arating elements such as the robot, task-relevant objects, and
background. For each layer, we estimate its depth from the pre-
dicted frame [13]. We also extract the inpainted distractor layer
from the original observation and estimate its depth based
on its original spatial placement. This distractor layer is then
added back into the set of layers for every predicted frame.
Finally, we reconstruct each predicted frame by compositing
the layers in back-to-front depth order, ensuring that all objects
are rendered with correct occlusion. This layer-wise rendering
approach maintains visual realism for downstream planning,
even though the distractors were absent from the rollout itself
(illustrated in Figure 3).

We note that this approach may introduce physically unreal-

istic interactions, such as the robot gripper may appear to pass
through reinserted distractors if they block the robot’s motion.
However, this does not compromise policy verification. Since
the robot must avoid any physical contact with such distractors
to ensure safety, any trajectory exhibiting these violations is
automatically rejected during the verification process.

C. Action Plan Verification and Selection for Robot Visual
Planning

We deploy ReOI as the visual dynamics model in the
context of robot action plan verification, where a verifier needs
to select action plans based on visual outcome predictions
from ReOI. While our framework is agnostic to the choice
of verifier, we instantiate it with a VLM that assesses each
reimagined rollout in the context of the task instruction ℓ. The
VLM is prompted to identify and reject plans that pose safety
concerns (e.g., collisions with novel distractors or non-target
objects) and to select the outcome that best aligns with the
user’s intent. If none of the proposed plans are deemed safe
or suitable, the VLM can optionally escalate by requesting
human intervention.

V. EXPERIMENT SETUP
Testing environment. We conduct our evaluations using

a Fanuc LR Mate 200iD/7L 6-DoF robot in a real-world
robotic manipulation setup. The robot is tasked with picking
and placing objects in a toy kitchen environment.

Pre-trained imitation-based generative policy. We use a
Diffusion Policy [3] as the imitation-based action plan sampler.
The model takes the current image observations from the wrist
and third-person cameras as inputs to predict a distribution of
the robot’s future action plans (each action is a collection of a
3D waypoint and a gripper control signal). We use 120 multi-
mode teleoperated demonstrations to train the policy.

World model training. We use the DINO-WM [27] as our
base world model. DINO-WM leverages pre-trained DINOv2
[13] representation to encode visual observations and predict
action outcomes directly in the DINOv2 latent representation
space. We train the world model using 500 robot–environment
interaction trajectories, with 200 trajectories sampled by
rolling out the pre-trained diffusion policy and 300 random
exploration trajectories. We separately fine-tune a DINOv2



feature decoder using images from the testing environment
to map the predicted latent representations back to visual
observations. More details can be found in Appendix A.

VI. RESULTS

A. On the Effect of Novel Visual Distractors on World Model
Predictions

Qualitative example. In Figure 4, we demonstrate two
representative examples illustrating how novel visual distrac-
tors (highlighted in red in the first frame of each ground-
truth rollout) degrade the predictive performance of the world
model. Across these examples, the presence of unfamiliar
distractors causes DINO-WM to hallucinate and predict that
a failed action plan (one that would not successfully pick
up the green pepper) would succeed (left) and mistakenly
erase the target object (the green pepper) from the predicted
observations (right). In contrast, ReOI produces significantly
more accurate and visually consistent predictions aligned with
the true task execution by reimagining future observations
through test-time observation intervention.

Full obs. eval. In-distribution component eval.
SSIM ↑ LPIPS ↓ SSIM ↑ LPIPS↓

DINO-WM 0.51 0.17 0.63 0.14
ReOI 0.94 0.04 0.79 0.09

TABLE I: Quantitative evaluations of a world model’s
predicted visual action outcomes. We measure SSIM and
LPIPS to evaluate the structural and perceptual similarity of
the predicted visual action outcome. The left side shows results
on full predicted observations, while the right side focuses on
task-relevant, in-distribution objects after inpainting distractors
from both the predictions and ground truth. ReOI enables the
world model to produce more accurate visual predictions and
effectively mitigates the hallucination of in-distribution objects
caused by novel visual distractors.

Quantitative evaluation: overall prediction quality. We
use two standard metrics, SSIM (Structural Similarity Index)
[20] and LPIPS (Learned Perceptual Image Patch Similarity)
[25], to evaluate the quality of the world model’s predicted
visual action outcomes. SSIM measures structural similar-
ity based on contrast and spatial consistency, with higher
scores indicating closer alignment. LPIPS evaluates perceptual
similarity using deep feature comparisons, with lower scores
indicating greater visual similarity. As shown in Table I, ReOI
achieves better SSIM and LPIPS scores compared to DINO-
WM. These improvements indicate that by shifting the input
observation closer to the training distribution through test-
time intervention and reimagining futures from this intervened
input, our approach enables the world model to produce more
accurate and robust predictions.

Quantitative evaluation: ReOI effectively mitigates the
hallucination of in-distribution objects caused by novel
visual distractors. Since ReOI reimagines at test time and
explicitly reintroduces the novel visual distractors that DINO-
WM struggles to predict, the previous evaluation does not fully

disentangle the effect of these distractors on the world model’s
ability to predict the dynamics of in-distribution components
such as the robot and target objects. To ablate this effect, we
further inpaint the identified distractors in both the ground
truth and predicted observations and then measure SSIM and
LPIPS over the inpainted (distractor-free) predictions. The
right side of Table I shows that ReOI still achieves better con-
sistency and perceptual similarity compared to DINO-WM.
These results indicate that without test-time intervention, novel
visual distractors not only degrade the overall visual quality
(e.g., distractors distorted across frames) but also corrupt the
predicted dynamics of in-distribution objects (robot, target
object), leading to hallucinated motions.

B. On the Value of Test-time Observation Intervention for
Visual Planning

In this section, we evaluate the system-level performance in
the context of action plan verification, where the VLM-based
verifier needs to select desired action plans based on visual
outcome predictions from the world model. More detailed
component-level evaluation (visual distractor identification
accuracy and plan verification accuracy) can be found in
Appendix B).

Baselines. Our approach mitigates the impact of novel envi-
ronmental variations on downstream planning by applying test-
time observation intervention and reimagination. Alternatively,
another intervention strategy is to reject untrustworthy world
model action outcome predictions at test time to ensure safety.
In addition to comparing against the base DINO-WM, we
compare our approach against TrustRegion [11], which finds
a region (a union of r-balls about the subset of the world
model training data) where the learned visual dynamics model
is deemed reliable for downstream planning and rejects world
model predictions if the input observation and action plan
pair falls outside of the trust region. More details about this
baseline can be found in Appendix B.

Metric. We measure the task success rate and collision
rate to evaluate the system-level performance of the robot
visual planning. For each method, we conduct 10 trials with
randomly initialized task configurations and report the average
success rate. A trial is considered successful if the robot
successfully and safely completes the task.

Success Rate ↑ Collision Rate ↓
DINO-WM 0.20 0.40
TrustRegion 0.00 0.10
ReOI 0.70 0.10

TABLE II: Task Success Rate. ReOI enables more effective
and safe visual planning compared to baselines.

System-level result. We present the system-level quantita-
tive result in Table II. The results show that ReOI achieves a
significantly higher task success rate compared to both DINO-
WM and TrustRegion. Notably, ReOI maintains a low colli-
sion rate comparable to the conservative TrustRegion, while
being substantially safer than DINO-WM that directly uses
the observations for future prediction. These results suggest
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that ReOI enables more effective and safe visual planning
by modifying the input observation and reimagining action
outcomes at test time. We show two qualitative examples in
Figure 1 and Figure 5 to demonstrate the effectiveness of our
approach.

VII. CONCLUSION

World models enable robots to “imagine” future observa-
tions given current observations and planned actions, and have
been increasingly adopted as generalized dynamics models to
facilitate robot learning. Despite their promise, these models
remain brittle when encountering novel visual distractors.
Specifically, novel distractors can corrupt action outcome pre-
dictions, causing downstream failures when robots rely on the

world model imaginations for planning or action verification.
In this work, we proposed Reimagination with Observation
Intervention, a simple yet effective test-time strategy that
enables world models to predict more reliable action outcomes
in open-world scenarios where novel and unanticipated visual
distractors are inevitable. We validated our approach on robotic
manipulation tasks in the context of action verification, where
the verifier needs to select desired action plans based on
predictions from a world model. Results showed that our
approach is robust to both in-distribution and unfamiliar visual
distractors. Notably, it improved task success rates by up to 3×
in the presence of novel distractors, significantly outperform-
ing action verification that relies on world model predictions
without imagination interventions.
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